CALCULUS - NTU 2011
 CHIN-LUNG WANG
 APRIL 14, PM 12:30-3:15

1. Let $f(x, y)=x^{2} \tan ^{-1}(y / x)-y^{2} \tan ^{-1}(x / y)$ for $x \neq 0$ and $y \neq 0$, and $f(x, y)=$ 0 otherwise.
(a) Evaluate $f_{x}(x, y)$ and $f_{y}(x, y)$ for $x \neq 0$ and $y \neq 0$.
(b) Evaluate $f_{x}(0,0)$ and $f_{y}(0,0)$, and show that f is differentiable at $(0,0)$. What is the tangent plane of the surface $z=f(x, y)$ at $(0,0,0)$?
(c) Evaluate $f_{x}(0, y)$ and $f_{y}(x, 0)$. Show that $f_{x y}(0,0) \neq f_{y x}(0,0)$.
2. Calculate the line integrals:
(a) $\begin{aligned} & \int z d x+x d y+y d z \text { over the arc of the helix } x=\cos t, y=\sin t, z=t \text { from } \\ & (1,0,0) \text { to }(1,0,2 \pi) \text {. }\end{aligned}$
(b) $\int \frac{y d x+x d y}{1+x^{2} y^{2}}$ over the arc of $y=\sin \frac{1}{x}$ from $(1 / 2 \pi, 0)$ to $(1 / \pi, 0)$.
3. Let $k>-1$. Calculate $f(k)=\int_{0}^{1}(x-1) \frac{x^{k}}{\log x} d x$.
4. Let $F(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{1} function. Suppose that $F\left(x_{0}, y_{0}\right)=0$ and $F_{y}\left(x_{0}, y_{0}\right)>0$, show that there exists a $\delta>0$ and a unique C^{1} function $f(x)$: $\left(x_{0}-\delta, x_{0}+\delta\right) \rightarrow \mathbb{R}$ with $F(x, f(x))=0$ for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. That is, y can be solved uniquely as a C^{1} function of x near x_{0}.
5. Consider the composite mapping $H=F \circ G:(x, y) \stackrel{G}{\mapsto}(\xi, \eta) \stackrel{F}{\mapsto}(u, v)$ with

$$
\left\{\begin{array} { l }
{ u = e ^ { \xi } \operatorname { c o s } \eta } \\
{ v = e ^ { \xi } \operatorname { s i n } \eta }
\end{array} \quad \left\{\begin{array}{l}
\xi=x /\left(x^{2}+y^{2}\right) \\
\eta=-y /\left(x^{2}+y^{2}\right)
\end{array}\right.\right.
$$

(a) If $(x, y) \neq(0,0)$, show that the local inverse mapping $H^{-1}(u, v)$ exists and compute its Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.
(b) Compute the matrix $D\left(H^{-1}\right)$ at $(u, v)=(e, 0)$.
6. (a) Let A be a 2×2 matrix. When does A defines a conformal mapping on \mathbb{R}^{2} ? (b) Let $(\xi, \eta)=(\phi(x, y), \psi(x, y))$ be a C^{2} conformal mapping for $(x, y) \in U \subset \mathbb{R}^{2}$. If $f(\xi, \eta)$ satisfies the Laplace equation, show that $g(x, y):=f(\phi(x, y), \psi(x, y))$ also satisfies the Laplace equation.
7. Characterize all the critical points of the function $f(x, y)=\left(x^{2} / 2+y^{2}\right) e^{-x^{2}-y^{2}}$ on \mathbb{R}^{2} into maximum, minimum and saddle points.
8. Find the values of a and b for the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ of least area containing the circle $(x-1)^{2}+y^{2}=1$.

