1.5 The Lefschetz Theorem on (1,1)-classes

As an application of Serre vanishing theorem, we will complete our picture of the correspondences among divisors, line bundles, and Chern classes on a complex submanifold of projective space. First, we have the

Proposition. Let $M \subseteq \mathbb{P}^N$ be a submanifold. Then every line bundle on M is of the form L = [D] for some divisor D, i.e.,

$$\operatorname{Pic}(M) \cong \frac{\operatorname{Div}(M)}{\operatorname{linear equivalence}}.$$

Proof. To prove this, we have to show that every line bundle on M has a global meromorphic section. To find such a section, let H denote the restriction to M of the hyperplane bundle on \mathbb{P}^N . We will show that for $\mu \gg 0$, $L + \mu H$ has a nontrivial global meromorphic section s; then if t is any global holomorphic section of [H] over M, s/t^{μ} will be a global meromorphic section of L as desired.

We proceed by induction on $n = \dim M$: assume that for every submanifold $V \subseteq \mathbb{P}^n$ of dimension less that n and every line bundle $L \to V$, $H^0(V, \mathcal{O}(L + \mu H)) \neq 0$ for $\mu \gg 0$. By Bertini's theorem we can find a hyperplane $\mathbb{P}^{N-1} \subset \mathbb{P}^N$ with $V = \mathbb{P}^{N-1} \cap M$ smooth; we consider the exact sheaf sequence

$$0 \longrightarrow \mathcal{O}_M(L + (\mu - 1)H) \longrightarrow \mathcal{O}_M(L + \mu H) \longrightarrow \mathcal{O}_V(L + \mu H) \longrightarrow 0.$$

For $\mu \gg 0$ we have both $H^0(V, \mathcal{O}(L + \mu H)) \neq 0$ by induction and

$$H^0(M, \mathcal{O}(L+\mu H)) \longrightarrow H^0(V, \mathcal{O}(L+\mu H)) \longrightarrow H^1(M, \mathcal{O}(L+(\mu-1)H)) = 0$$

by Serre vanishing theorem. Thus $H^0(M, \mathcal{O}(L+\mu H)) \neq 0$, and the result is proved.

We now consider for a moment the general problem of analytic cycles. On a compact Kähler manifold M, the Hodge decomposition

$$H^r(M,\mathbb{C}) = \bigoplus_{p+q=r} H^{p,q}(M)$$

on complex cohomology gives a slightly coarser decomposition of real cohomology

$$H^{r}(M,\mathbb{R}) = \bigoplus_{\substack{p+q=r\\p \leq q}} (H^{p,q}(M) \oplus H^{q,p}(M)) \cap H^{r}(M,\mathbb{R}).$$

A natural question to ask is whether we can characterize geometrically the classes in homology that are Poincaré dual to classes in one of these factors.

Definition. We say a homology class $\gamma \in H_{2p}(M, \mathbb{Z})$ is analytic if it is a rational linear combination of fundamental classes of analytic subvarieties of M; dually, we say a cohomology class is analytic if its Poincaré dual is.

Note that if $V \subset M$ is an analytic subvariety of codimension p and ψ any (2n-2p)form on M

$$\int_{V} \psi = \int_{V} \psi^{n-p,n-p}.$$

Thus if η is the harmonic form on M representing the cohomology class η_V and ψ any harmonic form,

$$\int_{M}\psi\wedge\eta=\int_{V}\psi=\int_{V}\psi^{n-p,n-p}=\int_{M}\psi\wedge\eta^{p,p},$$

i.e., $\eta = \eta^{p,p}$, and so we see that any analytic cohomology class of degree 2p is of pure type (p,p). The famous Hodge Conjecture asserts that the converse is also true: On $M \subseteq \mathbb{P}^N$ a submanifold of projective space every rational cohomology class of type (p,p) is analytic. The only case which has been proved in general is the case p=1.

Theorem (Lefschetz Theorem on (1,1)-classes). For $M \subseteq \mathbb{P}^N$ a submanifold, every cohomology class

$$\gamma \in H^{1,1}(M) \cap H^2(M,\mathbb{Z})$$

is analytic; in fact $\gamma = \eta_D$ for some divisor D on M.

Here, we write $H^2(M,\mathbb{Z})$ for its image in $H^2(M,\mathbb{R})$.

Proof. Consider again the exact sequence

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{O} \longrightarrow \mathcal{O}^* \longrightarrow 0$$

and the associated cohomology sequence

$$H^1(M, \mathcal{O}^*) \xrightarrow{c_1} H^2(M, \mathbb{Z}) \xrightarrow{i_*} H^2(M, \mathcal{O}) \cong H^{0,2}(M).$$

We claim that the map i_* is given by first mapping $H^2(M,\mathbb{Z}) \to H^2(M,\mathbb{C})$ and then projecting onto the (0,2)-factor of $H^2(M,\mathbb{C})$ in the Hodge decomposition; i.e., that the diagram

$$H^{2}(M, \mathbb{Z}) \xrightarrow{i_{*}} H^{2}(M, \mathcal{O})$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{2}(M, \mathbb{C}) \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{2}_{dR}(M, \mathbb{C}) \longrightarrow H^{0,2}_{\overline{\partial}}(M)$$

commutes. (The map $\pi^{0,2}$ is defined on the form level, since for $\omega = \omega^{2,0} + \omega^{1,1} + \omega^{0,2} \in Z_d^2(M)$, $\overline{\partial}\omega^{0,2} = (d\omega)^{0,3} = 0$). To see this, let $z = \{z_{\alpha\beta\gamma}\} \in Z^2(M,\mathbb{C})$; to find the image of z under the de Rham isomorphism, we take $f_{\alpha\beta} \in A^0(U_\alpha \cap U_\beta)$ such that

$$z_{\alpha\beta\gamma} = f_{\beta\gamma} + f_{\gamma\alpha} + f_{\alpha\beta}$$
 in $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$;

since $z_{\alpha\beta\gamma}$ is constant, $df_{\beta\gamma} + df_{\gamma\alpha} + df_{\alpha\beta} = 0$, so $\{df_{\alpha\beta}\} \in Z^1(M, \mathscr{Z}_d^1)$ and we can find $\omega_{\alpha} \in A^1(U_{\alpha})$ such that

$$df_{\alpha\beta} = \omega_{\beta} - \omega_{\alpha}$$
 in $U_{\alpha} \cap U_{\beta}$.

The global 2-form $d\omega_{\alpha} = d\omega_{\beta}$ then represents the image of z in $H^2_{dR}(M, \mathbb{C})$. On the other hand, take the image of i_*z under the Dolbeault isomorphim; we write

$$z_{\alpha\beta\gamma} = f_{\beta\gamma} + f_{\gamma\alpha} + f_{\alpha\beta}, \quad \overline{\partial} f_{\alpha\beta} = \omega_{\beta}^{0,1} - \omega_{\alpha}^{0,1}$$

and we see that $\overline{\partial}\omega_{\alpha}^{0,1}=(d\omega_{\alpha})^{0,2}$ represents z in $H_{\overline{\partial}}^{0,2}(M)$.

Now, given $\gamma \in H^{1,1}(M) \cap H^2(M,\mathbb{Z})$, we have $i_*(\gamma) = 0$, and hence $\gamma = c_1(L)$ for some line bundle $L \in H^1(M, \mathcal{O}^*)$. Writing L = [D] for some divisor D,

$$\gamma = c_1([D]) = \eta_D.$$

2 The Kodaira Embedding Theorem

We will be concerned in this section with determining exactly when a compact complex manifold is an algebraic variety, i.e., when it can be embedded in projective space.

Recall that we have a basic dictionary

$$\left\{ \begin{array}{l} \text{nondegenerate maps} \\ f: M \to \mathbb{P}^N, \text{ modulo} \\ \text{projective transformations} \end{array} \right\} \rightleftarrows \left\{ \begin{array}{l} \text{line bundles } L \to M \\ \text{with } E \subseteq H^0(M, \mathcal{O}(L)) \\ \text{such that } |E| \text{ has no base points} \end{array} \right\}$$

where the choice of homogeneous coordinates on \mathbb{P}^N corresponds to the choice of basis s_0, \ldots, s_N for E. We will often write ι_L for $\iota_{H^0(M,\mathcal{O}(L))}$ and ι_D for $\iota_{[D]}$.

We may state the question as: Given $L \to M$ a holomorphic line bundle, when is $\iota_L : M \to \mathbb{P}^N$ an embedding? First, in order for ι_L to be well-defined the linear system |L| cannot have any base points, i.e., for each $x \in M$ the restriction map

$$H^0(M, \mathcal{O}(L)) \xrightarrow{r_x} L_x$$

must be surjective. Granted this, ι_L will be an embedding if

1. ι_{L} is one-to-one. Clearly this is the case if and only if for all x and y in M, there exists a section $s \in H^{0}(M, \mathcal{O}(L))$ vanishing at x but not at y i.e., if and only if the restriction map

$$(\spadesuit) H^0(M, \mathcal{O}(L)) \xrightarrow{r_{x,y}} L_x \oplus L_y$$

is surjective for all $x \neq y \in M$. Note that if L satisfies this condition, then |L| must be base-point-free.

2. ι_L has nonzero differential everywhere. If φ_{α} is a trivialization of L near x, then this is the case if and only if for all $v^* \in T_x^*(M)$, there exists $s \in H^0(M, \mathcal{O}(L))$ with $s_{\alpha}(x) = 0$ and $ds_{\alpha}(x) = v^*$, where $s_{\alpha} = \varphi_{\alpha}^* s$. Let $\mathscr{I}_x \subset \mathcal{O}$ denote the sheaf of holomorphic functions on M vanishing at x, and let $\mathscr{I}_x(L)$ be the sheaf of sections of L vanishing at x. If s is any section of $\mathscr{I}_x(L)$ defined near x, and $\varphi_{\alpha}, \varphi_{\beta}$ are trivializations of L in a neighborhood L of L then writing L and L in L i

$$ds_{\alpha} = ds_{\beta} \cdot g_{\alpha\beta} + dg_{\alpha\beta} \cdot s_{\beta} = ds_{\beta} \cdot g_{\alpha\beta}$$
 at x .

Thus we have a well-defined sheaf map

$$d_x: \mathscr{I}_x(L) \longrightarrow T_x^{*'} \otimes L_x$$

and condition 2 can be stated as requiring that the map

$$(\clubsuit) H^0(M, \mathscr{I}_x(L)) \xrightarrow{d_x} T_x^{*\prime} \otimes L_x$$

be surjective for all $x \in M$.

Note that (\clubsuit) is the limiting case of (\spadesuit) when $y \to x$.

Theorem (Kodaira Embedding Theorem). Let M be a compact complex manifold and $L \to M$ a positive line bundle. Then there exists k_0 such that for $k \ge k_0$, the map

$$\iota_{L^k}:M\longrightarrow\mathbb{P}^N$$

is well-defined and is an embedding of M.

Proof. We want to prove that there exists k_0 such that

1. The restriction map

$$H^0(M, \mathcal{O}(L^k)) \xrightarrow{r_{x,y}} L_x^k \oplus L_y^k$$

is surjective for all $x \neq y \in M$, $k \geq k_0$; and

2. The differential map

$$H^0(M, \mathscr{I}_x(L^k)) \xrightarrow{d_x} T_x^{*\prime} \otimes L_x^k$$

is surjective for all $x \in M$, $k \ge k_0$.

To prove assertion 1, let $\widetilde{M} \stackrel{\pi}{\to} M$ denote the blow-up of M at both x and y, $E_x = \pi^{-1}(x)$ and $E_y = \pi^{-1}(y)$ the exceptional divisors of the blow-up; for notational convenience, let E denote the divisor $E_x + E_y$. (Here we are tacitly assuming that $n = \dim(M) \geq 2$; in case M is a Riemann surface, all the arguments that follow will be valid for $\tilde{M} = M$, $\pi = \mathrm{id}$.)

Consider the pullback map on sections

$$\pi^*: H^0(M, \mathcal{O}_M(L^k)) \to H^0(\widetilde{M}, \mathcal{O}_{\widetilde{M}}(\pi^*L^k)).$$

For any global section $\widetilde{\sigma}$ of π^*L , the section of L^k given by σ over $M - \{x, y\}$ extends by Hartogs' theorem to a global section $\sigma \in H^0(M, \mathcal{O}(L^k))$, and so we see that π^* is an isomorphism. Furthermore, by definition π^*L^k is trivial along E_x and E_y , i.e.,

$$(\pi^*L^k)\big|_{E_x} = E_x \times L_x^k, \quad (\pi^*L^k)\big|_E = E_y \times L_y^k,$$

so that

$$H^0(E, \mathcal{O}_E(\pi^*L^k)) \cong L_x^k \oplus L_y^k,$$

and if r_E denotes the restriction map to E, the diagram

$$H^{0}(\widetilde{M}, \mathcal{O}_{\widetilde{M}}(\pi^{*}L^{k})) \xrightarrow{r_{E}} H^{0}(E, \mathcal{O}_{E}(\pi^{*}L^{k}))$$

$$\uparrow \qquad \qquad \parallel$$

$$H^{0}(M, \mathcal{O}(L^{k})) \xrightarrow{r_{x,y}} L_{x}^{k} \oplus L_{y}^{k}$$

commutes. Thus to prove assertion 1 for x and y, we have to show the map r_E is surjective.

Now, on \widetilde{M} we have the exact sheaf sequence

$$0 \longrightarrow \mathcal{O}_{\widetilde{M}}(\pi^*L^k - E) \longrightarrow \mathcal{O}_{\widetilde{M}}(\pi^*L^k) \xrightarrow{r_E} \mathcal{O}_E(\pi^*L^k) \longrightarrow 0.$$

Choose k_1 such that $L^{k_1} - K_M$ is positive on M. In fact, we can choose k_2 such that $\pi^*L^k - nE$ is positive on \widetilde{M} for $k \geq k_2$, which will be proved in the next proposition. Note that

$$K_{\widetilde{M}} = \pi^* K_M + (n-1)E.$$

So for $k \ge k_0 = k_1 + k_2$,

$$\mathcal{O}_{\widetilde{M}}(\pi^*L^k-E) = \Omega^n_{\widetilde{M}}(\pi^*L^k-E-K_{\widetilde{M}}) = \Omega^n_{\widetilde{M}}((\pi^*L^{k_1}-K_{\widetilde{M}}) + (\pi^*L^{k'}-E))$$

with $k' \geq k_2$. Now by hypothesis, $\pi^* L^{k'} - nE$ has a positive definite curvature form on \widetilde{M} ; $L^{k_1} - K_M$ has a positive curvature form on M, and so $\pi^* L^{k_1} - \pi^* K_M$ has a positive semidefinite one on \widetilde{M} . Thus the line bundle

$$(\pi^* L^{k_1} - K_{\widetilde{M}}) + (\pi^* L^{k'} - E) = (\pi^* L^{k_1} - \pi^* K_M) + (\pi^* L^{k'} - nE)$$

is positive on \widetilde{M} , and by the Kodiara vanishing theorem,

$$H^1(\widetilde{M}, \mathcal{O}_{\widetilde{M}}(\pi^*L^k - E)) = H^1(\widetilde{M}, \Omega_{\widetilde{M}}^n((\pi^*L^{k_1} - K_{\widetilde{M}}) + (\pi^*L^{k'} - E))) = 0$$

for $k \geq k_0$. Hence the map

$$r_E: H^0(\widetilde{M}, \mathcal{O}_{\widetilde{M}}(\pi^*L^k)) \longrightarrow H^0(E, \mathcal{O}_E(\pi^*L^k))$$

is surjective for $k \geq k_0$, and so assertion 1 is proved for x and y.

Assertion 2 is proved similarly. Let $\widetilde{M} \stackrel{\pi}{\to} M$ now denote the blow-up of M at x, $E = \pi^{-1}(x)$ the exceptional divisor. Again, the pullback map

$$\pi^*: H^0(M, \mathcal{O}_M(L^k)) \longrightarrow H^0(\widetilde{M}, \mathcal{O}_{\widetilde{M}}(\pi^*L^k))$$

is an isomorphism. Further, if $\sigma \in H^0(M, \mathcal{O}_M(L^k))$, then $\sigma(x) = 0$ if and only if $\widetilde{\sigma} = \pi^* \sigma$ vanishes on E; thus π^* restricts to give an isomorphism

$$\pi^*: H^0(M, \mathscr{I}_x(L^k)) \longrightarrow H^0(\widetilde{M}, \mathcal{O}_{\widetilde{M}}(\pi^*L^k - E)).$$

As before, we can identify

$$H^0(E, \mathcal{O}_E(\pi^*L^k - E)) = L_x^k \otimes H^0(E, \mathcal{O}_E(-E)) \cong L_x^k \otimes T_x^{*\prime},$$

and the diagram

$$H^{0}(\widetilde{M}, \mathcal{O}_{\widetilde{M}}(\pi^{*}L^{k} - E)) \xrightarrow{r_{E}} H^{0}(E, \mathcal{O}_{E}(\pi^{*}L^{k} - E))$$

$$\uparrow \qquad \qquad \qquad \parallel$$

$$H^{0}(M, \mathscr{I}_{x}(L^{k})) \xrightarrow{d_{x}} L_{x}^{k} \otimes T_{x}^{*'}$$

commutes. Thus we must prove that r_E is surjective for $k \gg 0$.

On M, there is an exact sequence

$$0 \longrightarrow \mathcal{O}_{\widetilde{M}}(\pi^*L^k - 2E) \longrightarrow \mathcal{O}_{\widetilde{M}}(\pi^*L^k - E) \xrightarrow{r_E} \mathcal{O}_E(\pi^*L^k - E) \longrightarrow 0.$$

Again, choose k_1 such that $L^{k_1} - K_M$ is positive on M and k_2 such that $\pi^* L^{k'} - (n+1)E$ is positive on \widetilde{M} for $k' \geq k_2$. For $k \geq k_0 = k_1 + k_2$,

$$\mathcal{O}_{\widetilde{M}}(\pi^*L^k - 2E) = \Omega^n_{\widetilde{M}}((\pi^*L^{k_1} - \pi^*K_M) \otimes (\pi^*L^{k'} - (n+1)E))$$

with $k' \geq k_2$. It follows by the Kodaira vanishing theorem that

$$H^1(\widetilde{M}, \mathcal{O}_{\widetilde{M}}(\pi^*L^k - 2E)) = 0$$

for $k \geq k_0$; hence r_E is surjective on global sections and assertion 2 is proved for arbitrary fixed x.

All that remains now to be proved is that we can find one value of k_0 such that assertions 1 and 2 hold for all choices of x and y and all $k \geq k_0$. But clearly if ι_{L^k} is defined at x and y and $\iota_{L^k}(x) \neq \iota_{L^k}(y)$, the same will be true for x' near x and y' near y, and likewise if ι_{L^k} is smooth at x it will be smooth at x' near x and separate points $x' \neq x''$, near x. Since M is compact, then, the result follows.

Proposition. Let $\widetilde{M} \stackrel{\pi}{\to} M$ denote the blow-up of M at x, and E the exceptional set of π . Suppose $L \to M$ is a positive line bundle. Then for any m, $\pi^*L^k - mE$ is positive for $k \gg 0$.

Proof. It suffices to show the statement holds for m=1. Consider the complex structure of a blowup by using a explicit chart. Let z_1, \ldots, z_n be a local coordinate in an open coordinate U of x. Then

$$\tilde{U} := \pi^{-1}(U) = \{(z, l) \in U \times \mathbb{P}^{n-1} \mid z_i l_j = z_j l_i \}.$$

For i = 1, ..., n, $\tilde{U}_i = \tilde{U} \setminus \{(l_i = 0)\}$ forms an open cover of U, and one can endow \tilde{U}_i with coordinates

$$z(i)_{j} = \begin{cases} \frac{z_{j}}{z_{i}} = \frac{l_{j}}{l_{i}} & j \neq i \\ z_{i} & j = i \end{cases}$$

This gives the chart (\tilde{U}_i, φ_i) where φ_i is given by

$$\varphi_i : \tilde{U}_i \longrightarrow \mathbb{C}^n$$

$$(z,l) \longmapsto \left(\frac{z_1}{z_i}, \dots, z_i, \dots, \frac{z_n}{z_i}\right) = (z(i)_1, \dots, z(i)_i, \dots, z(i)_n)$$

Then for i < j, the change of coordinates is given by

$$\varphi_j \circ \varphi_i^{-1}|_{U_j \cap U_i} (z(i)_1, \dots, z(i)_i, \dots, z(i)_j, \dots, z(i)_n)$$

$$= \left(\frac{z(i)_1}{z(i)_j} \dots, \frac{1}{z(j)_i}, \dots, z(i)_i z(i)_j, \dots, \frac{z(i)_n}{z(i)_j}\right)$$

Since the transition functions of the line bundle [E] on \tilde{M} are given by

$$g_{ij} = z(j)_i = \frac{z_i}{z_j} = \frac{l_i}{l_j}$$
 in $\tilde{U}_i \cap \tilde{U}_j$,

one can realize [E] on \tilde{U} by identifying the fibre at (z,l) with the complex line in \mathbb{C}^n passing through (l_1,\ldots,l_n) .

Now we are going to construct a hermitian metric h on [E].

- 1. Since the fibre of the line bundle $[E]|_{\tilde{U}_i}$ over a point (z,l) can be identified with the complex line $\{\lambda(l_1,\ldots,l_n)\mid \lambda\in\mathbb{C}\}$, we might let h_1 be the metric on $[E]|_{\tilde{U}}$ given by $|(l_1,\ldots,l_n)|^2$
- 2. Let h_2 be the metric on $[E]|_{\tilde{M}\setminus E}$ such that $h_2(\sigma)\equiv 1$, where $\sigma\in H^0(\tilde{M},E)$ is the global section of $[E]|_{\tilde{M}}$ corresponding to E

For $\epsilon > 0$, $U_{\epsilon} := \{z \in U \mid ||z|| < \epsilon\}$ and $\tilde{U}_{\epsilon} := \pi^{-1}(U_{\epsilon})$. Let ρ_1, ρ_2 be a partion of unity relative to the cover $\{\tilde{U}_{2\epsilon}, \tilde{M} \setminus \tilde{U}_{\epsilon}\}$ of \tilde{M} . Then we can define a global hermitian metric h which is given by

$$h = \rho_1 h_1 + \rho_2 h_2$$

We will compute the positivity of the first Chern class of [-E] with the metric h.

1. On $\tilde{M}\setminus \tilde{U}_{2\epsilon}$, $\rho_2\equiv 1$ and hence $h(\sigma)\equiv 1$, i.e. in the trivialization above $h_{\alpha}|\sigma_{\alpha}|^2=1$, and

$$c_1([-E]) = dd^c \log \frac{1}{|\sigma|^2} = 0$$

since $\log \frac{1}{|\sigma|^2}$ is a harmonic function.

2. On $\tilde{U}_{\epsilon}, \rho_2 \equiv 0$. Denote

$$\pi': \tilde{U}_{\epsilon} \longrightarrow \mathbb{P}^{n-1}$$

$$(z, l) \longmapsto l$$

Let F be the line bundle on \mathbb{P}^{n-1} given by $\{\lambda(l_1,\ldots,l_n)\mid \lambda\in\mathbb{C}\}$. Recall that F is the dual of a hyperplane bundle. Since the pullback of F via π^* is just [E], one can see that

$$c_1([-E]) = dd^c \log ||l||^2 = (\pi')^* \omega_{FS}$$

where ω_{FS} is the associated (1,1)-form of the Fubini-Study metric. Therefore, $c_1(-E)$ is semi-positive on U_{ϵ} . In particular, it is positive on E since $\pi'|_E$ gives an isomorphism.

To sum up,

$$c_1(-E) = \begin{cases} 0 & \text{on } \tilde{M} \backslash \tilde{U}_{2\epsilon} \\ \ge 0 & \text{on } \tilde{U}_{\epsilon} \\ > 0 & \text{on } T_{1,0}(E)_z \subset T_{1,0}(\tilde{M})_z \quad \forall z \in E \end{cases}$$

We then turn to compute the positivity of π^*L^k . Note that for any $x\in E$ and $v\in T(\tilde{M})_x$,

$$c_1(\pi^*L)(v,\bar{v}) = c_1(L)(\pi_*v,\overline{\pi_*v}) \ge 0$$

$$c_1\left(\pi^*L\right) = \pi^*c_1(L)$$

and equality holds if and only if $\pi^*v=0$. We conclude that

$$c_1(\pi^*L) = \begin{cases} = 0 & \text{on } T_{1,0}(E)_z \subset T_{1,0}(\tilde{M})_z & \forall z \in E \\ > 0 & \text{everywhere else} \end{cases}$$

Consequently, $c_1\left(\pi^*L^k\otimes(-E)\right)=kc_1\left(\pi^*L\right)-c_1(E)$ is positive on \tilde{U}_{ϵ} and on $\tilde{M}\setminus\tilde{U}_{2\epsilon}$ for ϵ small enough. Furthermore, since $\tilde{U}_{2\epsilon}\setminus\tilde{U}_{\epsilon}$ is relatively compact, $-c_1(E)$ is bounded below and $c_1\left(\pi^*L\right)$ is strictly positive on this region, then for k large enough $\pi^*L^k\otimes(-E)$ is a positive line bundle on \tilde{M}

Remark. According to Kodaira embedding theorem, we see that ampleness and positivity coincide on a compact Kähler complex manifold.

Definition. We say that a line bundle $L \to M$ over an algebraic variety is very ample if $H^0(M, \mathcal{O}(L))$ gives an embedding $M \to \mathbb{P}^N$, i.e., if there exists an embedding $f: M \to \mathbb{P}^N$ such that $L = f^*H$.

The following known result can be derived from the Kodaira Embedding theorem.

Corollary. If $E \to M$ is any line bundle and $L \to M$ a positive line bundle, then for $k \gg 0$, the line bundle $L^k + E$ is very ample.

In conclusion, we can give a some what more intrinsic restatement of the theorem:

Theorem (Kodaira Embedding Theorem). A compact complex manifold M is an algebraic variety if and only if it has a closed, positive (1,1)-form ω whose cohomology class $[\omega]$ is rational.

Proof. If M is algebraic, say $i: M \to \mathbb{P}^N$, then $L = i^*[H]$ induces a closed (1,1)-form ω such that

$$[\omega] = c_1(L) \in H^2(M, \mathbb{Z}) \to H^2(M, \mathbb{Q}).$$

Since $[H] \to \mathbb{P}^N$ is positive, ω is positive.

If $[\omega] \in H^2(M,\mathbb{Q})$, then for some $k \in \mathbb{N}$, $[k\omega] \in H^2(M,\mathbb{Z})$; in the exact sequence

$$H^1(M, \mathcal{O}^*) \longrightarrow H^2(M, \mathbb{Z}) \xrightarrow{i_*} H^2(M, \mathcal{O}),$$

 $i_*([k\omega]) = 0$, and so there exists a holomorphic line bundle $L \to M$ with $c_1(L) = [k\omega]$. The line bundle L will then be positive.

A metric whose (1,1)-form is rational is called a Hodge metric.

Corollary. If M, M' are algebraic varieties, then $M \times M'$ is.

Proof. If ω , ω' are closed, integral, positive (1,1)-forms on M, M', respectively, and $\pi: M \times M' \to M$, $\pi': M \times M' \to M'$ are the projection maps, then $\pi^*\omega + {\pi'}^*\omega'$ is again closed, integral, and positive of type (1,1).

Corollary. If M is an algebraic variety, $\widetilde{M} \xrightarrow{\pi} M$ the blow-up of M at a point x, then \widetilde{M} is algebraic.

Proof. We have seen in the course of the proof of the embedding theorem that if $L \to M$ is positive and $E = \pi^{-1}(x)$, then $\pi^*L^k - E$ is positive for $k \gg 0$.

Corollary. If $\widetilde{M} \xrightarrow{\pi} M$ is a finite unbranched covering of compact complex manifolds, then M is algebraic if and only if \widetilde{M} is.

Proof. Clearly, if $L \to M$ is positive, then $c_1(\pi^*L) = \pi^*c_1(L)$ implies that π^*L is positive. Conversely, say $\widetilde{\omega}$ is an integral, positive (1,1)-form on \widetilde{M} . For any $p \in M$, we have isomorphisms of a neighborhood U of p in M with neighborhoods U_i of the points $q_i \in \pi^{-1}(p)$; we can define a (1,1)-form ω on M by

$$\omega(p) = \sum_{q \in \pi^{-1}(p)} \widetilde{\omega}(q).$$

Then ω is closed and of type (1,1), and if $\eta \in H^{2n-2}_{dR}(M)$ is any integral cohomology class, then

$$\int_{M} \omega \wedge \eta = \frac{1}{m} \int_{\widetilde{M}} \widetilde{\omega} \wedge \pi^* \eta \in \mathbb{Q},$$

where m is the number of sheets of the cover. Thus $[\omega']$ is rational.