2019 ALGEBRA II - MIDTERM EXAM

1. Let R and R^{\prime} be Morita similar. Show that R is primitive if and only if R^{\prime} is. Also in any correspondence between ideals, $J(R)$ corresponds to $J\left(R^{\prime}\right)$.
2. Show that a ring R is simple left artinian $\Longleftrightarrow R \cong M_{n}(\Delta)$ where Δ is a division ring, $n \in \mathbb{N}$.
3. Prove Frobenius' theorem on division rings over \mathbb{R} or Wedderburn's theorem on finite division rings. You can use any method you know.
4. Let ρ, ρ^{\prime} be representations of G over an infinite field F. If $\rho \otimes_{F} K \cong \rho^{\prime} \otimes_{F} K$ for an extension field K of F, show that $\rho \cong \rho^{\prime}$. How about if $|F|<\infty$?
5. Let $H \subset K \subset G$ be subgroups with G finite, σ and ρ are complex representations of H and G respectively. Using character calculations to prove (1) $\left(\sigma^{K}\right)^{G} \cong \sigma^{G}$, (2) $\sigma^{G} \otimes \rho \cong\left(\sigma \otimes \rho_{H}\right)^{G}$, (3) $\left(\sigma^{G}\right)^{*} \cong\left(\sigma^{*}\right)^{G}$.
6. Show that the quaternion group Q_{8} is not isomorphic to D_{4}, but they have the same character table. Describe the rings $F\left[Q_{8}\right]$ and $F\left[D_{4}\right]$ for $F=\mathbb{Q}, \mathbb{C}$.
7. Construct the character table for $G=A_{5}$. (You get partial credits for doing the simpler case $G=S_{4}$.)
8. Present an essential topic/theorem in modules, rings, or representations that you have well-prepared but not shown in the above problems.
[^0]
[^0]: Each problem is of 15 points (total 120 pts). Be sure to show your answers/computations/proofs in details. Time: pm 5:30-9:30, April 22, 2019 at AMB 101. A course by Chin-Lung Wang at NTU..

