CALCULUS 2017: MIDTERM EXAM I

1. (1) Draw the graph of $y=f(x)=\tan x$ and give the "standard definition" of $x=\tan ^{-1} y$. Then compute $\cos \left(\tan ^{-1} a\right)$.
(2) Find the largest interval of y such that the inverse function $x=g(y)$ is defined near $(x, y)=(3 \pi, 0)$. Then compute $g(f(a))$ for $a=\pi / 3$.
2. The Euler constant e is defined as $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.
(1) Give the detailed explanation why the above limit exists.
(2) For $x>0$, we define $\ln x=\log _{e} x$. Show that

$$
\frac{d \ln x}{d x}=\frac{1}{x}
$$

(3) Using the fact that $y=e^{x}$ is the inverse function of $x=\ln y$ to show that $\left(e^{x}\right)^{\prime}=e^{x}$.
3. Find $d y / d x$: (1) $y=\sqrt{1+\sec \left(x^{2}\right)}$, (2) $y=x^{\ln x}$, (3) $\sin (x y)=x+y$ where y is regarded as an implicit function of x.
4. (1) Use linear approximations to show that

$$
\sin x \sim x, \quad \cos x \sim 1-\frac{1}{2} x^{2} .
$$

(2) By estimating the error term to show that $-\frac{1}{2} x^{2} \leq \sin x-x \leq \frac{1}{2} x^{2}$.
5. Sketch the graph of functions by indicating the increasing property, min-max property, concave property, and asymptotic property:

$$
\text { (1) } y=\frac{x(x-2)}{x-1}, \quad \text { (2) } \quad x^{3}+y^{3}=1
$$

6. The Fermat principle says that light travels in its shortest time. Use this principle to derive Snell's law of refraction: when light passes through a boundary between two media M_{1} and M_{2} it obeys the rule that

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}}
$$

where θ_{i} is the angle with the normal direction and v_{i} is its speed in M_{i}.
7. State and prove (1) Rolle's theorem, (2) generalized mean value theorem, and (3) derive the L'Hôpital rule: if $f(a)=g(a)=0, f^{\prime}(x), g^{\prime}(x)$ exists and $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$ exists, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L$. How about if $a=\infty$?

[^0]
[^0]: Date: October 19, 2017, pm 3:30-6:00. Each problem is of 15 points. You may work on each part separately by assuming the other parts. (A course by Chin-Lung Wang at NTU.) .

