10 SMOOTH MORPHISMS

Recall. (Flat)
Let \(f : X \to Y \) be a morphism of schemes, and let \(\mathcal{F} \) be an \(\mathcal{O}_X \)-module. We say that \(\mathcal{F} \) is flat over \(Y \) at a point \(x \in X \), if the stalk at \(x \) is a flat \(\mathcal{O}_y \)-module, where \(y = f(x) \). We say simply \(\mathcal{F} \) is flat over \(Y \) if it is flat at every point of \(X \).

We say \(X \) is flat over \(Y \) if \(\mathcal{O}_X \) is.

Definition. (Smooth)
Let \(f : X \to Y \) be a morphism of schemes of finite type over a field \(k \), we say it's smooth of relative dimension \(n \) if:

1. \(f \) is flat.
2. If \(X' \subseteq X, Y' \subseteq Y \) are irreducible components such that \(f(X') \subseteq Y' \), then \(\dim X' = \dim Y' + n \).
3. For each point \(x \in X \) (closed or not), \(\dim_{k(x)}(\Omega_{X/Y} \otimes k(x)) = n \)

Proposition. 0.1 If \(X \) is integral, (3) is equivalent to \(\Omega_{X/Y} \) is locally free of rank \(n \).

Recall (II 8.9): Let \(A \) be a noetherian local integral domain, with residue field \(k \) and quotient field \(K \). If \(M \) is a finitely generated \(A \)-module and if \(\dim_k M \otimes_A k = \dim_K M \otimes_A K = r \), then \(M \) is free of rank \(r \).

Proposition. 0.2 If \(Y = \text{Spec} k, k = \overline{k} \), then \(X \) is smooth over \(k \) if and only if \(X \) is regular of dimension \(n \).

Recall (II 8.8): Let \(B \) be a local ring containing a field \(k \) isomorphic to its residue field. Assume furthermore that \(k \) is perfect, and that \(B \) is a localization of a finitely generated \(k \)-algebra. Then \(\Omega_{B/k} \) is a free \(B \)-module of rank \(\dim B \iff B \) is a regular local ring.

In particular, if \(X \) is irreducible separated over \(k \), then it's smooth if and only if it's a nonsingular variety.

Recall (II 8.15): Let \(X \) be an irreducible separated scheme of finite type over an algebraically closed field \(k \). Then \(\Omega_{X/k} \) is locally free of rank \(\dim X \iff X \) is a nonsingular variety over \(k \).

Remark. Over a nonperfect field, the last proposition is false: let \(k_0 \) be a field of characteristic \(p > 0 \), let \(k = k_0(t) \), and let \(X \subseteq A^2_k \) be the curve defined by \(y^2 = x^p - t \), then every local ring of \(X \) is a regular local ring, but \(X \) is not smooth over \(k \).

Proposition. 1

(a) An open immersion is smooth of relative dimension 0.
(b) If \(f : X \to Y \) is smooth of relative dimension \(n \), and \(g : Y' \to Y \) is any morphism, then the morphism \(f' : X' \to Y' \) obtained by base extension is also smooth of relative dimension \(n \).

(c) If \(f : X \to Y \) is smooth of relative dimension \(n \), and \(g : Y \to Z \) is smooth of relative dimension \(m \), then \(g \circ f : X \to Z \) is smooth of relative dimension \(n + m \).

(d) If \(f : X \to Z \) is smooth of relative dimension \(n \), and \(g : Y \to Z \) is smooth of relative dimension \(n + m \).

Proof.

(a) Just check the condition.

(b) (1) By (III 9.2), \(f' \) is flat.

(2) Recall (III 9.6): Let \(f : X \to Y \) be a flat morphism of schemes of finite type over a field \(k \), and assume that \(Y \) is irreducible. Then the following conditions are equivalent:

(i) every irreducible component of \(X \) has dimension equal to \(\dim Y + n \).

(ii) for any point \(y \in Y \) (closed or not), every irreducible component of the fibre \(X_y \) has dimension \(n \).

In this case, (2) is equivalent to say every irreducible component of every fibre \(X_y \) of \(f' \) has dimension \(n \), which, by (II Ex. 3.20), is preserved under base change.

(3) By (II 8.10), \(\Omega_{X/Y} \) is stable under base extension, thus (3) holds for \(f' \).

(c) (1) By (III 9.2).

(2) If \(X' \subseteq X, Y' \subseteq Y, Z' \subseteq Z \) are irreducible components such that \(f(X') \subseteq Y', g(Y') \subseteq Z' \), then \(\dim X' = \dim Y' + n = \dim Z' + n + m \).

(3) Use the exact sequence in (II 8.11)

\[
f^* \Omega_{Y/Z} \to \Omega_{X/Z} \to \Omega_{X/Y} \to 0
\]

Tensoring \(k(x) \) to get:

\[
f^* \Omega_{Y/Z} \otimes k(x) \to \Omega_{X/Z} \otimes k(x) \to \Omega_{X/Y} \otimes k(x) \to 0
\]

Then \(\dim \Omega_{X/Z} \otimes k(x) \leq \dim f^* \Omega_{Y/Z} \otimes k(x) + \dim \Omega_{X/Y} \otimes k(x) = n + m \).

On the other hand, let \(z = g(f(x)) \), we have \(\Omega_{X/Z} \otimes k(x) = \Omega_{X_z/k(z)} \otimes k(x) \), let \(X' \) be an irreducible component of \(X_z \) containing \(x \), with its reduced induced structure. Then by (II 8.12),

\[
\Omega_{X_z/k(z)} \otimes k(x) \to \Omega_{X'/k(z)} \otimes k(x)
\]

is surjective.

But again by (III 9.6), \(X' \) is an integral scheme of finite type over \(k(z) \) of dimension \(n + m \), thus by (II 8.6A), we see \(\Omega_{X'/k(z)} \) is locally generated by at least \(n + m \) elements. Combining above, (3) is verified.

(d) Use (b), (c).

Theorem 2 Let \(f : X \to Y \) be a morphism of schemes of finite type over a field \(k \), then \(f \) is smooth of relative dimension \(n \) if and only if:

(i) \(f \) is flat.

(ii) The fibres of \(f \) are geometrically regular of equidimension \(n \), i.e., for point \(y \in Y \), let \(X_y = X_{k(y)} \), then \(X_y \) is equidimensional of dimension \(n \) and regular.
Proof. (\Rightarrow) By Proposition (0.2), (1(b)).

(\Leftarrow) (1) By assumption.
(2) By (III 9.6).
(3) By Proposition (0.2), regularity implies $\Omega_{X/k(y)}$ is locally free of rank n.
By the fact states below, it is equivalent to $\Omega_{X/k(y)}$ is locally free of rank n, thereby (3) holds.

Fact. If M is an A-module with A being a local ring, B is a faithfully flat A-algebra, then

$$M \text{ free } \iff M \otimes_A B \text{ is free.}$$

Recall. The Zaraski tangent space T_x for a point in a scheme X be the dual of k-vector space m_x/m_x^2. If $f : X \to Y$ is a morphism, $y = f(x)$, then there is a natural induced mapping

$$T_f : T_x \to T_y \otimes_{k(y)} k(x)$$

Lemma. 3-1 Suppose that $R \to S$ is a local homomorphism of Noetherian local rings. Denote m the maximal ideal of R. Let M be a flat R-module and N a finite S-module. Let $u : N \to M$ be a map of R-modules. If $u_1 : N/mN \to M/mM$ is injective then u is injective. In this case $M/u(N)$ is flat over R.

Proof. Claim: $u_k : N/m^kN \to M/m^kM$ is injective $\forall \ k \in \mathbb{N}$.
The case $k = 1$ is just the assumption. To prove by induction, assuming the case $k = n$ holds. Consider the diagram:

$$
\begin{array}{cccccc}
0 & \to & M/IM & \to & M/(IM + u(N)) & \to & 0 \\
\uparrow & & \uparrow & & \uparrow & \\
N/IN & \to & M/IM & \to & M/IM + u(N) & \to & 0 \\
\end{array}
$$

The first and the last map are injective, which imply the middle one is also injective. Therefore the claim is proved by induction.

By Krull’s intersection theorem, $\bigcap m^nN = 0$, thus the injectivity of $u_n \forall n \in \mathbb{N}$ implies u is injective.
To show that $M/u(N)$ is flat over R, it suffices to show that $I \otimes_R M/u(N) \to M/u(N)$ is injective for every ideal I in R. Consider the diagram

$$
\begin{array}{cccccc}
0 & \to & M/IM & \to & M/(IM + u(N)) & \to & 0 \\
\uparrow & & \uparrow & & \uparrow & \\
N/IN & \to & M/IM & \to & M/IM + u(N) & \to & 0 \\
\uparrow & & \uparrow & & \uparrow & \\
0 & \to & M & \to & M/u(N) & \to & 0 \\
\uparrow & & \uparrow & & \uparrow & \\
N \otimes_R I & \to & M \otimes_R I & \to & M/u(N) \otimes_R I & \to & 0 \\
\end{array}
$$
\[M \otimes_R I \to M \] is injective, then by the snake lemma, it suffices to prove that \(N/IN \) injects into \(M/IM \). Note that \(R/I \to S/IS \) is a local homomorphism of Noetherian local rings, \(N/IN \to M/IM \) is a map of \(R/I \)-modules, \(N/IN \) is finite over \(S/IS \), and \(M/IM \) is flat over \(R/I \) and \(\pi : N/IN \to M/IM \) is injective modulo \(m \). Thus we may apply the first part of the proof to \(\pi \) to conclude.

Definition. Let \(A \) be a commutative ring, \(I \) be an ideal of \(A \). An \(A \)-module \(M \) is ideally Hausdorff w.r.t. \(J \) if \(\forall a \) is a finitely generated ideal of \(A \), \(a \otimes_A M \) is Hausdorff with \(J \)-adic topology.

Lemma. 3-2 Let \(A \) be a commutative ring, \(I, J \) be ideals of \(A \), \(M \) be an \(A \)-module, \(gr(A) \) be the graded ring with \(I \)-adic filtration, \(gr(M) \) be the graded \(gr(A) \)-module associated with \(M \) with \(I \)-adic topology. Consider the following:

(i) \(M \) is a flat \(A \)-module.

(ii) \(\text{Tor}^1_A(N,M) = 0 \ \forall N \) is an \(A \)-module annihilated by \(J \).

(iii) \(M/IM \) is a flat \(A/I \)-module and the canonical map \(I \otimes_A M \to IM \) is bijective.

(iv) \(M/IM \) is a flat \(A/I \)-module and canonical homomorphism \(r : gr(A) \otimes_{gr_0(A)} gr_0(M) \) is bijective.

(v) \(\forall n \in \mathbb{N}, M/I^n \) is a flat \(A/I^n \)-module.

Then (i)\(\Rightarrow \) (ii)\(\Leftrightarrow \) (iii)\(\Rightarrow \) (iv)\(\Leftrightarrow \) (v). Furthermore, if \(A \) is noetherian and \(M \) is ideally Hausdorff, all of them are equivalent.

Proof.

(i)\(\Rightarrow \) (ii)\(\Leftrightarrow \) (iii) Omitted.

(ii)\(\Leftrightarrow \) (ii)’: \(\text{Tor}^1_A(N,M) = 0 \ \forall N \) is an \(A \)-module annihilated by some power of \(J \).

(\(\Leftarrow \)) is trivial, so let’s focus on (\(\Rightarrow \)).

In particular \(\text{Tor}^1_I(I^nN/I^{n+1}N,M) = 0 \ \forall n \in \mathbb{N} \). Then the exact sequence

\[
0 \to I^{n+1}N \to I^nN \to I^nN/I^{n+1}N \to 0
\]

which induces

\[
\text{Tor}^1_I(I^{n+1}N,M) \to \text{Tor}^1_A(I^nN,M) \to \text{Tor}^1_A(I^nN/I^{n+1}N,M)
\]

Notice that \(\exists m \in \mathbb{N} \) s.t. \(I^mN = 0 \), using descending induction, we have \(\text{Tor}^1_A(I^nN,M) = 0 \ \forall n \leq m \), especially \(m = 0 \).

(ii)\(\Rightarrow \) (iv) First we have a lemma:

(a) \(\text{Tor}_1^A(A/I^n,M) = 0 \ \forall n \in \mathbb{N} \).

(b) The canonical homomorphism \(\theta_n : I^n \otimes_A M \to I^nM \) is bijective.

(c) \(r : gr(A) \otimes_{gr_0(A)} gr_0(M) \) is bijective.

Then (a)\(\Leftrightarrow \) (b)\(\Rightarrow \) (c), (b)\(\Leftrightarrow \) (c) when \(I \) is nilpotent.

Proof. (a)\(\Leftrightarrow \) (b) by the exact sequence

\[
0 = \text{Tor}_1^A(A/I,M) \to \text{Tor}_1^A(A/I^n,M) \to I^n \otimes M \to M
\]

Consider the diagram:

\[
\begin{array}{cccccc}
I^{n+1} \otimes_A M & \to & I^n \otimes_A M & \to & I^n/I^{n+1} \otimes_{A/I} M/IM & \to & 0 \\
\downarrow \theta_{n+1} & & \downarrow \theta_n & & \downarrow r_n & & \\
0 & \to & I^{n+1}M & \to & I^nM & \to & gr_n(M)
\end{array}
\]
Where \(r_n \) is the canonical surjective map. It’s commutative by the definition of \(r_n \). In this case, \(\theta_n \) is bijective, thus \(r_n \) is bijective. For the second statement, notice that \(I^n \otimes_A M = I^n M = 0 \) for some \(n \), thus using descending induction we see it’s true.

Thus by lemma, \((ii) \Rightarrow (ii)’ \Rightarrow r \) is bijective, also \((ii) \Rightarrow (iii) \), a fortiori \(M/IM \) is a flat \(A/I \)-module, thereby \((iv) \) stands.

Also, \((iii) \Leftrightarrow (iv) \) when \(I \) is nilpotent is also shown by the above process.

\[(iv) \Leftrightarrow (v) \]

Observe \(gr_m(M/I^nM) = \begin{cases} gr_m(M), m < n \\ 0, m \geq n \end{cases} \)

For \(k \in \mathbb{N} \), let \((iv)_k \) and \((v)_k \) be the statement replacing \(A,I,M \) by \(A/I^kA,I/I^k,M/I^kM \). Obviously

\[(iv) \Rightarrow (iv)_k \forall k \in \mathbb{N} \]
\[(v) \Rightarrow (v)_k \forall k \in \mathbb{N} \]

Thus it’s sufficient to show that \((iv)_k \Rightarrow (v)_k \forall k \in \mathbb{N} \) or also \((iv) \Leftrightarrow (v) \) for the case \(I \) is nilpotent, which will be assumed below. Since \(M/I^nM \cong M \otimes_A A/I^n \), we know \((v) \Rightarrow (i) \), more apparently, \((i) \Rightarrow (v) \), so the statement is proved.

\[(v) \Rightarrow (i) \] (For the case \(A \) is noetherian and \(M \) is ideally Hausdorff) It’s proved in Lemma 3-1.

With above we now conclude:

Lemma. 3 Let \(A \to B \) be a local homomorphism of local noetherian rings. Let \(M \) be a finitely generated \(B \)-module, and let \(t \in A \) be a nonunit that is not a zero divisor. Then \(M \) is flat over \(A \) if and only if \(t \) is not a zero divisor in \(M \) and \(M/tM \) is flat over \(A/tA \).

Proof. Take \(I = J = (t) \) in Lemma 3-1, 3-2.

Proposition. 4 Let \(f : X \to Y \) be a morphism of nonsingular varieties over an algebraically closed field \(k \). Let \(n = \dim X - \dim Y \). Then the following are equivalent:

(i) \(f \) is smooth of relative dimension \(n \).
(ii) \(\Omega_{X/Y} \) is locally free of rank \(n \) on \(X \).
(iii) For every closed point \(x \in X \), \(T_f : T_x \to T_y \otimes_{k(y)} k(x) \) is surjective.

Proof.

(i)\(\Rightarrow \) (ii) By Proposition (0.2).

(ii)\(\Rightarrow \) (iii) Use the exact sequence in (II 8.11) tensoring \(k(x) \cong k \) (since \(x \) is a closed point), we have:

\[f^*\Omega_{Y/k} \otimes k(x) \xrightarrow{\phi} \Omega_{X/k} \otimes k(x) \to \Omega_{X/Y} \otimes k(x) \to 0 \]

since the dimension of each terms are \(\dim Y, \dim X, n, \phi \) is actually an injection.

Recall (II 8.7): Let \((B, m)\) be a local ring with a field \(k \cong B/m \) containing in \(B \). Then

\[m \to m/m^2 \xrightarrow{\phi} \Omega_{B/k} \otimes_B k \]
\[b \mapsto \overline{b} \mapsto db \otimes 1 \]

is an isomorphism.

So \(\phi \) is actually \(m_y/m_y^2 \hookrightarrow m_x/m_x^2 \), take dual to get our result.
(iii)⇒(i) Recall (III 9.1A(d)): M is an A-module, M is flat over A if and only if M_p is flat over $A_p \forall p \in \text{Spec } A$. So to prove f is flat, we only have to verify $O_{X,x}$ is flat over $O_{Y,y} \forall x \in X$ is a closed point, $y = f(x)$.

Since X,Y both nonsingular, O_x, O_y are regular local rings. Also by taking dual on T_f, $m_y/m_y^2 \hookrightarrow m_x/m_x^2$ is injective.

Take a regular system of parameters of $O_y : (t) = (t_1, \ldots, t_r)$, then (t) forms a part of regular system of parameters of O_x. Since $O_x/(t)$ is flat over $O_y/(t) \cong k$, by Lemma 3 and induction, $O_x/(t_1, \ldots, t_i)$ is flat over $O_y/(t_1, \ldots, t_i) \forall i = 0 r$, in particular it’s already proved f is flat. Proceed similar to (ii)⇒(iii) but backward, we see for x is a closed point,

$$\dim_{k(x)}(\Omega_{X/Y} \otimes k(x)) = n$$

On the other hand, f is flat, by (III Ex 9.1), is also dominant, by (II 8.6A), the generic point ξ has the property:

$$\dim_{k(x)}(\Omega_{X/Y} \otimes k(x)) \geq n$$

In either case, we can conclude $\Omega_{X/Y}$ is a coherent sheaf of rank $\geq n$, so by (II 8.9), it’s locally free of rank n, thus f is smooth of relative dimension n.

Lemma. 5 Let $f : X \to Y$ be a dominant morphism of integral schemes of finite type over an algebraically closed field k of characteristic 0. Then there is a nonempty open set $U \subseteq X$ such that $f : U \to Y$ is smooth.

Proof. By (II 8.16), every variety over k has an open dense nonsingular subset, thus we may assume X,Y are nonsingular. Since char $k = 0$, thus perfect, by (I,4.8A), $K(X)$ is a separably generated field extension of $K(Y)$. Therefore by (II 8.6A), $\Omega_{X/Y}$ is free of rank n at the generic point, thus locally free of rank n on some nonempty open set U. By Proposition 4, $f : U \to Y$ is smooth.

Remark. The lemma may fail when characteristic of field is not zero. Let char $k = p > 0, k = \overline{k}, f : P^r_k \to P^r_k$ be the Frobenius morphism, then f is not smooth on any open set.

Proposition. 6 Let $f : X \to Y$ be a morphism of schemes of finite type over an algebraically closed field k of characteristic 0. For any r, let

$$X_r = \{\text{closed points } x \in X \mid \text{rank } T_{f,x} \leq r\}$$

Then $\dim f(X_r) \leq r$.

Proof. Let Y' be any irreducible component of $f(X_r)$, and let X' be an irreducible component of X_r which dominates Y'. Give X' and Y' their reduced induced structures, and consider the induced dominant morphism $f' : X' \to Y'$. By (Lemma 5), there is a nonempty open subset $U' \subseteq X'$ such that $f : U' \to Y'$ is smooth. Let $x \in U' \cap X_r$, then consider the diagram

$$\begin{array}{ccc}
T_{x,U'} & \to & T_{x,X} \\
\downarrow T_{f',x} & & \downarrow T_{f,x} \\
T_{y,Y'} & \to & T_{y,Y}
\end{array}$$
The horizontal arrows are injective, because U' and Y' are locally closed subschemes of X and Y, respectively. Also $T_{y,x}$ is surjective by Proposition 4. Since $\dim T_{y,x} \leq r$, $\dim T_{y'} \leq r$, we get $\dim Y' \leq r$.

Proposition 7 Let $f : X \to Y$ be a morphism of varieties over an algebraically closed field k of characteristic 0, suppose X is nonsingular. Then there exists a nonempty open subset $V \subseteq Y$ such that $f : f^{-1}V \to V$ is smooth.

Proof. Again may assume Y is nonsingular by (II 8.16). Let $Y = r, X_{r-1} \subseteq X$ as defined in Proposition 6, then $\dim f(X_{r-1}) \leq r - 1$, moving it from X, therefore we can assume for every closed point in X, $\text{rank} \ T_f \geq r = \dim Y$, which means they're all surjective, thus f is smooth by Proposition 4.

Proposition 8 A morphism $f : X \to Y$ of schemes of finite type over k is étale if it is smooth of relative dimension 0. It is unramified if for every $x \in X$, letting $y = f(x)$, we have $m_y O_X = m_x$, and $k(x)$ is a separable algebraic extension of $k(y)$. Show that the following conditions are equivalent:

(i) f is étale.
(ii) f is flat, $\Omega_{X/Y} = 0$.
(iii) f is flat and unramified.

Proof.
(i)\iff(ii) By the definition of smooth.
(iii)\implies(ii) We have
\[m_y/m_y^2 \otimes_{k(y)} k(x) = (m_y \otimes_{O_y} k(y)) \otimes_{k(y)} k(x) = m_y \otimes_{O_y} (O_x/m_y O_x)\]
Also, $m_y \otimes_A O_x \cong m_y O_x = m_x$, thus
\[m_y \otimes (O_x/m_y O_x) = (m_y \otimes O_x)/m_y^2 = m_x/m_x^2\]
Thus the map T_f, x is an isomorphism, i.e. it’s smooth of relative dimension 0.
(ii)\implies(iii) Fact: Let $O_x = B, O_y = A$, if $\hat{A} \to \hat{B}$ is an isomorphism then f is unramified at x.

Proof. We know $m_y^n O_x = m_x^n \forall n \in \mathbb{N}$, and the composition
\[A/m_y^n \to B/m_y^n B \to \hat{A}/m_y^n \hat{A}\]
is an isomorphism, it’s left to show $\hat{A} \to \hat{B}$ is injective, in other words,
\[m_y^n \hat{A} \cap B = m_y^n B \forall n \in \mathbb{N}\]
Notice that $B = A + m_y^n B$ and $m_y^n B \subseteq m_y^n \hat{A}$, so $\forall b \in B$, it can be represented as $a + \epsilon, a \in A, b \in m_y^n B$ $m_y^n \hat{A} \cap B \subseteq m_y^n B$.
Conversely, if $b \in m_y^n A, a \in m_y \hat{A} \cap A = m_y^n$, thus $b \in m_y^n B$. Thus we only need to prove $\hat{A} \to \hat{B}$ is an isomorphism, but $O_x = O_y + m_y^n, m_y^n = m_x^{n+1} + m_y^n \forall n \in \mathbb{N}$, thus $\hat{A} \to \hat{B}$ is an isomorphism. Also, by (II 8.6A), $\dim_{k(x)} \Omega_{X/Y} \otimes k(x) \geq \text{tr.deg} k(x)/k(y)$, equality holds if and only if $k(x)$ is separately extended over $k(y)$. Thus in this case, $k(x)$ is separately extended over $k(y)$ of transcendental degree 0, i.e. a separable algebraic extension.
Recall. A group variety G is a variety G over an algebraically closed field k, together with morphisms $\mu : G \times G \to G, \rho : G \to G$ s.t. $G(k)$, k-rational points of G, becomes a group under the operation induced by μ, with ρ giving the inverses. We say that a group variety G acts on a variety X if we have a morphism $\theta : G \times X \to X$ which induces a homomorphism $G(k) \to \text{Aut}X$ of groups.

A homogeneous space is a variety X, together with a group variety G acting on it, such that the group $G(k)$ acts transitively on $X(k)$.

Remark. A homogeneous space is necessarily a nonsingular variety.

Theorem. 9 Let X be a homogeneous space with group variety G over an algebraically closed field k of characteristic 0. Let $f : Y \to X, g : Z \to X$ are two morphisms between nonsingular varieties. For $\sigma \in G(k)$, let Y^σ be the same variety with Y but with morphism $\sigma \circ f : Y^\sigma \to X$. Then $\exists V \subseteq G$ s.t. $\forall \sigma \in V(k), Y^\sigma \times_X Z$ is nonsingular and either empty or has the dimension $\dim Y + \dim Z - \dim X$.

Proof. Define $h : G \times Y \to X$ as the composition of f and $\theta : G \times X \to X$. We first prove that it’s smooth. Now nonsingular is equivalent to smooth over k by Proposition 0.2, and G is nonsingular by the Remark above, therefore $G \times Y$ is nonsingular by Proposition 1(d).

Apply Proposition 7, we see that $\exists U \subseteq X$ s.t. $h^{-1}(U) \to U$ is smooth.

Now G acts on $G \times Y$ by left multiplication on G; G acts on X by θ, and these two actions are compatible with the morphism h, by construction. Thus $\forall \sigma \in G(k), h^{-1}(U^\sigma) \to U^\sigma$ is smooth. Since U^σ cover X, we conclude h is smooth.

Next consider the diagram:

$$
\begin{align*}
W & := (G \times Y) \times_X Z \xrightarrow{h'} Z \\
\downarrow g' & \quad \downarrow g \\
G \times Y & \xrightarrow{h} X \\
\downarrow pr_1 & \\
G &
\end{align*}
$$

Then h' is smooth again by Proposition 1(b), and remind that Z is smooth over k by Proposition 0.2, using Proposition 1(c), W is nonsingular. Consider $q = pr_1 \circ g' : W \to G$.

Again apply Proposition 7, $\exists V \subseteq G$ s.t. $q^{-1}(V) \to V$ is smooth.

Therefore $\forall \sigma \in V(k), W_\sigma$ is nonsingular, where the result and notation follow from Theorem 2. But W_σ is just W_σ since k is algebraically closed. Also, W_σ actually coincides to $Y^\sigma \times_X Z$, which proves the first statement.

For the second statement, we notice that h is smooth of dimension $\dim G + \dim Y - \dim X$, so is h' by Proposition 1(b), thus

$$
\dim W - \dim Z = \dim G + \dim Y - \dim X
$$

Also, $q_{|q^{-1}(V)}$ is smooth of dimension $\dim W - \dim G$, thus by the definition of smoothness and (III 9.6), $\forall \sigma \in V(k)$

$$
\dim W_\sigma = \dim W - \dim G = \dim Y + \dim Z - \dim X
$$
Corollary. 10 Let X be a nonsingular projective variety over an algebraically closed field k of characteristic 0. Let \mathfrak{d} be a linear system without base points. Then almost every element of \mathfrak{d}, considered as a closed subscheme of X, is nonsingular (but maybe reducible).

Proof. Let $f : X \to \mathbb{P}^n$ be the morphism determined by \mathfrak{d}, applying (II 7.8.1). Consider \mathbb{P}^n as a homogeneous space under the action of $\text{PGL}(n)$ by (II 7.1.1). Take an arbitrary hyperplane $H \hookrightarrow \mathbb{P}^n$ and apply Theorem 9 on it, then for almost every $\sigma \in G(k), X \times_{\mathbb{P}^n} H^\sigma = f^{-1}(H^\sigma)$ is nonsingular. But $f^{-1}(H^\sigma)$ is just some element of \mathfrak{d}, thus the result.

Remark. In (Ex. 11.3), if $\dim f(X) \geq 2$, then all the divisors in \mathfrak{d} are connected. Hence almost all of them are irreducible and nonsingular.

Remark. In fact, X is not need to be projective if \mathfrak{d} is finite-dimensional. In particular, if X is projective, a straightforward and more general statement is that "a general member of \mathfrak{d} can have singularities only at the base points."

Remark. This result fails in characteristic $p > 0$. Take the same example in Remark of Lemma 5, the morphism f corresponds to the one-dimensional linear system $\{pP \mid P \in \mathbb{P}\}$. Thus every divisor in \mathfrak{d} is a point with multiplicity p.