CALCULUS 2017: FINAL EXAM

1. Sketch the graphs:
(a) $y=x^{3}-3 x+3$,
(b) $y=\ln \left(1+x^{2}\right)-x$.
2. Calculate the integrals:
(a) $\int e^{2 x} \cos x d x$
(b) $\int \frac{e^{x}}{e^{2 x}+3 e^{x}+2} d x$.
3. Lebnitz' formula for π :
(a) Show that $\tan ^{-1} b=b-\frac{b^{3}}{3}+\frac{b^{5}}{5}+\cdots+(-1)^{n} \frac{b^{2 n+1}}{2 n+1}+R_{2 n+1}(b)$ where

$$
R_{2 n+1}(b)=(-1)^{n+1} \int_{0}^{b} \frac{x^{2 n+1}}{1+x^{2}} d x
$$

(b) Deduce $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$ by showing $\lim _{n \rightarrow \infty} R_{2 n+1}(1)=0$.
4. Find the Taylor expansion of $f(x)$ at $x=0$:
(a) $f(x)=\ln \frac{1+x}{1-x}$,
(b) $f(x)=\cos \sqrt{x}$,
(c) $\quad f(x)=\sin ^{-1} x$.
5. Interpolation for $y=f(x)=\sqrt{x}$:
(a) Find the quadratic polynomial $P_{2}(x)$ passing through $(4,2),\left(\frac{25}{4}, \frac{5}{2}\right)$ and $(9,3)$.
(b) For $b \in(4,9)$ explain that there is some $\xi \in(4,9)$ with

$$
f(b)-P_{2}(b)=\frac{1}{3!} f^{\prime \prime \prime}(\xi)(b-4)\left(b-\frac{25}{4}\right)(b-9)
$$

(c) Explain $\left|\sqrt{5}-\left(2+\frac{2}{9}+\frac{1}{99}\right)\right|<\frac{1}{100}$.
6. Let $y=f(x)$ be a good function with $f(a)=0$.
(a) Describe and derive Newton's iteration formula

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

(b) Suppose that $\left|f^{\prime \prime}(x)\right| \leq M$ and $\left|f^{\prime}(x)\right| \geq m>0$ on an interval (c, d) containing a, and let $\alpha=\frac{M}{2 m}$. Derive the error estimate

$$
\alpha\left|x_{k+1}-a\right|<\left(\alpha\left|x_{k}-a\right|\right)^{2}
$$

(c) Show that $\sqrt[3]{2}$ is the limit of the sequence a_{k} where

$$
a_{0}=2, \quad a_{k+1}:=\frac{2}{3}\left(a_{k}+\frac{1}{a_{k}^{2}}\right) \quad \text { for } k \geq 0
$$

Date: January 11, 2018, pm 3:30-6:30. A course by Chin-Lung Wang at NTU. Each problem is of 20 points. You may work on each part separately.

