2018 FALL - ALGEBRA I: FINAL EXAM

A COURSE BY CHIN-LUNG WANG AT NTU

1. Let R be a p.i.d. and $K \subset R^{n}$ be a sub R-module. Show directly from the definitions that K is free with base of $m \leq n$ elements.
2. Let F be a field with $A, B \in M_{n}(F)$. Show that (i) A, B are similar over F if and only if $t I-A$ and $t I-B$ are equivalent in $M_{n}(F[t])$, (ii) A is similar to A^{T} over F. (iii) Give an example for $F=\mathbb{Z}$ such that the conclusion in (ii) fails. (You can apply the structure theorems in doing this problem.)
3. Let F be a field of characteristic $p \neq 0$ and let $a \in F$. Show that (i) $f(x)=$ $x^{p}-x-a$ has only simple roots, (ii) $f(x)$ is irreducible in $F[x]$ if and only if $a \neq c^{p}-c$ for any $c \in F$, and in this case (iii) determine G_{f}.
4. Determine the splitting fields and the Galois groups over \mathbb{Q} for (i) $x^{p}-a$, which is assumed to be irreducible with $a \in \mathbb{Q}$ and p a prime, (ii) $x^{6}-2$.
5. Let G be a group. Show that (i) if $|G|=p^{n}$ for p a prime then it is solvable, (ii) G is solvable if and only if $G^{(k)}=1$ for some $k \geq 1$, (iii) if $K \triangleleft G$ then G is solvable if and only if both K and G / K are solvable.
6. Let E be a splitting field over F of $f(x) \in F[x]$. Show that E is normal over F.
7. Let $[E: F]<\infty$. Show that (i) $E=F(u)$ for some $u \in E$ (primitive generator) if and only if there are only a finite number of fields K with $F \subset K \subset E$, (ii) this is the case if E is separable over F.
8. Let $n \in \mathbb{Z}_{>0}$. Show that (i) there exists an irreducible polynomial of degree n in $\mathbb{Z}_{p}[x]$ for any prime p, (ii) a transitive subgroup $G \subset S_{n}$ containing an ($n-1$)-cycle and a 2-cycle must be S_{n}, (iii) there exists a monic $f(x) \in \mathbb{Z}[x]$ with $G_{f}=S_{n}$.

* In case you are not satisfied with your answers on the above 8 problems, write down what you know about the proof of the fundamental theorem of Galois theory or Galois' criterion for solvability of a polynomial equation by radicals. You can choose ONLY ONE of them and to remedy only one problem!

[^0]
[^0]: Date: Time and place: pm 1:20-5:00, January 11, 2019 at AMB 101.
 Note: (1) each problem is of 15 points (total 120 pts), (2) you may work on each part separately, (3) show your answers/computations/proofs in details.

