2018 ALGEBRA QUIZ: II

- **1.** Let *R* be a commutative ring and $\{e_i\}_{i=1}^n$ a base for R^n . Put $f_i = \sum a_{ij}e_j$ where $A = (a_{ij}) \in M_n(R)$. Show that $\{f_i\}_{i=1}^n$ form a base for a free submodule *K* of $R^n \Leftrightarrow \det A$ is not a zero divisor. Also $(\det A)\bar{x} = 0$ for any $\bar{x} \in R^n/K$.
- **2.** Let *D* be a p.i.d., $a_{11}, \ldots, a_{1n} \in D$ with $gcd(a_{11}, \ldots, a_{1n}) = 1$. Show that there exists $a_{kj} \in D$, $2 \le k \le n$, $1 \le j \le n$ such that $(a_{ij}) \in M_n(D)$ is invertible.
- **3.** Let *D* be a p.i.d., *N* a pure* submodule of a finitely generated torsion module *M* over *D*. Show that *N* is a direct summand.
- 4. State and prove the fundamental theorem of f.g. abelian groups**.
- **5.** Let E = F(u), *u* transcendental, and let $K \neq F$ be a subfield of E/F. Show that *u* is algebraic over *K*.
- **6.** Construct a splitting field *E* for $x^5 2$ over \mathbb{Q} and compute $[E : \mathbb{Q}]$.
- * A submodule *N* of *M* is pure if "for any $y \in N$, $a \in D$, ax = y is solvable in $M \Leftrightarrow$ it is solvable in *N*".
- ** You may assume the result that every subgroup of \mathbb{Z}^n is free of rank $\leq n$, but not the other part of the remaining proofs.

Show your answers/computations/proofs in details. Time and place: pm 1:20 – 3:00, December 21, 2018 at AMB 101. A course by Chin-Lung Wang at NTU..