COMPLEX ANALYSIS 2014
 CHIN-LUNG WANG
 NOVEMBER 14, PM 12:30-3:20

Give your works in details. No partial credit will be assigned to non substantial solutions.

1. (15) Prove Goursat's theorem for a triangle and then deduce from it Cauchy's theorem for arbitrary piecewise C^{1} curves inside a disk.
2. (15) Prove that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2} .
$$

3. (15) Prove that for $\xi \in \mathbb{R}$

$$
\int_{-\infty}^{\infty} \frac{e^{-2 \pi i x \xi}}{\left(1+x^{2}\right)^{2}} d x=\frac{\pi}{2}(1+2 \pi|\xi|) e^{-2 \pi|\xi|} .
$$

4. (15) Prove that

$$
\int_{0}^{1} \log (\sin \pi x) d x=-\log 2
$$

5. (15) Determine the number of roots of the equation

$$
z^{6}+8 z^{4}+z^{3}+2 z+3=0
$$

in each quadrant of the complex plane. Determine also the number of zeros inside each annulus $k \leq|z|<k+1$ with $k \in \mathbb{Z}_{\geq 0}$.
6. (10) Let f be an entire function such that for each $a \in \mathbb{C}$ at least one Taylor coefficient at $z=a$ is zero. Prove that f is a polynomial.
7. (10) If f is entire of growth order $\rho \notin \mathbb{Z}$, show that f assumes every value $w \in \mathbb{C}$ infinitely many times. Give an example of such f.
8. (10) Does Cauchy's residue theorem hold for functions with not just poles but also isolated essential singularities? Justify your answer.

