2018 ALGEBRA MIDTERM EXAM

A COURSE BY CHIN-LUNG WANG AT NTU

- **1.** Determine the conjugacy classes in S_5 and the number of elements in each class. Use it to show that the only normal subgroups of S_5 are 1, A_5 , S_5 .
- **2.** Show that there are no simple groups of order 148 or of order 56.
- **3.** Show that (i) a finite abelian group is cyclic $\iff \exp G = |G|$ and (ii) any finite subgroup of the multiplicative group of a field is cyclic.
- **4.** Let *R* be a ring. Prove that if $a \in R$ has more than one right inverse then it has infinitely many. (Hint: if ab = 1, show first that $1 ba \neq 0$.) Give an example such that this fails for monoids.
- **5.** Let *I* be an ideal in a ring *R*. Show that $M_n(I)$ is an ideal in $M_n(R)$ and every ideal in $M_n(R)$ is in this form.
- **6.** Let I_1, \ldots, I_n be pairwise coprime (two-sided) ideals in a ring *R* in the sense that $I_i + I_j = R$ for $i \neq j$. Show that (i) $R/(\bigcap_{i=1}^n I_i) \cong \prod_{i=1}^n R/I_i$ and (ii) if moreover that *R* is commutative then $\bigcap_{i=1}^n I_i = \prod_{i=1}^n I_i$.
- 7. Let *F* be a field with |F| = q. Show that (i) the ring of polynomial functions in *r* variables over *F* is isomorphic to $F[x_1, ..., x_r] / \langle x_1^q x_1, ..., x_r^q x_r \rangle$ and (ii) every function $f : F^r \to F$ is a polynomial function.
- **8.** Let *D* be a Euclidean domain whose function δ satisfies: (i) $\delta(ab) = \delta(a)\delta_{(b)}$ and (ii) $\delta(a + b) \leq \max(\delta(a), \delta(b))$. Show that either *D* is a field or D = F[x] where *F* is a field.
- * You may prove the existence of Sylow *p*-subgroups to supplement one (and only one) problem up to 10 pts. Indicate explicitly the problem number.
- ** Bonus: Let $A = \mathbb{Z}[\frac{1}{2}(1 + \sqrt{-19})]$. Show that (i) the norm $N : A \to \mathbb{N}$ is a Dedekind–Hasse norm and (ii) A is not a Euclidean domain.

Date: Time and place: pm 1:20 – 5:20, November 9, 2018 at AMB 101.

Note: (1) each problem is of 15 points (total 120 pts), (2) you may work on each part separately, (3) show your answers/computations/proofs in details.