CALCULUS - NTU 2011 CHIN-LUNG WANG APRIL 14, PM 12:30 - 3:15

1. Let $f(x, y) = x^2 \tan^{-1}(y/x) - y^2 \tan^{-1}(x/y)$ for $x \neq 0$ and $y \neq 0$, and $f(x, y) = x^2 \tan^{-1}(y/x) - y^2 \tan^{-1}(x/y)$ 0 otherwise.

- (a) Evaluate $f_x(x, y)$ and $f_y(x, y)$ for $x \neq 0$ and $y \neq 0$.
- (b) Evaluate $f_x(0,0)$ and $f_y(0,0)$, and show that f is differentiable at (0,0). What is the tangent plane of the surface z = f(x, y) at (0, 0, 0)?
- (c) Evaluate $f_x(0, y)$ and $f_y(x, 0)$. Show that $f_{xy}(0, 0) \neq f_{yx}(0, 0)$.

2. Calculate the line integrals:

(a) ∫ zdx + xdy + ydz over the arc of the helix x = cos t, y = sin t, z = t from (1,0,0) to (1,0,2π).
(b) ∫ ydx + xdy/(1+x²y²) over the arc of y = sin 1/x from (1/2π,0) to (1/π,0).

3. Let k > -1. Calculate $f(k) = \int_{0}^{1} (x-1) \frac{x^{k}}{\log x} dx$.

4. Let F(x,y) : $\mathbb{R}^2 \to \mathbb{R}$ be a C^1 function. Suppose that $F(x_0,y_0) = 0$ and $F_{y}(x_{0}, y_{0}) > 0$, show that there exists a $\delta > 0$ and a unique C^{1} function f(x): $(x_0 - \delta, x_0 + \delta) \rightarrow \mathbb{R}$ with F(x, f(x)) = 0 for all $x \in (x_0 - \delta, x_0 + \delta)$. That is, *y* can be solved uniquely as a C^1 function of *x* near x_0 .

5. Consider the composite mapping $H = F \circ G : (x, y) \xrightarrow{G} (\xi, \eta) \xrightarrow{F} (u, v)$ with

$$\begin{cases} u = e^{\xi} \cos \eta, \\ v = e^{\xi} \sin \eta. \end{cases} \qquad \begin{cases} \xi = x/(x^2 + y^2), \\ \eta = -y/(x^2 + y^2). \end{cases}$$

- (a) If $(x, y) \neq (0, 0)$, show that the local inverse mapping $H^{-1}(u, v)$ exists and (u) a (u,y) / ((v)) / (u) and a d(x,y) / (u,v).
 (b) Compute the matrix D(H⁻¹) at (u,v) = (e,0).

6. (a) Let *A* be a 2 × 2 matrix. When does *A* defines a conformal mapping on \mathbb{R}^2 ? (b) Let $(\xi, \eta) = (\phi(x, y), \psi(x, y))$ be a C^2 conformal mapping for $(x, y) \in U \subset \mathbb{R}^2$. If $f(\xi, \eta)$ satisfies the Laplace equation, show that $g(x, y) := f(\phi(x, y), \psi(x, y))$ also satisfies the Laplace equation.

7. Characterize all the critical points of the function $f(x, y) = (x^2/2 + y^2)e^{-x^2-y^2}$ on \mathbb{R}^2 into maximum, minimum and saddle points.

8. Find the values of *a* and *b* for the ellipse $x^2/a^2 + y^2/b^2 = 1$ of least area containing the circle $(x - 1)^2 + y^2 = 1$.