1.5 The Lefschetz Theorem on (1, 1)-classes

As an application of Serre vanishing theorem, we will complete our picture of the corre-
spondences among divisors, line bundles, and Chern classes on a complex submanifold of

projective space. First, we have the

Proposition. Let M C PY be a submanifold. Then every line bundle on M is of the
form L = [D] for some divisor D, i.e.,

Div(M)

linear equivalence -

Pic(M) =

Proof. To prove this, we have to show that every line bundle on M has a global meromor-
phic section. To find such a section, let H denote the restriction to M of the hyperplane
bundle on PY. We will show that for 4 > 0, L+ pH has a nontrivial global meromorphic
section s; then if ¢ is any global holomorphic section of [H]| over M, s/t* will be a global
meromorphic section of L as desired.

We proceed by induction on n = dim M: assume that for every submanifold V' C P"
of dimension less that n and every line bundle L — V, H°(V, O(L + H)) # 0 for pu > 0.
By Bertini’s theorem we can find a hyperplane PY~! ¢ P¥ with V = P¥~' N M smooth;

we consider the exact sheaf sequence
00— Oy(L+(p—1)H) — Oy(L+ pH) — Oy(L+ pH) — 0.
For ;1> 0 we have both H*(V, O(L + pH)) # 0 by induction and
H°(M,O(L + uH)) — H(V,O(L + pH)) — H'(M,O(L+ (u—1)H)) =0
by Serre vanishing theorem. Thus H°(M, O(L + pH)) # 0, and the result is proved. W

We now consider for a moment the general problem of analytic cycles. On a compact
Kéhler manifold M, the Hodge decomposition
H'(M,C)= € H(M)
ptg=r
on complex cohomology gives a slightly coarser decomposition of real cohomology
H'(M,R) = P (H"(M)@® H*(M))n H"(M,R).
pt+q=r

p<g
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A natural question to ask is whether we can characterize geometrically the classes in

homology that are Poincaré dual to classes in one of these factors.

Definition. We say a homology class v € Hy,(M,Z) is analytic if it is a rational lin-
ear combination of fundamental classes of analytic subvarieties of M; dually, we say a

cohomology class is analytic if its Poincaré dual is.
Note that if V' C M is an analytic subvariety of codimension p and v any (2n — 2p)-

Thus if n is the harmonic form on M representing the cohomology class 7y and ¢ any

Jonn=[v= [wmr— [ v

i.e., 7 = 1P and so we see that any analytic cohomology class of degree 2p is of pure type

form on M

harmonic form,

(p,p). The famous Hodge Conjecture asserts that the converse is also true: On M C PV a
submanifold of projective space every rational cohomology class of type (p,p) is analytic.

The only case which has been proved in general is the case p = 1.

Theorem (Lefschetz Theorem on (1,1)-classes). For M C PV a submanifold, every

cohomology class

v e HY(M)n H*(M,Z)
is analytic; in fact v = np for some divisor D on M.
Here, we write H*(M,Z) for its image in H*(M,R).
Proof. Consider again the exact sequence
0 —2—>0—0"—0
and the associated cohomology sequence
HY (M, 0%) = H*(M,Z) =5 H*(M,0) =~ H**(M).

We claim that the map 4, is given by first mapping H?(M,Z) — H*(M,C) and then
projecting onto the (0, 2)-factor of H*(M,C) in the Hodge decomposition; i.e., that the

diagram
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H*(M,Z) —*— H*(M,O)

!

H*(M,C)

!

H3p(M,C) —— H*(M)

commutes. (The map 7°? is defined on the form level, since for w = w*" + W + W’ €
Z3(M), 0w’? = (dw)®® = 0). To see this, let z = {z,3,} € Z*(M,C); to find the image
of z under the de Rham isomorphism, we take f,5 € A°(U, N Us) such that

2@572f57+f7a+fo¢5 in UaﬂUﬁﬂUv;

since 2,5, is constant, dfs, + dfya + dfus = 0, so {dfus} € Z'(M, Z]) and we can find
wa € AY(U,) such that

dfop = wpg —wo  in Uy N Up.

The global 2-form dw, = dwg then represents the image of z in H, 2r(M,C). On the other

hand, take the image of 7,z under the Dolbeault isomorphim; we write

3 0,1 0,1
2057:f57+f7a+fa67 afaﬁzwﬁ _wa s

and we see that dw?! = (dw,)"? represents z in Hg’Q(M).
Now, given v € H"'(M) N H*(M,Z), we have i,(y) = 0, and hence v = ¢;(L) for
some line bundle L € H'(M, O*). Writing L = [D] for some divisor D,

7= a(lD]) = np. .

2 The Kodaira Embedding Theorem

We will be concerned in this section with determining exactly when a compact complex
manifold is an algebraic variety, i.e., when it can be embedded in projective space.

Recall that we have a basic dictionary

nondegenerate maps line bundles L — M
f: M — PN, modulo =4 with EC H'(M,O(L))
projective transformations such that |E'| has no base points
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where the choice of homogeneous coordinates on PV corresponds to the choice of basis
S0, ...,sn for E. We will often write ¢z, for tgoar,or)) and vp for ¢p).

We may state the question as: Given L — M a holomorphic line bundle, when is
v, M — PN an embedding? First, in order for ¢, to be well-defined the linear system

|L| cannot have any base points, i.e., for each x € M the restriction map
H°(M,0(L)) - L,
must be surjective. Granted this, ¢, will be an embedding if

1. ¢, is one-to-one. Clearly this is the case if and only if for all x and y in M, there exists
a section s € H(M, O(L)) vanishing at = but not at y i.e., if and only if the restriction

map
(™) HOM,O(L) ™% L, & L,

is surjective for all z # y € M. Note that if L satisfies this condition, then |L| must

be base-point-free.

2. 11, has nonzero differential everywhere. If ¢, is a trivialization of L near x, then this is
the case if and only if for all v* € T*(M), there exists s € H°(M, O(L)) with s4(x) = 0
and ds,(z) = v*, where s, = ¢.s. Let £, C O denote the sheaf of holomorphic
functions on M vanishing at z, and let .#,(L) be the sheaf of sections of L vanishing
at x. If s is any section of ., (L) defined near z, and ¢,, ¢z are trivializations of L in

a neighborhood U of z, then writing s, = ¢, $5 = ©3S, So = gapSp, We have
dse = dsg - gap + dgap - S5 = dsg - gap  at .
Thus we have a well-defined sheaf map
dy: Io(L) — T7'® Ly
and condition 2 can be stated as requiring that the map
(%) H(M, (L)) < T © L,
be surjective for all x € M.

Note that (&) is the limiting case of (#) when y — x.
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Theorem (Kodaira Embedding Theorem). Let M be a compact complex manifold and
L — M a positive line bundle. Then there exists kq such that for k& > kg, the map

vk s M — PN
is well-defined and is an embedding of M.

Proof. We want to prove that there exists kg such that

1. The restriction map

0 k\y "oy 7k k
HO(M, O(L*)) =% Ik @ Ik

is surjective for all x #y € M, k > ky; and

2. The differential map
HO(M, 7,(L%)) 2= T @ Lk

is surjective for all x € M, k > k.

To prove assertion 1, let M = M denote the blow-up of M at both x and v,
E, = 7 '(x) and E, = 7 '(y) the exceptional divisors of the blow-up; for notational
convenience, let E denote the divisor E, + E,. (Here we are tacitly assuming that
n = dim(M) > 2; in case M is a Riemann surface, all the arguments that follow will
be valid for M = M, = = id.)

Consider the pullback map on sections
7 HY(M, Op (LF)) = HO(M, O(n* L¥)).

For any global section & of 7*L, the section of L* given by o over M — {z,y} extends
by Hartogs’ theorem to a global section o € H° (M, @ (Lk)), and so we see that 7" is an

isomorphism. Furthermore, by definition 7*L* is trivial along F, and E,, ie.,

(w" L")

5 =B x Ly, (7" LM)|, = B, x Ly,
so that

H(E,Op(r*LF)) = Li & LY,
and if rg denotes the restricition map to F, the diagram
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HY(M,Oo(x*LF)) —£ HO(E, Op(n*L*))

I |

0 k T, k k
H'(M,O(LF)) —————— L' ® L
commutes. Thus to prove assertion 1 for z and y, we have to show the map rg is surjective.

Now, on M we have the exact sheaf sequence
0 — Oy (7"LF — E) — Oy (7" LF) =% Op(r*L*) — 0.

Choose k; such that L¥1 — K, is positive on M. In fact, we can choose ks such that
7*L* — nE is positive on M for k > ko, which will be proved in the next proposition.
Note that

Ky=m"Ky+(n—1)E.

SOfOI’k’ZkJo:k‘l—{—kﬁg,
OJ\N/[(’]T*Lk—E) — Q%[(?T*Lk —E—KM) _ Q?\Z((W*Lkl _KM) + (ﬂ.*Lk/ —E))

with &' > ko. Now by hypothesis, 7*L¥ — nE has a positive definite curvature form on
M; L* — Ky has a positive curvature form on M, and so 7*L* — 7* K, has a positive

semidefinite one on M. Thus the line bundle
(m* Lk — Ki) + (7" LF — E) = (7" LM — 7 Ky) + (7*LF — nE)
is positive on M , and by the Kodiara vanishing theorem,
H'(M,O5(n"LF — B)) = HY(M, Q% ((x* LM — K5) + (r*L¥ — E))) = 0
for k > ky. Hence the map
ri s HO(M, Og(7* LF)) — HY(E, Op(x*LF))

is surjective for k > ky, and so assertion 1 is proved for x and y.
Assertion 2 is proved similarly. Let M 5 M now denote the blow-up of M at =z,

E = 77 (z) the exceptional divisor. Again, the pullback map
T HO(M, Oy (LF)) — HO(M, O(x* L¥))

is an isomorphism. Further, if o € H°(M, Oy (L"), then o(x) = 0 if and only if & = 0

vanishes on E; thus 7" restricts to give an isomorphism
™ HY(M, .#,(L*)) — H(M,O(x*L" — E)).
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As before, we can identify
H0<E7 OE(W*Lk - E)) = L;’f: ® HO(Ea OE(_E)) = LI; ® T;/7
and the diagram

HY(M, O (n*LF — E)) —£= HY(E,Op(x*L* — E))

I |

HO(M, 7,(LF)) de s LT

commutes. Thus we must prove that rg is surjective for k£ > 0.

On M , there is an exact sequence
0 — O(m*LF = 2E) — Oy(n*L" — E) =% Op(r*L* — E) — 0.

Again, choose k; such that L*' — K is positive on M and ky such that #*L* — (n+1)E
is positive on M for k' > ky. For k > ko = ki + ko,

O(r*LF = 2B) = Q% ((x" LM — 7" Ky) @ (7° LY — (n+ 1)E))
with &' > k. It follows by the Kodaira vanishing theorem that
H' (M, O (7" LF = 2E)) = 0

for k > kg; hence rg is surjective on global sections and assertion 2 is proved for arbitrary
fixed x.

All that remains now to be proved is that we can find one value of kg such that
assertions 1 and 2 hold for all choices of x and y and all k& > ky,. But clearly if ¢zx is
defined at x and y and tzx(x) # 17k (y), the same will be true for 2’ near z and y' near
y, and likewise if (7« is smooth at z it will be smooth at ' near x and separate points

2’ # 2", near z. Since M is compact, then, the result follows. [

Proposition. Let M = M denote the blow-up of M at x, and E the exceptional set of
7. Suppose L — M is a positive line bundle. Then for any m, #*LF — mE is positive for

k> 0.

Proof. 1t suffices to show the statement holds for m = 1. Consider the complex structure
of a blowup by using a explicit chart. Let zq,...,2, be a local coordinate in an open

coordinate U of x. Then

U= 7T_1(U) = {(Z, l) e U x Pn_l | Zilj = Z]lz} .

17



Fori=1,...,n, Uy =U\{(l; = 0)} forms an open cover of U, and one can endow U;

with coordinates

L
» Gl j#i
z(i); =4 % b
This gives the chart (Ul, gpi) where ¢; is given by
(2,1) —> <§z'z—”) = ()1, ()i 2(0)0)

Then for ¢ < j, the change of coordinates is given by

pjo ¢;1|Uiji (2(0)15 ooy 2(0)iy o5 2(9) 4y oy 2(9)n)

_ <8 20 2@7)

Since the transition functions of the line bundle [E] on M are given by

. Zi li . = F
gijzz(])i:;:f in U; NUj,
i

one can realize [E] on U by identifying the fibre at (z,1) with the complex line in C"

passing through (Iy,...,1,).

Now we are going to construct a hermitian metric h on [E].

1. Since the fibre of the line bundle [E]|; over a point (z,1) can be identified with the

complex line {A(ly,...,l,) | A € C}, we might let h; be the metric on [E]|; given
by [(l, .. )

2. Let hy be the metric on [E]|y p such that he(o) = 1, where o € H(M, E) is the

global section of [E]|,; corresponding to E

Fore > 0,U,:= {2 € U | ||z|| < ¢} and U, := 7+ (U,). Let p, p» be a partion of unity
relative to the cover {ﬁge, M \UE} of M. Then we can define a global hermitian metric h

which is given by

h = pihi + p2ho
We will compute the positivity of the first Chern class of [—E| with the metric h.
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1. On M\UQ€, p2 = 1 and hence h(o) =1, i.e. in the trivialization above h, |aa\2 =1,
and

el([—E]) = dd°log — = 0

o]

1
since log W is a harmonic function.
o

2. On U, p, = 0. Denote
U — P!
(z,0) —> 1
Let F be the line bundle on P! given by {\(l1,...,l,) | A € C}. Recall that F is
the dual of a hyperplane bundle. Since the pullback of F' via 7* is just [E], one can
see that
e([-B)) = ddlog |1]* = ()" wrs

where wpg is the associated (1,1)-form of the Fubini-Study metric. Therefore,
c1(—F) is semi-positive on U,. In particular, it is positive on E since 7’| gives an

isomorphism.

To sum up,
0 on M\ Uy,
a(—F) = >0 omn Ue
>0 onTyo(E), C Thvo(M), Vz€FE
We then turn to compute the positivity of 7*L*. Note that for any z € E and

veT(M),,
c1 (m*L) (v,0) = 1 (L) (mev, T50) >0

¢ (m*L) = w*cy (L)

and equality holds if and only if 7*v = 0. We conclude that

=0 on Tl,O(E)z C Tl,O(M)Z Vze FE
C1 (W*L) =
> (0 everywhere else

Consequently, ¢; (7*L* @ (—E)) = kc; (7*L) — ¢1(E) is positive on U. and on M\ Uy, for €
small enough. Furthermore, since Uyc\U. is relatively compact, —c;(E) is bounded below
and ¢, (7*L) is strictly positive on this region, then for k large enough 7*L* ® (—E) is a

positive line bundle on M
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Remark. According to Kodaira embedding theorem, we see that ampleness and posi-

tivity coincide on a compact Kéahler complex manifold.

Definition. We say that a line bundle L — M over an algebraic variety is very ample if
H°(M,O(L)) gives an embedding M — P" i.e., if there exists an embedding f : M < PV
such that L = f*H.

The following known result can be derived from the Kodaira Embedding theorem.

Corollary. If E — M is any line bundle and L. — M a positive line bundle, then for
k > 0, the line bundle L* + E is very ample.

In conclusion, we can give a some what more intrinsic restatement of the theorem:

Theorem (Kodaira Embedding Theorem). A compact complex manifold M is an alge-
braic variety if and only if it has a closed, positive (1,1)-form w whose cohomology class

[w] is rational.

Proof. If M is algebraic, say i : M — PV, then L = i*[H] induces a closed (1,1)-form w
such that
[w] = c1 (L) € HX(M,Z) — H*(M,Q).

Since [H] — PV is positive, w is positive.

If [w] € H*(M, Q), then for some k € N, [kw] € H?*(M,Z); in the exact sequence
HY (M, 0%) — H*(M,Z) - H*(M, 0),

ix([kw]) = 0, and so there exists a holomorphic line bundle L — M with ¢;(L) = [kw].
The line bundle L will then be positive. [ |

A metric whose (1, 1)-form is rational is called a Hodge metric.
Corollary. If M, M’ are algebraic varieties, then M x M’ is.

Proof. If w, w' are closed, integral, positive (1,1)-forms on M, M’ respectively, and
7:MxM — M, 7" : M x M — M are the projection maps, then 7*w + 7"’ is again

closed, integral, and positive of type (1, 1). [ |
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Corollary. If M is an algebraic variety, M = M the blow-up of M at a point x, then
M is algebraic.

Proof. We have seen in the course of the proof of the embedding theorem that if L — M
is positive and £ = 7~ !(x), then 7*L* — E is positive for k > 0. [

Corollary. If M 5 M is a finite unbranched covering of compact complex manifolds,

then M is algebraic if and only if M is.

Proof. Clearly, if L — M is positive, then ¢;(7*L) = 7*¢;(L) implies that 7* L is positive.
Conversely, say w is an integral, positive (1,1)-form on M. For any p € M, we have
isomorphisms of a neighborhood U of p in M with neighborhoods U; of the points ¢; €
7 1(p); we can define a (1,1)-form w on M by

gem—1(p)

Then w is closed and of type (1, 1), and if n € Hgﬁ_z(M ) is any integral cohomology class,
then

1 -~ *
/w/\n:—/w/\ﬂne@,
M m Jum

where m is the number of sheets of the cover. Thus [w’] is rational. n
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