Definition 1.

EME

- (1) A locally of finite type morphism $f: X \to Y$ of schemes is called **unramified** at $x \in X$ if $\mathcal{O}_{X,x} / \mathfrak{m}_{f(x)} \mathcal{O}_{X,x}$ is a finite separable field extension of k(f(y)).
- (2) A morphism $f: X \to Y$ of schemes is called **étale** if f is locally of finite type, flat and unramified.

Proposition 2. Let A be a finite algebra over a field k. TFAE:

- (a) A is separable over k.
- (b) $\overline{A} = A \otimes_k \overline{k}$ is isomorphic to a finite product of copies of \overline{k} .
- (c) A is isomorphism to a finite product of separable field extension of k.
- (d) The discriminate of any basis of A over k is nonzero.

proof: (a) \Rightarrow (b): \overline{A} has only finitely many prime ideals and they are all maximal. By the assumption, their intersection is zero. The conclusion follows from Chinese remainder theorem.

(b) \Rightarrow (c): By Chinese remainder theorem, A/\Im is isomorphic to a finite product $\prod k_i$ of finite field extension of k, where \mathfrak{J} is the Jacobson radical of A. Then $\operatorname{Hom}_k(A, \overline{k})$ has $\sum [k_i : k]_s$ elements. Since $\operatorname{Hom}_k(A, \overline{k}) =$ $\operatorname{Hom}_{\overline{k}}(\overline{A},\overline{k})$, which has $[\overline{A}:\overline{k}]$ elements by the assumption, we have

$$[A:k] = [\overline{A}:\overline{k}] = \sum [k_i:k]_s \le \sum [k_i:k] = [A/\mathfrak{J}:k] \le [A:k]$$

The equality holds, which implies k_i are separable.

(c) \Rightarrow (d): If $A = \prod k_i$ with k_i separable field extension of k, then disc $(A) = \prod \text{disc}(k_i)$, which is nonzero since k_i are separable.

(d) \Rightarrow (a): If $x \in \mathfrak{J}(\overline{A})$, then xa is nilpotent for any $a \in \overline{A}$, and hence $\operatorname{Tr}_{\overline{A}/\overline{k}}(xa) = 0$. Note that the discriminant of A and \overline{A} are the same, therefore x = 0.

Recall the Hensel's lemma in number theory:

Theorem 3. Let A be a complete discrete valuation ring with k the residue field and $f \in A[T]$ monic. If $\overline{f} = g_0 h_0 \in k[T]$ for some $g_0, h_0 \in k[T]$ monic coprime, then f = gh for some $g, h \in A[T]$ monic with $\overline{g} = g_0, \overline{h} = h_0.$

Definition 4. A local ring A is called **Henselian** if the conclusion of Hensel's lemma holds.

Theorem 5. Let A be a local ring and x be the closed point of X = Spec A. TFAE:

(a) A is Henselian.

- (b) Any finite A-algebra B is a direct product of local rings $B = \prod B_i$.
- (c) If $f: Y \to X$ is quasi-finite and separable, then $Y = Y_0 \sqcup \ldots \sqcup Y_n$, where $x \notin f(Y_0)$ and for $i \ge 1$, $Y_i = \text{Spec } B_i$ is finite over X, where B_i are local rings.
- (d) If $f: Y \to X$ is étale and there is a point $y \in Y$ such that f(y) = x and k(y) = k(x), then f has a section $s: X \to Y$.
- (e) Let $f_1, \ldots, f_n \in A[T_1, \ldots, T_n]$. If there exists an $a = (a_1, \ldots, a_n) \in k^n$ such that $\overline{f_i}(a) = 0$ and $\det\left(\left(\frac{\partial \overline{f_i}}{\partial T_j}\right)(a)\right) \neq 0$, then there is a $b \in A^n$ such that $\overline{b} = a$ and $f_i(b) = 0$.

[c.f. Étale Cohomology, Milne, p.32]

Proposition 6. Any complete local ring A is Henselian.

proof: Let *B* be an étale *A*-algebra, and suppose that there is a section $s_0 : B \to k$. Write $A_r = A/\mathfrak{m}^{r+1}$. It suffices to show that there exist compatible sections $s_r : B \to A_r$, then they induce a section $s : B \to A$. It is clear for r = 0, and for r > 0, the existence of s_r follows from the existence of s_{r-1} and the following fact: Given an X-morphism $g_0 : X'_0 \to Y$, there is an X-morphism $g : X' \to Y$ such that the diagram commutes

[c.f. EGA.IV.17][c.f. Milne, p.30]

A ring A is a subring of its completion \widehat{A} , hence any local ring A is a subring of Henselian ring. We define the Henselization of A to be the Henselian ring A^h with a local homomorphism $i : A \to A^h$ such that for any other local homomorphism from A to a Henselian local ring factors through i uniquely. It is clear that the Henselization is unique if it exists. To prove the existence of the Henselization, we introduce the étale neighborhood.

Definition 7. An étale neighborhood of a local ring A is a pair (B, \mathfrak{q}) where B is an étale A-algebra and \mathfrak{q} is a prime ideal of B lying over \mathfrak{m} such that the induced map $k \to k(\mathfrak{q})$ is an isomorphism.

Lemma 8.

(a) If (B, \mathfrak{q}) and (B', \mathfrak{q}') are étale neighborhoods of A with Spec B' connected, then there is at most one A-homomorphism $f: B \to B'$ such that $f^{-1}(\mathfrak{q}') = \mathfrak{q}$.

(b) Let (B, \mathfrak{q}) and (B', \mathfrak{q}') be étale neighborhoods of A. Then there is an étale neighborhood (B'', \mathfrak{q}'') of A with Spec B'' connected and A-homomorphisms $f: B \to B'', f': B' \to B''$ such that $f^{-1}(\mathfrak{q}'') = \mathfrak{q}$, $f'^{-1}\left(\mathfrak{q}''\right) = \mathfrak{q}'.$

proof: (a) Use the fact: Let $f, g: Y' \to Y$ be X-morphisms with Y' connected and Y étale separated over X. If there exists point $y' \in Y'$ such that f(y') = g(y') = y and the maps $k(y) \to k(y')$ induced by f, gcoincide, then f = q.

(b) Let $C = B \otimes_A B'$. Then we have a map $C \to k$ induced by $B \to k$ and $B' \to k$. Let \mathfrak{q}'' be the kernel. Take $c \notin \mathfrak{q}''$ and let $B'' = C_c$. Then $(B'', \mathfrak{q}''B'')$ is as desired.

Corollary 9. For any local ring A, the Henselization A^h exists.

proof: The étale neighborhoods of A with connected septra form a filtered direct system. Define $(A^h, \mathfrak{m}^h) = \lim_{h \to \infty} (B, \mathfrak{q})$. Then A^h is a local A-algebra with maximal ideal \mathfrak{m}^h and $A^h/\mathfrak{m}^h = k$, and it is indeed a Henselian ring.

Definition 10. Let X be a scheme and let $x \in X$. An **étale neighborhood** of x is a pair (Y, y) where Y is an étale X-scheme and $y \in Y$ is mapped to x such that k(x) = k(y).

Similarly, the connected étale neighborhoods of x form a filtered system and $\lim_{X \to 0} \Gamma(Y, \mathcal{O}_Y) = \mathcal{O}_{X,x}^h$.

Definition 11. A Henselian ring A is **strictly Henselian** if the residue field of A is separably algebraically closed.

Some of above conclusion can be rewrittent for strictly Henselian rings. The strict Henselization of A is a pair (A^{sh}, i) , where A^{sh} is a strictly Henselian ring and $i : A \to A^{sh}$ is a local homomorphism such that for any other local homomorphism from A to a strictly Henselization factors through i.

Definition 12. Let X be a scheme and \overline{x} : Spec $k \to X$ a geometric point of X, where k is a separably closed field. An **étale neighborhood** of \overline{x} is a commutative diagram

with $U \to X$ being étale.

Similarly $\mathcal{O}_{X,x}^{sh} = \lim_{U \to \infty} \Gamma(U, \mathcal{O}_U)$ where the limit is taken over all étale neighborhood of \overline{x} .

Proposition 13.

EME

- (a) A composite of étale morphisms is étale.
- (b) An étale morphism $X \to Y$ remains étale after an arbitrary base extension $Z \to Y$.
- (c) Given morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$. If $g \circ f$ and g are étale, then so is f.

In the version of rings:

(c') Let $A \to B \to C$ be ring extensions. If B and C are étale over A, then C is étale over B.

For a scheme X, denote Ét(X) to be the category of all étale extensions of X, considered as a full subcategory of all X-schemes. All of morphisms in Ét(X) are étale by (c). Similarly define Ét(A) for a ring A.

Definition 14. A presheaf \mathscr{F} on $\acute{\mathrm{Et}}(X)$ of abelian groups is a contravariant functor

$$\mathscr{F} : \operatorname{\acute{Et}}(X) \to (\operatorname{Ab})$$

A presheaf \mathscr{F} on Ét (A) of abelain groups is a covariant functor

$$\mathscr{F} : \text{Ét}(A) \to (Ab)$$

Definition 15. A finite family $\mathscr{B} = \left(U_i \xrightarrow{\phi_i} U, i \in I\right)$ of étale morphisms is called an **étale covering** of a scheme U if $U = \bigcup_{i \in I} \phi_i(U_i)$.

Definition 16. A presheaf \mathscr{F} is called a sheaf if the sequence

$$\mathscr{F}(U) \to \prod_{i} \mathscr{F}(U_{i}) \rightrightarrows \prod_{i,j} \mathscr{F}(U_{i} \times_{U} U_{j})$$

is exact for all coverings $(U_i \to U)$.

Consider the category of all étale coverings of a fixed object $B \in \text{Ét}(A)$. A map between two coverings $\mathscr{B} \to \mathscr{B}'$, where

$$\mathscr{B} = (B \to B_i, i \in I), \quad \mathscr{B}' = (B \to B'_j, j \in J)$$

is given by a map $\sigma : J \to I$ of the index sets and a family of homomorphisms $B_{\sigma(j)} \to B'_j$. For each covering $\mathscr{B} = (B \to B_i)$, denote $\mathscr{F}(\mathscr{B})$ the set of all families $s_i \in \mathscr{F}(B_i)$ with the above compatibility property.

Lemma 17.

(a) For any two coverings \mathscr{B} and \mathscr{B}' , there is a covering \mathscr{B}'' together with morphisms $\mathscr{B} \to \mathscr{B}''$ and $\mathscr{B}' \to \mathscr{B}''$.

(b) Two morphisms $\mathscr{B} \rightrightarrows \mathscr{B}'$ induce the same map $\mathscr{F}(\mathscr{B}) \to \mathscr{F}(\mathscr{B}')$.

So we may consider $\widetilde{\mathscr{F}}(B) = \varinjlim_{\mathscr{F}} \mathscr{F}(\mathscr{B})$. In general, $\widetilde{\mathscr{F}}$ is not a sheaf, however, we have the following proposition:

Proposition 18.

- (a) If $\mathscr{F}(B) \to \mathscr{F}(\mathscr{B})$ is injective, then $\widetilde{\mathscr{F}}$ is a sheaf.
- (b) $\widetilde{\mathscr{F}}(B) \to \widetilde{\mathscr{F}}(\mathscr{B})$ is always injective.

Therefore $\widehat{\mathscr{F}} = \widetilde{\widetilde{\mathscr{F}}}$ is always a sheaf, called the sheaf generated by the presheaf \mathscr{F} .

The category Ét(X) is small, then the collection of all presheaves with the natural transformations as morphisms forms a category. We consider the category of sheaves as a full subcategory.

Fact: The category of presheaves of abelian groups and the category of sheaves of abelian groups are abelian, and every sheaf is a subsheaf of an injective sheaf. The functor $\mathscr{F} \mapsto \mathscr{F}(X)$ (respectively, $\mathscr{F}(A)$) is left exact.

Hence now we define the étale cohomology as

$$H^{i}_{\text{\acute{e}t}}\left(X,\mathscr{F}\right) = R^{i}\left(\mathscr{F} \mapsto \mathscr{F}\left(X\right)\right), \quad H^{i}_{\text{\acute{e}t}}\left(A,\mathscr{F}\right) = R^{i}\left(\mathscr{F} \mapsto \mathscr{F}\left(A\right)\right)$$

In particular, if X = Spec A, for any sheaf \mathscr{F} on X, let \mathscr{F}_0 be a sheaf on A defined by $\mathscr{F}_0(B) = \mathscr{F}(\text{Spec } B)$. This gives an equivalence of categories, therefore we have

$$H^{i}_{\mathrm{\acute{e}t}}\left(\mathrm{Spec}\ A,\mathscr{F}\right) = H^{i}_{\mathrm{\acute{e}t}}\left(A,\mathscr{F}_{0}\right)$$

Definition 19. Let \mathscr{F} be a presheaf. Define the **stalk** of \mathscr{F} at the geometric point \overline{x} to be the limit

$$\mathscr{F}_{\overline{x}} = \varinjlim \mathscr{F} \left(U \right)$$

where U runs through all étale neighborhoods of \overline{x} .

Definition 20. Let $f: X \to Y$ be a morphism of schemes, \mathscr{F} a sheaf on X. The direct image is defined to be

$$(f_*\mathscr{F})(U) = \mathscr{F}(X \times_Y U), \quad U \to Y$$
 étale

which is a sheaf on Y. Note that the functor $\mathscr{F} \mapsto f_*\mathscr{F}$ is left exact, hence we can define the higher derived image $R^i f_*\mathscr{F}$.

Proposition 21. $R^i f_* \mathscr{F}$ agrees with the sheaf generated by the presheaf

$$U \mapsto H^i(X \times_Y U, \mathscr{F}_U)$$

where we denote by \mathscr{F}_U the restriction of \mathscr{F} w.r.t. the étale map $X \times_Y U \to X$.