
PROBLEMS FOR CALCULUS 2009 - FINAL EXAM

CHIN-LUNG WANG

Problem 0.1. Using Green’s Theorem to derive the change of variable formula:∫∫
Ω

f dxdy =
∫∫

D
f ◦ T

∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣ dudv,

where the map T : (u, v) 7→ (x(u, v), y(u, v)) has continuous partial derivatives and
maps D one to one and onto Ω.

Solution. Let Q(x, y) =
∫ x f (t, y) dt. Then Qx = f and by Green’s Theorem∫∫
Ω

f dxdy =
∫∫

Ω
Qx dxdy =

∫
∂Ω

Q dy.

By the change of variable formula for one variable (line) integrals, this equals

±
∫

∂D
Q(yu du + yv dv) = ±

∫
∂D

(Qyu) du + (Qyv) dv.

Here the sign depends on whether T preserves the orientation. By Green’s Theo-
rem again, now on the (u, v) plane, we get

±
∫∫

D

(
(Qyv)u − (Qyu)v

)
dudv.

The integrand equals (Qxxu + Qyyu)yv + Qyvu − (Qxxv + Qyyv)yu −Qyuv, which
simplifies to Qx(xuyv − xvyu) = f (xuyv − xvyu) by the definition of Q.

Finally, by the definition of orientation of T we have

±(xuyv − xvyu) =
∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣.
The proof is complete. �

Problem 0.2. The Maxwell equations without charges and currents state that

div ~E = 0 = div ~H, curl ~E = −1
c

∂~H
∂t

, curl ~H =
1
c

∂~E
∂t

.

Using them to prove the wave equation for the electronic field ~E:

∇2~E =
1
c2

∂2~E
∂t2 .

Solution. From
curl curl ~E = ∇div ~E−∇2~E = −∇2~E

(since div ~E = 0), we get

∇2~E = −curl
(
− 1

c
∂~H
∂t

)
=

1
c

∂ curl ~H
∂t

=
1
c2

∂2~E
∂t2 ,

where in the middle equality we commute the derivatives in t and in x, y, z. �
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Problem 0.3. Let ~F be a conservative vector field on R3 with potential P(x, y, z). State
and prove the “Law of Conservation of Energy”.

Solution. For a moving particle~r(t) of mass m, we need to show that

E(t) :=
1
2

mv2(t) + P(~r(t))

is a constant value in t.
Method 1: By differentiation in t and using ~F = −∇P, we get

E′(t) =
1
2

m(~v ·~v)′ +∇P ·~r′(t)

= m~a ·~v− ~F ·~v = ~F ·~v− ~F ·~v = 0.

Thus E(t) is independent of t.
Method 2: By computing the work W =

∫
C

~F · d~r done along C in two ways:

W(a, b) =
∫ b

a
~m~a ·~v dt =

∫ b

a

1
2

m(~v ·~v)′ dt =
1
2

mv2(b)− 1
2

mv2(a).

On the other hand, since ~F = −∇P,

W(a, b) = −
∫ b

a
∇P · d~r

dt
dt = −

∫ b

a
P(~r(t))′ dt = −P(~r(b)) + P(~r(a)).

The conservation follows by substraction of the above two expressions. �

Problem 0.4. Solve y′′ − 2y′ + y = ex/(1 + x2).

Solution. The characteristic equation for y′′ − 2y′ + y′ = 0 is (r − 1)2 = 0, hence
the solutions for the homogenuous equation is given by

c1ex + c2xex.

By variation of parameters we consider a particulat solution as

yp = uex + vxex.

Then y′p = u′ex + uex + v′xex + vex + vxex.
We “need to” impose u′ex + v′xex = 0, that is u′ + v′x = 0. Then

y′p = uex + vex + vxex = yp + vex,

y′′p − 2y′p + yp = (yp + v′ex + 2vex)− 2(yp + vex) + yp = v′ex.

The equation to be solved becomes v′ = 1/(1 + x2) and so v = tan−1 x. Then
u′ = −xv′ = −x/(1 + x2) and so u = − 1

2 ln(1 + x2). So the general solutions are

y(x) = ex
(

c1 + c2x− 1
2

ln(1 + x2) + tan−1 x
)

.

�

Problem 0.5. Find all power series solutions to the (special case of) Bessel equation

x2y′′ + xy′ + x2y = 0.

What can be concluded for the initial data y(0) and y′(0)?
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Solution. Let y(x) = ∑n≥0 anxn. The equation becomes
∞

∑
n=2

ann(n− 1)xn +
∞

∑
n=1

annxn +
∞

∑
n=0

anxn+2 = 0.

There are no x0 terms. For x1 terms we get a1x = 0 hence a1 = y′(0) = 0.
By comparing coefficients of xk with k ≥ 2 we get

akk(k− 1) + akk + ak−2 = 0.

So
ak = − ak−2

k2 .

By iteration, if k is odd then we must have ak = 0. For k = 2m we get

a2m = (−1)m 1
(2m)2 × (2(m− 1))2 · · · × 22 a0 =

(−1)m

22m(m!)2 a0.

So all the power series solutions are

y(x) = a0

∞

∑
m=0

(−1)m

22m(m!)2 x2m.

(The power series clearly onverges for all x ∈ R.)
The initial condition y(0) = a0 is arbitrary, but y′(0) = a1 must be zero. �


