Calculus A (Fall 2010) Quiz 1

September 23, 2010

Dept. \qquad ID No. \qquad Name:

Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.
A. (10 points) Consider the function $f(x)=x^{3}$ on \mathbb{R} and a fixed point $a \in \mathbb{R}$. Given an $\varepsilon>0$, find a $\delta>0$ s.t. $|f(x)-f(a)|<\varepsilon$ whenever $|x-a|<\delta$.
B. (10 points) Suppose that f is continuous at a and $f(a)<0$. Show that there exists an open interval I containing a s.t. $f(x)<0$ for all $x \in I$.
C. (10 points) Show that the function $f(x)=\left\{\begin{array}{ll}0 & \text { if } x \text { is irrational or } x=0 \\ 1 / q & \text { if } x=p / q \text { rational in lowest terms }\end{array}\right.$ is discontinuous at $x=1$.

Calculus A (Fall 2010) Quiz 2

September 30, 2010

Dept. \qquad ID No. \qquad Name:

Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.
A. (10 points) Consider a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ defined by $\left\{\begin{array}{l}a_{1}=\sqrt{3} \\ a_{n+1}=\sqrt{3+a_{n}}\end{array}\right.$ for $n \geq 1$. . Show that $\lim _{n \rightarrow \infty} a_{n}$ exists and evaluate the limit.
B. (10 points) Show that $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{n^{2}+i}}=1$.
C. (10 points) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequence in \mathbb{R}. Suppose that $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, show that $\lim _{n \rightarrow \infty} a_{n} b_{n}=a b$.

Calculus A (Fall 2010) Quiz 3

October 7, 2010

Dept. \qquad ID No. \qquad Name:

Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.
A. (10 points) Show that if every bounded sequence in \mathbb{R} has at least one limit point, then every Cauchy sequence in \mathbb{R} converges.
B. (10 points) Use the method of Riemann sum to show that $\int_{a}^{b} \cos x d x=\sin b-\sin a$.
C. (10 points) Suppose that f is a continuous function on a closed interval $[a, b]$. Show that f is uniformly continuous on $[a, b]$.

Calculus A (Fall 2010) Quiz 4

October 14, 2010

Dept. \qquad ID No.
Name:
Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.
A. (10 points) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and let $F(x)=\int_{0}^{x} f(t) d t$. Show that $F^{\prime}(x)=f(x)$ for all $x \in \mathbb{R}$.
B. (10 points) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at $x=a$ and $f(a)$ is a maximum of f. Show that $f^{\prime}(a)=0$.
C. (10 points) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on $(a-\delta, a) \cup(a, a+\delta)$ for some $\delta>0$ and $\lim _{\substack{x \rightarrow a \\ x \neq a}} f^{\prime}(x)=L$. Show that $f^{\prime}(a)$ exists and equals to L.

Calculus A (Fall 2010) Quiz 5

October 21, 2010

Dept.
ID No. \qquad Name:
A. (a) (5 points) State the Weierstrass principle in real number system.
(b) (5 points) Use the Weierstrass principle to show that every bounded monotonic increasing sequence in \mathbb{R} is convergent.
B. (10 points) Suppose $u(x)>0$ and $v(x)>1$ are two differentiable functions on \mathbb{R}. Find the derivative of the function $f(x)=\log _{v(x)} u(x)$ in terms of u, v, u^{\prime} and v^{\prime}.
C. (10 points) Let $f(x)=\sinh ^{-1}(\cosh x)$, where $\sinh ^{-1}$ is the inverse of hyperbolic sine function. Find $f^{\prime}(x)$.

Calculus A (Fall 2010) Quiz 6

October 28, 2010

Dept.
ID No.
Name:
A. (5 points) Evaluate $\int_{0}^{1} \sqrt{\frac{x}{1+x}} d x$.
B. Let $f(x)=\left\{\begin{array}{ll}x^{2 x} & \text { if } x>0 \\ 1 & \text { if } x=0\end{array}\right.$.
(a) (5 points) Show that $\lim _{\substack{x \rightarrow 0 \\ x \neq 0}} f(x)$ exists and f is continuous at $x=0$.
(b) (5 points) Find all relative extrema of f.
(c) (5 points) Find all points of inflection of f if there is any.
C. Let $f(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$.
(a) (5 points) Show that f is differentiable at $x=0$ and find $f^{\prime}(0)$.
(b) (5 points) Find $f^{\prime}(x)$ for all x. Is $f^{\prime}(x)$ continuous?

Calculus A (Fall 2010) Quiz 7

November 4, 2010

Dept.
ID No.
Name:
A. (10 points) Evaluate $\int \frac{d \theta}{\cos \theta(1+\sin \theta)} d x$.
B. (10 points) Evaluate $\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{2}+1}} d x$.
C. (10 points) Evaluate $\int x^{2} \tan ^{-1} x d x$.

