CALCULUS - NTU 2010 CHIN-LUNG WANG NOVEMBER 9, PM 12:30 - 3:15

- **1.** Let $f(x) = x^3$ on \mathbb{R} . Give an " ϵ - δ " proof that f is a continuous function.
- **2.** Show that a continuous function on [*a*, *b*] must be uniformly continuous.
- 3. Use Riemann sum to evaluate

$$\int_{a}^{b} \cos x \, dx.$$

4. (a) If y' = ay, show that $y = ce^{ax}$ for some *c*. (b) If f(x + y) = f(x)f(y) and *f* is differentiable, show that either $f(x) \equiv 0$ or $f(x) = e^{ax}$ for some *a*.

5. State and prove the "Chain Rule" for composite functions.

6. Integrate

(a)
$$\int (\log x)^3 dx$$
 (b) $\int \sinh^{-1} x dx$.

7. Integrate

(a)
$$\int \frac{dx}{2\cos x + \sin x + 1}$$
 (b) $\int x^2 \sqrt{a^2 - x^2} \, dx$.

8. Sketch the graph of the function: f(0) = 1, $f(x) = (x^2)^x$ for $x \neq 0$. Show that f is continuous on \mathbb{R} . Has the function maxima, minima, or points of inflection?

9. For what values of $s \in \mathbb{R}$ is the improper integral

(a)
$$\int_0^\infty \frac{x^{s-1}}{1+x} dx$$
 (b) $\int_0^\infty \frac{\sin x}{x^s} dx$ (c) $\int_0^\infty \frac{|\sin x|}{x^s} dx$

convergent? Justify your answers in detail.

10. (a) State and prove the generalized mean value theorem. (b) Use it to prove the following form of L'Hopital rule: If f(x) and g(x) both tend to ∞ as $x \to a$ and $\lim_{x\to a} f'(x)/g'(x) = L$ exists, then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}.$$