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0 Preliminaries

Let M be a complex manifold. Denote the holomorphic tangent space and antiholomor-
phic tangent space at z € M by T/(M), T/(M). Also, let T:'(M), T:"(M) denote their
dual spaces. We write
A" (M) = {complex-valued n-forms} = EB APY(M),
ptg=n

as a decomposition of forms of type (p,q) where
APUM) = {p € AMM) : p(z) € N'TZ (M) ® \'T2"(M) for all z € M}.

Let
P AN(M) — APUM), 7" = @ 77 A(M) — AT(M)

prq=r
denote the projections and define the operators

0= 7o d: AMI(M) — AFHM), D=1 0 d s API(M) — APT(),

Accordingly, we have d = 9+ 0. In terms of local coordinates z = (z1,. .., zp), if we write

a form ¢ € API(M) as
p(z) = > ep(2)dz ndzy,
1=p,|JI1=q

the operators 0 and 0 are then given by

0
Do(z) = Z a—zk@ﬁ(z) dzi Ndzr Ndzy,
LIk

0
Jp(z) = E a—zkwlj(z) dzZp Ndzp N dzZ .
IJk



In particular, we say that a form ¢ of type (p,0) is holomorphic if 9 = 0. We define
the Dolbeault cohomology groups to be

v 200
00 = Gmattan)

and the de Rham cohomology to be

H£R<M) = %’

where Z3"(M), Z;(M) are the 0O-closed and d-closed forms, respectively.
Let n be the dimension of M. A hermitian metric on M is given by a positive definite

hermitian inner product

() To(M)®T/(M)—C

z

depending smoothly on z. Writing it in terms of the basis {dz; ® dZ;}, the metric is given
by

ds® = hj(2)dz; @ dzy.

2
A coframe for the hermitian metric is an n-tuple of forms (¢4, ..., pm) of type (1,0)
such that
ds* =) ¢; @p;.

J

It is clear that coframes always exist locally: we can construct one by applying the Gram-
Schmidt process.

Since we have a natural R-linear isomorphism
Tr.(M) — T.(M),

we see that for a hermitian metric ds? on M, Reds? is a Riemannian metric on M. When
we speak of distance, area, or volume on a complex manifold with hermitian metric, we
always refer to the induced Riemannian metric. We also see that since the quadratic form

Im ds? is alternating, it represents a real differential form of degree 2
i _
w=—Imds* = 52%/\%
J

is called the associated (1, 1)-form of the metric.
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Theorem (Wirtinger). Let M be a complex manifold, ds* a hermitian metric on M
with associated (1,1)-form w. Let S C M be a complex submanifold of dimension d.

Then
1 d

Proof. We only need to do the case when S = M. Let z = (21,...,2,) be a local

coordinates on M, and ds* = Z(,Dj ® ;. Write ¢; = «a; + if3;; then the associated

J
Riemannian metric on M is

1 _
Reds® = é(als2 +ds?) = Zaj ® aj+ B; ® B,
J
and the volume element associated to Reds? is given by
CI):Oél/\ﬁl/\"'/\Oén/\ﬁn.

On the other hand, we have w = Z a; A B, so that the n'™ exterior power
J

w'=nlag ANBL A Na, A B, =n!d. [ |

Example (Fubini-Study metric). Let Zy, ..., Z, be coordinates on C"™ and 7 : C"** —
{0} — P" the standard projection map. Let U C P" be an open set and Z : U —
C™*!' — {0} a lifting of U; consider the differential form

i
= —00log||Z|*.
w=5-00log]| 7]

Then w is independent of the lifting chosen; since lifting always exist locally, w is globally
defined differential form in P". Clearly w is of type (1,1). To see that w is positive,
first note that the unitary group U(n + 1) acts transitively on P" and leaves the form
w invariant, so that w is positive everywhere if it is positive at one point. At the point
[1:0:---:0],
w = %Zdwj/\dﬁj > 0,
j

where w; = Z;/Zy. This w defines a hermitian metric on P".

0.1 The Hodge Theorem

Let M be a connected, compact complex manifold of complex dimension n. We choose

i
a hermitian metric ds* with associated (1,1)-form w = 52% A, in terms of a
J



unitary coframe {¢1,...,¢,}. The metric ds® induces a hermitian metric on all ten-
sor bundles T*®%9(M); the inner product in T:P? (M) is given by taking the basis
{©1(2) A®;(2)}11=p,s1=¢ to be orthogonal and of length ||o; A @ ||* = 2779 (recall that
|d2;]|* = 2 on C"). Let ® be the volume form, then the global inner product

Wy} = /M (6(2),1(2))B(2)

makes the space AP?(M) into a pre-Hilbert space.
We define the star, or duality operator,

%1 APU(N) —s APP9(D)

by requiring
(¥(2),n(2))®(2) = ¥(2) A*n(z)
for all vp € AP4(M). This is an algebraic operator, which is given locally as follows: if we

write n = anj wr N\ @y, then
1,J

w7y = 20T Z €171y Pre N @ e,
1,7

where I¢ = {1,...,n} — I, Jt = {1,...,n} — J and we write ¢, ; for the sign of the

permutation

- — . . = .C -C -C -C
(Looon, L) == (i1, sy Jas 0 g e el 1o+ -5 Jng)-

The signs work out so that *xn = (—1)"*.
In fact, the space AP4(M) is complete and 0 is bounded, so we can define the adjoint

operator

3 API(M) — APITY(M)

by requiring that (9 1, n) = (¢, dn) for all n € AP9"1(M). The d-Laplacian is defined by
DNy = 98" + 0. Differential forms satisfying the Laplace equation Az1) = 0 are called
harmonic forms; the space of harmonic forms of type (p, q) is denoted H?(M) and called

the harmonic space.

Theorem (Hodge). Using the notation above, we have

L. dim HZ?(M) < oo; and



2. because of this, the orthogonal projection Hz : API(M) — HZ(M) is well-defined.

and there exists a unique operator, the Green’s operator,

Gy - API(M) — API(M),
with Gy(HEY(M)) = 0, [G5,0] = [G5,0 ] = 0 and
(W) id = Hg + N3G

on API(M).

The equation (#) in the form
¥ = H5(0) + 0 (0'Gav) + 3 (0Gzv)
is called the Hodge decomposition on forms, since it directly implies the orthogonal direct-

sum decomposition

APUMY) = HEA(M) & DAPI~H (M) & 9 AP (M).

Remark. On a compact Riemannian manifold M we may define the adjoint d* of d,
form the Laplacian Ay = dd* + d*d, and arrive at the exact same formalism as for 9 on
complex manifolds. The Hodge theorem is also true and the proof is the same as the one

in the complex case.

0.2 Application of the Hodge Theorem

We first recall the Dolbeault theorem

Theorem (Dolbeault). For complex manifold M, we have the isomorphism

HY(M, ) = H2Y(M).

Now, by the Hodge decomposition every 0-closed form v € Zg’q(M ) can be written as
v =Ha(v) +0 (97Gv)
since Gy = GOy = 0. Therefore, we have the isomorphism
’H%’q(M) =~ HPY(M).
Combining this with the Dolbeault isomorphism, we find

HEU(M) = HY(M, Q).



1 Kahler Manifolds

1.1 The Kahler Condition

Let M be a compact complex manifold with Hermitian metric ds?, and suppose that in
some open set U C M, ds* is Euclidean; that is, there exist local holomorphic coordinates
z=(z1,...,2,) such that

ds® =) dz @ dz;.
J

Write z; = x; + 1y;; one may directly verify that for a differential form

Y = Zg@lde[ /\dZ]
1,J

compactly supported in U,
S0
Ag((ﬁ) = -2 — Prj dZ] VAN dEJ
BT 8zj82j

yh]
2

12(824—0)90 dzy Ndz
=—3 -5t a3 | pr7dzn J
2[7(]’], Oz  Oy;

J

= %Ad(@)

i.e., the d-Laplacian is equal to the ordinary d-Laplacian in U, up to a constant (cf.
Section 6). Of course, very few compact complex manifolds have everywhere Euclidean

metrics, but as it turns out in order to insure the identity

1
Agi §Ad

on a complex manifold, it is sufficient that the metric approximate the Euclidean metric
to order 2 at each point. This is the Kéhler condition, and we will spend the greater part
of this section discussing the condition and its consequences.

We start by giving three alternate forms of the Kéahler condition.

Definition-Proposition. Let M be a complex manifold with a Hermitian metric

ds* = Z% ® Pj-

J

We say that ds? is Kéhler if one of the following equivalent statements holds:



(i) the associated (1,1)-form w is d-closed, and

(ii) ds® osculates to order 2 to the Euclidean metric; that is, for every point z € M we

can find a holomorphic coordinate system (z;) in a neighborhood of z for which
d82 = Z(5Jk —+ gjk) de X dzk,
j.k
where g;;, vanishes up to order 2 at z. We usually write
ds® = (6 + [2]) dz; ® dz.
j.k

Moreover, a manifold is called Kéhler if it admits a Kéhler metric.

Proof. One direction is clear. Conversely, we can always find coordinates (z;) for which
hji(z) = 6j; e,
w= % Z<5jk + ajreze + ajgze + [2]) dzj A dZ;
Gkt
note that
hjr = hyj = Uiz = Qjke
and

do=0 = Ajke = Qpkj-

We want to find a change of coordinates
1
zj = w; + 5 Z bjkéwkwé
K,

such that

(*) o= & S (6 [2]) oy A

4.k
we normalize by requiring

bire = bk
Then

de = dw]' + Z bjkgwk dwg,

kL
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so that
—2iw =Y (dwj + ) bjkewy dwg> > <dmm + 3 by qu>
i k.l m D,q
+ Z (ajk@wg + ajkz@g) dwj A dwy + [2]

Jik,€

= Z <5jk: + Z (ijkgwg + ajkz@g + bkgng + ngkwg)> dwj A dwy, + [2]
l

Jikt
If we set
brej = —ajke;
then
beej = —jpe = —auj = bije
and
bk = —Trje = — Gy,
so that the coordinate change does in fact satisfy the condition (). |

Remark. Another way of expressing this condition that is useful in computation is to
say that for each point z € M we can find a unitary coframe ¢, ..., p, for the metric in

some neighborhood of z such that dy;(z) = 0.

Examples.
1. Any metric on a compact Riemann surface is Kéhler, since dw = 0 for any 2-form w.

2. If A is a lattice in C", the complex torus 7" = C"/A is Kéhler with the Euclidean
metric ds® = Z dz; @ dz;.

J

3. If M and N are Kéahler, then M x N is Kéahler with the product metric.

4. It S € M is a submanifold, then by the analogue of implicit function theorem, the
associated (1, 1)-form of the induced metric on S is just the pullback of the associated

(1,1)-form of the metric on M. Thus M is Kahler implies S is Kéhler.
5. Recall that the Fubini-Study metric on P" is given by its associated (1, 1)-form
T = i _
= —00log||Z|]* = — —0)log || Z|?
w= 00108 || Z|] = 1-d.((@~ ) log | ZI]")
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so we see that w is closed, and the Fubini-Study metric is Kéhler.

Note: It is convenient to define an operator d° by
ol
" drn

d and d° are both real differential operators, and

d (0 —0).
-
dd® = —d°d = —00.
27
We can consequently write

w = dd°log || Z|*.

Remark. Note that by the last two examples, any compact manifold that can be em-

bedded in projective space P" is Kéahler.

1.2 The Kahler Identities

Let M be a compact complex manifold with hermitian metric ds* and associated (1,1)-

form w. We define an additional operator
L : APYM) — APTHITL(AL)
by L(n) = n Aw and let
A= L*: APYM) — AP~HL (D)

be its adjoint.

Now, for general M there are no non-obvious relationships among these various oper-
ators. If we assume that the metric on M is Kéahler, however, we get a host of identities
relating them, called the Kéhler identities. Indeed, the Kéahler condition is exactly that
which insures a strong interplay between the real potential theory that associated to the

Riemannian metric and the underlying complex structure.
Lemma. On AP?(M), we have A = (—1)P"9x L x.

Proof. For any ¢ € APY(M), n € APTHatl
wom= [ wrome= [ vronen
s Lo = [ 0P (e A 0 = [ oA (217 (o) )

M
Then the result follows from w A (xn) = (xn) Aw and * * = (=1)P79 on A" P"79, [

9



Theorem (Kahler identities). With the above notations, we have the following identi-
ties:

A, d] = —4nd®*, [L,d"] = 4wd".

Proof. Clearly, these two identities are just equivalent. By decomposition into type, the

first identity is equivalent to

[A,0]=id  and [\, 9] = —id".

Since A is a real operator, either of these implies the other. So it suffices to prove
[A,0] = i@ . We may first make the computation on C" with the Euclidean metric. For
each k =1,...,n, let

e ALI(C") — A€+1’Q(C"), er(p) = dzi N o,
e ADUC") — ARIYH(CM), E(p) = dzi A .

Let i, and i be adjoints of e, and €, respectively. Note that ey, €, ir and i are all

linear over C*°(C"), and

Zk(dZJ/\dEK) = O, if k §é J, Zk<d2k/\dZJ/\dEK) = QdZJ/\dEK,

in(dzy NdzZg) =0, if k¢ K, i)(dz, ANdzy NdZg) = 2dzy N dZk.
Indeed, we have for any multi-indices L and M
(ig(dzg NdZg),dzp NdZy) = (dzg NdZ, dzi Ndzp A dZy) =0,
s0 ik(dzy N dZk) = 0, and

<Zk(d2k VAN dZJ A dEK),dZL VAN d§M> = <de VAN dZJ VAN dEK,de AN dZL AN d§M>

= 2<dZJ A dZK,dzL A d§M>

Then for any monomial dz; A dZg,

’
‘ 0, if ke J,
Zk(€k<dZJ A de)) =
\2dZJ/\dZK7 1f]€¢<]

while
4

' 2dz; NdzZg, iftkeJ,
€k<lk<dZJ A df[()) =

0, if k¢ J.

\
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Therefore, we have ige;, + exir = 2. On the other hand, for k& # ¢ we have

ik(e(dzi Ndzg NdZ)) = ix(dze N dzg Ndzy N dZg)
= ip(—dzi Ndzg Ndzy N dZg)
= —2dz; Ndzy NdZg
= —2ey(dzy NdzZk)

= —eg(ig(dzx Ndzy N dZk)),
while ix(ee(dzy N dZk)) = ep(ir(dzy A dZk)) = 0 in the case k ¢ J, so we conclude
erle + tper, = 2050.
Similarly, ixé, + €y = 20k.. We also define operators 9y, and 9y on AP4(C") by

0vr7 —
Splk‘] dzr Ndzy; and  Og(pzdzr Ndzy) =

0w~
8k(901jd21/\d2]) = 9;]];] dZ[/\dZ].

Note that 0 and 0, commute with ey, €, ip, and i, and with each other. One can see

that the adjoint of dj is —0: for any ¢ = Z ;7 dzr ANdz; and any compactly supported

form v dzy, A dzys, we have "
(=Okp, W dzy NdZy) = <—%(¢LM) dzp NdzZy, ¥ dzp N dEM>
_ olLl+M] / %
_ olLl+ M| / az
= 2lthHM /(C soLMai%(@/))

= (@rar dzp AN dzZy, (W dzp N dZyy))
= (@, Ok(¥ dz, N dZyy)).
Likewise, the adjoint of 9y, is —0.

We can express all of our operators on A’(C") in terms of these elementary operators:

clearly
0= Zakﬁ’k = Z Gkak, 5 = ngék = Zékék’
k k k k
and, taking adjoints,

= Okix, 0" == Ohix.
k k
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Moreover, L is defined as exterior product with the standard Kéhler form defined on

C", so

and, taking the adjoint,

Therefore,

{ - .
=3 Z Orif (2010 — egi)
k.t
. - Z - . s
= —1 Zk: 8klk + 5 ; 8@6(%% =140 + OA.

Thus the identity is proved on C".
To prove the result an a Kéhler manifold M we use the condition of osculation to show
that the identity holds at any point: for z € M, we can choose a holomorphic coordinate

system (z;) in a neighborhood of z for which

ds® =) (6 + [2]) dz; ® dz.
7,k

Then w = %Z(éjk + [2]) dz; A dz), and hence L = %Z(djk + [2]) ejéx. Hence by the
lemma above,J ' M

A=—3 ;};(@k + [20)
Since [A,0] on M will be the same as it on C" with the Euclidean metric except for
additional terms of order no less than 1, i.e. they vanish at z, we see that the identity

holds at any z € M, and hence everywhere. [ |
Corollary. We have [L, A4] = 0, or, equivalently, [A, 4] = 0.

Proof. Since w is d-closed, we have d(wAn) = wAdn. So [L,d] =0, and hence [A, d*] = 0.
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Then

A(dd* + d*d) = (dAd* — 4md®*d*) + d*Ad
— dAd" + (4nd*d** + d*Ad)
— (dd* + d*d)A. u

Corollary. A, =2A5=2A,. In particular, A, preserves bi-degree, i.e. [Ag, 7] = 0.
Proof. Since Ad — O\ = i0 , we have

* =*

i(00 +0 0) = O(AD — OA) + (AD — ON)D = OAD — OND = 0,
which imples 99 + d 9 = 0. Then

Ng=(0+0)(04+0)+(0"+0)0+0)
= (90" 4+ 0%0) + (00" + 8 9) = Ny + Ny,

So it suffices to show Ay = Az. Note that
—ilNy = O(AD — ON) + (AD — ON)D = OND — DOA + ADD — OND

Consequently,
1Ny = (5(/\8 —0A) + (A0 — 8A)5) =10y

since 90 = —90. [ |

1.3 The Hodge Decomposition

Set

Z(M)
p,q — d
Hq"(M) = dA*(M) N Zy*(M)’

He (M) = {n € API(M) | Aan = 0},
Hy(M) = {n € A"(M) | Aan = 0}.

Note the the first group is intrinsically defined by the complex structure, while the latter

two depend on the particular metric.
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Theorem (Hodge Decomposition). For a compact Kéhler manifold M, the complex

cohomology satisfies

H'(M,C)=  HY (M),
pt+q=r

HE(M) = HE7 ().

Proof. By the commutativity of A, and 7¢ and the fact that Ay is real, the harmonic

forms satisfy

Hy(M) = € Hy (M),
(&) pta=r

(1) = HO),
On the other hand, for 7 a closed form of pure type (p, q), n = Ha(n) +dd*G(n), where
the harmonic part 7 also has pure type (p,q). Thus

Hg " (M) = Hg" (M).
Combining this with (&) and an application of the Hodge theorem for A,
Hag (M) = Ha(M),
we get the decomposition of H"(M,C) = Hjz (M) by de Rham isomorphism. [

Corollary. HP(M) = HY(M,QP). In particular, the holomorphic forms are harmonic

for any Kéhler metric on a compact manifold.

Proof. Since Ay = 245, we have H(M) = HZ?(M). Consequently, we obtain

HP(M) = H2Y(M) = HY(M,QP).

By taking ¢ = 0, we see all holomorphic p-forms are harmonic. [

Corollary.

0, ifp#gq,
H(P", Q%) = H2(P") =

C, ifp=q.

Proof. Since H**!(P" 7)) = 0, we have HE(P") = 0 for p+ ¢ odd; since H?* (P, 7) = Z,
we have for p # k,

1= b%(Pn) > hp,2k—p(Pn) 4 h?k—p,p(]P)n> _ thgk_p
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