CALCULUS — Chin-Lung Wang

- 1. $(\S{12.4})$
 - (a) Prove that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} (\vec{a} \cdot \vec{c})\vec{b}$.
 - (b) Prove that $(\vec{a} \times \vec{b}) \cdot [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})] = [\vec{a} \cdot (\vec{b} \times \vec{c})]^2$.
- 2. $(\S12.6)$ Identify and sketch the surfaces

 - (a) $4x^2 y^2 + 2z^2 + 4 = 0.$ (b) $x = y^2 + z^2 2y 4z + 5.$
- 3. (§13.3) Given $\vec{r}(t)$ with arc length function s(t). Let ' be the derivative in t.
 - (a) Show that $d\vec{B}/ds$ is perpendicular to \vec{B} and \vec{N} . Thus we may define τ by $d\vec{B}/ds = -\tau \vec{N}$. Then show that $d\vec{N}/ds = -\kappa \vec{T} + \tau \vec{B}$.
 - (b) Derive formulae for $\vec{r'}$, $\vec{r''}$ and $\vec{r'''}$ in terms of \vec{T} , \vec{N} , \vec{B} and s, κ , τ (and their derivatives).
 - (c) Show that

$$\kappa = \frac{|\vec{r'} \times \vec{r''}|}{|\vec{r'}|^3}.$$

(d) Show that

$$\tau = \frac{(\vec{r'} \times \vec{r''}) \cdot \vec{r'''}}{|\vec{r''} \times \vec{r''}|^2}$$

- 4. (§13.4) Let $\vec{r}(t)$ be a motion governed by Newton's Law $\vec{F} = m\vec{a}$ and the gravitational force. Following the steps to prove Kepler's Laws:
 - (a) Show that $\vec{h} := \vec{r} \times \vec{v}$ is a constant vector.
 - (b) Let $r = |\vec{r}|$ and $\vec{u} = \vec{r}/r$. Show that $\vec{a} \times \vec{h} = GM\vec{u}'$. and then show that there is a constant vector \vec{c} such that $\vec{v} \times \vec{h} = GM\vec{u} + \vec{c}$. (c) By arranging the basis vectors $\vec{i}, \vec{j}, \vec{k}$ so that \vec{k} is in the direction of \vec{h} and \vec{i} is in the
 - direction of \vec{c} . Let θ be the angle between \vec{c} and \vec{r} , $c = |\vec{c}|$ and $h = |\vec{h}|$. Show that

$$r = \frac{h^2}{GM + c\cos\theta}$$

(d) Show that this represents a quadratic curve on the x-y plane.

- 5. (§14.7)
 - (a) Classify all the critical points of $f(x, y) = x^4 + y^4 4xy + 1$ and sketch the graph of it.
 - (b) Do the same for $f(x, y) = x^2 y e^{-(x^2 + y^2)}$.
- 6. (§14.8) The plane 4x 3y + 8z = 5 intersects the cone $z^2 = x^2 + y^2$ in an ellipse.
 - (a) Graph the cone, the plane and the ellipse.
 - (b) Use Lagrange multiplier to find the highest and lowest points on the ellipse.