which implies A72*77(P") = 0 and hence hZP(P") = 1. Thus HZ"(P") = C. |

Note in particular that there are no nonzero global holomorphic forms on P".

1.4 The Lefschetz Decomposition

sly is the Lie algebra of SLs; it is realized as the vector space of 2 x 2 complex matrices

with trace 0, and with the bracket [A, B] = AB — BA. We take as standard generators

with the relations

[z,y] = h, [h,z] =2z, [h,y] = —2y.

The irreducible (finite-dimensional) sl;-modules are indexed by nonnegative integers

n; for each such n the corresponding sly-module V' (n) has dimension n + 1. Explicitly,
V(”) = Vn D Vn—2 BB V—n+2 D V—n‘

The eigenvalues of h acting on V(n) are n,n — 2,...,—n + 2, —n, each appearing with
multiplicity 1.

For any (finite-dimensional) sly-module V' (with p : sly — gl(V)), not necessarily
irreducible, we define the Lefschetz decomposition of V' as follows: let PV = ker p(x);
then

V =PVoOyPVoyPVES---,

and this decomposition is compatible with the decomposition of V into eigenspaces V,,

for h since yPV(n) = V,,_g,. We also see that the maps
Vo, Y5V, and Vo, 25V,
are isomorphisms. Finally, in general,

kerz NV, = ker (ykJrl Ve — V_k_g) .

We return now to our compact complex manifold M with Kéhler metric

ds? = Z% ®P;.

J
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First, we want to compute the commutator [L, A] on C". Recall that

By our commutation relations
erly + iger, = exly + 1y, = 205, and [ek, ig] = [Ek, Z‘g} =0,

we have then

=
=
[

R

g @kékzﬂé_g geieekék)

k0 k0

(25kz(€kiz — igex) — (exigrio — Zfekifék»

-
~

I
N e
- =[]

1

_ _ 1 _
(6k'ik — ikék) = 5 %:(2 — e — ikék) =n— 5 ;(Zkek + ikék).

Note that izer(dzy A dZg) is zero if k € J, and 2dz; A dzZx otherwise; iex(dzy A dZg) is
zero if k € K, and 2dz; A\ dZk if not. Thus
Z(zkek + ;kék)(dZJ VAN dZK) =2 Z dZ] A de + 2 Z dZJ A de
k k¢J kK

:2(2n—|J|—|K|)dzJ/\dEK

and so on APY(C"), [L,A] = p+ ¢ —n. Since L and A are both algebraic operators, this
identity will hold on any Ké&hler manifold.

Theorem (Hard Lefschetz Theorem). The map LF : H" *(M) — H"™(M) is an iso-

morphism, and if we define the primitive cohomology

ker (L") =kerA N H"(M), ifr<n,
Pr(M) =

0, else,

then we have

H™(M) = @ LFP2* (M),

£>0
called the Lefschetz decomposition.
Proof. Set
2n
h = Z(n —r)r’;
r=0



since L : A"(M) — A™"*(M) and A : A"(M) — A""2(M), we obtain

The operators L, A, and h all commute with Ay, and so act on the harmonic space
H;(M) = H*(M) with relations (©). We may therefore give a representation of sly on
H*(M) by sending
0 1 00 1 0
— A, — L, — h;
00 10 0 —1
the eigenspace for h with eigenvalue (n — r) will be H"(M). Applying the results on

finite-dimensional representations of sly to this representation we get the results. [

Note that the Lefschetz decomposition is compatible with the Hodge decomposition,
ie., if we set PPY(M) =ker A N HP(M), then

Pr(M)= @ P(M).

pta=r
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2 Divisors and Line Bundles

Let M be a compact complex manifold of dimension n. We know that the Picard group

Pic(M) = H'(M, O*) is the set of line bundles on M. The exact sequence of sheaves

exp

0—Z—0—=0"—0

gives a boundary map in cohomology
Pic(M) = H' (M, 0*) = H2(M, 7).

Definition. For a line bundle L, we define the first Chern class ¢1(L) of L (or simply
Chern class) to be §(L) € H*(M,Z); for D a divisor on M, we define the Chern class of
D to be ¢1([D]).

We sometimes write ¢;(L) € Hiz(M) for the image of ¢;(L) under the natural map
H*(M,Z) — Hig(M).

Let E — M be a vector bundle of rank k£ and V a connection on F, the curvature
operator is V2. Locally, if ¢, is trivialization of E over U,, then V is represented by
d+ A, where A is a k x k matrix of 1-forms, and V? is represented by ©, = dA — AA A,

which is a £ x k matrix of 2-forms. If ¢z is another trivialization, we have

B0 = Yop @,3 g;,éa

where go5 : UyNUg — GLj, is the transition function relative to ¢, and ¢g. In particular,
if F is a line bundle, since GL; = C* is commutative, © = O, = O3 is a closed, globally

defined differential form of degree 2, called the curvature form of E.

Definition. For any analytic subvariety V' C M of dimension k, we define the funda-

mental class [V] € Hop (M, R) to be the linear functional

H3E(M) — R

90'_>/§0
v

we denote its Poincaré dual by ny,. In particular, we take the fundamental class of a divisor

D = Z a;V; on M to be Z a;[V;], we denote its Poincaré dual by np = Z a;ny;.
J J ]

J
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Proposition. For any line bundle L with curvature form ©,

1. ¢(L) = [QL@} € Hiz(M).

™

2. If L = [D] for some D € Div(M), ¢;(L) = np € Hig(M).

Proof. Let ¢, be trivializations and let g,g be transition functions relative to a cover

U ={U,} of M. We may assume the open sets U, are simply connected and set

1
hap = =108 gus-
B o 08 Jap

By the definition of 4, if we set

Zapy = hpy + hya + hapg = log g5 + 108 gya + 108 gup),

gl

then {2,5,} € Z*(U,Z) is a cocycle representing c;(L).
Now choose any connection V on L. In terms of the frame e,(z) = ¢, (2,1) on U,,

V is given by its connection matrix, which in this case is a 1-form 6,. In U, N Us,
O = 9ap¥8905 + A9as Gup
ie., 03 —0, = —g;édgag = —d(log go), and the curvature matrix is the global 2-form
©=dby,—0, N0, =db, =dbjs.

Since © is given as a closed 2-form and ¢;(L) is given as a Cech cocycle, we must now
look at the explicit form of the de Rham isomorphism. Let 2 be the sheaf of d-closed

r-forms, then we have exact sequences of sheaves

0—C—%" — 2 —0,

0— Z — € — 27 —0,

giving us boundary isomorphisms

HO(27)

g 1 1

oY (2} 2% HX(C) and

Write © locally as {df,}, we see from the definition of dy that dy(0) = {05—0,} € Z'(Z}).
Now 05 — 0, = —d(log gus), SO

30(01(0)) = do({ — ba}) = {—(10g ggy + 108 gya + 108 gap)} = —2mi c1(L).
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To prove 2 we have to show that, for © a curvature matrix for the bundle [D] and for

every real, closed form ¢ € A*"*(M),
l
— [ ONY = a~/ .
2 Ju 2.0},

We may assume that D =V is an irreducible subvariety.

First, we compute the curvature form of a metric connection on [V]. To do this, let e
be a local nowhere vanishing holomorphic section of [V] and write |e(z)|* = h(z). Then
for any section s = X - e, the connection matrix A = # for the metric connection V in

terms of the frame e must satisfy = #'° and

d(|s|*) = (Vs,s) + (s, Vs)
= ((dA+0XN)e, Xe) + (Xe, (AN + 6N )e)
=h-XN-d\+h-X-d\+h-|\*0+0).

On the other hand,
d(|s|]*) =d(X-X-h) =h-X-d\+h-X-d\+ |\?*-dh.
So we have 0 +60 = dh/h, i.e., § = Ologh = dlog|e|?, and
O =df)—0N0=df=00logle|* = 2mi dd®log |e|*.

Note that this holds for any nowhere vanishing holomorphic section e.
Now let V' be given by local equation f, and let s be a global section {f,} of [V]

vanishing exactly on V. Set
D(e)={ze M| |s(z)| <e} C M.
For small €, D(e) is just a tubular neighborhood around V' in M, and

/ O A = 2mi lim dd®log|s|* Ay = —2mi lim/ d°log |s[> Ay
M c e—0 8D(E)

0 JM—D(e)

by Stokes’ theorem and dip = 0. In U, N D(e), write
s> = fal®  ha = fa - o ha
with h, > 0; we have
dlog |s|* = d°1og(fa - fu - ha) = ﬁ (Elogfa — dlog fa) + d°log hg,.
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Since d°log hy = d°hy /b, is bounded and Vol(0D(eg)) — 0 as € — 0, we deduce that

lim d°logh, AN = 0.
e—0 8D(E)

Moreover, 0log f,, = dlog f, and, since 1) is real, this implies

/ Olog f, AN = dlog fo N.
0D(e) 0D(e)

Thus in U,,

e—0

—2mi lim d°log|s|?* A = —ilim Im (/ dlog fo N 77/}) .
dD(e) e—0 aD(e)

Now in the neighborhood of any smooth point zy € V NU,, we can find a holomorphic

coordinate system w = (wy, ..., w,) with w; = f,. Write ) = ¥(w)dw’ A dw’ + ¢, where

w' = (wy,...,w,) and all terms of ¢ contain either dw; or dw;; then in any polydisc A
around z,

. . dwl / —

lim dlog fo A p = lim — - (w) dw' A dw

€20 Jap(e)na €0 Jjwy|=e W1

=2mi [ ¥(0,w") dw' A dw’

’Ll),

= 2m Y,
VA

/M@Mz):—umem/vw):—m/vw |

and so

Examples.

1. Let M be a compact complex manifold, V' C M a smooth analytic hypersurface. The

normal bundle Ny on V is the quotient line bundle

Tyl
Ny = MV

We define the conormal bundle Ny, C T3,/

v to be the dual of Ny .

Adjunction Formula I

Proof. Suppose V' is given locally by functions f, € O(U,); the line bundle [V] on M
is then given by transition functions {gas = fa/fs}. Now since f, = 0 on V N U,, the
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differential df,, is a section of the conormal bundle Ny, of V; since V' is smooth, df, is

nowhere vanishing on V. On U, N Ug NV, moreover, we have

dfo = d(gapfs) = dgas - f5 + Gop  dfs = gap - df s,

i.e., the sections df, € I'(U,, O(Ny,)) together give a nowhere vanishing global section of
Ny @ [V]|v. Thus Ny ® [V]|y is the trivial line bundle, as desired. |

One of the most important line bundles for a general n-dimensional complex manifold

M is the canonical bundle
K= N\"Ty
Holomorphic sections of K, are holomorphic n-forms, i.e. O(Ky) = QY. In general, we

can compute the canonical bundle Ky of a smooth analytic hypersurface V' in a manifold

M in terms of K.

Adjunction Formula II

Ky = (Knu @ [V])ly
Proof. We have an exact sequence of vector bundles on V

0— Ny — Ty/

, — Iy —0.
By simple linear algebra,
(A Ti)

i.e., Ky = Kp|y®Ny. Then the formula follows from the adjunction formula I above. W

v /\n_lT{;/ ® Ny,

We can give the corresponding map on sections
Py(V) == oyt

as follows: Considering a section w of Q};(V) as a meromorphic n-form with a simple

pole along V' and holomorphic elsewhere, we write

g(z)dzy N+ Ndzy
w = Y

f(2)

where z = (z1,..., 2,) are local coordinates on M and V is given locally by f(z). Under

the isomorphism, then, w corresponds to the form ' such that w = (df /f) Aw'. Explicitly,
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df = Z(af/azj) dzj, and so we can take

J

j_lg(z)dzl/\.../\gz\j/\.../\dzn

W=(=1) af/0z;

for any j such that 0f/0z; # 0. The map

g(2)dzy A ANdz, o (—1)i1 g(z)dzl/\.../\gz;/\.../\dzn
f(2) 0f /0

f=0
is called the Poincaré residue map, denoted P.R.
Note that the kernel of the Poincaré residue map consists simply of the holomorphic

n-forms on M. The exact sheaf sequence
n n P.R. n—1
0— Qy — Qy (V) —= Q7 —0

gives us the exact sequence

P.R.

HOM, (V) 255 mO(v, ) -2 HY (M, Q7)),
so the Poincaré residue map is surjective on global sections if

H' (M, Q1) = H™' (M) = 0.

2. By the exact cohomology sequence
0= H'P", 0) 25 g'(P*, 0%) % H*(P",Z) — H*(P",0) =0,
we see that
Pic(P") = H*(P",Z) = Z.

In other words, every divisor on P" is linearly equivalent to a multiple of the hyperplane
divisor H = P"~! € P". The line bundle [H] associated to a hyperplane in P" is called
the hyperplane bundle.

Let P" x C"™! be the trivial bundle of rank n + 1 on P", with all fibers identified to
C™'. We define the tautological line bundle to be the subbundle J of P x C"*! whose

fiber at each point Z € P" is the line in C"™ represented by Z, i.c.,

Jz ={\MZ,...,Z,) | A€ C} C (P" x C"™)3.
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In fact, J = [-H]|. To see this, consider the section ey of J over Uy = D(Z,) C P"

given by
Z1 Z,

= (15,2,

eg is clearly holomorphic and nonzero in Uy and extends to a global meromorphic section
of J with a pole of order 1 along the hyperplane V(Z,) C P". Thus J = [(eg)] = [~ H].

If M CP"is a submanifold of projective space, we usually call the restriction [H]|,,
simply the hyperplane bundle on M; by functoriality, it is the line bundle associated to a
generic hyperplane section P! N M of M.

3. We compute the canonical bundle of P": let Z, ..., Z, be homogeneous coordinates

on P" w; = Z;/Zy Euclidean coordinates on Uy = D(Z), and consider the meromorphic

n-form
dw;  dws dw,,
=— A—A---A
w1 W2 Wn,
w is clearly nonzero in Uy with a single pole along each hyperplane V(Z;), i = 1,...,n.

Now if w}; = Z;/Z;,1=0,... .7....,n are Euclidean coordinates on U; = D(Z;), then

/
w; 1
— ? y . —
wi__/7z%]7 Wi = —,
which gives
dw;, dw, dw, .,  dw; dwy,
. = / - /0 7 # .]) . = - Vi
w; w,  w) w; wy
and so in terms of wy,
—_—
- dwy dw; dw!
w= (-1 =LA A—L A AL
Wy 7 n

Thus we see that w has likewise a single pole along the hyperplane D(Zj), and conse-

quently
Ken = [(@)] = [ (n + D H].
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