CALCULUS - NTU MATH: FINAL EXAM CHIN-LUNG WANG
 JANUARY 13, 2011, PM 12:30-3:15

1. (10) In polar coordinate, if we use θ as parameter, show that $\dot{x}^{2}+\dot{y}^{2}=\dot{r}^{2}+r^{2}$. Draw a picture of the cardioid $r=1+\cos \theta$ and calculate its arc length.
2. (10) Show that $\sum_{k=2}^{\infty} \frac{1}{k(\log k)^{\alpha}}$ converges for $\alpha>1$ and diverges for $\alpha \leq 1$.
3. (10) Show that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$ by using the Fourier series of $f(x)=x^{2}$.
4. (10) If $f_{n} \in C(\mathbb{R}), n \in \mathbb{N}$ and $f_{n} \rightarrow f$ uniformly, show that $f \in C(\mathbb{R})$. Give an example to show that the conclusion fails if the convergence is not uniform.
5. (10) Let $f(x)$ be a polynomial and $f(a)=0$. Show that there is a neighborhood $I=(a-\delta, a+\delta)$ of a so the Newton iteration converges for any $x_{0} \in I$.
6. (10) A mass m particle slides down along a curve \mathbf{r} under gravity $\mathbf{F}=(0,-m g)$. Using the fact that the equation of motion is given by $d^{2} s / d t^{2}=-g d y / d s$:
(a) Express the period T as an integral (at $t=0, \theta=-\theta_{0}$ and $d s / d t=0$).
(b) For $\mathbf{r}(\theta)=(a(\theta+\pi+\sin \theta),-a(1+\cos \theta))$, show that $T=2 \pi \sqrt{a / g}$
7. (20) Prove Taylor's theorem and estimate $\sin 35^{\circ}$:
(a) State and prove Taylor's theorem in Lagrange's or Cauchy's form.
(b) Compute the Taylor expansion for $f(x)=\sin x$ at $x=\pi / 6$ and determine its radius of convergence.
(c) How many terms are needed in estimating $\sin 35^{\circ}$ with error $<10^{-9}$?
8. (20) Assume that $\sigma_{n}(t):=\frac{1}{2}+\cos t+\cos 2 t+\cdots+\cos n t=\frac{\sin \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}}$.
(a) Show that $\int_{0}^{\pi} \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \frac{t}{2}} d t=\pi$ for all $n \in \mathbb{N}$
(b) Let $f \in P C^{1}([a, b])$, show that $\lim _{\lambda \rightarrow \infty} \int_{a}^{b} f(t) \sin \lambda t d t=0$.
(c) Show that $\int_{0}^{\infty} \frac{\sin t}{t} d t=\frac{\pi}{2}$.
(d) State and prove Fejer's theorem on trigonometric approximation of piecewise continuous periodic functions.
