PROBLEMS FOR CALCULUS 2009 - FINAL EXAM

CHIN-LUNG WANG

Problem 0.1. Using Green's Theorem to derive the change of variable formula:

$$
\iint_{\Omega} f d x d y=\iint_{D} f \circ T\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

where the map $T:(u, v) \mapsto(x(u, v), y(u, v))$ has continuous partial derivatives and maps D one to one and onto Ω.

Solution. Let $Q(x, y)=\int^{x} f(t, y) d t$. Then $Q_{x}=f$ and by Green's Theorem

$$
\iint_{\Omega} f d x d y=\iint_{\Omega} Q_{x} d x d y=\int_{\partial \Omega} Q d y
$$

By the change of variable formula for one variable (line) integrals, this equals

$$
\pm \int_{\partial D} Q\left(y_{u} d u+y_{v} d v\right)= \pm \int_{\partial D}\left(Q y_{u}\right) d u+\left(Q y_{v}\right) d v
$$

Here the sign depends on whether T preserves the orientation. By Green's Theorem again, now on the (u, v) plane, we get

$$
\pm \iint_{D}\left(\left(Q y_{v}\right)_{u}-\left(Q y_{u}\right)_{v}\right) d u d v
$$

The integrand equals $\left(Q_{x} x_{u}+Q_{y} y_{u}\right) y_{v}+Q y_{v u}-\left(Q_{x} x_{v}+Q_{y} y_{v}\right) y_{u}-Q y_{u v}$, which simplifies to $Q_{x}\left(x_{u} y_{v}-x_{v} y_{u}\right)=f\left(x_{u} y_{v}-x_{v} y_{u}\right)$ by the definition of Q.

Finally, by the definition of orientation of T we have

$$
\pm\left(x_{u} y_{v}-x_{v} y_{u}\right)=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|
$$

The proof is complete.
Problem 0.2. The Maxwell equations without charges and currents state that

$$
\operatorname{div} \vec{E}=0=\operatorname{div} \vec{H}, \quad \operatorname{curl} \vec{E}=-\frac{1}{c} \frac{\partial \vec{H}}{\partial t}, \quad \operatorname{curl} \vec{H}=\frac{1}{c} \frac{\partial \vec{E}}{\partial t}
$$

Using them to prove the wave equation for the electronic field \vec{E} :

$$
\nabla^{2} \vec{E}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

Solution. From

$$
\text { curl curl } \vec{E}=\nabla \operatorname{div} \vec{E}-\nabla^{2} \vec{E}=-\nabla^{2} \vec{E}
$$

(since $\operatorname{div} \vec{E}=0$), we get

$$
\nabla^{2} \vec{E}=-\operatorname{curl}\left(-\frac{1}{c} \frac{\partial \vec{H}}{\partial t}\right)=\frac{1}{c} \frac{\partial \operatorname{curl} \vec{H}}{\partial t}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

where in the middle equality we commute the derivatives in t and in x, y, z.

Problem 0.3. Let \vec{F} be a conservative vector field on \mathbb{R}^{3} with potential $P(x, y, z)$. State and prove the "Law of Conservation of Energy".
Solution. For a moving particle $\vec{r}(t)$ of mass m, we need to show that

$$
E(t):=\frac{1}{2} m v^{2}(t)+P(\vec{r}(t))
$$

is a constant value in t.
Method 1: By differentiation in t and using $\vec{F}=-\nabla P$, we get

$$
\begin{aligned}
E^{\prime}(t) & =\frac{1}{2} m(\vec{v} \cdot \vec{v})^{\prime}+\nabla P \cdot \vec{r}^{\prime}(t) \\
& =m \vec{a} \cdot \vec{v}-\vec{F} \cdot \vec{v}=\vec{F} \cdot \vec{v}-\vec{F} \cdot \vec{v}=0 .
\end{aligned}
$$

Thus $E(t)$ is independent of t.
Method 2: By computing the work $W=\int_{C} \vec{F} \cdot d \vec{r}$ done along C in two ways:

$$
W(a, b)=\int_{a}^{b} \vec{m} \vec{a} \cdot \vec{v} d t=\int_{a}^{b} \frac{1}{2} m(\vec{v} \cdot \vec{v})^{\prime} d t=\frac{1}{2} m v^{2}(b)-\frac{1}{2} m v^{2}(a)
$$

On the other hand, since $\vec{F}=-\nabla P$,

$$
W(a, b)=-\int_{a}^{b} \nabla P \cdot \frac{d \vec{r}}{d t} d t=-\int_{a}^{b} P(\vec{r}(t))^{\prime} d t=-P(\vec{r}(b))+P(\vec{r}(a)) .
$$

The conservation follows by substraction of the above two expressions.
Problem 0.4. Solve $y^{\prime \prime}-2 y^{\prime}+y=e^{x} /\left(1+x^{2}\right)$.
Solution. The characteristic equation for $y^{\prime \prime}-2 y^{\prime}+y^{\prime}=0$ is $(r-1)^{2}=0$, hence the solutions for the homogenuous equation is given by

$$
c_{1} e^{x}+c_{2} x e^{x} .
$$

By variation of parameters we consider a particulat solution as

$$
y_{p}=u e^{x}+v x e^{x} .
$$

Then $y_{p}^{\prime}=u^{\prime} e^{x}+u e^{x}+v^{\prime} x e^{x}+v e^{x}+v x e^{x}$.
We "need to" impose $u^{\prime} e^{x}+v^{\prime} x e^{x}=0$, that is $u^{\prime}+v^{\prime} x=0$. Then

$$
\begin{gathered}
y_{p}^{\prime}=u e^{x}+v e^{x}+v x e^{x}=y_{p}+v e^{x} \\
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}=\left(y_{p}+v^{\prime} e^{x}+2 v e^{x}\right)-2\left(y_{p}+v e^{x}\right)+y_{p}=v^{\prime} e^{x} .
\end{gathered}
$$

The equation to be solved becomes $v^{\prime}=1 /\left(1+x^{2}\right)$ and so $v=\tan ^{-1} x$. Then $u^{\prime}=-x v^{\prime}=-x /\left(1+x^{2}\right)$ and so $u=-\frac{1}{2} \ln \left(1+x^{2}\right)$. So the general solutions are

$$
y(x)=e^{x}\left(c_{1}+c_{2} x-\frac{1}{2} \ln \left(1+x^{2}\right)+\tan ^{-1} x\right) .
$$

Problem 0.5. Find all power series solutions to the (special case of) Bessel equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0
$$

What can be concluded for the initial data $y(0)$ and $y^{\prime}(0)$?

Solution. Let $y(x)=\sum_{n \geq 0} a_{n} x^{n}$. The equation becomes

$$
\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n}+\sum_{n=1}^{\infty} a_{n} n x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n+2}=0
$$

There are no x^{0} terms. For x^{1} terms we get $a_{1} x=0$ hence $a_{1}=y^{\prime}(0)=0$.
By comparing coefficients of x^{k} with $k \geq 2$ we get

$$
a_{k} k(k-1)+a_{k} k+a_{k-2}=0 .
$$

So

$$
a_{k}=-\frac{a_{k-2}}{k^{2}}
$$

By iteration, if k is odd then we must have $a_{k}=0$. For $k=2 m$ we get

$$
a_{2 m}=(-1)^{m} \frac{1}{(2 m)^{2} \times(2(m-1))^{2} \cdots \times 2^{2}} a_{0}=\frac{(-1)^{m}}{2^{2 m}(m!)^{2}} a_{0}
$$

So all the power series solutions are

$$
y(x)=a_{0} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{2^{2 m}(m!)^{2}} x^{2 m} .
$$

(The power series clearly onverges for all $x \in \mathbb{R}$.)
The initial condition $y(0)=a_{0}$ is arbitrary, but $y^{\prime}(0)=a_{1}$ must be zero.

