CALCULUS 2017: FINAL EXAM

1. Sketch the graphs:

(a)
$$y = x^3 - 3x + 3$$
, (b) $y = \ln(1 + x^2) - x$.

2. Calculate the integrals:

(a)
$$\int e^{2x} \cos x \, dx$$
, (b) $\int \frac{e^x}{e^{2x} + 3e^x + 2} \, dx$.

3. Lebnitz' formula for π :

(a) Show that
$$\tan^{-1} b = b - \frac{b^3}{3} + \frac{b^5}{5} + \dots + (-1)^n \frac{b^{2n+1}}{2n+1} + R_{2n+1}(b)$$
 where $R_{2n+1}(b) = (-1)^{n+1} \int_0^b \frac{x^{2n+1}}{1+x^2} dx.$

(b) Deduce $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$ by showing $\lim_{n \to \infty} R_{2n+1}(1) = 0$. **4.** Find the Taylor expansion of f(x) at x = 0:

(a)
$$f(x) = \ln \frac{1+x}{1-x}$$
, (b) $f(x) = \cos \sqrt{x}$, (c) $f(x) = \sin^{-1} x$.

5. Interpolation for $y = f(x) = \sqrt{x}$:

- (a) Find the quadratic polynomial $P_2(x)$ passing through (4, 2), $(\frac{25}{4}, \frac{5}{2})$ and (9, 3).
- (b) For $b \in (4,9)$ explain that there is some $\xi \in (4,9)$ with

$$f(b) - P_2(b) = \frac{1}{3!} f'''(\xi)(b-4)(b-\frac{25}{4})(b-9).$$

(c) Explain
$$|\sqrt{5} - (2 + \frac{2}{9} + \frac{1}{99})| < \frac{1}{100}$$

6. Let y = f(x) be a good function with f(a) = 0.

(a) Describe and derive Newton's iteration formula

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

(b) Suppose that $|f''(x)| \le M$ and $|f'(x)| \ge m > 0$ on an interval (c, d) containing *a*, and let $\alpha = \frac{M}{2m}$. Derive the error estimate

$$\alpha|x_{k+1}-a|<(\alpha|x_k-a|)^2.$$

(c) Show that $\sqrt[3]{2}$ is the limit of the sequence a_k where

$$a_0 = 2$$
, $a_{k+1} := \frac{2}{3} \left(a_k + \frac{1}{a_k^2} \right)$ for $k \ge 0$.

Date: January 11, 2018, pm 3:30 – 6:30. A course by Chin-Lung Wang at NTU. Each problem is of 20 points. You may work on each part separately.