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Recall. (Flat)
Let f : X → Y be a morphism of schemes, and let F be an Ox- module. We say that
F is flat over Y at a point x ∈ X, if the stalk at x is a flat Oy-module, where y = f(x).
We say simply F is flat over Y if it is flat at every point of X.
We say X is flat over Y if OX is.

Definition. (Smooth)
Let f : X → Y be a morphism of schemes of finite type over a field k, we say it’s
smooth of relative dimension n if:

(1) f is flat.
(2) If X ′ ⊆ X, Y ′ ⊆ Y are irreducible components such that f(X ′) ⊆ Y ′, then

dimX ′ = dimY ′ + n.
(3) For each point x ∈ X (closed or not),

dimk(x)(ΩX/Y ⊗ k(x)) = n

Proposition. 0.1 If X is integral, (3) is equivalent to ΩX/Y is locally free of rank n.
Recall (II 8.9): Let A be a noetherian local integral domain, with residue field k
and quotient field K. If M is a finitely generated A-module and if dimkM ⊗A k =
dimKM ⊗A K = r, then M is free of rank r.

Proposition. 0.2 If Y = Spec k, k = k, then X is smooth over k if and only if X is
regular of dimension n.
Recall (II 8.8): Let B be a local ring containing a field k isomorphic to its residue
field. Assume furthermore that k is perfect, and that B is a localization of a finitely
generated k-algebra. Then

ΩB/k is a free B-module of rank dimB ⇐⇒ B is a regular local ring.

In particular, if X is irreducible separated over k, then it’s smooth if and only if it’s a
nonsingular variety.
Recall (II 8.15): Let X be an irreducible separated scheme of finite type over an
algebraically closed field k. Then

ΩX/k is locally free of rank dimX ⇐⇒ X is a nonsingular variety over k.

Remark. Over a nonperfect field, the last proposition is false: let k0 be a field of
characteristic p > 0, let k = k0(t), and let X ⊆ A2

k be the curve defined by y2 = xp− t,
then every local ring of X is a regular local ring, but X is not smooth over k.

Proposition. 1

(a) An open immersion is smooth of relative dimension 0.
1
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(b) If f : X → Y is smooth of relative dimension n, and g : Y ′ → Y is any
morphism, then the morphism f ′ : X ′ → Y ′ obtained by base extension is also
smooth of relative dimension n.

(c) If f : X → Y is smooth of relative dimension n, and g : Y → Z is smooth of
relative dimension m, then g◦f : X → Z is smooth of relative dimension n+m.

(d) If f : X → Z is smooth of relative dimension n, and g : Y → Z is smooth of
relative dimension m, then X×Z Y → Z is smooth of relative dimension n+m.

Proof. (a) Just check the condition.
(b) (1) By (III 9.2), f ′ is flat.

(2) Recall (III 9.6): Let f : X → Y be a flat morphism of schemes of finite
type over a field k, and assume that Y is irreducible. Then the following
conditions are equivalent:

(i) every irreducible component of X has dimension equal to dimY + n.
(ii) for any point y ∈ Y (closed or not), every irreducible component of

the fibre Xy has dimension n.

In this case, (2) is equivalent to say every irreducible component of every
fibre Xy of f ′ has dimension n, which, by (II Ex. 3.20), is preserved under
base change.

(3) By (II 8.10), ΩX/Y is stable under base extension, thus (3) holds for f ′.
(c) (1) By (III 9.2).

(2) If X ′ ⊆ X, Y ′ ⊆ Y, Z ′ ⊆ Z are irreducible components such that
f(X ′) ⊆ Y ′, g(Y ′) ⊆ Z ′, then dimX ′ = dimY ′ + n = dimZ ′ + n+m.

(3) Use the exact sequence in (II 8.11)

f ∗ΩY/Z −→ ΩX/Z −→ ΩX/Y −→ 0

Tensoring k(x) to get:

f ∗ΩY/Z ⊗ k(x) −→ ΩX/Z ⊗ k(x) −→ ΩX/Y ⊗ k(x) −→ 0

Then dim ΩX/Z ⊗ k(x) ≤ dim f ∗ΩY/Z ⊗ k(x) + dim ΩX/Y ⊗ k(x) = n+m.
On the other hand, let z = g(f(x)), we have ΩX/Z⊗k(x) = ΩXz/k(z)⊗k(x),
let X ′ be an irreducible component of Xz containing x, with its reduced
induced structure. Then by (II 8.12),

ΩXz/k(z) ⊗ k(x) −→ ΩX′/k(z) ⊗ k(x)

is surjective.
But again by (III 9.6), X ′ is an integral scheme of finite type over k(z) of
dimension n + m, thus by (II 8.6A), we see ΩX′/k(z) is locally generated
by at least n+m elements. Combining above, (3) is verified.

(d) Use (b), (c).

Theorem. 2 Let f : X → Y be a morphism of schemes of finite type over a field k,
then f is smooth of relative dimension n if and only if:

(i) f is flat.
(ii) The fibres of f are geometrically regular of equidimension n, i.e., for point y ∈ Y ,

let Xy = Xy ⊗k(y) k(y), then Xy is equidimensional of dimension n and regular.
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Proof. (⇒) By Proposition (0.2),(1(b)).
(⇐) (1) By assumption.

(2) By (III 9.6).
(3) By Proposition (0.2), regularity implies ΩXy/k(y)

is locally free of rank n.
By the fact states below, it is equivalent to ΩXy/k(y) is locally free of rank
n, thereby (3) holds.

Fact. If M is an A-module with A being a local ring, B is a faithfully flat A-algebra,
then

M is free ⇐⇒ M ⊗A B is free.

Recall. The Zaraski tangent space Tx for a point in a scheme X be the dual of k-vector
space mx/m

2
x. If f : X → Y is a morphism, y = f(x), then there is a natural induced

mapping

Tf : Tx → Ty ⊗k(y) k(x)

Lemma. 3-1 Suppose that R→ S is a local homomorphism of Noetherian local rings.
Denote m the maximal ideal of R. Let M be a flat R-module and N a finite S-module.
Let u : N → M be a map of R-modules. If u1 : N/mN → M/mM is injective then u
is injective. In this case M/u(N) is flat over R.

Proof. Claim: uk : N/mkN →M/mkM is injective ∀ k ∈ N.
The case k = 1 is just the assumption. To prove by induction, assuming the case k = n
holds. Consider the diagram:

M/mM ⊗R/m mn/mn+1

||
0 → M ⊗R mn/mn+1 → M/mn+1M → M/mnM → 0

↑ ↑ ↑
N ⊗R mn/mn+1 → N/mn+1N → N/mnN → 0

||
N/mN ⊗R/m mn/mn+1

The first and the last map are injective, which imply the middle one is also injective.
Therefore the claim is proved by induction.

By Krull’s intersection theorem ,
⋂

mnN = 0, thus the injectivity of un∀n ∈ N
implies u is injective.

To show that M/u(N) is flat over R, it suffices to show that I⊗RM/u(N)→M/u(N)
is injective for every ideal I in R. Consider the diagram

0 0 0
↑ ↑ ↑

N/IN → M/IM → M/(IM + u(N)) → 0
↑ ↑ ↑

0 → N → M → M/u(N) → 0
↑ ↑ ↑

N ⊗R I → M ⊗R I → M/u(N)⊗R I → 0
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M ⊗R I → M is injective, then by the snake lemma, it suffices to prove that N/IN
injects into M/IM . Note that R/I → S/IS is a local homomorphism of Noetherian
local rings, N/IN →M/IM is a map of R/I-modules, N/IN is finite over S/IS, and
M/IM is flat over R/I and u : N/IN → M/IM is injective modulo m. Thus we may
apply the first part of the proof to u to conclude.

Definition. Let A be a commutative ring, I be an ideal of A. An A-module M is
ideally Hausdorff w.r.t. J if ∀ a is a finitely generated ideal of A, a⊗AM is Hausdorff
with J-adic topology.

Lemma. 3-2 Let A be a commutative ring, I, J be ideals of A, M be an A-module,
gr(A) be the graded ring with I-adic filtration, gr(M) be the graded gr(A)-module
associated with M with I-adic topology. Consider the following:

(i) M is a flat A-module.
(ii) TorA1 (N,M) = 0∀N is an A-module annihilated by J .
(iii) M/IM is a flat A/I-module and the canonical map I ⊗AM → IM is bijective.
(iv) M/IM is a flat A/I-module and canonical homomorphism r : gr(A) ⊗gr0(A)

gr0(M) is bijective.
(v) ∀n ∈ N,M/In is a flat A/In-module.

Then (i)⇒(ii)⇔(iii)⇒(iv)⇔(v). Furthermore, if A is noetherian and M is ideally Haus-
dorff, all of them are equivalent.

Proof.

(i)⇒(ii)⇔(iii) Omitted.
(ii)⇔(ii)’ (ii)’:TorA1 (N,M) = 0 ∀N is an A-module annihilated by some power of J .

(⇐) is trivial, so let’s focus on (⇒).
In particular TorA1 (InN/In+1N,M) = 0∀n ∈ N. Then the exact sequence

0→ In+1N → InN → InN/In+1N → 0

which induces

TorA1 (In+1N,M)→ TorA1 (InN,M)→ TorA1 (InN/In+1N,M)

Notice that ∃m ∈ N s.t. ImN = 0, using descending induction, we have
TorA1 (InN,M) = 0∀n ≤ m, especially m = 0.

(ii)⇒(iv) First we have a lemma:
(a) TorA1 (A/In,M) = 0∀n ∈ N.
(b) The canonical homomorphism θn : In ⊗AM → InM is bijective.
(c) r : gr(A)⊗gr0(A) gr0(M) is bijective.

Then (a)⇔(b)⇒(c), (b)⇐(c) when I is nilpotent.
Proof. (a)⇔(b) by the exact sequence

0 = TorA1 (A/I,M)→ TorA1 (A/In,M)→ In ⊗M →M

Consider the diagram:

In+1 ⊗AM → In ⊗AM → In/In+1 ⊗A/I M/IM → 0
↓ θn+1 ↓ θn ↓ rn

0 → In+1M → InM → grn(M)
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Where rn is the canonical surjective map. It’s commutative by the definition
of rn. In this case, θn is bijective, thus rn is bijective. For the second statement,
notice that In ⊗A M = InM = 0 for some n, thus using descending induction
we see it’s true.

Thus by lemma, (ii)⇒(ii)’⇒ r is bijective, also (ii)⇒(iii), a fortiori M/IM is
a flat A/I-module, thereby (iv) stands.
Also, (iii) ⇐(iv) when I is nilpotent is also shown by the above process.

(iv)⇔(v) Observe grm(M/InM) =

{
grm(M),m < n

0,m ≥ n
For k ∈ N, let (iv)k and (v)k be

the statement replacing A, I,M by A/IkA, I/Ik,M/IkM . Obviously

(iv) ⇒ (iv)k ∀ k ∈ N
(v) ⇒ (v)k ∀ k ∈ N

Thus it’s sufficient to show that (iv)k ⇒ (v)k∀ k ∈ N or also (iv)⇔(v) for the
case I is nilpotent, which will be assumed below. Since M/InM ∼= M ⊗AA/In,
we know (v) ⇒ (i), more apparently, (i) ⇒ (v), so the statement is proved.

(v)⇒(i) (For the caseA is noetherian andM is ideally Hausdorff) It’s proved in Lemma 3-1.

With above we now conclude:

Lemma. 3 Let A→ B be a local homomorphism of local noetherian rings. Let M be
a finitely generated B-module, and let t ∈ A be a nonunit that is not a zero divisor.
Then M is flat over A if and only if t is not a zero divisor in M and M/tM is flat over
A/tA.

Proof. Take I = J = (t) in Lemma 3-1, 3-2.

Proposition. 4 Let f : X → Y be a morphism of nonsingular varieties over an
algebraically closed field k. Let n = dimX−dimY . Then the following are equivalent:

(i) f is smooth of relative dimension n.
(ii) ΩX/Y is locally free of rank n on X.
(iii) For every closed point x ∈ X, Tf : Tx → Ty ⊗k(y) k(x) is surjective.

Proof.

(i)⇒(ii) By Proposition (0.2).
(ii)⇒(iii) Use the exact sequence in (II 8.11) tensoring k(x) ∼= k(since x is a closed

point), we have:

f ∗ΩY/k ⊗ k(x)
φ−→ ΩX/k ⊗ k(x) −→ ΩX/Y ⊗ k(x) −→ 0

since the dimension of each terms are dimY, dimX,n, φ is actually an injection.
Recall (II 8.7): Let (B,m) be a local ring with a field k ∼= B/m containing in
B. Then

m→ m/m2 d−→ ΩB/k ⊗B k
b 7−→ b 7−→ db⊗ 1

is an isomorphism.
So φ is actually my/m

2
y ↪→ mx/m

2
x, take dual to get our result.
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(iii)⇒(i) Recall (III 9.1A(d)): M is an A-module, M is flat over A if and only if Mp is
flat over Ap ∀ p ∈ SpecA. So to prove f is flat, we only have to verify OX,x is
flat over OY,y ∀x ∈ X is a closed point, y = f(x).
Since X, Y both nonsingular, Ox,Oy are regular local rings. Also by taking dual
on Tf , my/m

2
y ↪→ mx/m

2
x is injective.

Take a regular system of parameters of Oy : (t) = (t1, . . . , tr), then (t) forms a
part of regular system of parameters of Ox. Since Ox/(t) is flat over Oy/(t) ∼= k,
by Lemma 3 and induction, Ox/(t1, . . . , ti) is flat over Oy/(t1, . . . , ti)∀ i = 0 r,
in particular it’s already proved f is flat. Proceed similar to (ii)⇒(iii) but
backward, we see for x is a closed point,

dimk(x)(ΩX/Y ⊗ k(x)) = n

On the other hand, f is flat, by (III Ex 9.1), is also dominant, by (II 8.6A),
the generic point ξ has the property:

dimk(x)(ΩX/Y ⊗ k(x)) ≥ n

In either case, we can conclude ΩX/Y is a coherent sheaf of rank ≥ n, so by (II
8.9), it’s locally free of rank n, thus f is smooth of relative dimension n.

Lemma. 5 Let f : X → Y be a dominant morphism of integral schemes of finite type
over an algebraically closed field k of characteristic 0. Then there is a nonempty open
set U ⊆ X such that f : U → Y is smooth.

Proof. By (II 8.16), every variety over k has an open dense nonsingular subset, thus
we may assume X, Y are nonsingular. Since char k = 0, thus perfect, by (I,4.8A),
K(X) is a separably generated field extension of K(Y ). Therefore by (II 8.6A), ΩX/Y

is free of rank n at the generic point, thus locally free of rank n on some nonempty
open set U . By Proposition 4, f : U → Y is smooth.

Remark. The lemma may fail when characteristic of field is not zero. Let char k =
p > 0, k = k, f : P 1

k → P 1
k be the Frobenius morphism , then f is not smooth on any

open set.

Proposition. 6 Let f : X → Y be a morphism of schemes of finite type over an
algebraically closed field k of characteristic 0. For any r, let

Xr = {closed pointsx ∈ X | rankTf,x ≤ r}

Then dim f(Xr) ≤ r.

Proof. Let Y ′ be any irreducible component of f(Xr) , and let X ′ be an irreducible
component of Xr which dominates Y ′. Give X ′ and Y ′ their reduced induced structures,
and consider the induced dominant morphism f ′ : X ′ → Y ′. By (Lemma 5), there is
a nonempty open subset U ′ ⊆ X ′ such that f : U ′ → Y ′ is smooth. Let x ∈ U ′ ∩Xr,
then consider the diagram

Tx,U ′ → Tx,X
↓ Tf ′,x ↓ Tf,x
Ty,Y ′ → Ty,Y
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The horizontal arrows are injective, because U ′ and Y ′ are locally closed subschemes
of X and Y , respectively. Also Tf ′,x is surjective by Proposition 4. Since dimTf,x ≤ r,
dimTy,Y ′ ≤ r, we get dimY ′ ≤ r.

Proposition. 7 Let f : X → Y be a morphism of varieties over an algebraically closed
field k of characteristic 0, suppose X is nonsingular. Then there exists a nonempty
open subset V ⊆ Y such that f : f−1V → V is smooth.

Proof. Again may assume Y is nonsingular by (II 8.16). Let dimY = r,Xr−1 ⊆ X

as defined in Proposition 6, then dim f(Xr−1) ≤ r − 1, moving it from X, therefore
we can assume for every closed point in X, rank Tf ≥ r = dimY , which means they’re
all surjective, thus f is smooth by Proposition 4.

Proposition. 8 A morphism f : X → Y of schemes of finite type over k is étale if it
is smooth of relative dimension 0. It is unramified if for every x ∈ X, letting y = f(x),
we have myOX = mx, and k(x) is a separable algebraic extension of k(y). Show that
the following conditions are equivalent:

(i) f is étale.
(ii) f is flat, ΩX/Y = 0.

(iii) f is flat and unramified.

Proof.

(i)⇔(ii) By the definition of smooth.
(iii)⇒(ii) We have

my/m
2
y ⊗k(y) k(x) = (my ⊗Oy k(y))⊗k(y) k(x) = my ⊗Oy (Ox/myOx)

Also, my ⊗A Ox ∼= myOx = mx, thus

my ⊗ (Ox/myOx) = (my ⊗Ox)/m2
y = mx/m

2
x

Thus the map Tf , x is an isomorphism, i.e. it’s smooth of relative dimension 0.

(ii)⇒(iii) Fact: Let Ox = B,Oy = A, if Â → B̂ is an isomorphism then f is unramified
at x.
Proof. We know mn

yOx = mn
x ∀n ∈ N, and the composition

A/mn
y → B/mn

yB → Â/mn
y Â

is an isomorphism, it’s left to show Â→ B̂ is injective, in other words,

mn
y Â ∩B = mn

yB ∀n ∈ N

Notice that B = A+mn
yB and mn

yB ⊆ mn
y Â, so ∀ b ∈ B, it can be represented

as a+ ε, a ∈ A, b ∈ mn
yB mn

y Â ∩B ⊆ mn
yB.

Conversely, if b ∈ mn
y Â, a ∈ myÂ ∩ A = mn

y , thus b ∈ mn
yB. Thus we only need

to prove Â→ B̂ is an isomorphism, but Ox = Oy+mn
x,m

n
x = mn+1

x +mn
y∀n ∈ N,

thus Â→ B̂ is an isomorphism. Also, by (II 8.6A), dimk(x) ΩX/Y ⊗k(x) ≥tr.deg
k(x)/k(y), equality holds if and only if k(x) is separately extended over k(y).
Thus in this case, k(x) is separately extended over k(y) of transcendental degree
0, i.e. a separable algebraic extension.
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Recall. A group variety G is a variety G over an algebraically closed field k, together
with morphisms µ : G×G→ G, ρ : G→ G s.t. G(k), k-rational points of G, becomes
a group under the operation induced by µ, with ρ giving the inverses.
We say that a group variety G acts on a variety X if we have a morphism θ : G×X → X
which induces a homomorphism G(k)→ AutX of groups.
A homogeneous space is a variety X, together with a group variety G acting on it, such
that the group G(k) acts transitively on X(k) .

Remark. A homogeneous space is necessarily a nonsingular variety.

Theorem. 9 Let X be a homogeneous space with group variety G over an algebraically
closed field k of characteristic 0. Let f : Y → X, g : Z → X are two morphisms
between nonsingular varieties. For σ ∈ G(k), let Y σ be the same variety with Y but
with morphism σ◦f : Y σ → X. Then ∃V ⊆ G s.t. ∀σ ∈ V (k), Y σ×X Z is nonsingular
and either empty or has the dimension dimY + dimZ − dimX.

Proof. Define h : G × Y → X as the composition of f and θ : G × X → X. We
first prove that it’s smooth. Now nonsingular is equivalent to smooth over k by
Proposition 0.2, and G is nonsingular by the Remark above, therefore G × Y is
nonsingular by Proposition 1(d).
Apply Proposition 7, we see that ∃U ⊆ X s.t. h−1(U)→ U is smooth.
NowG acts onG×Y by left multiplication onG; G acts onX by θ, and these two actions
are compatible with the morphism h, by construction. Thus ∀σ ∈ G(k), h−1(Uσ)→ Uσ

is smooth. Since Uσ cover X, we conclude h is smooth.
Next consider the diagram:

W := (G× Y )×X Z
h′−→ Z

↓ g′ ↓ g
G× Y h−→ X
↓ pr1
G

Then h′ is smooth again by Proposition 1(b), and remind that Z is smooth over k
by Proposition 0.2, using Proposition 1(c), W is nonsingular. Consider

q = pr1 ◦ g′ : W → G

Again apply Proposition 7,∃V ⊆ G s.t. q−1(V )→ V is smooth.
Therefore ∀σ ∈ V (k),Wσ is nonsingular, where the result and notation follow from
Theorem 2. But Wσ is just Wσ since k is algebraically closed. Also, Wσ actually
coincides to Y σ ×X Z, which proves the first statement.
For the second statement, we notice that h is smooth of dimension
dimG+ dimY − dimX, so is h′ by Proposition 1(b), thus

dimW − dimZ = dimG+ dimY − dimX

Also, q |q−1(V ) is smooth of dimension dimW −dimG, thus by the definition of smooth-
ness and (III 9.6), ∀σ ∈ V (k)

dimWσ = dimW − dimG = dimY + dimZ − dimX
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Corollary. 10 Let X be a nonsingular projective variety over an algebraically closed
field k of characteristic 0. Let d be a linear system without base points. Then almost
every element of d, considered as a closed subscheme of X, is nonsingular (but maybe
reducible).

Proof. Let f : X → Pn be the morphism determined by d, applying (II 7.8.1).
Consider Pn as a homogeneous space under the action of PGL(n) by (II 7.1.1).
Take an arbitrary hyperplane H ↪→ Pn and apply Theorem 9 on it, then for almost
every σ ∈ G(k), X×PnHσ = f−1(Hσ) is nonsingular. But f−1(Hσ) is just some element
of d, thus the result.

Remark. In (Ex. 11.3), if dim f(X) ≥ 2, then all the divisors in d are connected.
Hence almost all of them are irreducible and nonsingular.

Remark. In fact, X is not need to be projective if d is finite-dimensional.
In particular, if X is projective, a straightforward and more general statement is that
”a general member of d can have singularities only at the base points.”

Remark. This result fails in characteristic p > 0. Take the same example in Remark
of Lemma 5, the morphism f corresponds to the one-dimensional linear system
{pP | P ∈ P} . Thus every divisor in d is a point with multiplicity p.


