10 SMOOTH MORPHISMS

Recall. (Flat)

Let $f: X \to Y$ be a morphism of schemes, and let \mathcal{F} be an \mathcal{O}_x -module. We say that \mathcal{F} is flat over Y at a point $x \in X$, if the stalk at x is a flat \mathcal{O}_y -module, where y = f(x). We say simply \mathcal{F} is flat over Y if it is flat at every point of X. We say X is flat over Y if \mathcal{O}_X is.

Definition. (Smooth)

Let $f : X \to Y$ be a morphism of schemes of finite type over a field k, we say it's smooth of relative dimension n if:

- (1) f is flat.
- (2) If $X' \subseteq X, Y' \subseteq Y$ are irreducible components such that $f(X') \subseteq Y'$, then $\dim X' = \dim Y' + n$.
- (3) For each point $x \in X$ (closed or not),

$$\dim_{k(x)}(\Omega_{X/Y} \otimes k(x)) = n$$

Proposition. 0.1 If X is integral, (3) is equivalent to $\Omega_{X/Y}$ is locally free of rank n. Recall **(II 8.9)**: Let A be a noetherian local integral domain, with residue field k and quotient field K. If M is a finitely generated A-module and if $\dim_k M \otimes_A k = \dim_K M \otimes_A K = r$, then M is free of rank r.

Proposition. 0.2 If $Y = \operatorname{Spec} k, k = \overline{k}$, then X is smooth over k if and only if X is regular of dimension n.

Recall (II 8.8): Let B be a local ring containing a field k isomorphic to its residue field. Assume furthermore that k is perfect, and that B is a localization of a finitely generated k-algebra. Then

 $\Omega_{B/k}$ is a free *B*-module of rank dim $B \iff B$ is a regular local ring.

In particular, if X is irreducible separated over k, then it's smooth if and only if it's a nonsingular variety.

Recall (II 8.15): Let X be an irreducible separated scheme of finite type over an algebraically closed field k. Then

 $\Omega_{X/k}$ is locally free of rank dim $X \iff X$ is a nonsingular variety over k.

Remark. Over a nonperfect field, the last proposition is false: let k_0 be a field of characteristic p > 0, let $k = k_0(t)$, and let $X \subseteq A_k^2$ be the curve defined by $y^2 = x^p - t$, then every local ring of X is a regular local ring, but X is not smooth over k.

Proposition. 1

(a) An open immersion is smooth of relative dimension 0.

- (b) If $f : X \to Y$ is smooth of relative dimension n, and $g : Y' \to Y$ is any morphism, then the morphism $f' : X' \to Y'$ obtained by base extension is also smooth of relative dimension n.
- (c) If $f: X \to Y$ is smooth of relative dimension n, and $g: Y \to Z$ is smooth of relative dimension m, then $g \circ f: X \to Z$ is smooth of relative dimension n+m.
- (d) If $f: X \to Z$ is smooth of relative dimension n, and $g: Y \to Z$ is smooth of relative dimension m, then $X \times_Z Y \to Z$ is smooth of relative dimension n+m.
- **Proof.** (a) Just check the condition.
 - (b) (1) By (III 9.2), f' is flat.
 - (2) Recall **(III 9.6)**: Let $f : X \to Y$ be a flat morphism of schemes of finite type over a field k, and assume that Y is irreducible. Then the following conditions are equivalent:
 - (i) every irreducible component of X has dimension equal to $\dim Y + n$.
 - (ii) for any point $y \in Y$ (closed or not), every irreducible component of the fibre X_y has dimension n.

In this case, (2) is equivalent to say every irreducible component of every fibre X_y of f' has dimension n, which, by **(II Ex. 3.20)**, is preserved under base change.

- (3) By (II 8.10), $\Omega_{X/Y}$ is stable under base extension, thus (3) holds for f'.
- (c) (1) By (**III 9.2**).
 - (2) If $X' \subseteq X, Y' \subseteq Y, Z' \subseteq Z$ are irreducible components such that
 - $f(X') \subseteq Y', g(Y') \subseteq Z'$, then dim $X' = \dim Y' + n = \dim Z' + n + m$.
 - (3) Use the exact sequence in (II 8.11)

$$f^*\Omega_{Y/Z} \longrightarrow \Omega_{X/Z} \longrightarrow \Omega_{X/Y} \longrightarrow 0$$

Tensoring k(x) to get:

$$f^*\Omega_{Y/Z} \otimes k(x) \longrightarrow \Omega_{X/Z} \otimes k(x) \longrightarrow \Omega_{X/Y} \otimes k(x) \longrightarrow 0$$

Then dim $\Omega_{X/Z} \otimes k(x) \leq \dim f^* \Omega_{Y/Z} \otimes k(x) + \dim \Omega_{X/Y} \otimes k(x) = n + m$. On the other hand, let z = g(f(x)), we have $\Omega_{X/Z} \otimes k(x) = \Omega_{X_z/k(z)} \otimes k(x)$, let X' be an irreducible component of X_z containing x, with its reduced induced structure. Then by **(II 8.12)**,

$$\Omega_{X_z/k(z)} \otimes k(x) \longrightarrow \Omega_{X'/k(z)} \otimes k(x)$$

is surjective.

But again by (III 9.6), X' is an integral scheme of finite type over k(z) of dimension n + m, thus by (II 8.6A), we see $\Omega_{X'/k(z)}$ is locally generated by at least n + m elements. Combining above, (3) is verified.

(d) Use (b), (c).

Theorem. 2 Let $f : X \to Y$ be a morphism of schemes of finite type over a field k, then f is smooth of relative dimension n if and only if:

- (i) f is flat.
- (ii) The fibres of f are geometrically regular of equidimension n, i.e., for point $y \in Y$, let $X_{\overline{y}} = X_y \otimes_{k(y)} \overline{k(y)}$, then $X_{\overline{y}}$ is equidimensional of dimension n and regular.

Proof. (\Rightarrow) By Proposition (0.2),(1(b)).

- (\Leftarrow) (1) By assumption.
 - (2) By (III 9.6).
 - (3) By **Proposition (0.2)**, regularity implies $\Omega_{X_{\overline{y}}/\overline{k(y)}}$ is locally free of rank n. By the fact states below, it is equivalent to $\Omega_{X_y/k(y)}$ is locally free of rank n, thereby (3) holds.

Fact. If M is an A-module with A being a local ring, B is a faithfully flat A-algebra, then

$$M$$
 is free $\iff M \otimes_A B$ is free.

Recall. The Zaraski tangent space T_x for a point in a scheme X be the dual of k-vector space m_x/m_x^2 . If $f: X \to Y$ is a morphism, y = f(x), then there is a natural induced mapping

$$T_f: T_x \to T_y \otimes_{k(y)} k(x)$$

Lemma. 3-1 Suppose that $R \to S$ is a local homomorphism of Noetherian local rings. Denote \mathfrak{m} the maximal ideal of R. Let M be a flat R-module and N a finite S-module. Let $u : N \to M$ be a map of R-modules. If $u_1 : N/\mathfrak{m}N \to M/\mathfrak{m}M$ is injective then u is injective. In this case M/u(N) is flat over R.

Proof. Claim: $u_k : N/\mathfrak{m}^k N \to M/\mathfrak{m}^k M$ is injective $\forall k \in \mathbb{N}$.

The case k = 1 is just the assumption. To prove by induction, assuming the case k = n holds. Consider the diagram:

The first and the last map are injective, which imply the middle one is also injective. Therefore the claim is proved by induction.

By Krull's intersection theorem , $\bigcap \mathfrak{m}^n N = 0$, thus the injectivity of $u_n \forall n \in \mathbb{N}$ implies u is injective.

To show that M/u(N) is flat over R, it suffices to show that $I \otimes_R M/u(N) \to M/u(N)$ is injective for every ideal I in R. Consider the diagram

 $M \otimes_R I \to M$ is injective, then by the snake lemma, it suffices to prove that N/IN injects into M/IM. Note that $R/I \to S/IS$ is a local homomorphism of Noetherian local rings, $N/IN \to M/IM$ is a map of R/I-modules, N/IN is finite over S/IS, and M/IM is flat over R/I and $\overline{u} : N/IN \to M/IM$ is injective modulo \mathfrak{m} . Thus we may apply the first part of the proof to \overline{u} to conclude.

Definition. Let A be a commutative ring, I be an ideal of A. An A-module M is ideally Hausdorff w.r.t. J if $\forall a$ is a finitely generated ideal of A, $a \otimes_A M$ is Hausdorff with J-adic topology.

Lemma. 3-2 Let A be a commutative ring, I, J be ideals of A, M be an A-module, gr(A) be the graded ring with I-adic filtration, gr(M) be the graded gr(A)-module associated with M with I-adic topology. Consider the following:

- (i) M is a flat A-module.
- (ii) $\operatorname{Tor}_{1}^{A}(N, M) = 0 \forall N$ is an A-module annihilated by J.
- (iii) M/IM is a flat A/I-module and the canonical map $I \otimes_A M \to IM$ is bijective.
- (iv) M/IM is a flat A/I-module and canonical homomorphism $r : gr(A) \otimes_{gr_0(A)} gr_0(M)$ is bijective.
- (v) $\forall n \in \mathbb{N}, M/I^n$ is a flat A/I^n -module.

Then $(i) \Rightarrow (ii) \Rightarrow (iv) \Rightarrow (iv) \Rightarrow (v)$. Furthermore, if A is noetherian and M is ideally Hausdorff, all of them are equivalent.

Proof.

 $(i) \Rightarrow (ii) \Leftrightarrow (iii)$ Omitted.

(ii) \Leftrightarrow (ii)':Tor₁^A(N, M) = 0 \forall N is an A-module annihilated by some power of J. (\Leftarrow) is trivial, so let's focus on (\Rightarrow).

In particular $\operatorname{Tor}_1^A(I^n N/I^{n+1}N, M) = 0 \,\forall n \in \mathbb{N}$. Then the exact sequence

 $0 \to I^{n+1}N \to I^nN \to I^nN/I^{n+1}N \to 0$

which induces

$$\operatorname{Tor}_{1}^{A}(I^{n+1}N, M) \to \operatorname{Tor}_{1}^{A}(I^{n}N, M) \to \operatorname{Tor}_{1}^{A}(I^{n}N/I^{n+1}N, M)$$

Notice that $\exists m \in \mathbb{N}$ s.t. $I^m N = 0$, using descending induction, we have $\operatorname{Tor}_1^A(I^n N, M) = 0 \,\forall n \leq m$, especially m = 0.

(ii) \Rightarrow (iv) First we have a lemma:

(a) $\operatorname{Tor}_1^A(A/I^n, M) = 0 \,\forall n \in \mathbb{N}.$

(b) The canonical homomorphism $\theta_n : I^n \otimes_A M \to I^n M$ is bijective.

(c) $r: gr(A) \otimes_{qr_0(A)} gr_0(M)$ is bijective.

Then (a) \Leftrightarrow (b) \Rightarrow (c), (b) \Leftarrow (c) when *I* is nilpotent.

Proof. (a) \Leftrightarrow (b) by the exact sequence

$$0 = \operatorname{Tor}_{1}^{A}(A/I, M) \to \operatorname{Tor}_{1}^{A}(A/I^{n}, M) \to I^{n} \otimes M \to M$$

Consider the diagram:

Where r_n is the canonical surjective map. It's commutative by the definition of r_n . In this case, θ_n is bijective, thus r_n is bijective. For the second statement, notice that $I^n \otimes_A M = I^n M = 0$ for some n, thus using descending induction we see it's true.

Thus by lemma, (ii) \Rightarrow (ii)' \Rightarrow r is bijective, also (ii) \Rightarrow (iii), a fortiori M/IM is a flat A/I-module, thereby (iv) stands.

Also, (iii) \Leftarrow (iv) when I is nilpotent is also shown by the above process.

(iv)
$$\Leftrightarrow$$
(v) Observe $gr_m(M/I^nM) = \begin{cases} gr_m(M), m < n \\ 0, m \ge n \end{cases}$ For $k \in \mathbb{N}$, let (iv)_k and (v)_k be

the statement replacing A, I, M by $A/I^k A, I/I^k, M/I^k M$. Obviously

$$(iv) \Rightarrow (iv)_k \forall k \in \mathbb{N} (v) \Rightarrow (v)_k \forall k \in \mathbb{N}$$

Thus it's sufficient to show that $(iv)_k \Rightarrow (v)_k \forall k \in \mathbb{N}$ or also $(iv) \Leftrightarrow (v)$ for the case I is nilpotent, which will be assumed below. Since $M/I^n M \cong M \otimes_A A/I^n$, we know $(v) \Rightarrow (i)$, more apparently, $(i) \Rightarrow (v)$, so the statement is proved.

 $(v) \Rightarrow (i)$ (For the case A is noetherian and M is ideally Hausdorff) It's proved in Lemma 3-1.

With above we now conclude:

Lemma. 3 Let $A \to B$ be a local homomorphism of local noetherian rings. Let M be a finitely generated B-module, and let $t \in A$ be a nonunit that is not a zero divisor. Then M is flat over A if and only if t is not a zero divisor in M and M/tM is flat over A/tA.

Proof. Take I = J = (t) in Lemma 3-1, 3-2.

Proposition. 4 Let $f : X \to Y$ be a morphism of nonsingular varieties over an algebraically closed field k. Let $n = \dim X - \dim Y$. Then the following are equivalent:

- (i) f is smooth of relative dimension n.
- (ii) $\Omega_{X/Y}$ is locally free of rank n on X.
- (iii) For every closed point $x \in X$, $T_f: T_x \to T_y \otimes_{k(y)} k(x)$ is surjective.

Proof.

- (i) \Rightarrow (ii) By **Proposition (0.2)**.
- (ii) \Rightarrow (iii) Use the exact sequence in **(II 8.11)** tensoring $k(x) \cong k$ (since x is a closed point), we have:

$$f^*\Omega_{Y/k} \otimes k(x) \xrightarrow{\phi} \Omega_{X/k} \otimes k(x) \longrightarrow \Omega_{X/Y} \otimes k(x) \longrightarrow 0$$

since the dimension of each terms are dim Y, dim X, n, ϕ is actually an injection. Recall **(II 8.7)**: Let (B, m) be a local ring with a field $k \cong B/m$ containing in B. Then

$$m \to m/m^2 \xrightarrow{\mathfrak{o}} \Omega_{B/k} \otimes_B k$$
$$b \longmapsto \overline{b} \longmapsto db \otimes 1$$

is an isomorphism.

So ϕ is actually $m_y/m_y^2 \hookrightarrow m_x/m_x^2$, take dual to get our result.

(iii) \Rightarrow (i) Recall (III 9.1A(d)): M is an A-module, M is flat over A if and only if M_p is flat over $A_p \forall p \in \text{Spec } A$. So to prove f is flat, we only have to verify $\mathcal{O}_{X,x}$ is flat over $\mathcal{O}_{Y,y} \forall x \in X$ is a closed point, y = f(x).

Since X, Y both nonsingular, $\mathcal{O}_x, \mathcal{O}_y$ are regular local rings. Also by taking dual on $T_f, m_y/m_y^2 \hookrightarrow m_x/m_x^2$ is injective.

Take a regular system of parameters of \mathcal{O}_y : $(t) = (t_1, \ldots, t_r)$, then (t) forms a part of regular system of parameters of \mathcal{O}_x . Since $\mathcal{O}_x/(t)$ is flat over $\mathcal{O}_y/(t) \cong k$, by **Lemma 3** and induction, $\mathcal{O}_x/(t_1, \ldots, t_i)$ is flat over $\mathcal{O}_y/(t_1, \ldots, t_i) \forall i = 0 r$, in particular it's already proved f is flat. Proceed similar to (ii) \Rightarrow (iii) but backward, we see for x is a closed point,

$$\dim_{k(x)}(\Omega_{X/Y} \otimes k(x)) = n$$

On the other hand, f is flat, by (III Ex 9.1), is also dominant, by (II 8.6A), the generic point ξ has the property:

$$\dim_{k(x)}(\Omega_{X/Y} \otimes k(x)) \ge n$$

In either case, we can conclude $\Omega_{X/Y}$ is a coherent sheaf of rank $\geq n$, so by (II 8.9), it's locally free of rank n, thus f is smooth of relative dimension n.

Lemma. 5 Let $f: X \to Y$ be a dominant morphism of integral schemes of finite type over an algebraically closed field k of characteristic 0. Then there is a nonempty open set $U \subseteq X$ such that $f: U \to Y$ is smooth.

Proof. By (II 8.16), every variety over k has an open dense nonsingular subset, thus we may assume X, Y are nonsingular. Since char k = 0, thus perfect, by (I,4.8A), K(X) is a separably generated field extension of K(Y). Therefore by (II 8.6A), $\Omega_{X/Y}$ is free of rank n at the generic point, thus locally free of rank n on some nonempty open set U. By **Proposition 4**, $f: U \to Y$ is smooth.

Remark. The lemma may fail when characteristic of field is not zero. Let char $k = p > 0, k = \overline{k}, f : P_k^1 \to P_k^1$ be the Frobenius morphism , then f is not smooth on any open set.

Proposition. 6 Let $f : X \to Y$ be a morphism of schemes of finite type over an algebraically closed field k of characteristic 0. For any r, let

 $X_r = \{ \text{closed points } x \in X \mid \text{rank } T_{f,x} \le r \}$

Then dim $\overline{f(X_r)} \leq r$.

Proof. Let Y' be any irreducible component of $f(X_r)$, and let X' be an irreducible component of X_r which dominates Y'. Give X' and Y' their reduced induced structures, and consider the induced dominant morphism $f': X' \to Y'$. By (Lemma 5), there is a nonempty open subset $U' \subseteq X'$ such that $f: U' \to Y'$ is smooth. Let $x \in U' \cap X_r$, then consider the diagram

$$\begin{array}{cccc} T_{x,U'} & \to & T_{x,X} \\ \downarrow T_{f',x} & & \downarrow T_{f,x} \\ T_{y,Y'} & \to & T_{y,Y} \end{array}$$

The horizontal arrows are injective, because U' and Y' are locally closed subschemes of X and Y, respectively. Also $T_{f',x}$ is surjective by **Proposition 4**. Since dim $T_{f,x} \leq r$, dim $T_{y,Y'} \leq r$, we get dim $Y' \leq r$.

Proposition. 7 Let $f: X \to Y$ be a morphism of varieties over an algebraically closed field k of characteristic 0, suppose X is nonsingular. Then there exists a nonempty open subset $V \subseteq Y$ such that $f: f^{-1}V \to V$ is smooth.

Proof. Again may assume Y is nonsingular by (II 8.16). Let $\dim Y = r, X_{r-1} \subseteq X$ as defined in **Proposition 6**, then $\dim \overline{f(X_{r-1})} \leq r-1$, moving it from X, therefore we can assume for every closed point in X, rank $T_f \geq r = \dim Y$, which means they're all surjective, thus f is smooth by **Proposition 4**.

Proposition. 8 A morphism $f : X \to Y$ of schemes of finite type over k is étale if it is smooth of relative dimension 0. It is unramified if for every $x \in X$, letting y = f(x), we have $m_y \mathcal{O}_X = m_x$, and k(x) is a separable algebraic extension of k(y). Show that the following conditions are equivalent:

- (i) f is étale.
- (ii) f is flat, $\Omega_{X/Y} = 0$.
- (iii) f is flat and unramified.

Proof.

(i) \Leftrightarrow (ii) By the definition of smooth.

 $(iii) \Rightarrow (ii)$ We have

$$m_y/m_y^2 \otimes_{k(y)} k(x) = (m_y \otimes_{\mathcal{O}_y} k(y)) \otimes_{k(y)} k(x) = m_y \otimes_{\mathcal{O}_y} (\mathcal{O}_x/m_y \mathcal{O}_x)$$

Also, $m_y \otimes_A \mathcal{O}_x \cong m_y \mathcal{O}_x = m_x$, thus

$$m_y \otimes (\mathcal{O}_x/m_y \mathcal{O}_x) = (m_y \otimes \mathcal{O}_x)/m_y^2 = m_x/m_x^2$$

Thus the map T_f, x is an isomorphism, i.e. it's smooth of relative dimension 0. (ii) \Rightarrow (iii) Fact: Let $\mathcal{O}_x = B, \mathcal{O}_y = A$, if $\hat{A} \to \hat{B}$ is an isomorphism then f is unramified at x.

Proof. We know $m_y^n \mathcal{O}_x = m_x^n \,\forall n \in \mathbb{N}$, and the composition

$$A/m_y^n \to B/m_y^n B \to \hat{A}/m_y^n \hat{A}$$

is an isomorphism, it's left to show $\hat{A} \rightarrow \hat{B}$ is injective, in other words,

$$m_u^n \hat{A} \cap B = m_u^n B \,\forall \, n \in \mathbb{N}$$

Notice that $B = A + m_y^n B$ and $m_y^n B \subseteq m_y^n \hat{A}$, so $\forall b \in B$, it can be represented as $a + \epsilon, a \in A, b \in m_y^n B \ m_y^n \hat{A} \cap B \subseteq m_y^n B$.

Conversely, if $b \in m_y^n \hat{A}, a \in m_y \hat{A} \cap A = m_y^n$, thus $b \in m_y^n B$. Thus we only need to prove $\hat{A} \to \hat{B}$ is an isomorphism, but $\mathcal{O}_x = \mathcal{O}_y + m_x^n, m_x^n = m_x^{n+1} + m_y^n \forall n \in \mathbb{N}$, thus $\hat{A} \to \hat{B}$ is an isomorphism. Also, by (II 8.6A), $\dim_{k(x)} \Omega_{X/Y} \otimes k(x) \geq \text{tr.deg}$ k(x)/k(y), equality holds if and only if k(x) is separately extended over k(y). Thus in this case, k(x) is separately extended over k(y) of transcendental degree 0, i.e. a separable algebraic extension. **Recall.** A group variety G is a variety G over an algebraically closed field k, together with morphisms $\mu: G \times G \to G, \rho: G \to G$ s.t. G(k), k-rational points of G, becomes a group under the operation induced by μ , with ρ giving the inverses.

We say that a group variety G acts on a variety X if we have a morphism $\theta : G \times X \to X$ which induces a homomorphism $G(k) \to \operatorname{Aut} X$ of groups.

A homogeneous space is a variety X, together with a group variety G acting on it, such that the group G(k) acts transitively on X(k).

Remark. A homogeneous space is necessarily a nonsingular variety.

Theorem. 9 Let X be a homogeneous space with group variety G over an algebraically closed field k of characteristic 0. Let $f: Y \to X, g: Z \to X$ are two morphisms between nonsingular varieties. For $\sigma \in G(k)$, let Y^{σ} be the same variety with Y but with morphism $\sigma \circ f: Y^{\sigma} \to X$. Then $\exists V \subseteq G$ s.t. $\forall \sigma \in V(k), Y^{\sigma} \times_X Z$ is nonsingular and either empty or has the dimension dim $Y + \dim Z - \dim X$.

Proof. Define $h : G \times Y \to X$ as the composition of f and $\theta : G \times X \to X$. We first prove that it's smooth. Now nonsingular is equivalent to smooth over k by **Proposition 0.2**, and G is nonsingular by the **Remark** above, therefore $G \times Y$ is nonsingular by **Proposition 1(d)**.

Apply **Proposition 7**, we see that $\exists U \subseteq X$ s.t. $h^{-1}(U) \to U$ is smooth.

Now G acts on $G \times Y$ by left multiplication on G; G acts on X by θ , and these two actions are compatible with the morphism h, by construction. Thus $\forall \sigma \in G(k), h^{-1}(U^{\sigma}) \to U^{\sigma}$ is smooth. Since U^{σ} cover X, we conclude h is smooth.

Next consider the diagram:

$$W := (G \times Y) \times_X Z \xrightarrow{h'} Z$$

$$\downarrow g' \qquad \qquad \downarrow g$$

$$G \times Y \xrightarrow{h} X$$

$$\downarrow pr_1$$

$$G$$

Then h' is smooth again by **Proposition 1(b)**, and remind that Z is smooth over k by **Proposition 0.2**, using **Proposition 1(c)**, W is nonsingular. Consider

$$q = pr_1 \circ g' : W \to G$$

Again apply **Proposition 7**, $\exists V \subseteq G$ s.t. $q^{-1}(V) \to V$ is smooth.

Therefore $\forall \sigma \in V(k), W_{\overline{\sigma}}$ is nonsingular, where the result and notation follow from **Theorem 2**. But $W_{\overline{\sigma}}$ is just W_{σ} since k is algebraically closed. Also, W_{σ} actually coincides to $Y^{\sigma} \times_X Z$, which proves the first statement.

For the second statement, we notice that h is smooth of dimension $\dim G + \dim Y - \dim X$, so is h' by **Proposition 1(b)**, thus

$$\dim W - \dim Z = \dim G + \dim Y - \dim X$$

Also, $q \mid_{q^{-1}(V)}$ is smooth of dimension dim W – dim G, thus by the definition of smoothness and **(III 9.6)**, $\forall \sigma \in V(k)$

 $\dim W_{\sigma} = \dim W - \dim G = \dim Y + \dim Z - \dim X$

Corollary. 10 Let X be a nonsingular projective variety over an algebraically closed field k of characteristic 0. Let \mathfrak{d} be a linear system without base points. Then almost every element of \mathfrak{d} , considered as a closed subscheme of X, is nonsingular (but maybe reducible).

Proof. Let $f : X \to \mathbb{P}^n$ be the morphism determined by \mathfrak{d} , applying **(II 7.8.1)**. Consider \mathbb{P}^n as a homogeneous space under the action of $\mathrm{PGL}(n)$ by **(II 7.1.1)**. Take an arbitrary hyperplane $H \hookrightarrow \mathbb{P}^n$ and apply **Theorem 9** on it, then for almost every $\sigma \in G(k), X \times_{\mathbb{P}^n} H^{\sigma} = f^{-1}(H^{\sigma})$ is nonsingular. But $f^{-1}(H^{\sigma})$ is just some element of \mathfrak{d} , thus the result.

Remark. In (Ex. 11.3), if dim $f(X) \ge 2$, then all the divisors in \mathfrak{d} are connected. Hence almost all of them are irreducible and nonsingular.

Remark. In fact, X is not need to be projective if \mathfrak{d} is finite-dimensional. In particular, if X is projective, a straightforward and more general statement is that "a general member of \mathfrak{d} can have singularities only at the base points."

Remark. This result fails in characteristic p > 0. Take the same example in **Remark** of Lemma 5, the morphism f corresponds to the one-dimensional linear system $\{pP \mid P \in \mathbb{P}\}$. Thus every divisor in \mathfrak{d} is a point with multiplicity p.