CALCULUS FINAL EXAM - NTU 2011 CHIN-LUNG WANG JUNE 16, PM 12:30 - 3:15

- **1.** Consider the function $\mathbf{U} = \mathbf{F}(\mathbf{X}) = (x^2 y^2, xy)$.
 - (a) Obtain an iterative approximation G(X), which depends on given U, for the inverse transformation $F^{-1}(U)$ near $X_0 = (1,1)$ or $U_0 = (0,1)$. Verify that the fixed point X_{fixed} of G satisfies $U = F(X_{\text{fixed}})$.
 - (b) Show that there exists a $\delta > 0$ s.t. for any $\mathbf{U} \in B_{\delta}(\mathbf{U}_0)$ the iteration $\mathbf{X}_{n+1} = \mathbf{G}(\mathbf{X}_n)$ with initial value \mathbf{X}_0 converges to a limit, denoted by $\mathbf{X}(\mathbf{U})$.
- **2.** Evaluate the integrals:

(a)
$$\int_0^1 \int_y^1 e^{x^2} dx dy$$
, (b) $\int_0^1 \int_0^{\sqrt{1-z^2}} \int_0^{\sqrt{1-y^2-z^2}} (x^2+y^2+z^2) xyz dx dy dz$.

- **3.** Evaluate the integral $\int_{\{x^2+y^2+z^2 \le 1\}} e^{x+y+z} dx dy dz$.
- 4. Evaluate the improper integral

$$\int_0^\infty \frac{e^{-bx} - e^{-ax}}{x} \cos x \, dx.$$

(State explicitly the theorem you use and check all the required conditions.)

5. Calculate

$$\int_{S} z\,dx \wedge dy - x\,dy \wedge dz,$$

where *S* is the spherical cap $x^2 + y^2 + z^2 = 1$, x > 1/2, oriented positively with respect to the normal pointing to infinity.

6. Prove Green's theorem on \mathbb{R}^2 . Use it to derive one of the following: (1) The change of variable formula of double integrals with a C^2 transformation. (2) Stoke's theorem for oriented surface *S* with $\partial S = C$ in \mathbb{R}^3 .

7. Derive the formula for Laplace operator on \mathbb{R}^3 in spherical coordinates. Use it to show that the only radial vector field **F** (i.e. $\mathbf{F}(\mathbf{r}) = a(r)\mathbf{r}$ for some function *a* in $r = |\mathbf{r}|$) with curl $\mathbf{F} = 0$ and div $\mathbf{F} = 0$, except possibility at $\mathbf{r} = 0$, is given by

$$\mathbf{F}=\frac{c\mathbf{r}}{r^3}.$$

8. It is known experimentally that a charge conducting spherical lamina exerts zero force on a point charge inside the sphere. Assume that point charges repel or attract each other with a force dependent only only the distance between them, prove that this experiment implies Columb's law.