2019 ALGEBRA II - QUIZ I

- **1.** Let *R* and *S* be two local rings such that $M_m(R) \cong M_n(S)$. Show that then m = n and $R \cong S$. Give a counterexample with non-local *R*.
- **2.** Let *F* be a field. Use Zorn's Lemma to show that any vector space *V* over *F* has a basis and any two basis have the same cardinality.
- **3.** Prove a generalization of $\mathbb{Z}/(m) \otimes \mathbb{Z}/(n) \cong \mathbb{Z}/(\operatorname{gcd}(m, n))$ to the case when \mathbb{Z} is replaced by a p.i.d. *R*. Then determine the structure of $M_1 \otimes_R M_2$ of finitely generated modules M_1 , M_2 over *R*.
- **4.** Let *R*, *S* be rings. Let $P = {}_{R}P$ be f.g. projective. $M = {}_{R}M_{S}$, $N = {}_{S}N$. Show that there is a group isomorphism

 η : hom_{*R*}(*P*, *M*) $\otimes_S N \rightarrow$ hom_{*R*}(*P*, *M* $\otimes_S N$).

Give a counterexample with $R = S = \mathbb{Z}$ and $P = \mathbb{Z}/(n)$, $n \in \mathbb{N}$.

5. Given a Morita context $(R, R', {}_{R'}P_R, {}_{R}P'_{R'}, \tau, \mu)$ with $\tau : P' \otimes_{R'} P \to R$ and $\mu : P \otimes_R P' \to R'$ being surjective. Prove part of Morita I: (1) P_R is a progenerator, (2) τ is an isomorphism, (3) $P' \cong P^*$.

Show your answers/computations/proofs in details. Date: pm 2:50 – 3:50, March 15, 2019 at AMB 101. A course by Chin-Lung Wang at NTU..