CALCULUS - NTU MATH: FINAL EXAM CHIN-LUNG WANG JANUARY 13, 2011, PM 12:30 - 3:15

1. (10) In polar coordinate, if we use θ as parameter, show that $\dot{x}^2 + \dot{y}^2 = \dot{r}^2 + r^2$. Draw a picture of the cardioid $r = 1 + \cos \theta$ and calculate its arc length.

2. (10) Show that
$$\sum_{k=2}^{\infty} \frac{1}{k(\log k)^{\alpha}}$$
 converges for $\alpha > 1$ and diverges for $\alpha \le 1$.

3. (10) Show that $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$ by using the Fourier series of $f(x) = x^2$.

4. (10) If $f_n \in C(\mathbb{R})$, $n \in \mathbb{N}$ and $f_n \to f$ uniformly, show that $f \in C(\mathbb{R})$. Give an example to show that the conclusion fails if the convergence is not uniform.

5. (10) Let f(x) be a polynomial and f(a) = 0. Show that there is a neighborhood $I = (a - \delta, a + \delta)$ of *a* so the Newton iteration converges for any $x_0 \in I$.

6. (10) A mass *m* particle slides down along a curve **r** under gravity $\mathbf{F} = (0, -mg)$. Using the fact that the equation of motion is given by $d^2s/dt^2 = -gdy/ds$:

- (a) Express the period *T* as an integral (at t = 0, $\theta = -\theta_0$ and ds/dt = 0).
 - (b) For $\mathbf{r}(\theta) = (a(\theta + \pi + \sin \theta), -a(1 + \cos \theta))$, show that $T = 2\pi \sqrt{a/g}$

7. (20) Prove Taylor's theorem and estimate $\sin 35^{\circ}$:

- (a) State and prove Taylor's theorem in Lagrange's or Cauchy's form.
- (b) Compute the Taylor expansion for $f(x) = \sin x$ at $x = \pi/6$ and determine its radius of convergence.
- (c) How many terms are needed in estimating $\sin 35^\circ$ with error $< 10^{-9}$?

8. (20) Assume that $\sigma_n(t) := \frac{1}{2} + \cos t + \cos 2t + \dots + \cos nt = \frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}}.$

(a) Show that
$$\int_0^{\pi} \frac{\sin(n+\frac{1}{2})t}{\sin\frac{t}{2}} dt = \pi$$
 for all $n \in \mathbb{N}$

(b) Let
$$f \in PC^1([a, b])$$
, show that $\lim_{\lambda \to \infty} \int_a^b f(t) \sin \lambda t \, dt = 0$

(c) Show that
$$\int_0^{t_1} \frac{\sin t}{t} dt = \frac{\pi}{2}$$
.

(d) State and prove Fejer's theorem on trigonometric approximation of piecewise continuous periodic functions.