2019 ALGEBRAIC GEOMETRY I

MIDTERM EXAM

A COURSE BY CHIN-LUNG WANG AT NTU

1. Let $C=\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{A}^{3} \mid t \in k\right\}$ be the twisted cubic curve. Show that (i) C is a complete intersection; (ii) $\bar{C} \subset \mathbb{P}^{3}$ is not a complete intersection.
2. Let $C \subset \mathbb{A}_{\mathbb{C}}^{2}$ be the cubic curve $y^{2}=x^{3}-x+a$. Give examples of $a \in \mathbb{C}$ such that (i) C is rational, (ii) C is not rational.
3. Let Y be a k-variety with $k=\bar{k}$. Show that (i) Sing Y is a proper closed subset of Y; (ii) non-normal points of Y is also a proper closed subset.
4. Let $(X, \mathscr{O})=(\operatorname{Spec} A, \tilde{A})$ be an affine scheme. Show that (i) for any $p \in X$, $\mathscr{O}_{p} \cong A_{p}$, (ii) for any $f \in A, \mathscr{O}(D(f)) \cong A_{f}$. In particular $\Gamma(X, \mathscr{O}) \cong A$.
5. Show that (i) a finite morphism is proper; (ii) the intersection of affine open sets in a separated scheme over Spec A is affine, and give examples showing that this fails if X is not separated.
6. Show that: (i) closed immersions are finite morphisms but open immersions are not; (ii) if $f: X \rightarrow Y$ is a finite morphism of Noetherian schemes then \mathscr{F} coherent on $X \Rightarrow f_{*} \mathscr{F}$ coherent on Y; (iii) for X projective over Spec A, \mathscr{F} a coherent sheaf on X, then $\mathscr{F}(n)$ is generated by a finite number of global sections for large n.
(*) You may replace one and only one problem listed above by presenting an essential topic/ theorem/exercise in algebraic geometry you have well-prepared.
[^0]
[^0]: Each problem is of 20 points (total 120 pts). Be sure to show your answers/computations/proofs in details. Time: pm 6:00-9:00, November 12, 2019 at AMB 102.

