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Exercise 0 (by Kuan-Wen).

This is an example of proof.

Remark. This is an example for how to write in this format.

1 Geometry on a Surface
Exercise 1 (by Shi-Xin).

By Riemann-Roch theorem on surface, we have χ(L−1) = 1
2
C.(C +K) + χ(OX), χ(M−1) = 1

2
D.(D +

K) + χ(OX) and χ((L ⊗M)−1) = 1
2
(C +D).(C +D +K) + χ(OX). Thus,

C.D = χ(OX)− (χ(L−1) + χ(M−1))− χ((L ⊗M)−1)

Exercise 2 (by Chi-Kang).

We have

1

2
az2 + bz + c = P (z) = χ(O(zH)) = (

1

2
H2)z2 − (

1

2
H.K)z + (1 + pa).

So we have a = H2, b = −1
2
H.K, c = 1 + pa, and by adjunction formula H.K + H2 = 2π − 2, thus

b = −1
2
H.K = 1

2
H2 + 1− π.

Let C be a curve in X, H be a hyperplane, and D := H|C , then we have PC(z) = χ(zD) = (H.C)z +
1− g(C), hence degC=H.C.

Exercise 3 (by Tzu-Yang Tsai).

(a) Consider the exact sequence

0 −→ L(−D) −→ OY −→ OD −→ 0
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Then take Euler symbol, by Riemann-Roch theorem we get

χ(OD) = χ(OX)− χ(L(−D)) = 1 + pa(X)− (
1

2
D.(D +K) + 1 + pa(X) = −1

2
D.(D +K)

Thus 2pa(D)− 2 = −2χ(OD) = D.(D +K)

(b) Since RHS of (a) is the sum of intersections, which only depends on the linear equivalence class of D,
pa(D) also only depends on the linear equivalence class of D.

(c) pa(D) + pa(−D) = 1
2
D.(D +K) + 1

2
D.(D −K) + 2 = D2 + 2

⇒ pa(−D) = D2 + 2− pa(D)
pa(C +D) = 1

2
(C +D).(C +D +K) + 1 = 1

2
C.(C +K) + 1

2
D.(D +K) + 2 + C.D − 1

= pa(C) + pa(D) + C.D − 1

Exercise 4 (by Yi-Tsung Wang).

(a) Note that ωX ∼= OX (d− 4), we may writeK ∼ (d− 4) for some hyperplaneH, then C.H = degC = 1.
By adjunction formula, C2 = 2g (C)− 2− C.K = 2− d.

(b) For d = 1, consider X : x+ y = 0. Clearly X is a nonsingular surface of degree 1 containing x = y = 0.
For d ≥ 2, consider X : xd−1z + xzd−1 + yd−1w + ywd−1 = 0, which is a surface of degree d containing
x = y = 0. Note that the system 

(d− 1)xd−2z + zd−1 = 0
(d− 1) yd−2w + wd−1 = 0
xd−1 + (d− 1)xzd−2 = 0
yd−1 + (d− 1) ywd−2 = 0

has only a solution (0, 0, 0, 0) /∈ P3. Therefore X is nonsingular.

Exercise 5 (by Ping-Hsun Chuang).

(a) Since X is a surface of degree d in P3, we have KX = (d− 4)H. Then, K2 = (d− 4)2H2. Also, using
the exercise V.1.2, we have H2 = d. Thus, K2

X = d (d− 4)2.

(b) By the exercise II.8.3, we have KX = p∗1KC + p∗2KC′ , where
X = C × C ′

C C ′
p1 p2 are projection.

Since degKC = 2g − 2, we have p∗1KC = (2g − 2) ({pt} × C ′) = (2g − 2)C ′. Similarly, we have
p∗2KC′ = (2g′ − 2)C. Also, we know that C2 = 0, C ′2 = 0, and C.C ′ = 1. Thus, we have

(KX)2 = (p∗1KC + p∗2KC′)
2 = (2g − 2)2C ′2+2 (2g − 2) (2g′ − 2)C.C ′+(2g′ − 2)

2
C2 = 8 (g − 1) (g′ − 1) .

Exercise 6 (by Tzu-Yang Chou).
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(a) Let p, q be projections from C × C to its two factors respectively. Note that (C × {pt}) ·∆ = 1 =
({pt} × C) ·∆. We know ∆ ' C, so degK∆ = degKC = 2g − 2
On the other hand, adjunction formula says that degK∆ = (KX + ∆) ·∆ = (p∗KC + q∗KC) ·∆ + ∆2 =
∆2 + 4g − 4 and hence ∆2 = 2− 2g.

(b) If al + bm+ c∆ = 0, we intersect it with l,m and ∆ respectively and we obtain a = b = c = 0.

Exercise 9 (by Yu-Ting Huang).

(a) Let D′ = H2D − (H.D)H. D′.H = 0 If D′ ≡ 0, D′.D = 0, then the equality holds. Otherwise,
if D′ 6≡ 0, by Hodge Index Theorem, we have 0 > (D′)2 = H4D2 − 2H2(H.D)2 + (H.D)2H2. i.e.
(D2)(H2) < (D.H)2. Now we can conclude that (D2)(H2) ≤ (D.H)2.

(b) Let H = l +m. H is ample, since every curve on X intersects H, and H2 = l2 + 2l.m+m2 = 2 > 0.
Let E = l −m and D′ = (H2)(E2)D − (E2)(D.H)H − (H2)(D.E)E. Then E2 = −2 and H.E = 0.
By (a), 2(16D2 − 32ab) = (D′)2(H2) ≤ (D.H)2 = 0. Therefore, D2 ≤ 2ab. And also by (a), the
equality hold if and only if 0 ≡ D′ = −4D + 2(a+ b)(l +m)− 2(a− b)(l −m). i.e. D ≡ bl + am.

Exercise 10 (by Yu–Chi Hou).

Let C be curve of genus g defined over k = Fq, let C(Fq) := C ×Spec(k Spec(Fq) be the Fq−rational points
of C, and let N := #C(Fq) be the number of Fq−rational points. Consider the k−linear Frobenius
morphism f : Cq → C, which Cq ∼= C as schemes. Recall that f : Cq → C corresponds to the extension
K(C) ⊂ K(C)1/q and thus f is a finite morphism of degree q. From now on, we identify Cq as C.

On X := C × C, let Γ ⊂ X be the graph of f and ∆ ⊂ X be the diagonal. It is obvious that each
closed point of Γ ∩∆ is one–to–one corresponding to fixed point of f . Also, f# : OC,P → OC,P induces
field homomorphism k(P ) → k(P ) given by x̄ → x̄q. If P is a fixed point of f , then x̄q = x̄ and thus
x̄ ∈ Fq. Therefore, k(P ) = Fq and P is a Fq–rational point. Conversely, if P is a Fq–rational point, say
φ : Spec(Fq)→ X with φ({0}) = P , then k(P ) ⊆ Fq and thus P is a fixed point of f .

Thus, Γ.∆ is the number of fixed point of f , counted multiplicities. However, C is non–singular and f
is purely inseparable morphism, we claim that:

Claim. The scheme intersection Γ ∩∆ ⊂ X is reduced. That is, Γ and ∆ intersect transversally.

Proof. Let (P, P ) ∈ Γ ∩ ∆ be a closed point, ∆ has local equation (x − y) in OX,(P,P ), where x is the
local parameter of OC,P of the first coordinate, y is the local paramter of OC,P of the second coordinate.
On the other hand, Γ has local equation xq − y in OX,(P,P ). Thus, the local multiplicities (Γ.∆)(P,P ) =
length(OC,P/(xq − x). Let x̄ be the image of x in k(P ). Since P is a fixed point and hence x̄q − x̄ = 0 has
no multiple roots. We find that each (Γ.∆)(P,P ) = 1 and hence #(Γ ∩∆) = Γ.∆

Therefore, Γ.∆ = N . Let l = {pt}×C and m := C×{pt}. From Ex.V.1.6, we know that l.∆ = m.∆ = 1
and ∆2 = 2− 2g. Similarly, Γ.l = 1 and Γ.m = deg(f) = q. Also, Γ ∼= C and hence adjunction formula
gives

2g − 2 = Γ(Γ +KX) = Γ2 + Γ.KX ,
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and Ex.V.1.5 shows that KX = (2g − 2)(l +m). Hence, Γ2 = (2g − 2)q. Now, for any r, s ∈ Z, we consider
D := rΓ + s∆ and

a := D.l = rΓ.l + s∆.l = r + s.

b := D.m = rΓ.m+ s∆.m = rq + s.

Hence, Castelnuovo–Severi inequality (Ex.V.1.9 (b)) shows that D2 ≤ 2ab. Thus, one has

D2 = r2Γ2 + 2rsΓ.∆ + s2∆2 = r2q + 2rsN + s2(2− 2g) ≤ 2(rq + s)(r + s).

Therefore, we have qgr2 − (N − (q + 1))rs+ gs2 ≥ 0. Since the inequality works for any r, s, we must have
(N − (q + 1))2 − 4qg2 ≥ 0 and thus |N − (q + 1)| ≤ 2g

√
q.

Exercise 11 (by Shuang-Yen Lee).

(a) Let E = NumX ⊗Z R, then the bilinear pairing Num× Num→ Z induces a bilinear form on E. By
Hodge Index Theorem, we can choose a basis {h, e1, . . . , er} such that the bilinear form is represented
by diag(1,−1, . . . ,−1), where h = H/

√
H2. If C ≡ c0h+ cie

i is an irreducible curve, then

c0 = 〈h,C〉 =
1√
H2
〈H,C〉 ≥ 1√

H2
.

Let K ≡ k0h+ kie
i, by adjunction formula, C.(C +K) = 2pa(C)− 2, so

c0(c0 + k0)−
∑
i

ci(ci + ki) = 2pa(C)− 2 ≥ −2

which implies

c2
0 +

∑
i

c2
i ≤ c2

0 + c0k0 + 2 +
1

2
k2

0 ≤ Ac2
0,

where A =
√
H2|k0|+H2(2 +

∑
i k

2
i /2) is a constant. Consider the set

S = {
∑
i

aiCi | Ci irred, ai ≥ 0} ⊆ E,

it’s a cone in E. For any ~v ∈ S, we have
∑

i v
2
i ≤ Av2

0. So

S ⊆ {~v ∈ E |
∑
i

v2
i ≤ Av2

0, v0 ≥ 0}.

Let Dd = {D | D ≥ 0 and H.D = d}/ ∼, then

Dd ⊆ S ∩ ({d
√
H2h} × 〈e1, . . . , er〉R) ⊆ {~v ∈ E |

∑
i

v2
i ≤ A(d

√
H2)2, v0 = d

√
H2}

So #Dd <∞.
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(b) If Γ ≡ ∆, then Γ.∆ = ∆2 = 2− 2g < 0, this means Γ = ∆. Let H = C × {pt}+ {pt} × C = `+m,
then H is ample, and Γ.H = 2 for each Γ since σ ∈ Aut(C). This means the number of Γ is finite by
(a).

Exercise 12 (by Pei-Hsuan Chang).

By Nakai Moishezon criterion, ampleness is only depend on the numerical equivalence class.
To give a example to explain that very ampleness is not a numerical equivalence invariant. We first

consider on a nonsingular genus g curve C, with g > 2. Take a divisor on C with degree 2g,then `(D) = g+1
and ∀P,Q ∈ C, `(D − P −Q) = g − 1 + `(K −D + P +Q) by Riemann-Roch theorem on curve. Thus, D
is very ample ⇔ D is not of the form K + P + Q for some P,Q ∈ C. So we can take D = K + P + Q,
then D is not very ample. Notice that the set {K + P +Q | P,Q ∈ C} has dimension at most 2 < g + 1.
Thus, ∃D′ ∈ |D| which is very ample. Also, D′ ∼ D ⇒ D′ ≡ D. Finally, let X = C × P1, D̃ = D× P1, and
D̃′ = D′ × P1. Then D̃ ≡ D̃′ but D̃′ is very ample, and D̃ is not.

2 Ruled Surfaces
Exercise 1 (by Shuang-Yen Lee).

It suffices to show that if C × P1 is birationally equivalent to C ′ × P1, then C ∼= C ′.
Let f : C × P1 99K C ′ × P1 and g be its inverse. If both C and C ′ are P1 then we are done, so we

may assume that C ′ is not P1. For any x ∈ C, consider the image of f({x} × P1) ⊆ C ′ × P1 → C ′. Note
that there are only finitely many x such that the image is empty. So for almost all x, there’s a morphism
P1 → C ′ by extension theorem. Since C ′ 6= P1, the map is constant, let it be f̃(x) ∈ C ′, then we have
a map C → C ′ by x 7→ f̃(x) by extension theorem. It is a morphism since it coincides with the map
C × {pt} ⊆ C × P1 99K C ′ × P1 → C ′.

If C 6= P1, similarly we have a map g̃ : C ′ → C. Since f and g are inverse to each other, so is f̃ and g̃,
hence C ∼= C ′.

If C = P1, then f̃ is a constant, which means f is a constant, a contradiction.

Exercise 2 (by Yu–Chi Hou).

(⇒): If E is decomposable, then say E = L1

⊕
L2. Then the surjections E → Li → 0 corresponds to

σi : C → X with Ci = σi(C), for i = 1, 2. Therefore,

0→ L1 → E → L2 → 0 and L1 = ker(E → L2).

Now, π∗σ∗1OX(1) = π∗L1 = Ox(1)⊗OX(−C2) and hence

OX(1)|C1 = π∗σ∗1OX(1)|C1 = OX(1)|C1 ⊗OX(−C2)|C1 ⇒ OX(−C2)|C1
∼= OC1 .

Therefore, degC1
(OX(C2)|C1) = C1.C2 = 0. Since C1, C2 are irreducible non–singular curve in X,

C1.C2 = 0⇒ C1 ∩ C2 = 0.
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(⇐): If there exists σi : C → X with Ci = σi(C) ⊂ X, for i = 1, 2, and C1 ∩ C2 = ∅. This corresponds
to surjections E → Li → 0 and Ni := ker(E → Li), for i = 1, 2. From Proposition V.2.6, we know
that π∗Ni ∼= OX(1) ⊗ OX(−Ci), for i = 1, 2. Now, consider N1

⊕
N2 → E → F → 0, where F :=

coker(N1

⊕
N2 → E ). Thus, after applying π∗ to the exact sequence,

2⊕
i=1

OX(1)⊗OX(−Ci)
ψ−→ OX(1)→ π∗F → 0.

Notice that it suffices to prove that
⊕2

i=1OX(−Ci)
φ−→ OX is surjective, then after twisting OX(1) shows

that ψ is surjectve and hence π∗F = 0. Since π is surjective onto a non–singular curve, π is a flat morphism.
Moreover, π∗ : CohC → CohX is an faithful functor, for one can check locally on affine chart and the fact
that a local homomorphism is flat if and only if it is faithfully flat (cf. Matsumura, Commutative Ring
theory, p.48). Therefore, π∗F = 0 implies F = 0. Now, both sides are locally free sheaves of rank 2 and
N1 ⊕N2 → E is surjective, E ∼= N1 ⊕N2.

Now, at each point x ∈ X, if x /∈ C1 ∪ C2, then (OX(−Ci))x = OX,x, for both i = 1, 2. Therefore, φx is
obviously surjective in this case. For x ∈ C1, let f1 be local equation of C1 at x, then (OX(−C1))x = f1OX,x ⊂
OX,x. Since C1 ∩ C2 = 0, (OX(−C2))x = OX,x. Thus, for a ∈ OX,x, we can take a ∈ (OX(−C2))x = OX,x,
0 ∈ (f1), then ψx(0, a) = 0 + a = a. Similar for x ∈ C2, we shows that φx is surjective, for any x ∈ X and
thus φ is surjective.

Exercise 3 (by Yu-Chi Hou).

(a) Given a locally free sheaf of rank r on a curve C. We take n� 0 such that E∨(n) is generated by
global section. Then exercise II.8.2 shows that there exists OC → E∨(n) such that

0→ OC → E∨(n)→ E ′ → 0

with E ′ is locally free. Equivalently,

0→ (E ′)∨(n)→ E → OC(n)→ 0.

Then let Er−1 = (E ′)∨(n) ⊂ E be the locally free subsheaf and E/Er−1
∼= OC(n). We then proceed by

induction on rank r.

(b) Suppose Ω1
P2 is extension of invertible sheaves. That is,

0→ OP2(n)→ Ω1
P2 → OP2(m)→ 0.

Then the long exact sequence of cohomology of above short exact seqeunce gives

· · · → H1(P2,OP2(n))→ H1(P2,Ω1
P2)→ H1(P2,OP2(m)→ · · · · · ·

Since H1(P2,OP2(n)) = H1(P2,OP2(m)) = 0 and hence H1(P2,Ω1
P2) = 0. On the other hand, consider

Euler sequence
0→ Ω1

P2 → OP2(−1)⊕3 → OP2 → 0,
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and from the long exact of cohomology of it, we have

H0(P2,Ω1
P2) = H2(P2,Ω1

P2) = 0; H1(P2,Ω1
P2) ∼= k.

This gives the contradction.

Exercise 4 (by Pei-Hsuan Chang).

To shows is even: let D ≡ C0 + bf be a section, then D2 = C2
0 + 2bC0.f + b2f 2 = −e + 2b. Example V.

2.11.1 says that e = 0, so D2 = 2b is even.

(a) By computation above, just choose D = C0, then D2 = 0.

For r ≥ g + 1, by exercise IV. 6.8, there excist a divisor E of degree r such that |E| is base point free.
Thus, we have a morphism C → P1, and the graph of it is a section in X correspond to D = C0 +Ef .

(b) if there exist D = C0 + Ef such that D2 = 2 · 1 = 2, then it induce a degree 1 morphism C → P1,
but g(C) = 3 →←. So r = 1 is impossible.

If C is hyperelliptic, then ∃!g1
2 which induce a morphism C → P1 of degree 2⇒ r = 2 is possible. Now,

suppose there is a morphism C → P1 of degree 3 , then there exists a effective divisor D of degree
3. By Riemann-Roch theorem, `(D) = 3 + 1− 3 + `(K −D)⇒ D is special. By Clifferd’s theorem,
dim |D| ≤ 1

2
degD = 3

2
⇒ 2 ≤ `(D) ≤ 5

2
⇒ `(D) = 2. Notice that D + (K −D) = K = g1

2 + g1
2, so

we can assume D = P1 + P2 + P3, K −D = P4, then D must contain a g1
2. But dim |D − P3| = 1 =

`(D)− 1 = dim |D| ⇒ D is not base point free, which is a contradiction. Hence, r = 3 is impossible
in hyperelliptic case.

If C is nonhyperelliptic, then there is no degree 2 morphism C → P1, so r = 2 is impossible in this
case. On the other hand, consider KC − P . It is base point free since KC is very ample, and

dim |KC − P | = dim |KC | − 1 = (g − 1)− 1 = 3− 1− 1 = 1.

(The first equality follows form |KC − P | is base point free.) So r = 3 is possible in this case.

Exercise 6 (by Yu-Ting Huang).

We shall prove by induction. The case rank 1 is trivial. Assume that the statement holds for rank r− 1.
Let E be a locally free sheaf of rank r. When n >> 0, H0(P1, E(−n)) = 0. Let k be the largest number
such that E(−k) does not vanish. Then we have a morphism induced by section: 0 −→ OP −→ E(−k).
Twisting by 1, 0 −→ O(k) −→ E −→ coker(O(k) −→ E) −→ 0. By exercise II.8.2, F = coker(O(k) −→ E)

is a locally free sheaf of rank r− 1. By the induction hypothesis, we may assume that F =
r−1⊕
i=1

O(fi). Next,

twist the previous exact sequence by (−k − 1), then obtain

0 −→ O(−1) −→ E(−k − 1) −→
r−1⊕
i=1

O(fi − k − 1) −→ 0.
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Take their global section, since H1(P1,O(−1)) = 0, for every i, H0(P1, E(−k−1)) −→ H0(P1,O(fi−k−1))
is surjective. However, H0(P1, E(−k − 1)) = 0, so H0(P1,O(fi − k − 1)) = 0. i.e. fi ≤ k.
Now,

Ext1(F ,O(k)) =
r−1⊕
i=1

Ext1(O(fi),O(k)) =
r−1⊕
i=1

H1(P1,O(k − fi)) =
r−1⊕
i=1

H0(P1,O(−k + fi − 2)) = 0.

Thus, the sequence 0 −→ O(k) −→ E −→ F −→ 0 splits, then E = F ⊕O(k).

Exercise 7 (by Po-Sheng Wu).

Let the elliptic ruled surface be given by the unique indecomposable extension 0→ O → E → O(P )→
0, P ∈ C. If D2 = 1 for some section D, then by Prop 2.9., D ∼ C0 + (d − P )f for some divisor d
on C, so D2 = C2

0 + 2deg(d − P ) ⇒ deg(d) = 1, so d is equivalent to some Q ∈ C. Conversely, given
Q ∈ C, we want to construct a section DQ such that D ∼ C0 + (Q− P )f . By Prop 2.9., this is equivalent
to finding a surjection E → O(Q) → 0. But in the proof of Thm 2.15., we have already constructed
0→ O → E ′ ∼= E ⊗O(R−P )→ O(Q)→ 0, where 2R ∼ P +Q, then by tensoring O(R−P ), and replacing
Q,R with 2Q − P,Q, then we obtain 0 → O(Q − P ) → E → O(Q) → 0, and this gives us such section.
The section is unique due to the uniqueness of the extension E ′, and DQ are not equivalent to each others.

Exercise 8 (by Tzu-Yang Chou).

(a) Decompose E as F ⊕ G and consider the short exact sequences: 0 −→ F −→ E −→ G −→ 0 and
0 −→ G −→ E −→ F −→ 0. Looking at the slopes we see that E can not be stable.

(b) "⇒" Consider 0 −→ OC −→ E −→ L −→ 0 and hence µ(E ) > µ(OC) = 0. So deg E > 0. The
semistable case is totally the same.
"⇐" Assume that E is normalized and deg E > 0. If E is unstable, say ∃F ⊆ E : an invertible
subsheaf such that µ(F ) ≥ µE , that is deg F ≥ deg E

2
> 0. The map 0 −→ F −→ E gives

0 −→ O −→ E ⊗F−1 but H0(E ⊗F−1) = 0 by the normalized assumption.

(c) This is just the proof of Theorem 2.12, combined with (b).

Exercise 10 (by Chi-Kang).

Use the very-ample divisor D = C0 + nf , we want to find a curve Y on X s,t, Y is a canonical curve
under the embedding i,e, D|Y = KY . By adjunction formula we have KX + Y |Y = KY , so we want
D KX + Y . So consider the linear system |D −KX |, if there is an smooth irreducible curve Y ∈ |D −KX |,
then Y is what we want. Note that KX = −2C0 + (−e− 2)f , so D −KX 3C0 + (n+ e+ 2)f , by corollary
2.18, this linear system has an smooth irreducible curve iff e ≥ 0 and n + e + 2 ≥ 3e, since we assume
n ≥ 2e − 2 and e ≥ 0, this linear system must contains an smooth irreducible curve. and we have
deg(KY ) = D.Y = (C0 + nf).(3C0 + (n + e + 2)f) = 4n + e + 2 − 3e = 4n − 2e + 2 = 2d + 2, hence
g(Y ) = d+ 2. In particular, this method constructs canonical curves for any g(Y ) ≥ 4. Finally, we have
f.Y = 3 and dim |f | = 1, so f |Y is a g1

3.
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Exercise 14 (by Yi-Heng).

(a) Let Ỹ be the normalization of Y , and ϕ : Ỹ → Y → C. For 2 ≤ a ≤ p − 1, we have Y.(Y + K) ≥
a(2g − 2) by Hurwitz’s formula, Adjunction formula and Ex IV.1.8. Thus, b ≥ 1

2
ea by direct

computation. Next, for p ≤ a, we only have pa(Y ) ≥ g. Therefore, b ≥ 1
2
ea+ 1− g. Last, for a = 1,

since Y is a section corresponding to E → L → 0, deg(L ) ≥ deg(E )⇒ b ≥ 0.

(b) If D is ample, a = D.f > 0 and D2 > 0 ⇒ b > 1
2
ae. Conversely, for all Y numerical equivalent to

aC0 + bf , we have D.Y > 0 by (a). Hence, D is ample by Nakai-Moishezon criterion.

3 Monoidal Transformations
Exercise 1 (by Shuang-Yen Lee).

It suffices to show that H i(X̃,OX̃) ∼= H i(X,OX) for all i. By Ex III 8.1, we need to show that
π∗OX̃ ∼= OX and Riπ∗OX̃ = 0 for i > 0. Since π : X̃ → X is a birational projective morphism and X is
normal, π∗OX̃ ∼= OX follows from the proof of III 11.4.

Since X̃ − Ỹ π−→ X − Y is an isomorphism, F i := Riπ∗OX̃ is 0 outside Y . Let y ∈ Y , by formal
function theorem, F̂ i

y
∼= lim←−H

i(En,OEn), where En is the closed subscheme of X̃ defined by I and I is
the ideal sheaf of E, the inverse image of y of π. We have the exact sequence

0 −→ I n/I n+1 −→ OEn+1 −→ OEn −→ 0,

so we get the long exact sequence

· · · −→ H i(E,I n/I n+1) −→ H i(E,OEn+1) −→ H i(E,OEn) −→ · · · .

Since I n/I n+1 ∼= Symn (I /I 2) ∼= OE(n) and E ∼= Pr−1, where r is the codimension of Y in X, we have
H i(E,I n/I n+1) ∼= H i(Pr−1,OPt−1(n)) = 0 for all i > 0, n ≥ 0, this implies H i(En,OEn) = 0 by induction
on n. So F̂ i

y = 0, and hence F i
y = 0. Since y is arbitrary, F i = 0 for all i > 0. Thus, pa(X) = pa(X̃).

Exercise 2 (by Tzu-Yang Tsai).

By property, C̃ = π∗C − µP (C)E, D̃ = π∗D − µP (D)E
⇒ C̃.D̃ = (π∗C−µP (C)E).(π∗D−µP (D)E) = π∗C.π∗D−(µP (C)E.π∗D+µP (D)E.π∗C)+µP (C)µP (D)E2

= C.D − µP (C)µP (D)
For the second problem, first we assume that C,D are irreducible. Then by theorem, we know that we can
blow up several points {Pi}ri=1 such that the strict transform of C,D, called it C ′, D′, become nonsingular.
By formula, C ′.D′ = C.D−

∑r
i=1 µPi

(C)µPi
(D), and since C ′, D′ are nonsingular, they intersect transversally,

and #(C ′∩D′) = C.D, thus C.D =
∑r

i=1 µPi
(C)µPi

(D)+#(C ′∩D′) =
∑r

i=1 µPi
(C)µPi

(D)+
∑

Q∈C∩D 1×1 =∑
µP (C)µP (D), where P sum over all intersection of C,D, including infinitely near ones.

Now consider the general case. By definition, a curve is an effective Cartier divisor, so it must be sum of
irreducible curves. Observe that the LHS of equation obeys the distribution law, so does the RHS owing to
the definition of multiplicity, thereby complete the proof.
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Exercise 3 (by Yu-Ting Huang).

We will apply Nakai-Moishezon Criterion. Since D is very ample, D2 > 0 and for every curve C on X,
D.C = 0. Then, (2π∗D − E)2 = 4(π∗D)2 − 4(π∗D.E) + E2 = 4D2 − 1 > 0. Except exceptional curves, for
every curves C̃ on X̃, we can write C̃ = π∗C+µp(C)E. Then, (2π∗D−E).C̃ = 2π∗D.π∗C+2µp(C)π∗D.E−
E.π∗C − µp(C)E2 = 2D.C + 1 > 0. Consider the case of exceptional curve: (2π∗D − E).E = 1 > 0. By
Nakai-Moishezon Criterion, we conclude that 2π∗D − E is ample on X̃.

Exercise 4 (by Yu–Chi Hou).

(a) Given a Noetherian local ring (A,m), consider the associated graded ring S := grm(A) :=
⊕

d≥0m
d/md+1

of (A,m). Notice that S0 = A/m = k(m), the residue field of A. Since A is Noetherian, let
m = A〈x1, . . . , xr〉, for some x1, . . . , xr ∈ m. We denote x̄i by the image of xi in m/m2. Then
S := k(m)[x̄1, . . . , x̄r] is a finitely generated k(m)-algebra. Also, from the exact sequence

0→ md/md+1 → A/md+1 → A/md → 0,

we have length(A/md) = length(A/m) + · · · + length(md−1/dd) and each mi/mi+1 are finite k(m)-
vector spaces. Thus, lengthA(mi/mi+1) = dimk(m)(m

i/mi+1) is finite and thus ψ(l) := length(A/ml)
is well–defined. Now, apply Hilbert–Serre theorem (in the form of Atiyah–Macdonald Theorem 11.1
or Theorem 1.78 in Professor’s Note of last semester) to ψ(l), we can find a numerical polynomial
PA(Z) ∈ Q[z] such that PA(l) = ψ(l), for l� 0.

(b) This is just dimension theory for Noetherian local ring (cf.Atiyah-Macdonald, Theorem 11.4 or
Theorem 1.82 of Professor’s lecture note of last semester), which asserts that for a Noetherian local
ring (A,m),

degPA(n) = dimA = number of minimal generators of certain m-primary ideal q.

(c) By (b), we know that n := dimA = degPA. For a local ring (A,m) with Hilbert-Samuel function PA(z)
associated to ψA as above, then we define the multiplicity µ(A) by n! times the leading coefficients of
PA. For a Noetherian scheme X, we define the multiplicity µP (X) of X at P by µ(OX,P ).

(d) Let X be a surface, C be an irreducible curve on X, and P ∈ C ⊂ X be a closed point. Let f be
local equation of C in OX,P and thus f ∈ mX,P . Let r be the minimal r ∈ N such that f ∈ mr

X,P but
f /∈ mr−1

X,P . Since X is non–singular, OX,P is regular local ring. Let x, y be regular sequence of OX,P .
Namely, mX,P = OX,P 〈x, y〉 and y is not a zero divisor in OX,P/〈x〉.
Now, let A := OC,P = OX,P/〈f〉, dimA = 1 with maximal ideal m := mC,P = mX,P/〈f〉 = A〈x̄, ȳ〉,
where x̄, ȳ are the image of x, y in A respectively. Since A/m = k, lengthA(A/ml) = dimk(A/m

l).
Write the Hilbert-Samuel polynomial PA(z) = µP (C)z + c, where c = PA(0). Hence, for n� 0,

PA(n+ 1)− PA(n) = µP (C) = lengthA(A/mn+1)− length(A/mn)

Now, consider the following sequence of k−vector spaces

OX,P/mn−r
X,P

φ−→ OX,P/mn
X,P

ψ−→ OX,P/(mn
X,P + f) = OC,P/mn

C,P ,
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where ψ(ḡ) = f̄ g and φ is just quotient. Since f ∈ mr
X,P , fg ∈ mn

X,P if g ∈ mn−r
X,P . Thus, the sequence

is exact. As a result, we have

dimk(A/m
n) = dimk(OX,P/mn

X,P )− dimk(OX,P/mn−r
X,P )

= dimk(k[x, y]/(x, y)n)− dimk(k[x, y]/(x, y)n−r)

=(n− r + 1) + · · ·+ n = nr − r(r − 1)

2
.

Thus, µP (C) = (n+ 1)r − nr = r. Recall that we previously define r as the multiplicity of C at P
and hence two definitions coincide.

(e) Let Y = Proj(k[x0, . . . , xn]/I) be a projective variety in Pn of degree d with homogenous ideal I.
Recall that the degree deg Y of Y is defined to be the (dimY )! times the leading coefficient of
Hilbert polynomial PY for the graded ring S(Y ) = k[x0, . . . , xn]/I = k[x̄0, x̄1, . . . , x̄n], where x̄i is
the image of xi in S and has degree 1. Now, consider the projective cone X over Y . Its local ring
at vertex P0 is the same as the affine cone X0 := Spec(k[x̄0, . . . , x̄n]) at vertex P0 = (x̄0, . . . , x̄n).
Hence, A := OX0,P0 = k[x̄0, . . . , x̄n](x̄0,...,x̄n), where m = A〈x̄0, . . . , x̄n〉. Thus, grm(A)0 = A/m = k
and grm(A) = k[x̄0, . . . , x̄n]. As a result, the Hilbert-Samuel function of (A,m) is the same as the
Hilbert function for the graded ring S(Y ). Thus, PA(z) = P Y

H (z). Also, degPA = dimA = dimY ,
hence µP0(X) = µP0(X0) = deg(Y ) = d.

Exercise 5 (by Shuang-Yen Lee).

Let f(x) =
∏

i(x− αi), then the singularities of y2 = f(x) on A2 are the commom solutions of

f(x)− y2 = f ′(x) = 2y = 0,

which is impossible (when char(k) = 2) since f(x) and f ′(x) has no common solution. Take the affine chart
y 6= 0, we have zr−2 =

∏
i(x− aiz), then the multiplicity at P is r − 2.

Let z = wx, then the curve is defined by wr−2 =
∏

i(1− aiw)x2 after blowing-up, the singularity only
happens when (w, x) = (0, 0).

Let x = wz, then the curve is defined by 1 =
∏

i(w − ai)z
2, so (w, z) = (0, 0) is not on the curve.

Therefore we don’t need to consider this case.
Now the multiplicity is 2.
Let x = wt, then we get wr−4 =

∏
i(1− aiw)t2, again, the only singular point is (t, w) = (0, 0). If we

blow-up on the other chart, w = tx, then we still have (t, x) = (0, 0) is not on the curve. Replace t by x,
we get wr−4 =

∏
i(1− aiw)x2, keep blowing-up by letting x = wt, then we will get we =

∏
i(1− aiw)x2,

e = r%2. There are no singularities in both case so we get Ỹ now. Then

δP =
1

2
(r − 2)(r − 3) +

1

2
· 2 · 1 ·

⌊
r − 2

2

⌋
=

1

2
(r − 2)(r − 3) +

⌊
r − 2

2

⌋
and

pa(Ỹ ) = pa(Y )− δP =
1

2
(r − 1)(r − 2)− 1

2
(r − 2)(r − 3)−

⌊
r − 2

2

⌋
=

⌊
r − 1

2

⌋
Remark. In fact, the blow-up above tells us that we can change the coordinate near P by (1/x, y/xg+1).
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Exercise 7 (by Ping-Hsun Chuang).

(a) Let C be the curve x3 + y5 = 0. The singularity (0, 0) has multiplicity 3. Blowing up at (0, 0),
the resulting curve has only one singularity. Taking the chart (y, s) = (y, x/y), the curve become
s3 + y2 = 0 with E1 = {y = 0}. This curve has only singularity at (0, 0) with multiplicity 2. Then,
Blowing up at (0, 0) and taking the chart (v, s) = (y/s, s), we compute that the curve become
s + v2 = 0 with E1 = {v = 0} and E2 = {s = 0}. This curve is non-singular. The resolution of
singularity can be expressed in the following graph:

C C ′
C ′′

E1

E1

E2

Also, δp =
1

2
3 · 2 +

1

2
2 · 1 = 4.

(b) Let C be the curve x3 + x4 + y5 = 0. The singularity (0, 0) has multiplicity 3. Blowing up at (0, 0),
the resulting curve has only one singularity. Taking the chart (y, s) = (y, x/y), the curve become
s3 + s4y + y2 = 0 with E1 = {y = 0}. This curve has only singularity at (0, 0) with multiplicity 2.
Then, Blowing up at (0, 0) and taking the chart (v, s) = (y/s, s), we compute that the curve become
s+ vs3 + v2 = 0 with E1 = {v = 0} and E2 = {s = 0}. This curve is non-singular. The resolution of
singularity can be expressed in the following graph:

C C ′
C ′′

E1

E1

E2

Also, δp =
1

2
3 · 2 +

1

2
2 · 1 = 4.

(c) Let C be the curve x3 +y4 +y5 = 0. The singularity (0, 0) has multiplicity 3. Blowing up at (0, 0), the
resulting curve is non-singular. Taking the chart (y, s) = (y, x/y), the curve become s3 + y + y2 = 0
with E1 = {y = 0}. The resolution of singularity can be expressed in the following graph:

C
C ′

E1

12



Also, δp =
1

2
3 · 2 = 3.

(d) Let C be the curve x3 + y5 + y6 = 0. The singularity (0, 0) has multiplicity 3. Blowing up at (0, 0),
the resulting curve has only one singularity. Taking the chart (y, s) = (y, x/y), the curve become
s3 + y2 + y3 = 0 with E1 = {y = 0}. This curve has only singularity at (0, 0) with multiplicity 2.
Then, Blowing up at (0, 0) and taking the chart (v, s) = (y/s, s), we compute that the curve become
s+ v2 + sv3 = 0 with E1 = {v = 0} and E2 = {s = 0}. This curve is non-singular. The resolution of
singularity can be expressed in the following graph:

C C ′ C ′′

E1

E1

E2

Also, δp =
1

2
3 · 2 +

1

2
2 · 1 = 4.

(e) Let C be the curve x3 + xy3 + y5 = 0. The singularity (0, 0) has multiplicity 3. Blowing up at (0, 0),
the resulting curve has only one singularity. Taking the chart (y, s) = (y, x/y), the curve become
s3 + sy + y2 = 0 with E1 = {y = 0}. This curve has only singularity at (0, 0) with multiplicity 2.
Then, Blowing up at (0, 0) and taking the chart (v, s) = (y/s, s), we compute that the curve become
s+ v + v2 = 0 with E1 = {v = 0} and E2 = {s = 0}. This curve is non-singular. The resolution of
singularity can be expressed in the following graph:

C C ′

E1

C ′′

E1 E2

Also, δp =
1

2
3 · 2 +

1

2
2 · 1 = 4.

By the resolution graph, we conclude that the sigularity of (0, 0) of (a) (b) (d) are equivalent and (c) (e) are
different from the others.

Exercise 8 (by Yi-Heng).

(a) Blowing up x4 − xy4 at (0, 0) by xy1 = x1y, the singularities occur at (0, 0) of x4
1 − x1y in the chart

y1 = 1, which is a node. Thus, δ = 7.
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(b) Blowing up x4−x2y3−x2y5 + y8 at (0, 0) by xy1 = x1y, the singularities occur at (0, 0) of x4
1−x2

1y
3−

x2
1y

3 + y4 in the chart y1 = 1, which is of multiplicity 3. Then, blowing up x4
1 − x2

1y
3 − x2

1y
3 + y4 at

(0, 0) by x1y2 = x2y, then the strict transformation is non-singular. Thus, δ = 9.

I guess the equation in (b) should be x4 − x2y2 − x2y5 + y8, then after the first blowing up, it has a cusp.
As a result, (a) and (b) is not equivalent while their δ’s are both 7.

4 The cubic Surface in P3

Exercise 1 (by Yu–Chi Hou).

Consider the linear system L := |2L− P1 − P2| and this gives a rational map φ := φL : P2 99K P3. By a
projective linear transformation, we may assume P1 = [0 : 1 : 0], P2 = [0 : 0 : 1], then we can write down the
rational map φ as following. Observe that V = {ax2

0 + bx0x1 + cx0x2 + dx1x2 : a, b, c, d ∈ k} is the subspace
of Γ(P2,OP2(2)) such that P(V ) = L. Then φ : P2 99K P3 is given by [x0 : x1 : x2]→ [x2

0 : x0x1 : x0x2 : x1x2].
Thus, φ is undefined only at P1 and P2 and its image is contained in Q := V (Z0Z3 − Z1Z2) ⊂ P3, which is
a non–singular quadric surface. We now resolve the indeterminacy of this rational map by blowing up P1

and P2 on P2, we have:
BlP1,P2P2

P2 P3

π ψ

φL

Then im(ψ) ⊂ Q and BlP1,P2(P2) is irreducible of dimension 2, and hence ψ : BlP1,P2(P2) → Q ⊂ P3.
Since|2L− P1 − P2| has no unasigned based point and dim |2L− P1 − P2| = dim |L− P1|+ dim |L− P2|,
|L− P1| × |L− P2| → |2L− P1 − P2| is bijective. Therefore, one also sees that the strict transform L′ of
LP1,P2 , the line through P1 and P2, on BlP1,P2(P2) has self–intersection number L′2 = π∗L2

P1,P2
−E2

1−E2
2 = −1,

where E1 and E2 are exceptional divisors of P1 and P2 respectively. Moreover, φ also has the following
diagram.

BlP1,P2(P2)

P2 P1 × P1 ∼= Q,

π ψ

φ

where P1 × P1 ∼= Q via Segre embedding.

Since there is no (−1)-curves on P1 × P1, ψ must contract only L′. Thus, ψ is just blowing up of a point on
Q.

Addendum: Let l = P1 × {pt},m = {pt} × P1. Then for any curve Y in P1 × P1, Y ≡ al + bm in
Num(P1 × P1), for some a, b ∈ Z. Since H := l +m is ample, H.Y = b+ a > 0. If Y 2 = ab < 0, then this
leads to a contradiction. Thus, there is no (−1)−curve on P1 × P1.

Exercise 2 (by Yu-Ting Huang).
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We may assume P1 = (1, 0, 0), P2 = (0, 1, 0), and P3 = (0, 0, 1). Let C be defined by f(x0, x1, x2) and
deg f = d. ϕ is defined by (y0, y1, y2) = (x1x2, x0x2, x0x1), where y0, y1, y2 are the new coordinates.
Since µP1(C) = r1, r1 is the largest number such that f ∈ mr1

P1
= (x1, x2)r1 . We can write

f(x0, x1, x2) = fr1(x1, x2)xd−r10 + · · ·+ fd(x1, x2)

, where deg fj = j. Now,

f(x1x2, x0x2, x0x1) = fr1(x0x2, x0x1)(x1x2)d−r1 + · · ·+ fd(x0x2, x0x1)

= xr10 (fr1(x2, x1)(x1x2)d−r1 + · · ·+ xd−r10 fd(x2, x1))

Thus, xr10 |f(x1x2, x0x2, x0x1). Similarly, we have xr21 |f(x1x2, x0x2, x0x1) and xr32 |f(x1x2, x0x2, x0x1). Let
the curve C ′ be defined by g.

g =
f(x1x2, x0x2, x0x1)

xr10 x
r2
1 x

r3
2

= fr1(x2, x1)(x1x2)d−r1x−r21 x−r32 + · · ·+ xd−r10 fd(x2, x1)x−r21 x−r32 .

d − r2 − r3 is the largest number such that g ∈ mQ1 . i.e. µQ1(C
′) = d − r2 − r3. Similarly, we have

µQ2(C
′) = d− r1 − r3 and µQ3(C

′) = d− r2 − r1.

Exercise 3 (by Shuang-Yen Lee).

Let P be a singularity, then we can write C as f(x, y) = gr + gr+1 + · · · = 0 locally, where gj is a
homogeneous polynomial of degree j. Write gr(x, y) =

∏
i(λix− µiy)ei , we need to make these ei’s into 1.

Choose two lines L1, L2 through P such that the slope of the lines are different with the tangent lines at P
and meets C transversally outside P . Take L3 such that Sing(C) ∩ L3 = ∅, L3 meets C transversally and
Q1 = L1 ∩L3, Q2 = L2 ∩L3 are not on C. Then we do the quadratic transformation centered at P , Q1, Q2.
Blowing-up at Q1, Q2 doesn’t changes the singularity, the singularities from the blown-down are ordinary.
So we can concentrate at blowing-up P1, we only need to see one of the [µi : λi] on E1. May assume λ = 1
and let x = (t+ µ)y, then we get the equation

teyrhr(t) +
∞∑
k=1

te
′
kyr+khr+k(t) = 0,

where hi(t) = gi(t+ µ, 1)/te
′
k−r , e′k = ordt(gi(t+ µ, 1)). So we have

tehr(t) +
∞∑
k=1

te
′
kykhr+k(t) = 0.

If none of the e′k = 0, then we can divide t on both side to let e be smaller, so assume that there’s a k0 such
that e′k = 0, let k0 be the smallest, note that the term is of degree k.

The multiplicity at (0, 0) is min{e, e′k + k}. If there’s a k such that e′k + k < e, then the multiplicity is
less than e, then we are done. If not, then e ≤ e′k + k for all k, then the equation at degree e is

crt
e +

∑
e′k+k=e

cr+kt
e′kyk. (♠)
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Now we are done if there’s a k such that e′k + k = e since we can factor (♠) into linear equations such that
every direction has multiplicity less than e. So now e < e′k + k for all k.

Blowing up again, let t = sy, then we get

sehr(sy) +
∞∑
k=1

se
′
kye

′
k+k−ehr+k(sy) = 0.

Now the minimal term such that e′k = 0 is k = k0 and the term is of degree k0 − e < k0. So induction on
this then we are done.

Exercise 4 (by Tzu-Yang Chou).

(a) Consider the cubics C ′ := PP ′ +QQ′ +RR′ and C” := L+ L′ + P”Q”. Intersect them with C we
find that C ′ ∩ C = C” ∩ C and the nine points P,Q,R, P ′, Q′, R′, P”, Q”, R” all belong to them. In
particular, R” ∈ C” and hence R” ∈ P”Q”.

(b) Let P,Q, U be three arbitrary points on the cubic C and define the following points: PQ ∩ C =
P,Q,R;P0R ∩ C = P0, R, T ;TU ∩ C = T, U, V ;P0V ∩ C = P0, V,W ;QU ∩ C = Q,U,X;PV ∩ C =
P, V, Y .
Now let L := PQR,L′ := TUV , then part (a) says that P0, X, Y are colinear. Combining all these
together, we have (P +Q) + U = T + U = W = P + Y = P + (Q+ U).

Exercise 5 (by Yu-Ting Huang).

Let C be the conic. We have three cubics: X1 = AB′ + CA′ + BC ′, X2 := A′B + C ′A + B′C, and
X3 = C+PQ. By Corollary 4.5, X1.X3 = X1.X2 = {A,B,C,A′, B′, C ′P,Q,R}. Thus R ∈ PQ. i.e. P,Q,R
are colinear.

Exercise 7 (by Yi-Tsung Wang).

Write D = D1 −D2 with Di effective. By proposition 5.4.8(b) and degD = degD1 + degD2, we see
that if D ∼ a`−

∑
biei, then degD = 3a−

∑
bi. Then

2pa(D) = D2 +D.K = a2 −
∑

b2
i − degD =

1

9

((
d+

∑
bi

)2

− 9
∑

b2
i − 9d

)
To show that pa (D) ≤ 1

6
(d− 1) (d− 2) + 2

3
, it suffices to show that (d+

∑
bi)

2 − 9
∑
b2
i − 9d ≤ 3d2 − 9d,

and it is equivalent to show that 2d
∑
bi + (

∑
bi)

2 − 9
∑
b2
i ≤ 2d2. Since 6

∑
b2
i ≥ (

∑
bi)

2, we have

2d2 ≥ 2d
∑

bi −
1

2

(∑
bi

)2

≥ 2d
∑

bi +
(∑

bi

)2

− 9
∑

b2
i

Therefore pa (D) ≤ 1
6

(d− 1) (d− 2) + 2
3
. If d ≡ 1, 2 (mod 3), since pa (D) ∈ Z and 1

6
(d− 1) (d− 1) ∈ Z,

we have pa (D) ≤ 1
6

(d− 1) (d− 2). Now for d ≡ 0 (mod 3), consider D ∼ d`−
∑

d
3
ei, then degD = d and

pa (D) = 1
6

(d− 1) (d− 2) + 2
3
. For d ≡ 1 (mod 3) with d > 4, consider

D ∼ d`− d− 1

3
e1 −

d− 1

3
e2 −

d− 1

3
e3 −

d− 1

3
e4 −

d+ 2

3
e5 −

d+ 2

3
e6
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Then degD = d and pa (D) = 1
6

(d− 1) (d− 2). For d ≡ 2 (mod 3) with d > 5, consider

D ∼ d`− d− 2

3
e1 −

d− 2

3
e2 −

d− 2

3
e3 −

d− 2

3
e4 −

d+ 1

3
e5 −

d+ 1

3
e6

Then degD = d and pa (D) = 1
6

(d− 1) (d− 2). For d = 1 and 2, a line and a conic achieve the maximum,
respectively. For d = 4, I don’t know QAQ. For d = 5, consider

D ∼ 4`− 2e1 − e2 − e3 − e4 − e5 − e6

Then degD = d and pa (D) = 2 = 1
6
(5 − 1)(5 − 2). Hence for every d > 0 (possibly except d = 4), this

maximum is achieved by some irreducible nonsingular curve on cubic surface.

Exercise 10 (by Shuang-Yen Lee).

Observe that if x+ y = z + w and |x− y| > |z − w|, then x2 + y2 > z2 + w2.
WLOG let b1 ≥ b2 ≥ · · · ≥ b6, then we have a > b1 + b2 and a > 1

2
(b1 + · · ·+ b5). So we may assume

that a = max{b1 + b2,
1
2
(b1 + · · ·+ b5)} and prove that a2 ≥

∑
i b

2
i .

If b1 + b2 ≥ b3 + b4 + b5, then a = b1 + b2. Make b3, b4, b5 larger we may assume that b1 + b2 = b3 + b4 + b5.
Replace b1, b2 and b6 by b1 + b2 − b3, b3 and b5, then by the observation above we may assume that b2 = b3,
b5 = b6. So we get b1 = b4 + b5 ≥ b2 and

a2 −
∑
i

b2
i = 2b2b4 + 2b2b5 − b2

2 − b2
4 − 2b2

5.

It’s a quadratic polynomial in b2, so we only need to check the cases b2 = b4 and b2 = b4 + b5, which are
2b4b5 − 2b2

5 ≥ 0 and 2b4b5 − b2
5 ≥ 0.

If b1 + b2 ≤ b3 + b4 + b5, then a = 1
2
(b1 + · · ·+ b5) and

a2 −
∑
i

b2
i = −3

4
b2

1 +
1

2
(b2 + · · ·+ b5)b1 + ∗,

so the minimum of this w.r.t. b1 is when b1 = b3 + b4 + b5 − b2 since

−1
2
(b2 + b3 + b4 + b5)

−3
4
· 2

− b2 − (b3 + b4 + b5 − b2) =
1

3
(2b2 − (b3 + b4 + b5)) ≤ 0,

so we reduce to the case when b1 + b2 = b3 + b4 + b5.

Exercise 11 (by Pei-Hsuan Chang).

(a) Let ϕ : An → Σn

xi 7→ (i, i+ 1)
. It is easy to check ϕ(xi)

2 = (i, i+1)2 = 1 = ϕ(1) = ϕ(x2
i ), ϕ(xi, xj)

2 = 1

if j 6∈ {i+ 1.i− 1}, and ϕ(xixi+1)3 = 1. Thus, ϕ is a homomorphism. Since Σ =< (12), (23), . . . , (n−
1, n) >, ϕ is surjective.

Now, consider An−1 as a subgroup of An. Since {An−1, xn−1An−1, xn−1xn−2An−1, . . . , x1 · · ·xn−1An−1}
form a partition of An. So, [An : An−1] = n. Notice that A2 =< x1 | x2

1 >, so A2 = {1, x1}. Thus,
|An| = n!. Hence, ϕ is an isomorphism.
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(b) Let ϕ : E6 → G as in the question. It is clearly that ϕ(xi)
2 = 1,∀i. Quadratic transformation is

of order 2 ⇒ ϕ(y)2 = 1. Also, quadratic transformation doesn’t depend on the order of P1, P2, P3,
so ϕ(y)ϕ(xi) = ϕ(xi)ϕ(y),∀i = 1, 2, 4, 5. As for ϕ(y)ϕ(x3), we can calculate that ϕ(y)(Ei) = Fjk,
for {i, j, k} = {1, 2, 3}, ϕ(y)(Ei) = Ei, for i = 4, 5, 6, ϕ(y)(Fij) = Fij, if i ∈ {1, 2, 3}, j ∈ {4, 5, 6},
ϕ(y)(Fij) = Gk for {i, j, k} = {4, 5, 6}, and ϕ(y)(Gi) = (Gi) for i = 1, 2, 3. Hence, (ϕ(x3)ϕ(y))3 = 1.
So, ϕ is a homomorphism. Finally, the proof of proposition V. 4.10 in the textbook says permutation
of {E1, . . . , E6} and quadratic transformation generate G, so ϕ is surjective.

(c)

Exercise 12 (by Shi-Xin Wang).

Since D is ample, by Theorem 4.11, D is very ample. Then we can consider it as a irreducible subvaritey
of X. Then from the short exact sequence 0→ OX(−D)→ OX → OD → 0, we obtain

0→ H0(X,OX(−D))→ H0(X,OX)→ H0(D,OD)→ H1(X,OX(−D))→ H1(X,OX)→ · · ·

Clearly, H0(X,OX) ∼= H0(D,OD) ∼= k. Since X is a hypersurface in P3, H1(X,OX) = 0 by the cohomology
of projective space. Moreover, the ampleness of D implies H0(X,OX(−D)) = 0. Thus, we conclude
H1(X,OX(−D)) = 0.

Exercise 14 (by Ping-Hsun Chuang).

By the theorem V.4.13, if D ∼ a` −
∑
biei, then D is very ample if and only if bi > 0 for all i,

a > bi + bj for all i, j, and 2a >
∑

j 6=i bi for all j. To show the existence of non-singular curve in P3,
we only need to find such a and bi with the corresponding equality. Note that degD = 3a −

∑
bi and

ga (D) =
1

2
(a− 1) (a− 2)− 1

2

∑
bi (bi − 1). Thus, from the following table, we may find the non-singular

curve on cubic surface with desired degree and genus:

d = degD pa (D) a (b1, · · · , b6)
8 6 8 (4, 3, 3, 2, 2, 2)
8 7 8 (3, 3, 3, 3, 2, 2)
9 7 9 (4, 4, 4, 2, 2, 2)
9 8 9 (4, 4, 3, 3, 2, 2)
9 9 9 (4, 3, 3, 3, 3, 2)
10 8 10 (6, 3, 3, 3, 3, 2)
10 9 12 (5, 5, 5, 5, 3, 3)
10 10 11 (5, 5, 4, 3, 3, 3)
10 11 10 (5, 3, 3, 3, 3, 3)

Combine the results in section IV.6, we conclude all possible genus g ≤ 12 for curves of degree d ≤ 10 in P3.

Exercise 16 (by Po-Sheng Wu).
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Assume char(k) 6= 2. Note that (x0 + x1)(x0 +ωx1)(x0 +ω2x1) = (x2 + x3)(x2 +ωx3)(x2 +ω2x3), where
ω3 = 1, so {x0 +ωix1 = x2 +ωjx3 = 0} gives us 9 lines on X. By permuting the coordinates we obtain all 27
lines. Also notice that (1, ωi, 0, 0) and its permutations are passed through by 3 lines, and (1,−ωi, ωj,−ωk)
and its permutations are passed through by two lines. They are the only intersections of these lines because
they produces 18× 3 + 27× 3 = 27× 10÷ 2 angles in total. To determine the automorphism group of X
(induced from Aut(P3)), notice that {xi = 0} are the only planes passing through 9 of the 18 three-line
intersections, so the automorphisms of X permute {xi = 0}, hence permute ei. Therefore, an automorphism
of X is a composition of diag(1, ωi, ωj, ωk) with a permutation on coordinates.

5 Birational Transformations
Exercise 1 (by Po-Sheng Wu).

Let (f)0 and (f)∞ be the (effective) divisor given by the zeros and poles of f , so that (f) = (f)0− (f)∞.
Suppose P is an intersection of (f)0 and (f)∞, then we consider a blowup π : X̃ → X at P . WLOG assume
that µP ((f)0) ≥ µP ((f)∞), then (π∗(f)) = (̃f)0− (̃f)∞+(µP ((f)0)−µP ((f)∞))E, thus (π∗(f))0 ·(π∗(f))∞ =

(̃f)0 · (̃f)∞+(µP ((f)0)−µP ((f)∞))(µP ((f)∞)) = (f)0 ·(f)∞−(µP ((f)∞))2 by Ex.3.2.. Thus the intersections
between poles and zeros decreases. Repeat this process and eventually we obtain a birational morphism
g : X ′ → X such that g∗(f) has disjoint poles and zeros. (g∗(f))0 then provides a base-point-free linear
system which induces a morphism onto P1.

Exercise 2 (by Yi-Tsung Wang).

Let Y 2 = −a < 0. Choose a very ample divisor H on X such that H1 (X,L (H)) = 0 and H.Y = ak
with k ≥ 2. Let M = L (H + kY ). Consider an exact sequence

0→ L (H + (i− 1)Y )→ L (H + iY )→ L (H + iY ) |Y→ 0

Since (H + iY ) .Y = a (k − i), L (H + iY ) |Y = OP1 (a (k − i)) ⇒ H1 (Y,L (H + iY ) |Y ) = 0 for i ≤ k.
Therefore

H1 (X,L (H + (i− 1)Y ))� H1 (X,L (H + iY ))

is surjective. By induction and H1 (X,L (H)) = 0, we see that H1 (X,L (H + iY )) = 0 for all i = 0, . . . , k.
Since H is very ample, |H + kY | has no base points away from Y ⇒M is generated by global section off
Y . Consider an exact sequence

0→M ⊗IY →M →M |Y→ 0

and note that M ⊗IY
∼= L (H + (k − 1)Y ) ⇒ H1 (X,M ⊗IY ) = 0 ⇒ H0 (X,M ) � H0 (Y,M |Y ) is

surjective. Since (H + kY ) .Y = 0, we have M |Y = OP1 , which is generated by the global section 1. By
Nakayama lemma, M is also generated by global section at every point of Y , hence it gives a morphism
f : X → PN with M ∼= f ∗O(1). Since M |Y is of degree 0, Y is mapped to one point P . Finally, since H
is very ample, |H + kY | separates points and tangent vectors away from Y and separates points in Y from
points not in Y ⇒ f gives an isomorphism between X\Y and f (X) \ {p}. Therefore Y is contractible to a
point on a projective variety.
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Exercise 3 (by Tzu-Yang Chou).

First, we have H i(X̃, π∗ΩX) ' H i(X, π∗π
∗ΩX) ' H i(X,ΩX) by Ex(III.8.1) and projection formula:

π∗(π
∗ΩX ⊗ OX̃) ' ΩX ⊗ π∗OX̃ ' ΩX . Next, we claim that there’s an exact sequence: 0 −→ π∗ΩX −→

ΩX̃ −→ ΩE −→ 0, that is, ΩX̃/X ' ΩE. They are both supported on E ' P1, so let [t : u] be coordinates
of E and (x, y) be local coordinate at the center of blow-up. But at P ∈ E, the sequence becomes
0 −→< dx, dy >−→< dx, dy, dy > /(dx− tdy − ydt) −→< dt >−→ 0.
Now since H0(E,ΩE) = 0, H1(E,ΩE) = k, the cohomology sequence proves the assertion since H0(X,ΩX) '
H0(X̃,ΩX̃) and by Serre duality we have the H2 part is also an isomorphism.

Exercise 4 (by Pei-Hsuan Chang).

(a) By theorem V. 5.3, f factor through X1 = BlP X
′, and we can repeat it until Xn

∼= X, then Y is one
of the exceptional curves, since Y is irreducible. Thus, Y ∼= P1.
Take an ample divisor H on X ′. Then (f ∗H)2 = H2 > 0. So by exercise V. 1.9(a), we have

(Y 2)(f ∗H)2 ≤ (Y.(f ∗H))2 = 0.

Hence, Y 2 ≤ 0.

(b) (Method I)
By remark V. 1.9.1, intersection pairing induce a nondegenerate billinear pairing NumX×NumX → Z.
We can consider vector space NumX⊗ZR over R, and the induced sysmmetric billinear form. Sylvester
theorem says that this matrix can be diagonalized with ±1’s on diagonal. Hodge index theorem
says there is exactly one +1, corresponding to a real multiple of ample divisor f ∗H. So, the others
correspond to (Yi.Yj)ij. Thus, it is negative definite.
(Method II)
[Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity ]
Let H ′1 and H ′2 be two hyperplane section of X ′, H ′1 passing through P and H ′2 not. Let (f) = H ′1−H ′2.
Let H1 be the strict transform of H ′1 and H2 be the total transform of H ′2. Then H2 ∼ H1 +

∑
miYi

where mi = ordYi f > 0. Let S = (Yi.Yj)ij, S ′ = (miYi.myYj)ij, and M = diag(m1, . . .mr), then
S ′ = MSM , so S is negative definite ⇔ S ′ is negative definite. Notice that Sij ≥ 0,∀i 6= j, and∑

j

S ′ij =
∑
j

miYi.mjYj =
∑
j

(H2 −H1).mjY j = −H1.mjYj ≤ 0,∀j.

Now, for v = (α1, . . . αr),

vTS ′v =
∑
i,j

αiαjS
′
ij =

∑
i

α2
iS
′
ii + 2

∑
i<j

αiαjS
′
ij =

∑
j

(
∑
i

S ′ij)α
2
j −

∑
i<j

S ′ij(αi − αj)2 ≤ 0.

So S ′ij is negative semi-definite. Since H1 pass through some Yj,
∑

j S
′
ij < 0, for some j, and ∪Yi is

connected. So we can not spilt (1, . . . , r) = (i1, . . . ik)∪ (j1, . . . jr−k) such that S ′iajb = 0, ∀a, b. Thus, if

vTS ′v =
∑
j

(
∑
i

S ′ij)α
2
j −

∑
i<j

S ′ij(αi − αj)2 = 0,

then αj = 0 and αi = αj,∀i⇒ v = 0. This complete the proof.
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Remark. In exercise V. 1.9, we assume H is ample, but actually we just need to assume H2 > 0. Same as
what we do in the method I of part (b), Sylvester theorem tell us we can use any divisor with H2 > 0 to start
our diagonalization process, so we may assume H = (1, 0, . . . , 0), then it is easy to see (D2)(H2) ≤ (D.H)2.

Exercise 7 (by Po-Sheng Wu).

Let H0, H1 be the hyperplane sections on X0 so that H0 contains P while H1 does not. Then f ∗(H0) =
f ∗(H0 − {P}) + mY for some m > 0. Thus 0 = f ∗(H1) · Y = f ∗(H0) · Y = f ∗(H0 − {P}) · Y + mY 2 ≥
mY 2 ⇒ Y 2 = 0.

Exercise 8 (by Yi-Heng).

(a) Since z is a prime in A, it suffices to show Az is an UFD by Nagata’s criterion. Indeed, AZ =
(k[x, y, z]/(x2 + y3 + z5))z = k[x, y, z, z−1]/(x2 + y3 + z) is an UFD.

(b) (i) Blowing up x2 + y3 + z5 at (0, 0, 0) by xy1 = x1y, yz1 = y1z, zx1 = z1x, the singularity occurs at
(0, 0, 0) of x2

1 + zy3
1 + z3 in the chart z1 = 1.

(ii) Blowing up x2
1 + zy3

1 + z3 at (0, 0, 0) by x1y2 = x2y1, y1z2 = y2z, zx2 = z2x1, the singularity
occurs at (0, 0, 0) of x2

2 + z2y
2
1 + y1z

3 in the chart y2 = 1.

(iii) Blowing up x2
2 + z2y

2
1 + y1z

3 at (0, 0, 0) by x2y3 = x3y1, y1z3 = y3z2, z2x3 = z3x2, the singularities
occur at (0, 0, 0) of x2

3 + z3y1 + y2
1z

3
3 in the chart y3 = 1 and (0, 0, 0) of x2

3 + z2y
2
3 + y3z

2
2 in the

chart z3 = 1.

(iv) Blowing up x2
3 + z3y1 + y2

1z
3
3 at (0, 0, 0) by x3y4 = x4y1, y1z4 = y4z3, z3x4 = z4x3, then the strict

transformation is non-singular.

(v) Blowing up x2
3 + z2y

2
3 + y3z

2
2 at (0, 0, 0) by x3y4 = x4y3, y3z4 = y4z2, z2x4 = z4x3, the singularities

occur at (0, 0, 0) of x2
4 + z4y3 + y3z

2
4 in the chart y4 = 1, (0, 0, 0) of x2

4 + z2y
2
4 + y4z2 in the chart

z4 = 1 and (0, 0,−1) of x2
4 + z4y3 + y3z

2
4 in the chart y4 = 1.

(vi) Blowing up x2
4 + z4y3 + y3z

2
4 at (0, 0, 0) by x4y5 = x5y3, y3z5 = y5z4, z4x5 = z5x4, then the strict

transformation is non-singular.

(vii) This is similar to (vi).

(viii) Blowing up x2
4+z4y3+y3z

2
4 at (0, 0,−1), that is, blowing up x2

4−z4y3+y3z
2
4 by x4y5 = x5y3, y3z5 =

y5z4, z4x5 = z5x4, then the strict transformation is non-singular.

In conclusion, the inverse image of P is a union of eight projective lines corresponding to E8.

6 Classification of Surfaces
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