
EME Algebraic Geometry

Definition 1. .

(1) A locally of finite type morphism f : X → Y of schemes is called unramified at x ∈ X if
OX,x

/
mf(x)OX,x

is a finite separable field extension of k (f (y)).

(2) A morphism f : X → Y of schemes is called étale if f is locally of finite type, flat and unramified.

Proposition 2. Let A be a finite algebra over a field k. TFAE:

(a) A is separable over k.

(b) A = A⊗k k is isomorphic to a finite product of copies of k.

(c) A is isomorphism to a finite product of separable field extension of k.

(d) The discrimiant of any basis of A over k is nonzero.

proof: (a)⇒(b): A has only finitely many prime ideals and they are all maximal. By the assumption,
their intersection is zero. The conclusion follows from Chinese remainder theorem.
(b)⇒(c): By Chinese remainder theorem, A

/
J is isomorphic to a finite product

∏
ki of finite field extension

of k, where J is the Jacobson radical of A. Then Homk

(
A, k

)
has

∑
[ki : k]s elements. Since Homk

(
A, k

)
=

Homk

(
A, k

)
, which has [A : k] elements by the assumption, we have

[A : k] = [A : k] =
∑

[ki : k]s ≤
∑

[ki : k] =
[
A
/
J : k

]
≤ [A : k]

The equality holds, which implies ki are separable.
(c)⇒(d): If A =

∏
ki with ki separable field extension of k, then disc (A) =

∏
disc (ki), which is nonzero

since ki are separable.
(d)⇒(a): If x ∈ J

(
A
)
, then xa is nilpotent for any a ∈ A, and hence TrA/k (xa) = 0. Note that the

discriminant of A and A are the same, therefore x = 0.

Recall the Hensel’s lemma in nunber theory:

Theorem 3. Let A be a complete discrete valuation ring with k the residue field and f ∈ A[T ] monic.
If f = g0h0 ∈ k[T ] for some g0, h0 ∈ k[T ] monic coprime, then f = gh for some g, h ∈ A[T ] monic with
g = g0, h = h0.

Definition 4. A local ring A is called Henselian if the conclusion of Hensel’s lemma holds.

Theorem 5. Let A be a local ring and x be the closed point of X = Spec A. TFAE:

(a) A is Henselian.
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(b) Any finite A-algebra B is a direct product of local rings B =
∏

Bi.

(c) If f : Y → X is quasi-finite and separable, then Y = Y0 t . . . t Yn, where x /∈ f (Y0) and for i ≥ 1,
Yi = Spec Bi is finite over X, where Bi are local rings.

(d) If f : Y → X is étale and there is a point y ∈ Y such that f (y) = x and k (y) = k (x), then f has a
section s : X → Y .

(e) Let f1, . . . , fn ∈ A[T1, . . . , Tn]. If there exists an a = (a1, . . . , an) ∈ kn such that fi (a) = 0 and

det
((

∂fi
∂Tj

)
(a)

)
6= 0, then there is a b ∈ An such that b = a and fi (b) = 0.

[c.f. Étale Cohomology, Milne, p.32]

Proposition 6. Any complete local ring A is Henselian.

proof: Let B be an étale A-algebra, and suppose that there is a section s0 : B → k. Write Ar = A /mr+1 .
It suffices to show that there exist compatible sections sr : B → Ar, then they induce a section s : B → A.
It is clear for r = 0, and for r > 0, the existence of sr follows from the existence of sr−1 and the following
fact: Given an X-morphism g0 : X ′

0 → Y , there is an X-morphism g : X ′ → Y such that the diagram
commutes

Y X ′
0

X X ′

f

g0

g

[c.f. EGA.IV.17][c.f. Milne, p.30]

A ring A is a subring of its completion Â, hence any local ring A is a subring of Henselian ring. We
define the Henselization of A to be the Henselian ring Ah with a local homomorphism i : A → Ah such
that for any other local homomorphism from A to a Henselian local ring factors through i uniquely. It is
clear that the Henselization is unique if it exists. To prove the existence of the Henselization, we introduce
the étale neighborhood.

Definition 7. An étale neighborhood of a local ring A is a pair (B, q) where B is an étale A-algebra
and q is a prime ideal of B lying over m such that the induced map k → k (q) is an isomorphism.

Lemma 8. .

(a) If (B, q) and (B′, q′) are étale neighborhoods of A with Spec B′ connected, then there is at most one
A-homomorphism f : B → B′ such that f−1 (q′) = q.
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(b) Let (B, q) and (B′, q′) be étale neighborhoods of A. Then there is an étale neighborhood (B′′, q′′) of
A with Spec B′′ connected and A-homomorphisms f : B → B′′, f ′ : B′ → B′′ such that f−1 (q′′) = q,
f ′−1 (q′′) = q′.

proof: (a) Use the fact: Let f, g : Y ′ → Y be X-morphisms with Y ′ connected and Y étale separated over
X. If there existsa point y′ ∈ Y ′ such that f (y′) = g (y′) = y and the maps k (y) → k (y′) induced by f, g

coincide, then f = g.
(b) Let C = B ⊗A B′. Then we have a map C → k induced by B → k and B′ → k. Let q′′ be the kernel.
Take c /∈ q′′ and let B′′ = Cc. Then (B′′, q′′B′′) is as desired.

Corollary 9. For any local ring A, the Henselization Ah exists.

proof: The étale neighborhoods of A with connected sepctra form a filtered direct system. Define(
Ah,mh

)
= lim−→ (B, q). Then Ah is a local A-algebra with maximal ideal mh and Ah

/mh = k, and it
is indeed a Henselian ring.

Definition 10. Let X be a scheme and let x ∈ X. An étale neighborhood of x is a pair (Y, y) where
Y is an étale X-scheme and y ∈ Y is mapped to x such that k (x) = k (y).

Similarly, the connected étale neighborhoods of x form a filtered system and lim−→Γ (Y,OY ) = Oh
X,x.

Definition 11. A Henselian ring A is strictly Henselian if the residue field of A is separably algebraically
closed.

Some of above conclusion can be rewrittent for strictly Henselian rings. The strict Henselization
of A is a pair

(
Ash, i

)
, where Ash is a strictly Henselian ring and i : A → Ash is a local homomorphism

such that for any other local homomorphism from A to a strictly Henselization factors through i.

Definition 12. Let X be a scheme and x : Spec k → X a geometric point of X, where k is a separably
closed field. An étale neighborhood of x is a commutative diagram

Spec k U

X
x

with U → X being étale.

Similarly Osh
X,x = lim−→Γ (U,OU) where the limit is taken over all étale neighborhood of x.

Proposition 13. .
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(a) A composite of étale morphisms is étale.

(b) An étale morphism X → Y remains étale after an arbitrary base extension Z → Y .

(c) Given morphisms X
f−→ Y

g−→ Z. If g ◦ f and g are étale, then so is f .

In the version of rings:

(c′) Let A → B → C be ring extensions. If B and C are étale over A, then C is étale over B.

For a scheme X, denote Ét (X) to be the category of all étale extensions of X, considered as a full
subcategory of all X-schemes. All of morphisms in Ét (X) are étale by (c). Similarly define Ét (A) for a
ring A.

Definition 14. A presheaf F on Ét (X) of abelian groups is a contravariant functor

F : Ét (X) → (Ab)

A presheaf F on Ét (A) of abelain groups is a covariant functor

F : Ét (A) → (Ab)

Definition 15. A finite family B =
(
Ui

ϕi−→ U, i ∈ I
)

of étale morphisms is called an étale covering of
a scheme U if U = ∪

i∈I
ϕi (Ui).

Definition 16. A presheaf F is called a sheaf if the sequence

F (U) →
∏
i

F (Ui) ⇒
∏
i,j

F (Ui ×U Uj)

is exact for all coverings (Ui → U).

Consider the category of all étale coverings of a fixed object B ∈ Ét (A). A map between two coverings
B → B′, where

B = (B → Bi, i ∈ I) , B′ =
(
B → B′

j, j ∈ J
)

is given by a map σ : J → I of the index sets and a family of homomorphisms Bσ(j) → B′
j. For each

covering B = (B → Bi), denote F (B) the set of all families si ∈ F (Bi) with the above compatibility
property.

Lemma 17. .

(a) For any two coverings B and B′, there is a covering B′′ together with morphisms B → B′′ and
B′ → B′′.
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(b) Two morphisms B ⇒ B′ induce the same map F (B) → F (B′).

So we may consider F̃ (B) = lim−→
B

F (B). In general, F̃ is not a sheaf, however, we have the following

proposition:

Proposition 18. .

(a) If F (B) → F (B) is injective, then F̃ is a sheaf.

(b) F̃ (B) → F̃ (B) is always injective.

Therefore F̂ =
˜̃
F is always a sheaf, called the sheaf generated by the presheaf F .

The category Ét (X) is small, then the collection of all presheaves with the natural transformations as
morphisms forms a category. We consider the category of sheaves as a full subcategory.

Fact: The category of presheaves of abelian groups and the category of sheaves of abelian groups are
abelian, and every sheaf is a subsheaf of an injective sheaf. The functor F 7→ F (X) (respectively, F (A))
is left exact.

Hence now we define the étale cohomology as

H i
ét (X,F ) = Ri (F 7→ F (X)) , H i

ét (A,F ) = Ri (F 7→ F (A))

In particular, if X = Spec A, for any sheaf F on X, let F0 be a sheaf on A defined by F0 (B) = F (Spec B).
This gives an equivalence of categories, therefore we have

H i
ét (Spec A,F ) = H i

ét (A,F0)

Definition 19. Let F be a presheaf. Define the stalk of F at the geometric point x to be the limit

Fx = lim−→F (U)

where U runs through all étale neighborhoods of x.

Definition 20. Let f : X → Y be a morphism of schemes, F a sheaf on X. The direct image is defined
to be

(f∗F ) (U) = F (X ×Y U) , U → Y étale

which is a sheaf on Y . Note that the functor F 7→ f∗F is left exact, hence we can define the higher
derived image Rif∗F .

Proposition 21. Rif∗F agrees with the sheaf generated by the presheaf

U 7→ H i (X ×Y U,FU)

where we denote by FU the restriction of F w.r.t. the étale map X ×Y U → X.
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