2018 FALL - ALGEBRA I: FINAL EXAM

A COURSE BY CHIN-LUNG WANG AT NTU

- **1.** Let *R* be a p.i.d. and $K \subset R^n$ be a sub *R*-module. Show directly from the definitions that *K* is free with base of $m \leq n$ elements.
- **2.** Let *F* be a field with $A, B \in M_n(F)$. Show that (i) *A*, *B* are similar over *F* if and only if tI A and tI B are equivalent in $M_n(F[t])$, (ii) *A* is similar to A^T over *F*. (iii) Give an example for $F = \mathbb{Z}$ such that the conclusion in (ii) fails. (You can apply the structure theorems in doing this problem.)
- **3.** Let *F* be a field of characteristic $p \neq 0$ and let $a \in F$. Show that (i) $f(x) = x^p x a$ has only simple roots, (ii) f(x) is irreducible in F[x] if and only if $a \neq c^p c$ for any $c \in F$, and in this case (iii) determine G_f .
- **4.** Determine the splitting fields and the Galois groups over \mathbb{Q} for (i) $x^p a$, which is assumed to be irreducible with $a \in \mathbb{Q}$ and p a prime, (ii) $x^6 2$.
- **5.** Let *G* be a group. Show that (i) if $|G| = p^n$ for *p* a prime then it is solvable, (ii) *G* is solvable if and only if $G^{(k)} = 1$ for some $k \ge 1$, (iii) if $K \triangleleft G$ then *G* is solvable if and only if both *K* and *G*/*K* are solvable.
- **6.** Let *E* be a splitting field over *F* of $f(x) \in F[x]$. Show that *E* is normal over *F*.
- 7. Let $[E : F] < \infty$. Show that (i) E = F(u) for some $u \in E$ (primitive generator) if and only if there are only a finite number of fields *K* with $F \subset K \subset E$, (ii) this is the case if *E* is separable over *F*.
- **8.** Let $n \in \mathbb{Z}_{>0}$. Show that (i) there exists an irreducible polynomial of degree n in $\mathbb{Z}_p[x]$ for any prime p, (ii) a transitive subgroup $G \subset S_n$ containing an (n-1)-cycle and a 2-cycle must be S_n , (iii) there exists a monic $f(x) \in \mathbb{Z}[x]$ with $G_f = S_n$.
- * In case you are not satisfied with your answers on the above 8 problems, write down what you know about the proof of the fundamental theorem of Galois theory or Galois' criterion for solvability of a polynomial equation by radicals. You can choose ONLY ONE of them and to remedy only one problem!

Date: Time and place: pm 1:20 – 5:00, January 11, 2019 at AMB 101.

Note: (1) each problem is of 15 points (total 120 pts), (2) you may work on each part separately, (3) show your answers/computations/proofs in details.