CALCULUS 2018: FINAL EXAM

1. $(10+10)$ Extremal values of $g(x, y)$ under the given constraint.
(a) $x y=2, g(x, y)=x+2 y$.
(b) $x^{2}+y^{2} \leq 1, g(x, y)=x^{2}-3 x y+y^{2}$.
2. $(7+7+6)$ Solving differential equations in $y=y(t)$.
(a) $y^{\prime}=y(1-y), y(0)=1 / 2$
(b) $y^{\prime}+2 t y=4 t, y(0)=5$.
(c) $y^{\prime \prime}-3 y^{\prime}+2 y=0, y(0)=0, y^{\prime}(0)=1$.
3. $(7+7+6)$ The Lokta-Volterra model for two species Q and P is

$$
Q^{\prime}(t)=a Q-b Q P, \quad P^{\prime}(t)=-c P+d Q P
$$

where $a, b, c, d>0$. Assume that $Q\left(t_{0}\right)>0, P\left(t_{0}\right)>0$.
(a) Discuss the equilibrium solution and the increasing/decreasing behavior of $Q(t)$ and $P(t)$ on the phase plane (Q, P). Draw a picture.
(b) Find the solution curve $f(Q, P)=C$ on the phase plane.
(c) Show that the solution $(Q(t), P(t))$ is periodic in t.
4. $(7+7+6)$ Gamma function and its properties.
(a) Show that $\Gamma(\alpha):=\int_{0}^{\infty} t^{\alpha-1} e^{-t}$ is defined for $\alpha>0$ and $\Gamma(\alpha+1)=\alpha \Gamma(\alpha)$.
(b) Find a formula for $\Gamma\left(\frac{1}{2}\right)$ and $\Gamma\left(n+\frac{1}{2}\right)$ where $n \in \mathbb{N}$.
(c) $\left(\Gamma(\alpha, \beta)\right.$-distribution) Show that $f_{X}(t):=\frac{\beta^{\alpha}}{\Gamma(\alpha)} t^{\alpha-1} e^{-\beta t}$ is a probability density function and compute $\mathrm{E}(X), \operatorname{Var}(X)$.
5. $(7+7+6)$ Given two random variables X, Y with probability density $f_{X}(t)$ and $f_{Y}(t), t \in \mathbb{R}$. Assume that X and Y are independent in the sense that the joint density function $f_{X Y}(t, s)=f_{X}(t) f_{Y}(s)$. Let $Z=X+Y$.
(a) Show that $f_{Z}(t)=\int_{-\infty}^{\infty} f_{X}(t-v) f_{Y}(v) d v$.
(b) Let $f_{X}(t)=f_{Y}(t)=\frac{1}{\sqrt{\pi}} e^{-t^{2}}$. Find $f_{Z}(t)$.
(c) Let $f_{X}(t)=f_{Y}(t)=\lambda e^{-\lambda t}$ for $t \geq 0$, and $=0$ for $t<0$. Find $f_{Z}(t)$.
6. $(7+5+8)$ Poisson distribution and normal distribution.
(a) Derive the formula $P(k, T)=\frac{(\lambda T)^{k}}{k!} e^{-\lambda T}$ as a limit of Bernoulli process when $N \rightarrow \infty$, where $P(1, \Delta t)=\lambda \Delta t, \Delta t=T / N$.
(b) The average service time at a counter is 2 minutes. Find the probability distribution $f_{X}(t)$ for the waiting time $X=t$. Suppose two persons are ahead of you, find the probability that you need to wait for ≥ 6 minutes.
(c) Derive the normal distribution $X \sim N\left(\mu, \sigma^{2}\right)$ that $f_{X}(t)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(t-\mu)^{2}}{2 \sigma^{2}}}$.

[^0]
[^0]: Date: June 26, 2018, pm 3:30-6:30. Calculus for Life Science by Chin-Lung Wang at NTU. You may work on each part separately. Give the details of your solutions.

