CALCULUS 2018: MIDTERM EXAM

1. Taylor's formula in two variables. $(10+10)$
(a) Find the Taylor expansion of $f(x, y)=x^{3}+2 y^{3}-2 x^{2} y+y^{2}+5 x-3$ at $(-2,1)$.
(b) Find the Taylor expansion of $g(x, y)=\ln (x-x y)$ at $(1,0)$.
2. Gradient vector and tangent planes. $(8+7+5)$
(a) Given a function $w=f(x, y, z)$, define the directional derivative $\partial f / \partial \vec{u}$ of f at $P=(a, b, c)$ in the direction $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and show that $\partial f / \partial \vec{u}=\nabla f(P) \cdot \vec{u}$.
(b) Let $P=(a, b, c)$ be a point on the surface $f(x, y, z)=0$ in \mathbb{R}^{3}, show that $\nabla f(P)$ is the normal vector of the tangent plane at P.
(c) Find the tangent plane of $x^{2}+y^{2}-z^{2}-1=0$ at $P=(1,1,1)$.
3. Extremal value problems in two variables. $(10+10)$
(a) Find the critical points of $g(x, y)=\sin x+\sin y+\sin (x+y)$ and use the second derivative test to identify their natures.
(b) Use the method of Lagrange multiplier to find the extremal values of $f(x, y)=2 x+y^{2}$ subject to the constraint $(x-1)^{2}+y^{2}=10$, and sketch a graph to verify your answer.
4. Double integrals and related applications. $(10+10)$
(a) $\int_{0}^{1} \int_{y}^{1} x^{2} e^{x y} d x d y$,
(b) $\int_{0}^{\infty} e^{-x^{2}} d x$.
5. Double integrals with general change of variables. $(10+10)$
(a) $\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-x)^{2} d y d x$,
(b) $\int_{1}^{2} \int_{2 u-2}^{u} e^{(v-u+1)^{2}} d v d u$.
6. Triple integrals. $(4+4+4+8)$
(a) Define spherical coordinates in \mathbb{R}^{3} and show that $d A=\rho^{2} \sin \phi d \rho d \phi d \theta$.
(b) Calculate the volume bounded by $x^{2}+y^{2}+z^{2} \leq 1$ and $z \geq \sqrt{x^{2}+y^{2}}$.
(c) Let $u=x+y+z, v=x-y$ and $w=y+2 z$. Calculate the Jacobian J such that $d x d y d z=|J| d u d v d w$.
(d) Let $\Omega=\left\{(x, y, z) \mid 2 x^{2}+3 y^{2}+5 z^{2}+6 y z+2 x z \leq 1\right\}$. Calculate

$$
\iiint_{\Omega}(x+y+z)^{2} d V
$$

Date: April 26, 2018, pm 3:30-6:30. Each problem is of 20 points. This is the the second semester course for Life Science by Chin-Lung Wang at NTU. Important notices: (i) you may work on each part separately, (2) do give the details of your solutions.

