2019 ALGEBRA II - MIDTERM EXAM

- **1.** Let *R* and *R'* be Morita similar. Show that *R* is primitive if and only if *R'* is. Also in any correspondence between ideals, J(R) corresponds to J(R').
- **2.** Show that a ring *R* is simple left artinian $\iff R \cong M_n(\Delta)$ where Δ is a division ring, $n \in \mathbb{N}$.
- **3.** Prove Frobenius' theorem on division rings over \mathbb{R} or Wedderburn's theorem on finite division rings. You can use any method you know.
- **4.** Let ρ , ρ' be representations of *G* over an infinite field *F*. If $\rho \otimes_F K \cong \rho' \otimes_F K$ for an extension field *K* of *F*, show that $\rho \cong \rho'$. How about if $|F| < \infty$?
- **5.** Let $H \subset K \subset G$ be subgroups with *G* finite, σ and ρ are complex representations of *H* and *G* respectively. Using character calculations to prove (1) $(\sigma^K)^G \cong \sigma^G$, (2) $\sigma^G \otimes \rho \cong (\sigma \otimes \rho_H)^G$, (3) $(\sigma^G)^* \cong (\sigma^*)^G$.
- **6.** Show that the quaternion group Q_8 is not isomorphic to D_4 , but they have the same character table. Describe the rings $F[Q_8]$ and $F[D_4]$ for $F = \mathbb{Q}$, \mathbb{C} .
- 7. Construct the character table for $G = A_5$. (You get partial credits for doing the simpler case $G = S_4$.)
- **8.** Present an essential topic/theorem in modules, rings, or representations that you have well-prepared but not shown in the above problems.

Each problem is of 15 points (total 120 pts). Be sure to show your answers/computations/proofs in details. Time: pm 5:30 – 9:30, April 22, 2019 at AMB 101. A course by Chin-Lung Wang at NTU..