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July 3, 2020

1 Some Vanishing Theorems and Corollaries

1.1 Hodge theory on vector bundles

Let M be a compact Kéhler manifold.
Recall that for any holomorphic vector bundle E — M, the d-operator

3 : APU(E) — APTHY(E)

is defined for global C*° E-valued differential forms, and satisfies 9’ =0. We let Zg’q(E)
and 27(E) denote the space and the sheaf of 0-closed E-valued differential forms of
type (p, q), respectively, and we define the Dolbeault cohomology groups Hg’q(E) of £ to

be

p.q
gy = —21E)
0 9 APa-1(E)

The exact sheaf sequences

0 — QP(E) — €P(E) P E) — 0

E)
—
)
—

33 B}

0 — ZP(E) — ¢"(E) PN E) — 0

gives us isomorphisms

H'(M, 2 (E)) — H'(M, Q(E)),
) ,q+1 ~ % ) .
H'(M, 2P7(E)) — H™"Y(M, 20(E)), i > 1,



since the sheaves ¢7%(E) admit partitions of unity and hence have no Cech cohomology.

Thus,

HY(M,QF(E)) = HI™ (M, Q%pvl) ~ ...~ qY(]M, gg,q—l)
HO(M, 27
== — = HYY(E).
DHO(M, €207

Suppose we have metrics given on M and E; we have then induced metrics on all
tangential tensor bundles of M tensored with £ or E*. In particular, if {¢,} is a local
coframe for the metric on T, and {e,} a unitary frame for F, any section n of A??(E)
can be written locally as

1

n(z) = =~ Y nmsal2) 01 NPy @ ea;
P& I,J,a
for n,¢ € API(E),
op+q—n -
(n(2),¢(2)) = o Z n1,70(2) - ¥1,.70(2).

I,J,«

Again, we define an inner product on AP?(E) by setting

(n, ) = /M (=), 6(2)) @,

where @ is the volume form on M.

We have a “wedge product”
A APUE) @ AP (E*) — APt (D)
defined by
(mes) AN @s)=(ss)-nnn,
where (( , ) is the bilinear pairing A°(E) ® A°(E') — A°(M); we define an operator
xp o APU(E) — APTPPTI(E)

by requiring, for n,v € AP(E),

(n,9) = /Mn A *p).

Explicitly, if {e,} and {e}} are dual unitary frames for £ and E*, then for n € APY(E)

written as 7 = Zna ® en, We have xpn = Z(* No) ® €, where * is the usual star

« «

operator on AP9(M).



We take
J APYE) — Ap’qfl(E)

to be given by 8 = — xp- O *p; as before, @ is the adjoint of 8. Finally, the d-Laplacian
on F is defined by
A =00 +00: AP(E) — AP(E).

An E-valued form ¢ is called harmonic if Agp = 0. We let
HPUE) =ker Ag

be the harmonic space.

Theorem (Hodge). Using the notation above, we have

1. dimHP(E) < oc.

2. If H denotes the orthogonal projection H : APY(E) — HP(E), there exists an operator

G: APYE) — API(E),

with G(HP(E)) =0, [G,9] = [G,8] = 0 and
(#E) id=H+ AgG
on APY(E).

3. Consequently, there is an isomorphism

HPI(E) — H2Y(E).

4. The x-operator gives an isomorphism
HY(M,QP(E)) = H"9(M,Q" P(E"))".
For p = 0, this last result reads
HY(M,O(E)) = H" (M, O(E* ® Ky))*.

This isomorphism is called Kodaira-Serre duality.
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Now if M is Kéhler with associated (1, 1)-form w, we define the operator
L: APU(E) — APTLatL(E)
by setting, for n € AP4(M) and s € A°(E),
Lin®s)=wAn®s;

let A = L* be the adjoint of L. If V = V' + 0 is the metric connection on FE, then we
have the basic identity
[A, 0] = =iV

This identity follows from the analogous identity [A,0] = —i0* on scalar forms
APY(M), which we have already proved. To see this, pick a local frame {e,} for E;
if A= A" + A% is the connection matrix for V in terms of {e,}, we can write, for

n e AM(E),

N= Na®ca, = Oa@eat » (aAA) S es,
« « a,B
and An = ZA(na) ® €4, SO

[A,0ln = ([A, 0]na) @ ea + [A, A |y = =i Y~ 0"1j0 @ €0 + [A, A .

67

Similarly,

Vin = Z@na ® eq + Z(na NAZ) ® eg,
a a,f

ie.,

V' = Z 0N @ eq + (AY) 7.

Now, we choose at each z € M a frame for E in a neighborhood of z for which A(z)
vanishes. Indeed, a given trivialization can be changed by a local ¢ : U — GL(r,C),

whose Taylor expansion is of the form

d(z1, .0y 2n) =1d — Z 2;A;(0) + higher order terms.
J

Here, z1,...,z, are local coordinates with z as the origin and A = Z Ajdz;. Then we
see that
(A, 0] +iV"™" = [A, A% 4+ i(AY0)" = 0.
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1.2 The Kodaira Vanishing Theorem

Definition. A line bundle L — M is positive if there exists a metric on L with curvature

form © such that (i/27)0 is a positive (1,1)-form, i.e., for any z € M and 0 # v € T. M,

—i <2i@(z),v /\E> = %(@(2),1} AT) > 0;

™

L is negative if L™ is positive. A divisor D on M is positive if the line bundle [D] is.

Proposition. If w is any real, closed (1, 1)-form with
w] = ei(L) € Hip(M),

then there exists a metric connection on L with curvature form © = —2miw. Thus L is

positive iff its Chern class may be represented by a positive form in Hig(M).

Proof. Let |-|* be a metric on L with curvature form ©. If ¢ : Ly — U x C is a
trivialization of L over an open set U, s a section of L over U and sy the corresponding

holomorphic function, then

[sI* = h(z) - |sul®

for some positive function h. The curvature form and Chern class are given by

O = —00logh(z), ci(L)= [%@} € Hiz(M).

—~ —~

2 —~—2
Now let || be another metric on L with curvature form ©. Then |s| /|s|*> = e” for some

real C*° function p on M, and from the local formula

it follows that © = 9dp + O.

Working in the other direction, let O = —2miw. If we can solve the equation
© =00p + &)

for a real C™ function p, then the metric e”|s|* on L will have curvature form ¢.
Let n = © — © and let G4 denote the Green’s operator associated to the Laplacian

Ag4, and similarly for Gy and G5. From the basic identity

%Ad = Do = Dy,



it follows first that 2G4y = G5 = G, and then that all the operators d, 9, 9, d*, 9%, and

9" commute with the Green’s operators.
Now, since 7 is d-exact, its harmonic projection under any of the above Laplacians is

zero. By the decomposition for 0,
n = Hy(n) + 9 0Gan + 90 Gan = 9 G,
But E*ng has pure type (1,0) and so
(0 Gan) = =0 G5(dn) = 0.

Since the harmonic space for 9 is the same as the harmonic space for 0 and hence is

orthogonal to the range of 3", we deduce by the decomposition for d that
9 Gz = Ho(3 Gan) + 0" 0Go(D Gzn) + 00" Ga(D Gn) = 80*Go(9 Gan).
Since i is real, p = —8*5*6%77 is also real, and we are done. [ |

Let J be the tautological line bundle of P", which is the dual of the hyperplane bundle
[H]; we can put a metric on J by setting |(Zo, ..., Z,)|* = Z |Z;|%. If Z is any nonzero

i
section of J, then the curvature form in J is given by

0* = ddlog || Z||* = 2midd“log || Z||?.
The curvature form © for the dual metric in [H] is then —©*, and consequently
-0 = ddlog||Z]]*,
2m

i.e., (i/2m)O is just the associated (1,1)-form w of the Fubini-Study metric on P", which
we have seen is positive.

Note that since the restriction to a submanifold V' C M of a positive form is again
positive, L]y — V will be positive if L — M is. In particular, the hyperplane bundle on

any complex submanifold of P" is positive.

Theorem (Kodaira-Nakano Vanishing Theorem). If L — M is a positive line bundle,

then

HI(M,QP(L))=0 forp+q>n.
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Proof. By hypothesis we can find a metric in L whose curvature form © is —2miw, where

w is the associated (1, 1)-form of a Kéahler metric. Now by harmonic theory
HY(M,QP(L)) = H(L) = HP(L).
Let n € HP(L) be a harmonic form. Then
0=V*=0V' +V0,

so from dn =0, d n =0, and On = V',

i(AOn,n) = i(AOV'n,n)
=i ((OA —iV"™") V', 1)
= (V"V'n,n) = ||V'n||> > 0,

since (DAV'n,n) = (AV'n,d n) = 0. Similarly,

i(©An, n) = i(V'OAn, )
=i (V' (Ad+iV"")n,n)
= —(V'V"n,n) = —[[V™n|]> < 0.

Combining, i ([A, ©]n,n) > 0. But © = —27iL, and so
0 < i([A, ®n,m) = 27 ([A, Lln,n) = 27(n —p — q)In]*.
Thus p + ¢ > n implies n = 0. |
Dualizing the Kodaira vanishing theorem, we obtain:

HY(M,QP(L)) =0 for p+ ¢ < n in case L — M is a negative line bundle.

Example. As an immediate consequence of the vanishing theorem, we see that
HI(P", Opn(kH)) =0 for1<g<n-—1, allk.

This follow directly from the dualized version of the vanishing theorem in case k is nega-

tive; if k£ is nonnegative,
HYP", Opn(kH)) = HI(P", Qpn(kH — Kpn)) = HY(P", Qp.((E+n+ 1)H)) =0

by the original version of the theorem.



1.3 The Serre Vanishing Theorem

Our second vanishing theorem for the cohomology of holomorphic vector bundles is less

precise but broader in scope than the Kodaira Vanishing Theorem.

Theorem (Serre Vanishing Theorem). Let M be a compact, complex manifold and
L — M a positive line bundle. Then for any holomorphic vector bundle F, there exists
o such that

HY (M, O(L*® FE))=0 forq>0, p> pup.

Proof. First, by Kodaira-Serre duality,
HY(M,O(L*® E) =2 H" (M, O(L™"® E*® Ky)),
so it will be sufficient to prove that for any E, there exists po such that
HY'(M, L™ ® E) = HY(M,O(L™" ® E)) =0

for p > pg, ¢ < n.
Choose a metric in L such that w = (i/27)©y, is positive; let the metric on M be the
one given by w. Now we have seen that if £, E' are two hermitian vector bundles and if

we give F ® E’ the induced metric, then
Viegr = VE®@14+1® Ve

and so

@E@El :@E®]—+1®®E’

In particular, for L and E as above with any metric on F,
@L—#®E = 27TZ'IMCL) X 1E + @E

Let n € H*Y(L™" ® E) be harmonic. Writing © for O -ugg, V for Vi, wgp, we have
i([A, ©]n,n) > 0 by the proof of Kodaira theorem. But now

O =01-ugp =0+ 2Mipw,
and so

i([A, B]n,n) = i([A, Opln,n) — 2xu((A, Lln, n)

= i([A, ©pln,n) — 2mp(n — q)n*.



Now [A, ©] is bounded on A*(L" ® E), so we can write

[{[A, Opln, )| < [I[A, ©pn] - [In]l < Clln]*,

and consequently for g < n,

C
p>o = n =20,

ie., H*(L " ® E) =0 for u>C/(2r), ¢ < n. |

1.4 The Lefschetz Theorem on Hyperplane Sections

Using the Kodaira vanishing theorem, we can give a proof of the famous Lefschetz theorem

relating the homology of a projective variety to that of its hyperplane sections.

Theorem (Lefschetz Hyperplane Theorem). Let M be an n-dimensional compact, com-

plex manifold and V' C M a smooth hypersurface with L = [V] positive. Then the map
H"(M,Q) — H"(V,Q)

induced by the inclusion ¢ : V' < M is an isomorphism for » < n — 2 and injective for

r=n—1.

Proof. 1t will suffice to prove the result over C. By the Hodge decomposition and Dol-
beault,

H'(M,C)= @ Hr(M)= P HEY(M)= P HI(M,D%).

pt+g=r ptg=r ptg=r

The same holding for V, it is sufficient to prove that the map
HY(M, $¥y,) — HU(V, Q)

is an isomorphism for p + ¢ < n — 2, and injective for p+q¢=n — 1.

To see this, we factor the restriction map 5, — Qf, by

yo res Y4 7 Y4
QM ; QMlv ; QV?

where Q| is the sheaf of sections of ( /\ij\‘/)

. The kernel of the restriction map
is clearly just the sheaf of holomorphic p-forms on M vanishing along V', so we have an

exact sequence of sheaves on M
Q) 0 — QF,(-V) — Qb = Q4|, — 0.
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For z € V, the sequence
0— Ny, —T'’M — TV —0,
yields, by linear algebra,
0— N o N TV — NT'M— NV — 0,

and consequently an exact sequence of sheaves on V'

0 — QFY(NY) — O8], — QF — 0.
By adjunction formula I, Ny, = [-V]|,,; we can thus rewrite this last sequence as
($) 0— QN (=V) — O], — O — 0.

Now [—V] is negative on M, and likewise [—V]|,, is negative on V. The Kodaira

vanishing theorem gives
HYM, Q8 (=V)) = H(V, Q0 (=V)) =0, p+q<n.
By the exact cohomology sequences associated to the sheaf sequences (©) and (),
HY(M, ) — HU(M, @ l) = HI(V, Q) — HI(V, )
for p+ ¢ < n — 2, and with both maps injective for p+q¢=n — 1. [ |

Example. When n = 2—i.e., M is a (connected and compact) complex surface—and
V C M is a Riemann surface embedded as a positive divisor, then the Lefschetz theorem
gives

Ho(V,Z) = Hy(M,Z) = Z, H.(V,Z) —s Hy{(M,Z) — 0,

i.e., all of the first homology of the 4-manifold M lies on the irreducible embedded Riemann

surface V.
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