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In this section, our goal is to study how does the cohomology along the fiber H i(Xy,Fy)

vary as a function of y ∈ Y . We will prove the two main results: ”semicontinuity theorem” and

”cohomology and base change”.

Assumption. A: noetherian ring; Y = SpecA; f : X → Y is a projective morphism; F :

coherent sheaf on X, flat over Y .

Definition. For each A-module M , define T i(M) = H i(X,F ⊗AM) for all i ≥ 0.

T i is an additive covariant functor from A-modules to A-modules which is exact in the middle.

(T i)i≥0 forms a δ-functor.

Lemma 1. Let C• be a complex of flat A-modules bounded above such that for each i, hi(C•)

is a finitely generated A-module. Then there exists a complex L• of finitely generated free

A-modules, also bounded above, and a morphism g : L• → C•, such that the induced map

hi(L• ⊗M) → hi(C• ⊗M) is an isomorphism for all i.

Proof. We will define L• by induction. For n >> 0,Cn = 0, we then define Ln = 0. Note that

when n is large enough, we have the following two properties.

hi(L•)
∼→ hi(C•) for i > n+ 1, and Zn+1(L•) → hn+1(C•) is surjective.

Now, suppose the above two properties is satisfied for some n, and we will construct Ln,

d : Ln → Ln+1, and g : Ln → Cn to propagate these properties one step further.

Let x1, . . . xr be a set of generators of hn(C•). Lift them to x1, . . . xn ∈ Zn(C•). Let yr+1, . . . , ys

be a set of generators of g−1(Bn+1(C•)), and let g(yi) = yi ∈ Bn+1(C•). Lift yi to xr+1, . . . , xs ∈

Cn.

Now take Ln to be a free A-module generated by e1, . . . , es, where gei = xi for all i. Define
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d : Ln → Ln+1 by dei = 0 for 1 ≤ i ≤ r and dei = yi for r + 1 ≤ i ≤ s. With this construction,

g commutes with d, hn+1(L•)
∼→ hn+1(C•), and Zn(L•) ↠ hn(C•).

Next, we will prove that

hi(L• ⊗M) → hi(C• ⊗M)

is an isomorphism for all A-modules M . It suffices to prove for finitely generated A-module,

since any module is a direct limit of finitely generated ones. So given a finitely generated

A-module M , we have the exact sequence:

0 → R → E →M → 0,

where E is free, and R = ker(E →M).

Since both C• and L• are flat, we have the following diagram:

0 L• ⊗R L• ⊗ E L• ⊗M 0

0 C• ⊗R C• ⊗ E C• ⊗M 0

Applying hi, we get the commutative diagram of long exact sequences:

hi(L• ⊗R) hi(L• ⊗ E) hi(L• ⊗M) hi+1(L• ⊗R) hi+1(C• ⊗ E)

hi(C• ⊗R) hi(C• ⊗ E) hi(C• ⊗M) hi+1(C• ⊗R) hi+1(C• ⊗ E)

Suppose the result is true for i + 1, then the first and second vertical arrows on the right are

isomorphisms. Since E is free, hi(L• ⊗ E)
∼→ hi(C• ⊗ E). By four lemma, hi(L• ⊗ M) →

hi(C• ⊗M) is an epimorphism, then so is hi(L• ⊗ R) → hi(C• ⊗ R). Now, by five lemma, we

can conclude that hi(L• ⊗M)
∼→ hi(C• ⊗M). The result follows from the induction.

Proposition 1. There exists a complex L• of finitely generated free A-modules, bounded above

such that

T i(M) ≃ hi(L• ⊗M)

for any A-module M , any i ≥ 0, and this gives an isomorphism of δ-functors.

Proof. By our assumptions, F ⊗M is quasi-coherent on X, and X is noetherian and separated,

therefore, we can use Čech cohomology to compute H i(X,F ⊗M). Let U = (Ui) be an open
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cover of X. For any i0, . . . , ip, we have

Γ(Ui0...ip ,F ⊗M) = Γ(Ui0...ip ,F )⊗M.

so

C•(U,F ⊗M) = C•(U,F )⊗M.

Hence,

T i(M) = hi(C•(F ⊗M)) = hi(C•(F )⊗M).

Note that C• := C•(F ) is bounded above, and C• = H i(X,F ) is a flat and finitely generated

A-module. Then the result follows from the previous lemma.

Definition. For a complex N•, define

W i(N•) = coker(di−1 : N i−1 → N i).

Proposition 2. The followings are equivalent:

(i) T i is left exact;

(ii) W i := W i(L•) is a projective A-module;

(iii) there is a unique finitely generated A-module Q, such that

T i(M) = HomA(Q,M)

for all M .

Proof. (i)⇔(ii)

For any A-module M , we have exact sequences:

Li−1 → Li → W i → 0 ,then Li−1 ⊗M → Li ⊗M → W i ⊗M → 0,

and

Li−1 ⊗M → Li ⊗M → W i(L• ⊗M) → 0.

This implies W i ⊗M = W i(L• ⊗M). Now, we have an exact sequence:
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Suppose M ′ →M is injective, then we have the following exact, commutative diagram:

0

0 T i(M ′) W i ⊗M ′ Li+1 ⊗M ′

0 T i(M) W i ⊗M Li+1 ⊗M

Since Li+1 is free, the third vertical arrow is injective. By diagram chasing, T i is left exact

if and only if W i is flat. But since W i is finitely generated, this is equivalent to that W i is

projective.

(iii)⇒(i) is obvious.

(ii)⇒(iii)

Let Ľi+1 and W̌ i be dual modules. Define Q := coker(Ľi+1 → W̌ i), which is a finitely generated

A-module. Then for every A-module M , we have an exact sequence

0 → Hom(Q,M) → Hom(W̌ i,M) → Hom(Ľi+1,M).

Since W i is projective and Li+1 is free, Hom(W̌ i,M) = W i⊗M and Hom(Ľi+1,M) = Li+1⊗M.

Hence,

T i(M) = Hom(Q,M).

To see the uniqueness, let Q′ be another A-module such that T i(M) = Hom(Q′,M). Then

1 ∈ Hom(Q,Q) = Hom(Q′, Q),

and

1′ ∈ Hom(Q′, Q′) = Hom(Q,Q′).

This gives an isomorphism of Q and Q′.

Proposition 3. For any M , there is a natural map

φ : T i(A)⊗M → T i(M).

Furthermore, the following conditions are equivalent:

(i) T i is right exact;
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(ii) φ is an isomorphism for all M ;

(iii) φ is surjective for all M .

Proof. For any module M , since T i is a functor, we have a natural map,

M = Hom(A,M)
ψ→ Hom(T i(A), T i(M))

We define φ by

φ(
∑

ai ⊗mi) =
∑

ψ(mi)ai,

for ai ⊗mi ∈ T i(A)⊗M.

(i)⇒(ii)

Again, it suffices to consider finitely generated A-modules M . Then we have an exact sequence:

As → Ar →M → 0,

where Ar and As are free A-module

Suppose T i is right exact, then we have a diagram:

T i(A)⊗ As T i(A)⊗ Ar T i(A)⊗M 0

T i(As) T i(Ar) T i(M) 0

≀ ≀ φ

Thus, φ is an isomorphism.

(ii)⇒(iii) is obvious.

(iii)⇒(i)

Suppose φ is surjective for all A-modules. Let M ↠ M ′′ be a surjective map. Then we have

the following diagram:

T i(A)⊗M T i(A)⊗M ′ 0

T i(M) T i(M ′)

φ φ

This implies T i(M) ↠ T i(M ′′). Hence, T i is right exact.

Corollary 1. The following conditions are equivalent:

1. T i is exact;
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2. T i is right exact, and T i(A) is a projective A-module.

Proof. For T i is right exact, by the previous proposition, we have T (A)⊗M ≃ T i(M) for any

M . Therefore, T i is left exact is and only if T i(A) is flat. Since T i(A) is finitely generated, this

is equivalent to that T i(A) is projective.

Theorem 1. (Semicontinuity) Let f : X → Y be a projective morphism of noetherian schemes,

F be a coherent sheaf on X which is flat over Y . Then for i ≥ 0, the function

hi(y,F ) = dimk(y)H
i(Xy,Fy)

is an upper semicontinuous function on Y .

Proof. We may assume that Y = SpecA with A noetherian. By Corollary III.9.4,

H i(Xy,Fy) ≃ H i(X,F ⊗ k(y)) = T i(k(y)).

Note that

0 → T i(k(y)) → W i ⊗ k(y) → LI+1 ⊗ k(y)

and

W i → Li+1 → W i+1 → 0

are exact. So we have an exact sequence:

0 → T i(k(y)) → W i ⊗ k(y) → Li+1 ⊗ k(y) → W i+1 ⊗ k(y) → 0.

Then

hi(y,F ) = dimk(y) T
i(k(y))

= dimk(y)(W
i ⊗ k(y)) + dimk(y)(W

i+1 ⊗ k(y))− dimk(y)(L
i+1 ⊗ k(y)). (⋆)

By Proposition 5, the first two terms are upper semicontinuous, and the last term is constant

since Li+1 is free. We then can conclude that hi(y,F ) is upper semicontinuous.

Corollary 2. (Grauert) With the same hypotheses as the theorem, suppose that Y is integral,

and hi(y,F ) is constant on Y for some i. Then Rif∗(F ) is locally free and the natural map

Rif∗(F )⊗ k(y) → H i(Xy,Fy)
∼

is an isomorphism.
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Proof. Again, we may assume Y = SpecA is affine. By our assumption, we can see that

dimk(y)(W
i⊗k(y))+dimk(y)(W

i+1⊗k(y)) is constant on Y from (⋆), and since dimk(y)(W
i⊗k(y))

and dimk(y)(W
i+1⊗k(y)) are upper semicontinuous, dimk(y)(W

i⊗k(y)) and dimk(y)(W
i+1⊗k(y))

are constant on Y . By II.8.9, W̃ i and W̃ i+1 are locally free on Y , so W i and W i+1 are projective.

By Proposition 2, T i and T i+1 are left exact, then T i is exact. By Corollary 1, T i(A) is a

projective A-module. So Rif∗(F ) = T i(A) is a locally free sheaf. By Proposition 3, we have

the isomorphism

Rif∗(F )⊗ k(y) = T i(A)∼ ⊗ k(y)
∼→ T i(k(y))∼ = H i(Xy,Fy)

for all y ∈ Y .

Definition.

1. For any y ∈ Y = SpecA, define T iy as the restriction of the functor T i to the category

of Ap-modules, where p ⊆ A is the prime ideal corresponding to y. Namely, for any Ap

module N , T iy(N) = hi(L•p ⊗N).

2. For y ∈ Y , denote W i
y = W i(L•p).

3. We say ”T i is left exact at y” to mean T iy is left exact, and similarly for right exact and

exact.

Here, we recall the results about ”cohomology commutes with flat base extension.”

Proposition 9.2. (b) Let X → Y , let F be an OX-module which is flat over Y , and let

u : Y ′ → Y be any morphism. Let X ′ = X ×Y Y
′, and let F ′ = v∗(F ). Then F ′ is flat over

Y ′.

Proposition 9.3 Let f : X → Y be a separated morphism of finite type of noetherian schemes,

and let F be a quasi-coherent sheaf on X. Let u : Y ′ → Y be a flat morphism of noetherian

schemes.
X ′ X

Y ′ Y

v

g f

u

Then for all i ≥ 0 there are natural isomorphisms u∗Rif∗(F ) ≃ Rig∗(v
∗F ).
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Now, with our original assumption and let Y ′ = SpecOy for some u ∈ Y , p ⊆ A is a prime

ideal corresponding to y, and F ′ = v∗F . By Proposition 9.2 (b), F ′ is flat over Y ′, and by

Proposition 9.3,

T iy(M) = H i(X,F⊗M)p = Γ(Y ′, u∗R′f∗(F⊗M)) = Γ(Y ′, Rig∗(v
∗F⊗M)) = H i(X ′,F ′⊗M),

for every Ap-module M . Hence, we can apply the previous results that we prove for T i to T iy.

Proposition 4. If T i is left exact (respectively, right exact, exact) at some point y ∈ Y , then

the same is true for all points y in a suitable open neighborhood U of y.

Proof.

(i) Note that over a local ring, a module is projective is equivalent to it is free. Therefore, T i

is left exact at y is equivalent to W̃ i
y is free. Since W̃ i is a coherent sheaf on Y , then there

exists an open neighborhood U of Y such that W̃ i|U is free (Ex.II.5.7). This implies T i is

exact at all points of U .

(ii) Let 0 →M ′ →M →M ′′ → 0 be a short exact sequence of Ap-modules. We have the long

exact sequence for δ-functor T iy:

→ T iy(M) → T iy(M
′′) → T i+1

y (M ′) → T i+1
y (M) → .

Thus, T iy is right exact if and only if T i+1
y is left exact. Then the result follows from (i).

Definition. Let Y be a topological space. A function φ : Y → Z is upper semicontinuous if

for each y ∈ Y , there exists an open neighborhood U such that for all y′ ∈ U , φ(y′) ≤ φ(y).

Proposition 5. Let F be a coherent sheaf on a noetherian scheme Y . Then the function

φ(y) = dimk(y)(Fy ⊗ k(y))

is upper semicontinuous. (cf. Ex.II.5.8)

Proof. Since the property is local, it can be reduced to the affine case. Let Y = SpecA, and

F = M̃ for some finitely generated A-module M . For y ∈ Y , suppose that the prime ideal
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p ⊆ A is corresponding to y. Note that Fy ⊗ k(y) = Fy/myFy. By Nakayama’s lemma, φ is

equal to the minimal number of generators of Ap-module Mp. Suppose φ(y) = r with generators

s1, . . . , sr ∈ Mp. They then generate M . Thus, for every y′ ∈ Y , corresponding to prime ideal

q ⊆ A, s1, . . . , sr also generate Aq as an Aq-module. This implies φ(y′) ≤ φ(y).

Proposition 6. Assume that

φ : T i(A)⊗ k(y) → T i(k(y))

is surjective for some i, y. Then T i is right exact (and conversely, proved in proposition 3).

Proof. By making a flat base change SpecOy → Y if necessary, we may assume y ∈ Y is a closed

point, A is a local ring, and k(y) = A/m, where m is the maximal ideal in A. By Proposition

3, it suffices to show that φ : T i(A) ⊗M → T i(M) is surjective for all A-module M , and we

may assume M is finitely generated.

First, we consider M with finite length and we will prove by induction. For length(M) = 1,

i.e. M = k(y), φ is surjective by our assumption. For general M , let

0 →M ′ →M →M ′′ → 0

be an exact sequence, where length(M ′), length(M ′′) < length(M).

Consider the following diagram:

T i(A)⊗M ′ T i(A)⊗M T i(A)⊗M ′′ 0

T i(M ′) T i(M) T i(M ′′)

By the induction hypothesis, the two outside vertical arrows are surjective, so the middle one

is surjective also. Now, let M be any finitely generated A-module. For each n, M/mnM is with

finite length. So we have

φn : T i(A)⊗M/mnM → T i(M/mnM)

is surjective. kerφn is also with finite length, so (kerφn) is an inverse system of modules

with descending chain condition over a ring. Then by Example 9.1.2, (kerφn) satisfies the

Mittag-Leffler condition. By II.9.1,

(T i(A)⊗M)∧ = lim
←

(T i(A)⊗M/mnM) ↠ lim
←
T i(M/mnM).

9



By the theorem on formal functions (III.11.1),

T i(M)∧
∼→ lim
←
T i(M/mnM).

Since completion is a faithful exact functor for finitely generated A-modules, then

φ : T i(A)⊗M → T i(M)

is surjective.

Theorem 2. (Cohomology and Base Change) With the hypotheses above, let y be a point of

Y , then

(a) If φi(y) : Rif∗(F )⊗ k(y) → H i(Xy,Fy) is surjective, then it is an isomorphism, and the

same is true for all y′ in a suitable neighborhood of y.

(b) Assume φi(y) is surjective. The following are equvalent:

(i) φi−1(y) is also surjective;

(ii) Rif∗(F ) is locally free in a neighborhood of y.

Proof.

(a) By proposition 6, T iy is right exact. Furthermore, there is a neighborhood U of y such that

T iy′ is exact for all y′ ∈ U . Then φi(y′) is an isomorphism for all y′ ∈ U .

(b) Again, by proposition 6, T iy is right exact. By proposition 3 and 6, φi−1(y) is surjective if

and only if T i−1y is right exact. Then T iy is exact, so T i is exact at some neighborhood U

of y. This is equivalent to that T iy(A) is projective. i.e. (ii).
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