which implies $h^{p,2k-p}(\mathbb{P}^n)=0$ and hence $h^{p,p}_{\overline{\partial}}(\mathbb{P}^n)=1$. Thus $H^{p,p}_{\overline{\partial}}(\mathbb{P}^n)\cong\mathbb{C}$.

Note in particular that there are no nonzero global holomorphic forms on \mathbb{P}^n .

1.4 The Lefschetz Decomposition

 sl_2 is the Lie algebra of SL_2 ; it is realized as the vector space of 2×2 complex matrices with trace 0, and with the bracket [A, B] = AB - BA. We take as standard generators

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

with the relations

$$[x, y] = h, [h, x] = 2x, [h, y] = -2y.$$

The irreducible (finite-dimensional) sl_2 -modules are indexed by nonnegative integers n; for each such n the corresponding sl_2 -module V(n) has dimension n + 1. Explicitly,

$$V(n) \cong V_n \oplus V_{n-2} \oplus \cdots \oplus V_{-n+2} \oplus V_{-n}$$
.

The eigenvalues of h acting on V(n) are $n, n-2, \ldots, -n+2, -n$, each appearing with multiplicity 1.

For any (finite-dimensional) sl_2 -module V (with $\rho: sl_2 \to gl(V)$), not necessarily irreducible, we define the Lefschetz decomposition of V as follows: let $PV = \ker \rho(x)$; then

$$V = PV \oplus yPV \oplus y^2PV \oplus \cdots,$$

and this decomposition is compatible with the decomposition of V into eigenspaces V_m for h since $yPV(n) = V_{n-2k}$. We also see that the maps

$$V_m \xrightarrow{y^m} V_{-m}$$
 and $V_{-m} \xrightarrow{x^m} V_m$

are isomorphisms. Finally, in general,

$$\ker x \cap V_k = \ker (y^{k+1} : V_k \to V_{-k-2}).$$

We return now to our compact complex manifold M with Kähler metric

$$ds^2 = \sum_j \varphi_j \otimes \overline{\varphi}_j.$$

First, we want to compute the commutator $[L,\Lambda]$ on \mathbb{C}^n . Recall that

$$L = \frac{i}{2} \sum_{k} e_k \overline{e}_k$$
 and $\Lambda = -\frac{i}{2} \sum_{k} \overline{i}_k i_k$.

By our commutation relations

$$e_k i_\ell + i_\ell e_k = \overline{e}_k \overline{i}_\ell + \overline{i}_\ell \overline{e}_k = 2\delta_{k\ell}$$
 and $[e_k, \overline{i}_\ell] = [\overline{e}_k, i_\ell] = 0$,

we have then

$$[L,\Lambda] = \frac{1}{4} \left(\sum_{k,\ell} e_k \overline{e}_k \overline{i}_\ell i_\ell - \sum_{k,\ell} \overline{i}_\ell i_\ell e_k \overline{e}_k \right)$$

$$= \frac{1}{4} \sum_{k,\ell} \left(2\delta_{k\ell} (e_k i_\ell - \overline{i}_\ell \overline{e}_k) - (e_k \overline{i}_\ell \overline{e}_k i_\ell - \overline{i}_\ell e_k i_\ell \overline{e}_k) \right)$$

$$= \frac{1}{2} \sum_{k} (e_k i_k - \overline{i}_k \overline{e}_k) = \frac{1}{2} \sum_{k} (2 - i_k e_k - \overline{i}_k \overline{e}_k) = n - \frac{1}{2} \sum_{k} (i_k e_k + \overline{i}_k \overline{e}_k).$$

Note that $i_k e_k (dz_J \wedge d\overline{z}_K)$ is zero if $k \in J$, and $2 dz_J \wedge d\overline{z}_K$ otherwise; $\overline{i}_k \overline{e}_k (dz_J \wedge d\overline{z}_K)$ is zero if $k \in K$, and $2 dz_J \wedge d\overline{z}_K$ if not. Thus

$$\sum_{k} (i_k e_k + \overline{i}_k \overline{e}_k) (dz_J \wedge dz_K) = 2 \sum_{k \notin J} dz_J \wedge d\overline{z}_K + 2 \sum_{k \notin K} dz_J \wedge d\overline{z}_K$$
$$= 2(2n - |J| - |K|) dz_J \wedge d\overline{z}_K.$$

and so on $A_c^{p,q}(\mathbb{C}^n)$, $[L,\Lambda]=p+q-n$. Since L and Λ are both algebraic operators, this identity will hold on any Kähler manifold.

Theorem (Hard Lefschetz Theorem). The map $L^k: H^{n-k}(M) \to H^{n+k}(M)$ is an isomorphism, and if we define the primitive cohomology

$$P^{r}(M) = \begin{cases} \ker \left(L^{n-r+1}\right) = \ker \Lambda \cap H^{r}(M), & \text{if } r \leq n, \\ 0, & \text{else,} \end{cases}$$

then we have

$$H^{m}(M) = \bigoplus_{k \ge 0} L^{k} P^{m-2k}(M),$$

called the Lefschetz decomposition.

Proof. Set

$$h = \sum_{r=0}^{2n} (n-r)\pi^r;$$

since $L:A^r(M)\to A^{r+2}(M)$ and $\Lambda:A^r(M)\to A^{r-2}(M),$ we obtain

$$(\heartsuit) \quad [\Lambda,L] = h, \ [h,L] = -2L, \ [h,\Lambda] = 2\Lambda.$$

The operators L, Λ , and h all commute with Δ_d , and so act on the harmonic space $\mathcal{H}_d^*(M) \cong H^*(M)$ with relations (\heartsuit) . We may therefore give a representation of sl_2 on $H^*(M)$ by sending

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mapsto \Lambda, \ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \mapsto L, \ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mapsto h;$$

the eigenspace for h with eigenvalue (n-r) will be $H^r(M)$. Applying the results on finite-dimensional representations of sl_2 to this representation we get the results.

Note that the Lefschetz decomposition is compatible with the Hodge decomposition, i.e., if we set $P^{p,q}(M) = \ker \Lambda \cap H^{p,q}(M)$, then

$$P^{r}(M) = \bigoplus_{p+q=r} P^{p,q}(M).$$

2 Divisors and Line Bundles

Let M be a compact complex manifold of dimension n. We know that the Picard group $Pic(M) = H^1(M, \mathcal{O}^*)$ is the set of line bundles on M. The exact sequence of sheaves

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{O} \xrightarrow{\exp} \mathcal{O}^* \longrightarrow 0$$

gives a boundary map in cohomology

$$\operatorname{Pic}(M) = H^1(M, \mathcal{O}^*) \xrightarrow{\delta} H^2(M, \mathbb{Z}).$$

Definition. For a line bundle L, we define the first Chern class $c_1(L)$ of L (or simply Chern class) to be $\delta(L) \in H^2(M, \mathbb{Z})$; for D a divisor on M, we define the Chern class of D to be $c_1([D])$.

We sometimes write $c_1(L) \in H^2_{dR}(M)$ for the image of $c_1(L)$ under the natural map $H^2(M,\mathbb{Z}) \to H^2_{dR}(M)$.

Let $E \to M$ be a vector bundle of rank k and ∇ a connection on E, the curvature operator is ∇^2 . Locally, if φ_{α} is trivialization of E over U_{α} , then ∇ is represented by d+A, where A is a $k \times k$ matrix of 1-forms, and ∇^2 is represented by $\Theta_{\alpha} = dA - A \wedge A$, which is a $k \times k$ matrix of 2-forms. If φ_{β} is another trivialization, we have

$$\Theta_{\alpha} = g_{\alpha\beta} \,\Theta_{\beta} \,g_{\alpha\beta}^{-1},$$

where $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to GL_k$ is the transition function relative to φ_{α} and φ_{β} . In particular, if E is a line bundle, since $GL_1 = \mathbb{C}^{\times}$ is commutative, $\Theta = \Theta_{\alpha} = \Theta_{\beta}$ is a closed, globally defined differential form of degree 2, called the curvature form of E.

Definition. For any analytic subvariety $V \subseteq M$ of dimension k, we define the fundamental class $[V] \in H_{2k}(M, \mathbb{R})$ to be the linear functional

$$H^{2k}_{\mathrm{dR}}(M) \longrightarrow \mathbb{R}$$
$$\varphi \quad \mapsto \int_{V} \varphi$$

we denote its Poincaré dual by η_V . In particular, we take the fundamental class of a divisor $D = \sum_j a_j V_j$ on M to be $\sum_j a_j [V_j]$, we denote its Poincaré dual by $\eta_D = \sum_j a_j \eta_{V_j}$.

Proposition. For any line bundle L with curvature form Θ ,

1.
$$c_1(L) = \left[\frac{i}{2\pi}\Theta\right] \in H^2_{\mathrm{dR}}(M)$$
.

2. If L = [D] for some $D \in Div(M)$, $c_1(L) = \eta_D \in H^2_{dR}(M)$.

Proof. Let φ_{α} be trivializations and let $g_{\alpha\beta}$ be transition functions relative to a cover $\mathcal{U} = \{U_{\alpha}\}$ of M. We may assume the open sets U_{α} are simply connected and set

$$h_{\alpha\beta} = \frac{1}{2\pi i} \log g_{\alpha\beta}.$$

By the definition of δ , if we set

$$z_{\alpha\beta\gamma} = h_{\beta\gamma} + h_{\gamma\alpha} + h_{\alpha\beta} = \frac{1}{2\pi i} (\log g_{\beta\gamma} + \log g_{\gamma\alpha} + \log g_{\alpha\beta}),$$

then $\{z_{\alpha\beta\gamma}\}\in Z^2(\mathcal{U},\mathbb{Z})$ is a cocycle representing $c_1(L)$.

Now choose any connection ∇ on L. In terms of the frame $e_{\alpha}(z) = \varphi_{\alpha}^{-1}(z, 1)$ on U_{α} , ∇ is given by its connection matrix, which in this case is a 1-form θ_{α} . In $U_{\alpha} \cap U_{\beta}$,

$$\theta_{\alpha} = g_{\alpha\beta}\theta_{\beta}g_{\alpha\beta}^{-1} + dg_{\alpha\beta}g_{\alpha\beta}^{-1},$$

i.e., $\theta_{\beta} - \theta_{\alpha} = -g_{\alpha\beta}^{-1} dg_{\alpha\beta} = -d(\log g_{\alpha\beta})$, and the curvature matrix is the global 2-form

$$\Theta = d\theta_{\alpha} - \theta_{\alpha} \wedge \theta_{\alpha} = d\theta_{\alpha} = d\theta_{\beta}.$$

Since Θ is given as a closed 2-form and $c_1(L)$ is given as a Čech cocycle, we must now look at the explicit form of the de Rham isomorphism. Let \mathscr{Z}_d^r be the sheaf of d-closed r-forms, then we have exact sequences of sheaves

$$0 \longrightarrow \mathbb{C} \longrightarrow \mathscr{C}^0 \longrightarrow \mathscr{Z}_d^1 \longrightarrow 0,$$
$$0 \longrightarrow \mathscr{Z}_d^1 \longrightarrow \mathscr{C}^1 \longrightarrow \mathscr{Z}_d^2 \longrightarrow 0,$$

giving us boundary isomorphisms

$$H^1(\mathscr{Z}_d^1) \xrightarrow{\delta_0} H^2(\mathbb{C})$$
 and $\frac{H^0(\mathscr{Z}_d^2)}{dH^0(\mathscr{C}^1)} \xrightarrow{\delta_1} H^1(\mathscr{Z}_d^1).$

Write Θ locally as $\{d\theta_{\alpha}\}$, we see from the definition of δ_0 that $\delta_0(\Theta) = \{\theta_{\beta} - \theta_{\alpha}\} \in Z^1(\mathscr{Z}_d^1)$. Now $\theta_{\beta} - \theta_{\alpha} = -d(\log g_{\alpha\beta})$, so

$$\delta_0(\delta_1(\Theta)) = \delta_0(\{\theta_\beta - \theta_\alpha\}) = \{-(\log g_{\beta\gamma} + \log g_{\gamma\alpha} + \log g_{\alpha\beta})\} = -2\pi i \, c_1(L).$$

To prove 2 we have to show that, for Θ a curvature matrix for the bundle [D] and for every real, closed form $\psi \in A^{2n-2}(M)$,

$$\frac{i}{2\pi} \int_M \Theta \wedge \psi = \sum_j a_j \int_{V_j} \psi.$$

We may assume that D = V is an irreducible subvariety.

First, we compute the curvature form of a metric connection on [V]. To do this, let e be a local nowhere vanishing holomorphic section of [V] and write $|e(z)|^2 = h(z)$. Then for any section $s = \lambda \cdot e$, the connection matrix $A = \theta$ for the metric connection ∇ in terms of the frame e must satisfy $\theta = \theta^{1,0}$ and

$$d(|s|^2) = \langle \nabla s, s \rangle + \langle s, \nabla s \rangle$$

$$= \langle (d\lambda + \theta\lambda)e, \lambda e \rangle + \langle \lambda e, (d\lambda + \theta\lambda)e \rangle$$

$$= h \cdot \overline{\lambda} \cdot d\lambda + h \cdot \lambda \cdot d\overline{\lambda} + h \cdot |\lambda|^2 (\theta + \overline{\theta}).$$

On the other hand,

$$d(|s|^2) = d(\lambda \cdot \overline{\lambda} \cdot h) = h \cdot \overline{\lambda} \cdot d\lambda + h \cdot \lambda \cdot d\overline{\lambda} + |\lambda|^2 \cdot dh.$$

So we have $\theta + \overline{\theta} = dh/h$, i.e., $\theta = \partial \log h = \partial \log |e|^2$, and

$$\Theta = d\theta - \theta \wedge \theta = d\theta = \overline{\partial}\partial \log |e|^2 = 2\pi i \, dd^c \log |e|^2.$$

Note that this holds for any nowhere vanishing holomorphic section e.

Now let V be given by local equation f_{α} and let s be a global section $\{f_{\alpha}\}$ of [V] vanishing exactly on V. Set

$$D(\varepsilon) = \{ z \in M \mid |s(z)| < \varepsilon \} \subseteq M.$$

For small ε , $D(\varepsilon)$ is just a tubular neighborhood around V in M, and

$$\int_{M} \Theta \wedge \psi = 2\pi i \lim_{\varepsilon \to 0} \int_{M - D(\varepsilon)} dd^{c} \log |s|^{2} \wedge \psi = -2\pi i \lim_{\varepsilon \to 0} \int_{\partial D(\varepsilon)} d^{c} \log |s|^{2} \wedge \psi$$

by Stokes' theorem and $d\psi = 0$. In $U_{\alpha} \cap D(\varepsilon)$, write

$$|s|^2 = |f_{\alpha}|^2 \cdot h_{\alpha} = f_{\alpha} \cdot \overline{f}_{\alpha} \cdot h_{\alpha}$$

with $h_{\alpha} > 0$; we have

$$d^{c} \log |s|^{2} = d^{c} \log (f_{\alpha} \cdot \overline{f}_{\alpha} \cdot h_{\alpha}) = \frac{i}{4\pi} \left(\overline{\partial} \log \overline{f}_{\alpha} - \partial \log f_{\alpha} \right) + d^{c} \log h_{\alpha}.$$

Since $d^c \log h_\alpha = d^c h_\alpha / h_\alpha$ is bounded and $\operatorname{Vol}(\partial D(\varepsilon)) \to 0$ as $\varepsilon \to 0$, we deduce that

$$\lim_{\varepsilon \to 0} \int_{\partial D(\varepsilon)} d^c \log h_\alpha \wedge \psi = 0.$$

Moreover, $\overline{\partial} \log \overline{f}_{\alpha} = \overline{\partial \log f_{\alpha}}$ and, since ψ is real, this implies

$$\int_{\partial D(\varepsilon)} \overline{\partial} \log \overline{f}_{\alpha} \wedge \psi = \overline{\int_{\partial D(\varepsilon)} \partial \log f_{\alpha} \wedge \psi}.$$

Thus in U_{α} ,

$$-2\pi i \lim_{\varepsilon \to 0} \int_{\partial D(\varepsilon)} d^c \log |s|^2 \wedge \psi = -i \lim_{\varepsilon \to 0} \operatorname{Im} \left(\int_{\partial D(\varepsilon)} \partial \log f_\alpha \wedge \psi \right).$$

Now in the neighborhood of any smooth point $z_0 \in V \cap U_\alpha$, we can find a holomorphic coordinate system $w = (w_1, \dots, w_n)$ with $w_1 = f_\alpha$. Write $\psi = \psi(w)dw' \wedge d\overline{w}' + \varphi$, where $w' = (w_2, \dots, w_n)$ and all terms of φ contain either dw_1 or $d\overline{w}_1$; then in any polydisc Δ around z_0 ,

$$\lim_{\varepsilon \to 0} \int_{\partial D(\varepsilon) \cap \Delta} \partial \log f_{\alpha} \wedge \psi = \lim_{\varepsilon \to 0} \int_{|w_{1}| = \varepsilon} \frac{dw_{1}}{w_{1}} \cdot \psi(w) \, dw' \wedge d\overline{w}'$$

$$= 2\pi i \int_{w'} \psi(0, w') \, dw' \wedge d\overline{w}'$$

$$= 2\pi i \int_{V \cap \Delta} \psi,$$

and so

$$\int_{M} \Theta \wedge \psi = -i \operatorname{Im} \left(2\pi i \int_{V} \psi \right) = -2\pi i \int_{V} \psi.$$

Examples.

1. Let M be a compact complex manifold, $V \subset M$ a smooth analytic hypersurface. The normal bundle N_V on V is the quotient line bundle

$$N_V = \frac{T_M'|_V}{T_V'}.$$

We define the conormal bundle $N_V^* \subseteq T_M^{*'}|_V$ to be the dual of N_V .

Adjunction Formula I

$$N_V^* = [-V]|_V.$$

Proof. Suppose V is given locally by functions $f_{\alpha} \in \mathcal{O}(U_{\alpha})$; the line bundle [V] on M is then given by transition functions $\{g_{\alpha\beta} = f_{\alpha}/f_{\beta}\}$. Now since $f_{\alpha} = 0$ on $V \cap U_{\alpha}$, the

differential df_{α} is a section of the conormal bundle N_V^* of V; since V is smooth, df_{α} is nowhere vanishing on V. On $U_{\alpha} \cap U_{\beta} \cap V$, moreover, we have

$$df_{\alpha} = d(g_{\alpha\beta}f_{\beta}) = dg_{\alpha\beta} \cdot f_{\beta} + g_{\alpha\beta} \cdot df_{\beta} = g_{\alpha\beta} \cdot df_{\beta},$$

i.e., the sections $df_{\alpha} \in \Gamma(U_{\alpha}, \mathcal{O}(N_{V}^{*}))$ together give a nowhere vanishing global section of $N_{V}^{*} \otimes [V]|_{V}$. Thus $N_{V}^{*} \otimes [V]|_{V}$ is the trivial line bundle, as desired.

One of the most important line bundles for a general n-dimensional complex manifold M is the canonical bundle

$$K_M = \bigwedge^n T_M^{*'}.$$

Holomorphic sections of K_M are holomorphic *n*-forms, i.e. $\mathcal{O}(K_M) = \Omega_M^n$. In general, we can compute the canonical bundle K_V of a smooth analytic hypersurface V in a manifold M in terms of K_M .

Adjunction Formula II

$$K_V = (K_M \otimes [V])|_V.$$

Proof. We have an exact sequence of vector bundles on V

$$0 \longrightarrow N_V^* \longrightarrow T_M^{*\prime}|_V \longrightarrow T_V^{*\prime} \longrightarrow 0.$$

By simple linear algebra,

$$\left(\bigwedge^n T_M^{*\prime}\right)\Big|_V \cong \bigwedge^{n-1} T_V^{*\prime} \otimes N_V^*,$$

i.e., $K_V = K_M|_V \otimes N_V$. Then the formula follows from the adjunction formula I above.

We can give the corresponding map on sections

$$\Omega^n_M(V) \xrightarrow{\text{P.R.}} \Omega^{n-1}_V$$

as follows: Considering a section ω of $\Omega_M^n(V)$ as a meromorphic n-form with a simple pole along V and holomorphic elsewhere, we write

$$\omega = \frac{g(z) dz_1 \wedge \dots \wedge dz_n}{f(z)},$$

where $z = (z_1, \ldots, z_n)$ are local coordinates on M and V is given locally by f(z). Under the isomorphism, then, ω corresponds to the form ω' such that $\omega = (df/f) \wedge \omega'$. Explicitly, $df = \sum_{j} (\partial f/\partial z_j) dz_j$, and so we can take

$$\omega' = (-1)^{j-1} \frac{g(z) dz_1 \wedge \dots \wedge \widehat{dz_j} \wedge \dots \wedge dz_n}{\partial f / \partial z_i}$$

for any j such that $\partial f/\partial z_j \neq 0$. The map

$$\frac{g(z)\,dz_1\wedge\cdots\wedge dz_n}{f(z)}\mapsto (-1)^{j-1}\left.\frac{g(z)\,dz_1\wedge\cdots\wedge\widehat{dz_j}\wedge\cdots\wedge dz_n}{\partial f/\partial z_j}\right|_{f=0}$$

is called the Poincaré residue map, denoted P.R.

Note that the kernel of the Poincaré residue map consists simply of the holomorphic n-forms on M. The exact sheaf sequence

$$0 \longrightarrow \Omega^n_M \longrightarrow \Omega^n_M(V) \xrightarrow{\mathrm{P.R.}} \Omega^{n-1}_V \longrightarrow 0$$

gives us the exact sequence

$$H^0(M, \Omega_M^n(V)) \xrightarrow{\text{P.R.}} H^0(V, \Omega_V^{n-1}) \xrightarrow{\delta} H^1(M, \Omega_M^n),$$

so the Poincaré residue map is surjective on global sections if

$$H^1(M, \Omega_M^n) = H^{n,1}(M) = 0.$$

2. By the exact cohomology sequence

$$0 = H^1(\mathbb{P}^n, \mathcal{O}) \xrightarrow{\exp} H^1(\mathbb{P}^n, \mathcal{O}^*) \xrightarrow{c_1} H^2(\mathbb{P}^n, \mathbb{Z}) \longrightarrow H^2(\mathbb{P}^n, \mathcal{O}) = 0,$$

we see that

$$\operatorname{Pic}(\mathbb{P}^n) \cong H^2(\mathbb{P}^n, \mathbb{Z}) \cong \mathbb{Z}.$$

In other words, every divisor on \mathbb{P}^n is linearly equivalent to a multiple of the hyperplane divisor $H = \mathbb{P}^{n-1} \subset \mathbb{P}^n$. The line bundle [H] associated to a hyperplane in \mathbb{P}^n is called the hyperplane bundle.

Let $\mathbb{P}^n \times \mathbb{C}^{n+1}$ be the trivial bundle of rank n+1 on \mathbb{P}^n , with all fibers identified to \mathbb{C}^{n+1} . We define the tautological line bundle to be the subbundle J of $\mathbb{P}^n \times \mathbb{C}^{n+1}$ whose fiber at each point $Z \in \mathbb{P}^n$ is the line in \mathbb{C}^{n+1} represented by Z, i.e.,

$$J_Z = \{\lambda(Z_0, \dots, Z_n) \mid \lambda \in \mathbb{C}\} \subseteq (\mathbb{P}^n \times \mathbb{C}^{n+1})_Z.$$

In fact, J = [-H]. To see this, consider the section e_0 of J over $U_0 = D(Z_0) \subset \mathbb{P}^n$ given by

$$e_0(Z) = \left(1, \frac{Z_1}{Z_0}, \dots, \frac{Z_n}{Z_0}\right).$$

 e_0 is clearly holomorphic and nonzero in U_0 and extends to a global meromorphic section of J with a pole of order 1 along the hyperplane $V(Z_0) \subset \mathbb{P}^n$. Thus $J = [(e_0)] = [-H]$.

If $M \subseteq \mathbb{P}^n$ is a submanifold of projective space, we usually call the restriction $[H]|_M$ simply the hyperplane bundle on M; by functoriality, it is the line bundle associated to a generic hyperplane section $\mathbb{P}^{n-1} \cap M$ of M.

3. We compute the canonical bundle of \mathbb{P}^n : let Z_0, \ldots, Z_n be homogeneous coordinates on \mathbb{P}^n , $w_i = Z_i/Z_0$ Euclidean coordinates on $U_0 = D(Z_0)$, and consider the meromorphic n-form

$$\omega = \frac{dw_1}{w_1} \wedge \frac{dw_2}{w_2} \wedge \dots \wedge \frac{dw_n}{w_n}.$$

 ω is clearly nonzero in U_0 with a single pole along each hyperplane $V(Z_i)$, $i=1,\ldots,n$. Now if $w_i'=Z_i/Z_j$, $i=0,\ldots,\widehat{j},\ldots,n$ are Euclidean coordinates on $U_j=D(Z_j)$, then

$$w_i = \frac{w'_i}{w'_0}, \ i \neq j; \quad w_j = \frac{1}{w'_0},$$

which gives

$$\frac{dw_i}{w_i} = \frac{dw'_i}{w'_i} - \frac{dw'_0}{w'_0}, \ i \neq j; \quad \frac{dw_j}{w_j} = -\frac{dw'_0}{w'_0}$$

and so in terms of w_i' ,

$$\omega = (-1)^j \frac{dw_0'}{w_0'} \wedge \dots \wedge \widehat{\frac{dw_j'}{w_j'}} \wedge \dots \wedge \frac{dw_n'}{w_n'}.$$

Thus we see that ω has likewise a single pole along the hyperplane $D(Z_0)$, and consequently

$$K_{\mathbb{P}^n} = [(\omega)] = [-(n+1)H].$$