CALCULUS - NTU 2010
 CHIN-LUNG WANG
 NOVEMBER 9, PM 12:30-3:15

1. Let $f(x)=x^{3}$ on \mathbb{R}. Give an " $\epsilon-\delta$ " proof that f is a continuous function.
2. Show that a continuous function on $[a, b]$ must be uniformly continuous.
3. Use Riemann sum to evaluate

$$
\int_{a}^{b} \cos x d x
$$

4. (a) If $y^{\prime}=a y$, show that $y=c e^{a x}$ for some c. (b) If $f(x+y)=f(x) f(y)$ and f is differentiable, show that either $f(x) \equiv 0$ or $f(x)=e^{a x}$ for some a.
5. State and prove the "Chain Rule" for composite functions.
6. Integrate
(a) $\int(\log x)^{3} d x$
(b) $\int \sinh ^{-1} x d x$.
7. Integrate
(a) $\int \frac{d x}{2 \cos x+\sin x+1}$
(b) $\int x^{2} \sqrt{a^{2}-x^{2}} d x$.
8. Sketch the graph of the function: $f(0)=1, f(x)=\left(x^{2}\right)^{x}$ for $x \neq 0$. Show that f is continuous on \mathbb{R}. Has the function maxima, minima, or points of inflection?
9. For what values of $s \in \mathbb{R}$ is the improper integral
(a) $\int_{0}^{\infty} \frac{x^{s-1}}{1+x} d x$
(b) $\int_{0}^{\infty} \frac{\sin x}{x^{s}} d x$
(c) $\int_{0}^{\infty} \frac{|\sin x|}{x^{s}} d x$
convergent? Justify your answers in detail.
10. (a) State and prove the generalized mean value theorem. (b) Use it to prove the following form of L'Hopital rule: If $f(x)$ and $g(x)$ both tend to ∞ as $x \rightarrow a$ and $\lim _{x \rightarrow a} f^{\prime}(x) / g^{\prime}(x)=L$ exists, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

