Calculus A (Spring 2010) Quiz 1

March 10, 2010

Dept. \qquad ID No. \qquad Name: \qquad
Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.
A. Let $f(x, y)$ be a real-valued function. Show that if $f_{x}(x, y)$ and $f_{y}(x, y)$ are both continuous at $(0,0)$, then $f(x, y)$ is differentiable at $(0,0)$.
B. Consider the function $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{array}\right.$.
(a) Show that f is continuous at $(0,0)$.
(b) Show that $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist and evaluate their values.
(c) Show that f is not differentiable at $(0,0)$.
C. Consider the function $f(x, y)=\left\{\begin{array}{ll}x^{2} \tan ^{-1}(y / x)-y^{2} \tan ^{-1}(x / y) & \text { if } x \neq 0 \text { and } y \neq 0 \\ 0 & \text { otherwise }\end{array}\right.$.
(a) Evaluate $f_{x}(x, y)$ and $f_{y}(x, y)$ for $x \neq 0$ and $y \neq 0$.
(b) Evaluate $f_{x}(0,0)$ and $f_{y}(0,0)$, and show that f is differentiable at $(0,0)$. What is the tangent plane of the surface $z=f(x, y)$ at $(0,0,0)$?
(c) Evaluate $f_{x}(0, y)$ for $y \neq 0$ and $f_{y}(x, 0)$ for $x \neq 0$. Show that $f_{x y}(0,0) \neq f_{y x}(0,0)$.
D. Let $f(x, y), u(x, y)$ and $v(x, y)$ be C^{2} functions. Suppose that $f_{x x}+f_{y y}=0$ and $u_{x}=v_{y}, u_{y}=-v_{x}$, show that the function $\phi(x, y)=f(u(x, y), v(x, y))$ also satisfies $\phi_{x x}+\phi_{y y}=0$.

Calculus A (Spring 2010) Quiz 2

March 24, 2010

Dept. \qquad ID No \qquad Name: \qquad
Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.
A. Let $u(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{2} function. Express $u_{x x}+u_{y y}$ in polar coordinate.
B. Let $f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{1} function. Show that $\frac{d}{d y} \int_{a}^{b} f(x, y) d x=\int_{a}^{b} \frac{\partial}{\partial y} f(x, y) d x$.

Hint. Every continuous function defined on a bounded and closed set $D \subset \mathbb{R}^{n}$ is uniformly continuous.
C. Consider the line integral $\int_{\Gamma} L$, where $L=A d x+B d y+C d z$ defined on \mathbb{R}^{3}. Prove that L is exact, that is, $L=d f$ for some f on \mathbb{R}^{3}, if and only if the integral is independent to the path, which means that it only depends on the end points of Γ.
D. (a) Evaluate $\int z d x+x d y+y d z$ over the arc of the helix $\left\{\begin{array}{l}x=\cos t \\ y=\sin t \\ z=t\end{array}\right.$ from $(1,0,0)$ to $(1,0,2 \pi)$.
(b) Evaluate $\int \frac{y d x+x d y}{1+x^{2} y^{2}}$ over the arc of $y=\sin \frac{1}{x}$ from $(1 / 2 \pi, 0)$ to $(1 / \pi, 0)$.

Hint. Check if the differential form is exact.

Calculus A (Spring 2010) Quiz 3

April 7, 2010

Dept. \qquad ID No. Name: \qquad
Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.
A. Let $F(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{1} function. Suppose that $F\left(x_{0}, y_{0}\right)=0$ and $F_{y}\left(x_{0}, y_{0}\right)>0$, show that there exists a $\delta>0$ and a unique C^{1} function $f(x):\left(x_{0}-\delta, x_{0}+\delta\right) \rightarrow \mathbb{R}$ s.t. $F(x, f(x))=0$ for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. That is, y can be solved uniquely as a C^{1} function of x near x_{0}.
B. Let $F(x, y, z)=x+y+z-\sin x y-\sin y z-\sin x z$.
(a) Show that $F(x, y, z)=0$ can be solve for $z=f(x, y)$, where f is a C^{1} function, near $(0,0,0)$.
(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$. What is the tangent plane of the surface $F(x, y, z)=0$ at $(0,0,0)$?
C. Find the stationary points of $f(x, y)=x^{3}+(y-x)(2 y+x)-\frac{3}{2} y^{2}$ and determine whether they are local maximum, local minimum or saddle point.
D. Find the condition that the quadrilateral with given edges a, b, c, d includes the greatest area. And find its area.

Hint. Suppose the pairs a, b and c, d are adjacent. Let ϕ be the angle between a and b, ψ that between c and d. Express the area as a function of ϕ and ψ, and use cosine law to construct a constrain for ϕ and ψ.

Calculus A (Spring 2010) Quiz 4

April 28, 2010
Dept. \qquad ID No.
Name: \qquad
Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.
A. Consider a circle C, which lies in the $x z$-plane, with center $(a, 0,0)$ and radius $r<|a|$. Let Γ be the torus obtained by rotating C about z-axis. Find the tangent plane of Γ at point $\left(\frac{a}{\sqrt{2}}+\frac{r}{2}, \frac{a}{\sqrt{2}}+\frac{r}{2}, \frac{r}{\sqrt{2}}\right)$.
B. Calculate the first fundamental form of the surface of revolution given by $r=\sqrt{x^{2}+y^{2}}=f(z)$, where f is a C^{1} function, in terms of the cylindrical coordinates z and $\theta=\tan ^{-1} \frac{y}{x}$.
C. Let S be the sphere $x^{2}+y^{2}+z^{2}=1$.
(a) Use stereographic projection from the north pole $(0,0,1)$ to the plane $z=0$ to obtain a parametric representation for $S \backslash\{(0,0,1)\}$.
(b) Show that the parametrization $\mathbf{r}(u, v): \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ in (a) is conformal. That is, if two curves on $z=0$, which intersect at $(u, v, 0)$, are orthogonal at $(u, v, 0)$, then the two image curves on the sphere are also orthogonal at $\mathbf{r}(u, v)$.
D. Consider the function $\mathbf{U}=\mathbf{F}(\mathbf{X})=\left(x^{2}-y^{2}, x y\right)$.
(a) Obtain an iterative approximation $\mathbf{G}(\mathbf{X})$, which depends on given \mathbf{U}, for the inverse transformation $\mathbf{F}^{-1}(\mathbf{U})$ near $\mathbf{X}_{0}=(1,1)$ or $\mathbf{U}_{0}=(0,1)$. Verify that the fixed point $\mathbf{X}_{\text {fixed }}$ of \mathbf{G} satisfies $\mathbf{U}=\mathbf{F}\left(\mathbf{X}_{\text {fixed }}\right)$.
(b) Show that there exists a $\delta>0$ s.t. for any $\mathbf{U} \in B_{\delta}\left(\mathbf{U}_{0}\right)$ the iteration $\mathbf{X}_{n+1}=\mathbf{G}\left(\mathbf{X}_{n}\right)$ with initial value \mathbf{X}_{0} converges to a limit, denoted by $\mathbf{X}(\mathbf{U})$.

Calculus A (Spring 2010) Quiz 5

May 12, 2010

Dept. \qquad ID No. \qquad Name: \qquad
Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.

A1. Show that S is Jordan measurable in \mathbb{R}^{n} if and only if ∂S has Jordan measure 0 in \mathbb{R}^{n}.
A2. Let S and T be any disjoint sets whose union has area. Show that $A^{+}(S)+A^{-}(T)=A(S \cup T)$.
B. (a) Find the volume common to the two cylinders $x^{2}+z^{2} \leq 1$ and $y^{2}+z^{2} \leq 1$.
(b) Find the volume common to the three cylinders $x^{2}+z^{2} \leq 1, y^{2}+z^{2} \leq 1$ and $x^{2}+y^{2} \leq 1$.
C. (a) Evaluate the integral $\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y$.
(b) Evaluate the integral $\int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{\sqrt{1-y^{2}-z^{2}}}\left(x^{2}+y^{2}+z^{2}\right) x y z d x d y d z$.

D1. For $a, b, c \in \mathbb{R}$, evaluate the integral $\int_{\left\{x^{2}+y^{2}+z^{2} \leq 1\right\}} \cos (a x+b y+c z) d x d y d z$.
D2. Evaluate the integral $\int_{\left\{x^{2}+y^{2}+z^{2} \leq 1\right\}} e^{x+y+z} d x d y d z$.
Hint. Consider the change of variable $\left\{\begin{array}{l}x^{\prime}=(x+y+z) / \sqrt{3} \\ y^{\prime}=(x-z) / \sqrt{2} \\ z^{\prime}=(x-2 y+z) / \sqrt{6}\end{array}\right.$.

Calculus A (Spring 2010) Quiz 6

May 26, 2011
Dept. \qquad ID No. \qquad Name: \qquad
Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.
A. Determine whether the improper integral $\iiint_{\mathbb{R}^{3}} \frac{d x d y d z}{\left(1+x^{2}+y^{2}+z^{2}\right)^{2}}$ converges or diverges. If it converges, evaluate the integral.
B. Find the area of surface $\mathbf{r}(r, \theta)=(r \cos \theta, r \sin \theta, \theta)$ with $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$.
C. Find the volume of the n-simplex described by $x_{k} \geq 0$ for $k=1,2, \cdots, n$ and $\frac{x_{1}}{a_{1}}+\frac{x_{2}}{a_{2}}+\cdots+\frac{x_{n}}{a_{n}} \leq 1$.
D. (a) Evaluate the improper integral $\int_{0}^{\infty} e^{-t x} \cos x d x$ for any fixed t.
(b) Show that the integral in (a) converges uniformly in t.
(c) Evaluate the integral $\int_{0}^{\infty} \frac{e^{-b x}-e^{-a x}}{x} \cos x d x$.
E. Assume we have known that the surface area of $z=f(x, y)$ in the region $(x, y) \in R$ is

$$
\int_{R} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y
$$

Now, there is a surface in the parametric form

$$
x=\phi(u, v), \quad y=\psi(u, v), \quad z=\chi(u, v)
$$

Show that if we consider a portion R^{\prime} of u, v-plane where the Jacobian $\frac{d(x, y)}{d(u, v)}$ is not zero, then the surface area of the image of R^{\prime} is

$$
\int_{R^{\prime}} \sqrt{E G-F^{2}} d u d v
$$

Where E, F, G are the elements of the first fundamental form.
F. Let the region R be an unbounded set. Assume that we can find $\left\{R_{n}\right\}$ s.t. $R_{n} \subset R_{n+1} \subset R$ in each of where $f(x, y)$ is continuous. Assume we have

$$
S \subset R_{n} \text { for some } n, \quad \int_{R_{n}}|f(x, y)| d A<u
$$

for every bounded, closed set $S \subset R$ and u is independent to n, show that

$$
I=\lim _{n \rightarrow \infty} \int_{R_{n}} f(x, y) d A
$$

exists and is independent to the choice of approximating sequence R_{n}.

Calculus A (Spring 2010) Quiz 7

June 9, 2010
Dept. \qquad ID No. \qquad Name: \qquad
Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.
A. Let $L=\frac{-y d x+x d y}{x^{2}+y^{2}}$.
(a) Evaluate $\int_{C_{\varepsilon}} L$, where C_{ε} is a circle with center $(0,0)$ and radius ε.
(b) Show that for any piecewise C^{1} simple closed curve C,

$$
\int_{C} L= \begin{cases}2 \pi & \text { if }(0,0) \text { lies in the close curve } \\ 0 & \text { if }(0,0) \text { does not lie in the close curve }\end{cases}
$$

B. Use Green's Theorem to prove the change of variable formula

$$
\iint_{R} f(x, y) d x d y=\iint_{S} f(x(u, v), y(u, v)) \frac{\partial(x, y)}{\partial(u, v)} d u d v
$$

provided that the transformation $(u, v) \mapsto(x(u, v), y(u, v))$ from S to R is one-to-one and C^{2} with positive Jacobian.
C. Calculate $\iint_{S} z d x \wedge d y-x d y \wedge d z$, where S is the spherical cap $x^{2}+y^{2}+z^{2}=1, x>1 / 2$, oriented positively with respect to the normal pointing to infinity.
D. Let $\mathbf{F}(x, y, z)=(0,0, z)$ and S be the helicoid $\mathbf{r}(u, v)=(r \cos \theta, r \sin \theta, \theta), 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$. Evaluate the flux $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$, where \mathbf{n} is the upward normal of S.

