2020 ALGEBRAIC GEOMETRY II

MIDTERM EXAM

A COURSE BY CHIN-LUNG WANG AT NTU

1. For an effective divisor D on a curve X of genus g, show that $\operatorname{dim}|D| \leq \operatorname{deg} D$ and equality holds $\Longleftrightarrow D=0$ or $g=0$.
2. Let $X=V(f) \subset \mathbb{P}_{k}^{2}$ be an elliptic curve with char $k=p>0$. Show that the Hasse invariant is $0 \Longleftrightarrow$ the term $(x y z)^{p-1}$ is not in f^{p-1}. Determine the corresponding coefficient $h_{p}(\lambda)$ for $f=y^{2} z-x(x-z)(x-\lambda z)$.
3. Show that a hyperelliptic curve can not be a complete intersection in any \mathbb{P}^{n}. Show also that any genus 2 curve is hyperelliptic.
4. Let C / \mathbb{F}_{q} be a curve of genus g and $N=\left|C\left(\mathbb{F}_{q}\right)\right|$. Let $k=\overline{\mathbb{F}}_{q}$ and $f: C \rightarrow C$ be the k-linear Frobenius. Denote by $\Gamma, \Delta \subset C \times C$ the graph of f and the diagonal. Show that $\Gamma^{2}=q(2-2 g), \Gamma . \Delta=N$, and $|N-(1+q)| \leq 2 g \sqrt{q}$.
5. Prove Grothendieck's lemma: any locally free sheaf \mathscr{F} of finite rank on \mathbb{P}^{1} is isomorphic to a direct sum of invertible sheaves $\mathscr{O}\left(n_{i}\right)^{\prime}$'s.
6. Let $\pi: X_{r} \rightarrow \mathbb{P}^{2}$ be the blowing up in $r \in[1,6]$ general points and embed X_{r} in \mathbb{P}^{9-r} by $\mathbb{L}^{\prime}=\left|\pi^{*} h-\sum_{i=1}^{r} E_{i}\right|$. Determine all lines in X_{r} and show that a general cubic surface arises in this way, hence has 27 lines.
7. Let $Y \cong \mathbb{P}^{1}$ be a curve in a surface X with $Y^{2}<0$. Show that there is a projective morphism $f: X \rightarrow X_{0}$ contracting (only) Y to a point p. Conversely, given f with $\operatorname{dim} X_{0}=2, f(Y)=p$ and $f^{-1}(p)=Y$, show that $Y^{2}<0$. .
8. (Bonus) Present an essential topic/theorem/exercise on curves and/or surfaces that you have well-prepared but not listed above.
[^0]
[^0]: Each problem is 15 points (total 120 pts). Be sure to show your answers/computations/proofs in details. Time: pm 6:00-9:30, April 30, 2020 at AMB 305.

