CALCULUS 2017: MIDTERM EXAM I

1. (1) Draw the graph of $y = f(x) = \tan x$ and give the "standard definition" of $x = \tan^{-1} y$. Then compute $\cos(\tan^{-1} a)$.

(2) Find the largest interval of *y* such that the inverse function x = g(y) is defined near $(x, y) = (3\pi, 0)$. Then compute g(f(a)) for $a = \pi/3$.

2. The Euler constant *e* is defined as $\lim_{n\to\infty} (1+\frac{1}{n})^n$.

(1) Give the detailed explanation why the above limit exists.

(2) For x > 0, we define $\ln x = \log_e x$. Show that

$$\frac{d\ln x}{dx} = \frac{1}{x}.$$

(3) Using the fact that $y = e^x$ is the inverse function of $x = \ln y$ to show that $(e^x)' = e^x$.

3. Find dy/dx: (1) $y = \sqrt{1 + \sec(x^2)}$, (2) $y = x^{\ln x}$, (3) $\sin(xy) = x + y$ where *y* is regarded as an implicit function of *x*.

4. (1) Use linear approximations to show that

 $\sin x \sim x, \qquad \cos x \sim 1 - \frac{1}{2}x^2.$

(2) By estimating the error term to show that $-\frac{1}{2}x^2 \le \sin x - x \le \frac{1}{2}x^2$.

5. Sketch the graph of functions by indicating the increasing property, min-max property, concave property, and asymptotic property:

(1)
$$y = \frac{x(x-2)}{x-1}$$
, (2) $x^3 + y^3 = 1$.

6. The Fermat principle says that light travels in its shortest time. Use this principle to derive Snell's law of refraction: when light passes through a boundary between two media M_1 and M_2 it obeys the rule that

$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{v_1}{v_2}$$

where θ_i is the angle with the normal direction and v_i is its speed in M_i .

7. State and prove (1) Rolle's theorem, (2) generalized mean value theorem, and (3) derive the L'Hôpital rule: if f(a) = g(a) = 0, f'(x), g'(x) exists and $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$ exists, then $\lim_{x\to a} \frac{f(x)}{g(x)} = L$. How about if $a = \infty$?

Date: October 19, 2017, pm 3:30 – 6:00. Each problem is of 15 points. You may work on each part separately by assuming the other parts. (A course by Chin-Lung Wang at NTU.).