2019 ALGEBRAIC GEOMETRY I

FINAL EXAM

A COURSE BY CHIN-LUNG WANG AT NTU

- [II.6 Divisors] Let *X* be a noetherian integral separated scheme which is regular in codimension one. Show that (a) *X* × A¹ has the same property and Cl *X* × A¹ ≅ Cl *X*, (b) *X* × P¹ has the same property and Cl *X* × P¹ ≅ Cl *X* × Z.
- **2.** [II.7 Projective morphisms] Let *X* be a noetherian scheme and *Y*, *Z* be closed subscheme, neither one containing the other. Let \tilde{X} be the blowing up of *X* along $Y \cap Z$. Show that the strict transform \tilde{Y} and \tilde{Z} in \tilde{X} do not meet.
- **3.** [II.8 Differentials] Show that (a) $0 \to \Omega_{\mathbb{P}_k^n} \to \mathscr{O}(-1)^{n+1} \to \mathscr{O} \to 0$ is exact, (b) $\omega_Y \cong \mathscr{O}_Y(d (n+1))$ for $Y \subset \mathbb{P}_k^n$ being a non-singular hypersurface of degree *d*. (c) Generalized (b) to the case of for *Y* being a complete intersection of *r* equations.
- 4. [III.2-3 Hⁱ of affine schemes] Let X be a noetherian scheme. Show that the following are equivalent. (i) X is affine. (ii) Hⁱ(X, ℱ) = 0 for all quasi-coherent ℱ and all i ≥ 1. (iii) H¹(X, 𝒴) = 0 for all coherent sheaf of ideals 𝒴.
- 5. [III.4-5 H^i of projective schemes] Let A be a noetherian ring and $X = \mathbb{P}_A^r$. Determine the structure of $H^i(X, \mathcal{O}(n))$ for all $i \ge 0$ and $n \in \mathbb{Z}$, including the perfect pairing $H^0(X, \mathcal{O}(n)) \times H^r(X, \mathcal{O}(-n (r+1))) \to A$.
- 6. [III.6-7 Ext and duality] (a) Let X be projective over a noetherian ring A.Given coherent sheaves 𝔅, 𝔅, show that ∃n₀ such that Extⁱ(𝔅,𝔅(n)) ≅ Γ(X, 𝔅xtⁱ(𝔅,𝔅(n))) for all n ≥ n₀. (b) Show that H^q(𝒫ⁿ_k, Ω^p) = 0 for p ≠ q and ≅ k if 0 ≤ p = q ≤ n.
- 7. [III.8-9 $R^i f_*$ and flatness] Let $f : X \to Y$ be a morphism of ringed spaces, $\mathscr{F} \in Mod_X$, $\mathscr{E} \in Mod_Y$. (a) For all $i \ge 0$, show that $R^i f_*(\mathscr{F} \otimes f^*\mathscr{E}) \cong (R^i f_*\mathscr{F}) \otimes \mathscr{E}$ for \mathscr{E} being locally free of finite rank. (b) Give a counterexample for coherent \mathscr{E} .
- (*) You are allowed to replace ONE problem by an essential topic/theorem/exercise in the same labelled subsection(s).
- **8.** (Bonus) Present an essential topic/theorem/exercise within II.6 to III.9 but not listed above nor in your replacement problem.

Each problem is of 15 points (total 120 pts). Be sure to show your answers/computations/proofs in details. Time: pm 6:00 – 9:50, January 9, 2020 at AMB 102. Also you are allowed to check the textbook (but not your notes, overleaf, or any website) during pm 7:30-7:40 without copying anything on the exam sheets.