September 23, 2010

Dept._____ ID No._____ Name:_____

Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.

A. (10 points) Consider the function $f(x) = x^3$ on \mathbb{R} and a fixed point $a \in \mathbb{R}$. Given an $\varepsilon > 0$, find a $\delta > 0$ s.t. $|f(x) - f(a)| < \varepsilon$ whenever $|x - a| < \delta$.

B. (10 points) Suppose that f is continuous at a and f(a) < 0. Show that there exists an open interval I containing a s.t. f(x) < 0 for all $x \in I$.

C. (10 points) Show that the function $f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational or } x = 0 \\ 1/q & \text{if } x = p/q \text{ rational in lowest terms} \end{cases}$ is discontinuous at x = 1.

September 30, 2010

Dept._____ ID No._____ Name:_____

Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.

A. (10 points) Consider a sequence $\{a_n\}_{n=1}^{\infty}$ defined by $\begin{cases} a_1 = \sqrt{3} \\ a_{n+1} = \sqrt{3} + a_n \end{cases}$. Show that $\lim_{n \to \infty} a_n$ exists and evaluate the limit.

B. (10 points) Show that $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{n^2 + i}} = 1.$

C. (10 points) Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be two sequence in \mathbb{R} . Suppose that $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$, show that $\lim_{n \to \infty} a_n b_n = ab$.

October 7, 2010

Dept._____ ID No._____ Name:_____

Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.

A. (10 points) Show that if every bounded sequence in \mathbb{R} has at least one limit point, then every Cauchy sequence in \mathbb{R} converges.

B. (10 points) Use the method of Riemann sum to show that $\int_{a}^{b} \cos x dx = \sin b - \sin a$.

C. (10 points) Suppose that f is a continuous function on a closed interval [a, b]. Show that f is uniformly continuous on [a, b].

October 14, 2010

Dept._____ ID No._____ Name:_____

Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer.

A. (10 points) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous and let $F(x) = \int_0^x f(t)dt$. Show that F'(x) = f(x) for all $x \in \mathbb{R}$.

B. (10 points) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is differentiable at x = a and f(a) is a maximum of f. Show that f'(a) = 0.

C. (10 points) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is differentiable on $(a - \delta, a) \cup (a, a + \delta)$ for some $\delta > 0$ and $\lim_{\substack{x \to a \\ x \neq a}} f'(x) = L$. Show that f'(a) exists and equals to L.

October 21, 2010

Dept	ID No.	Name:
D0000		i talifo:

- A. (a) (5 points) State the Weierstrass principle in real number system.
 - (b) (5 points) Use the Weierstrass principle to show that every bounded monotonic increasing sequence in \mathbb{R} is convergent.

B. (10 points) Suppose u(x) > 0 and v(x) > 1 are two differentiable functions on \mathbb{R} . Find the derivative of the function $f(x) = \log_{v(x)} u(x)$ in terms of u, v, u' and v'.

C. (10 points) Let $f(x) = \sinh^{-1}(\cosh x)$, where \sinh^{-1} is the inverse of hyperbolic sine function. Find f'(x).

October 28, 2010

Dept	ID No.	Name:
- •F •		

A. (5 points) Evaluate $\int_0^1 \sqrt{\frac{x}{1+x}} dx$.

- B. Let $f(x) = \begin{cases} x^{2x} & \text{if } x > 0 \\ 1 & \text{if } x = 0 \end{cases}$.
 - (a) (5 points) Show that $\lim_{\substack{x\to 0\\x\neq 0}} f(x)$ exists and f is continuous at x = 0.
 - (b) (5 points) Find all relative extrema of f.
 - (c) (5 points) Find all points of inflection of f if there is any.

C. Let
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
.

- (a) (5 points) Show that f is differentiable at x = 0 and find f'(0).
- (b) (5 points) Find f'(x) for all x. Is f'(x) continuous?

November 4, 2010

Dept	_ ID No	Name:
A. (10 points) Evaluate $\int \frac{1}{\cos \theta}$	$\frac{d\theta}{\theta(1+\sin\theta)}dx.$	

B. (10 points) Evaluate $\int_0^1 \frac{x^3}{\sqrt{x^2+1}} dx$.

C. (10 points) Evaluate $\int x^2 \tan^{-1} x dx$.