Algebraic Geometry II Homework Chapter IV Curves

A course by prof. Chin-Lung Wang
2020 Spring

Exercise 0 (by Kuan-Wen).
This is an example of proof.
Remark. This is an example for how to write in this format.

1 Riemann-Roch Theorem

Exercise 1 (by Chi-Kang).
This is equivalent to show that there exists $f \in K(X) \mathrm{s}, \mathrm{t}, f \in H^{0}(X, n P)$ for some $n>0$ and f is non-constant. By Riemann-Roch we have for any natural number $n \geq 2 g-1, h^{1}(n P)=0$, thus

$$
\chi(n P)=h^{0}(n P)=n+1-g
$$

take $n \geq g+1$ we have $h^{0}(n P) \geq 2$, hence there is a non-constant function $f \in H^{0}(X, n P)$.
Exercise 2 (by Chi-Kang).
Use induction on $r, r=1$ is just exercise 1.1. If the consequence holds for $r-1$, then for r, there exists some $f \mathrm{~s}, \mathrm{t}, f$ has pole at P_{1}, \ldots, P_{r-1} and regular elsewhere. And as 1.1 there is $g \mathrm{~s}, \mathrm{t}, g$ has pole at P_{r} and regular elsewhere. hence $f+g$ is a function has pole at P_{1}, \ldots, P_{r} and regular elsewhere.

Exercise 3 (by Yi-Tsung Wang).
Proof. By Nagata theorem (remark 2.7.17.2), X can be embedding as an open subset of a complete curve \bar{X}, then in this case $\bar{X} \backslash X$ is just a finite set, say $\bar{X} \backslash X=\left\{p_{1}, \ldots, p_{r}\right\}$. By Exercise 4.1.2, take $f: \bar{X} \rightarrow \mathbb{P}^{1}$ such that f has poles at each of the p_{i} and regular elsewhere. Since f is not constant, f must be surjective, then $f^{-1}\left(\mathbb{A}^{1}\right)=X$. Moreover, f is a finite morphism, hence an affine morphism, and then $X=f^{-1}\left(\mathbb{A}^{1}\right)$ is affine.

Exercise 4 (by Yi-Tsung Wang).

Proof. Let X be a separated one-dimensional scheme of finite type over k. By Exercise 3.3.1, we may assume X is reduced. By Exercise 3.3.2, we may furthermore assume X is irreducible, hence X is integral and is not proper over k. Let Y be the normalization of X, and the natural map $\pi: Y \rightarrow X . \pi$ is finite since X is of finite type over k by Exercise 2.3.8 and is surjective since X is integral (locally, it is going-up). If Y is proper over k, by Exercise 2.4.4, $X=\pi(Y)$ is also proper over k, contradiction. Now note that Y is also integral, separated, one-dimensional scheme of finite type over k, and is regular since Y is furthermore normal, by Exercise 4.1.3, Y is affine. By Chevalley's theorem (Exercise 3.4.2), X is also affine.

Exercise 5 (by Shuang-Yen Lee).
By Riemann-Roch Theorem, we have

$$
\operatorname{dim}|D|=\ell(D)-1=\ell(K-D)+\operatorname{deg}(D+1-g=\operatorname{deg}(D)+(\ell(K-D)-g) \leq \operatorname{deg}(D)
$$

since $K-D \leq K \Longrightarrow \ell(K-D) \leq \ell(K)=g$. If $g=0$, then

$$
\operatorname{deg}(K-D) \leq \operatorname{deg}(K)=-2 \Longrightarrow \ell(K-D)-g=0
$$

so the equality holds. If $g \neq 0$, then $D=0 \Longrightarrow \ell(K-D)-g=\ell(K)-g=0$. Suppose $D \neq 0$, say $D=\sum n_{i} P_{i}$, then $K-D \leq K-P_{1} \leq K$, so

$$
0=\ell(K-D)-g \leq \ell\left(K-P_{1}\right)-g \leq \ell(K)-g=0 \Longrightarrow \ell\left(K-P_{1}\right)=g .
$$

By Riemann-Roch Theorem, $\ell\left(P_{1}\right)=\ell\left(K-P_{1}\right)+2-g$. So $\ell\left(P_{1}\right)=2$, which is impossible since $g>0$.
Exercise 6 (by Shi-Xin).
Let P be a point on X, and let g denote $g(X)$. Consider the divisor $D=(g+1) P$. By Riemann-Roch Theorem, we have

$$
\ell(D) \geq \operatorname{deg} D+1-g>1
$$

Therefore, there is a $f \in K(X)$ such that $(g+1) P+\operatorname{div}(f) \geq 0$, i.e. f has pole at P with order $\leq g+1$ and is regular everywhere else. Thus it induces a finite morphism $\tilde{f}: X \rightarrow \mathbb{P}^{1}$ by $x \mapsto f(x)$ which is of degree $\leq g+1$ since $\operatorname{deg} \tilde{f} \cdot \operatorname{deg} \infty=\operatorname{deg} D$.

Exercise 8 (by Shi-Xin).
(a) From $0 \rightarrow \mathcal{O}_{X} \rightarrow f_{*} \mathcal{O}_{\tilde{X}} \rightarrow \sum_{p \in X} \tilde{\mathcal{O}}_{p} / \mathcal{O}_{p} \rightarrow 0$ where $f: \tilde{X} \rightarrow X$ is the normalization of X, we obtain

$$
\begin{aligned}
0 & \rightarrow H^{0}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{0}\left(X, f_{*} \mathcal{O}_{\tilde{X}}\right) \cong H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right) \rightarrow H^{0}\left(X, \sum_{p \in X} \tilde{\mathcal{O}}_{p} / \mathcal{O}_{p}\right) \\
& \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{1}\left(X, f_{*} \mathcal{O}_{\tilde{X}}\right) \cong H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right) \rightarrow H^{1}\left(X, \sum_{p \in X} \tilde{\mathcal{O}}_{p} / \mathcal{O}_{p}\right)=0
\end{aligned}
$$

Since $H^{0}\left(X, \mathcal{O}_{X}\right) \cong H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right) \cong k$, we have

$$
0 \rightarrow H^{0}\left(X, \sum_{p \in X} \tilde{\mathcal{O}}_{p} / \mathcal{O}_{p}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right) \rightarrow 0
$$

Thus by ex.iii.5.3, $p_{a}(X)=p_{a}(\tilde{X})+\sum_{p \in X} \operatorname{length}\left(\tilde{\mathcal{O}_{p}} / \mathcal{O}_{p}\right)=p_{a}(\tilde{X})+\sum_{p \in X} \delta_{p}$.
(b) If $p_{a}(X)=0$, then it forces $p_{a}(\tilde{X})=0$ and $\delta_{p}=0$ for any $p \in X$. So f is an isomorphism, i.e. $X \cong \tilde{X} \cong \mathbb{P}^{1}$ which is given by Riemann-Roch Theorem.
(c)

Exercise 9 (by Ping-Hsun Chuang).
Proof. (a) Let $f: X_{\text {reg }} \rightarrow X$ be the inclusion. We have the short exact sequence

$$
0 \longrightarrow \mathcal{O}(D) \longrightarrow f_{*} \mathcal{O}_{\mathrm{reg}}(D) \longrightarrow \sum_{P \in X}\left(f_{*} \mathcal{O}_{\mathrm{reg}}(D)\right)_{P} / \mathcal{O}(D)_{P} \longrightarrow 0
$$

Note that $\mathcal{O}(D)_{P}=\mathcal{O}_{X, P}$ since $\mathcal{O}(D)$ is an invertible sheaf. Also, $\left(f_{*} \mathcal{O}_{\text {reg }}(D)\right)_{P}=\mathcal{O}_{\tilde{X}, P}$ since $X_{\text {reg }}$ is normal. Moreover,

$$
\delta_{P}=\operatorname{length}\left(\mathcal{O}_{\tilde{X}, P} / \mathcal{O}_{X, P}\right)=h^{0}\left(X,\left(f_{*} \mathcal{O}_{\mathrm{reg}}(D)\right)_{P} / \mathcal{O}(D)_{P}\right)
$$

Finally, since χ is a additive function, we have

$$
\begin{aligned}
\chi(\mathcal{O}(D)) & =\chi\left(f_{*} \mathcal{O}_{\mathrm{reg}}(D)\right)-\sum_{P \in X} \chi\left(f_{*} \mathcal{O}_{\mathrm{reg}}(D)_{P} / \mathcal{O}(D)_{P}\right) \\
& =\operatorname{deg} D+1-p_{a}\left(X_{\mathrm{reg}}\right)-\sum_{P \in X} \delta_{P}=\operatorname{deg} D+1-p_{a}(X)
\end{aligned}
$$

(b) Since X is projective, take a very ample divisor R on X. Then, there exists $n>0$ such that $\mathcal{O}(n R+D)$ is generated by global section. Then, since R is very ample, $\mathcal{O}(n R+D+R)$ is also very ample. Now, $D=M-(n+1) R$, where $M=D+(n+1) R$ which is very ample.
(c) Using the result in (b), it suffice to show the result in case that \mathcal{L} is very ample. Write $\mathcal{L}=f^{*} \mathcal{O}(1)$ for some embedding $f: X \rightarrow \mathbb{P}^{N}$. Since X has finitely may irregular points, there exists a hyperplane H in \mathbb{P}^{N} such that $H \cap X \subseteq X_{\text {reg }}$. Now, take $D=H \cap X$.
(d) Since X is locally complete intersection, we may apply the Sere duality. We then get

$$
\begin{aligned}
H^{1}(X, \mathcal{O}(D)) & \cong \operatorname{Ext}_{X}^{0}\left(\mathcal{O}(D), \omega_{X}^{\circ}\right)^{\vee} \\
& \cong \operatorname{Ext}_{X}^{0}\left(\mathcal{O}_{X}, \mathcal{O}(-D) \otimes \omega_{X}^{\circ}\right)^{\vee} \\
& \cong H^{0}\left(\mathcal{O}_{X}, \mathcal{O}(-D) \otimes \omega_{X}^{\circ}\right)^{\vee}
\end{aligned}
$$

Then, $\chi(\mathcal{O}(D))=h^{0}(X, \mathcal{O}(D))-h^{1}(X, \mathcal{O}(D))=\ell(D)-\ell(K-D)$. Finally, using the result in (a), we get the required formula.

Exercise 10 (by Ping-Hsun Chuang).

Proof. Apply exercise 4.1 .9 to $D=K$ and get

$$
\ell(K)-\ell(0)=\operatorname{deg} K+1-g_{a}=\operatorname{deg} K
$$

Also, we have

$$
\ell(K)=h^{0}\left(X, \omega_{X}^{\circ}\right)=h^{1}\left(X, \mathcal{O}_{X}\right)=p_{a} .
$$

Note that the second equality above holds by the Serre duality since we assume X is locally complete intersection. Thus, we get $\operatorname{deg} K=p_{a}-1=0$.

Now, for any $D \in \operatorname{Pic}^{0} X$, apply exercise 4.1.9 to $D=D+P_{0}$ and get

$$
\ell\left(D+P_{0}\right)-\ell\left(K-D-P_{0}\right)=\operatorname{deg}\left(D+P_{0}\right)+1-p_{a}=1 .
$$

Also, we have $\operatorname{deg}\left(K-D-P_{0}\right)=\operatorname{deg} K-1=-1$ and thus $\ell\left(K-D-P_{0}\right)=0$. Hence, $\ell\left(D+P_{0}\right)=1$, that is, there exists a unique $R>0$ such that $R \sim D+P_{0}$. Therefore, for any $D \in \operatorname{Pic}^{0} X$, we find a unique R such that $D \sim R-P_{0}$ and thus $X_{\mathrm{reg}} \rightarrow \operatorname{Pic}^{0} X$ is bijection.

2 Hurwitz's Theorem

Exercise 1 (by Pei-Hsuan Chang).
Induction on n. For $n=1$, it is Example IV.2.5.3 in Hartshorne. So let's deal with the case $n>1$. Let $f: X \rightarrow \mathbb{P}^{n}$ be an étale covering. We may assume that X is connected. For each hyperplane $H \cong \mathbb{P}^{n-1}$ in $\mathbb{P}^{n}, f: f^{*} H \rightarrow H$ is an étale covering of H. By induction hypothesis, $f^{*} H$ is disjoint union of copies of H.

Now, we are going to showing that $f^{*} H$ is connected, and conclude $f^{*} H$ is isomorphic to H via f. To show this, we want to show that X is normal and $f^{*} H$ is ample with codimension 1 , then by Corollary III. $7.9, f^{*} H$ will be connected. Notice that H is ample, so $f^{*} H$ is ample since f is finite. Also, an étale covering is smooth, so X is smooth over k and thus, is normal. Hence, $f^{*} H \cong H$, and $\left.f\right|_{f^{*} H}$ is an isomorphism. Now, $\operatorname{deg} f=\left.\operatorname{deg} f\right|_{f^{*} H}=1$. An étale covering with degree 1 is an isomorphism, so $X=\mathbb{P}^{n}$. This complete the prove.

Exercise 2 (by Yu-Chi Hou).
(a) From Exercise 1.7, we know that any curve X of genus 2 is hyperelliptic whose the degree 2 morphism $f:=\phi_{\left|K_{X}\right|}: X \longrightarrow \mathbb{P}^{1}$ coming from the canonical system. Using Riemann-Hurwitz formula, one computes directly that $\operatorname{deg}(R)=6$. If P is branched point of f, then $e_{P}=2$, for any $P \in f^{-1}(Q)$. Since $\operatorname{char}(k) \neq 2$, any ramification point $P \in X$ is tamely ramified,

$$
R=\sum_{P \in X}\left(e_{P}-1\right), \text { and } \operatorname{deg}(R)=6
$$

Hence, f is ramified exactly at 6 points.
(b) Let $h(x):=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{6}\right) \in k[x]$ and $\left.K:=(k(x))[z]\right) /\left(z^{2}-h\right)$. Since $K / k(x)$ is an algebraic extension of degree $2, K / k$ has transcendental degree 1 . This together with $[K: k(x)]=2$ determines a non-singular projective curve X and a morphism $f: X \rightarrow \mathbb{P}^{1}$ of degree 2 . On the affine open chart $U_{0}=\operatorname{Spec} k[x] \subset \mathbb{P}^{1}$, there exists a morphism from the affine open set $V \subseteq f^{-1}\left(U_{0}\right) \rightarrow U_{0}$ correpsonding to the inclusion $k[x] \hookrightarrow k[x, \bar{z}]:=k[x, z] /\left(z^{2}-h\right)$. Hence, the function field $K(V)=$ $K(X)=K$.
Since $k=\bar{k}$, any closed point $P \in U_{0} \subset \mathbb{P}^{1}$ correponds to the maximal ideal $(x-\alpha) \subset k[x]$. If $\alpha \notin\left\{\alpha_{1}, \ldots, \alpha_{6}\right\}$, then $h(\alpha) \neq 0$ and thus $\left(x-\alpha, \bar{z} \pm \sqrt{h(\alpha)}\right.$ is a maximal ideal in $k[x, z] /\left(z^{2}-h\right)$. In other words, $\# f^{-1}(P)=2$ if $P \in U_{0}$ not corresponding to $\alpha_{1}, \ldots, \alpha_{6}$. Thus, we have shown that $f^{-1}\left(U_{0}\right) \rightarrow U_{0}$ is only branched at $\alpha_{1}, \ldots, \alpha_{6} \in k \cong U_{0} \subset \mathbb{P}^{1}$.
Next, we need to check that f does not brached at $\infty \in \mathbb{P}^{1}$. To see this, we first localizing

$$
k[x]_{(x)}=k\left[x, x^{-1}\right] \hookrightarrow\left(k[x, z] /\left(z^{2}-h\right)\right)_{(x)}=k\left[x, x^{-1}, z\right] /\left(z^{2}-h\right),
$$

which correponds to $f^{-1}\left(U_{0} \cap U_{1}\right) \rightarrow U_{0} \cap U_{1}$. On $k\left[x, x^{-1}, z\right]$, we first assume that $\alpha_{1}, \ldots, \alpha_{6} \in k^{*}$, then

$$
\begin{aligned}
& z^{2}-h(x)=z^{2}-\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{6}\right)=z^{2}-x^{6}\left(1-\frac{\alpha_{1}}{x}\right) \cdots\left(1-\frac{\alpha_{6}}{x}\right) \\
= & z^{2}-\alpha_{1} \cdots \alpha_{6} x^{6}\left(\frac{1}{\alpha_{1}}-\frac{1}{x}\right) \cdots\left(\frac{1}{\alpha_{6}}-\frac{1}{x}\right)=x^{6}\left(x^{-6} z^{2}-\alpha_{1} \cdots \alpha_{6} \tilde{h}(1 / x)\right),
\end{aligned}
$$

where $\tilde{h}(1 / x):=\prod_{i=1}^{6}\left(\frac{1}{\alpha_{i}}-\frac{1}{x}\right) \in k\left[x^{-1}\right]$. Since x is a unit in $k\left[x, x^{-1}, z\right],\left(z^{2}-h(x)\right)=\left(\tilde{z}^{2}-\right.$ $\alpha_{1} \cdots \alpha_{6} \tilde{h}(1 / x)$), where $\tilde{z}=x^{-3} z$. Hence, we have

$$
k\left[x, x^{-1}, z\right] /\left(z^{2}-h\right)=k[x, \tilde{x}, \tilde{z}] /\left(\tilde{z}^{2}-\alpha_{1} \cdots \alpha_{6} \tilde{h}(1 / x)\right) .
$$

Let $y=1 / x, k[x, \tilde{x}, \tilde{z}] /\left(\tilde{z}^{2}-\alpha_{1} \cdots \alpha_{6} \tilde{h}(1 / x)\right)=k\left[y, y^{-1}, \tilde{z}\right] /\left(\tilde{z}^{2}=\alpha_{1} \cdots \alpha_{6} \tilde{h}(y)\right)$. Thus, on $U=$ Spec $k[y], f^{-1}\left(U_{1}\right) \rightarrow U_{1}$ is defined by the correponding morphism from $k[y] \hookrightarrow k[y, \tilde{z}] /\left(\tilde{z}^{2}=\right.$ $\left.\alpha_{1} \cdots \alpha_{6} \tilde{h}\right)$. Same argument as above shows that f is only branched at $y-\alpha_{i} \in \operatorname{Spec} k[y]$ for $i=1, \ldots, 6$. Now,, if $\alpha_{6}=0, \alpha_{1}, \ldots \alpha_{5} \neq 0$ (since $\alpha_{1}, \cdots, \alpha_{6}$ are distinct),

$$
h(x)=x\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{5}\right)=\alpha_{1} \cdots \alpha_{5} x^{6}\left(\frac{1}{\alpha_{1}}-\frac{1}{x}\right) \cdots\left(\frac{1}{\alpha_{5}}-1 / x\right) .
$$

Repeating above argument shows that f is not branched at ∞. Thus, f is only ramified over 6 points with each ramification index 2 (since f is of degree 2). Using Riemann-Hurwitz formula, $2 g(X)-2=2(0-2)+6=2 \Rightarrow g(x)=2$. Moreover, let $P \in X$ such that $f(P)=Q \in\left\{\alpha_{1}, \ldots, \alpha_{6}\right\}$, then $f^{*} P=\sum_{P \in f^{-1}(Q} e_{P} \cdot P=2 P$. Thus, $f^{*} \mathcal{O} \mathbb{P}^{1}(Q)=f^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)=\mathcal{O}_{X}(2 P)$.
On the other hand, using Riemann-Roch, $h^{0}\left(X, \mathcal{O}_{X}(2 P)\right)-h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}-2 P\right)\right)=\operatorname{deg}(2 P)-g(X)+$ $1=1$. Since $H^{0}\left(X, \mathcal{O}_{X}(2 P)\right)=H^{0}\left(X, f^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)\right)=H^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(1)\right) \cong k^{2}, h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}-2 P\right)\right)=2$. However, $\operatorname{deg}\left(K_{X}-2 P\right)=2 g(x)-2-2=0$. Thus, $K_{X} \sim 2 P$. Hence, the map $f: X \rightarrow \mathbb{P}^{1}$ is the same as the one determined by $\left|K_{X}\right|$.
(c) If $P_{i} \neq \infty \in \mathbb{P}^{1}$, for $i=1,2,3$, then let $P_{1}=[a: 1], P_{2}=[b: 1], P_{3}=[c: 1]$, then the Möbius transform $\phi(z)=\frac{z-a}{z-c} \frac{b-c}{b-a}$ maps P_{1} to $0, P_{2}$ to 1 , and P_{3} to ∞. If $P_{1}=\infty, P_{2}=[b: 1], P_{3}=[c: 1]$, then we take $\phi(z)=\frac{b-c}{z-c}$. Since $\operatorname{Aut}\left(\mathbb{P}^{1}\right)=P G L(2)$, such ϕ is unique.
(d) The symmetric group S_{3} acts on distinct element $\beta_{1}, \beta_{2}, \beta_{3} \in k \backslash\{0,1\}$ by permuting $\left\{0,1, \infty, \beta_{1}, \beta_{2}, \beta_{3}\right.$), then sending the first three element to $0,1, \infty$ by Möbius transform again, then call them $\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}$. Then we define $\left[\beta_{1}, \beta_{2}, \beta_{3}\right]$ to be the equivalence class of $\left(\beta_{1} \beta_{2}, \beta_{3}\right)$ modulo such $S_{3}-$ action.
(e) Given any genus 2 curve $X,\left|K_{X}\right|$ gives $f: X \rightarrow \mathbb{P}^{1}$ with six distinct brached points P_{1}, \ldots, P_{6}. Then using Möbius transform, we sends $P_{1} \mapsto 0, P_{2} \mapsto 1, P_{3} \mapsto \infty, P_{i} \mapsto \beta_{i-3}$, for $i=4,5,6$. We then get an equivalence class $\left[\beta_{1}, \beta_{2}, \beta_{3}\right]$ modulo S_{3}-action described in (d). Now, if $\phi: X \xrightarrow{\sim} X^{\prime}$ be an isomorphism, then $\phi^{*} K_{X^{\prime}} \sim K_{x}$. Thus, $\left|\phi^{*} K_{X^{\prime}}\right|$ gives a morphism to \mathbb{P}^{1} which differ to the one from $\left|K_{X}\right|$ by an $\psi \in \operatorname{Aut}\left(\mathbb{P}^{1}\right)=P G L(2)$. Then as in (d), the tuple $\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}\right)$ differ by $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ by an S_{3}-action. Thus, $\left[\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}\right]=\left[\beta_{1}, \beta_{2}, \beta_{3}\right]$.
Also, (b) implies that starting from six points of \mathbb{P}^{1}, one can construct a genus two curve X whose $\phi_{\left|K_{X}\right|}$ is branched exactly at the given six points. Thus, we established the isomorphism class $[X]$ with the tuple $\left[\beta_{1}, \beta_{2}, \beta_{3}\right]$ modulo S_{3}-action.

Exercise 4 (by Yi-Tsung Wang).
Proof. Let $f(x, y, z)=x^{3} y+y^{3} z+z^{3} x$. Then $f_{x}=z^{3}, f_{y}=x^{3}, f_{z}=y^{3} \Rightarrow f$ is non-singular since $(0,0,0) \notin \mathbb{P}^{2}$. Since

$$
\left(\begin{array}{ccc}
f_{x x} & f_{x y} & f_{x z} \\
f_{y x} & f_{y y} & f_{y z} \\
f_{z x} & f_{z y} & f_{z z}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 3 z^{2} \\
3 x^{2} & 0 & 0 \\
0 & 3 y^{2} & 0
\end{array}\right)=0
$$

every point of X is an inflection point. For $p(a, b, c) \in X$, the tangent line at p is

$$
c^{3}(x-a)+a^{3}(y-b)+b^{3}(z-x)=0
$$

that is, $c^{3} x+a^{3} y+b^{3} z=0$. Then the natural map $X \rightarrow X^{*}$ is defined by $(a, b, c) \mapsto\left(c^{3}, a^{3}, b^{3}\right)$, which is a Frobenius morphism, hence is isomorphic and purely inseparable.

Exercise 5 (by Yu-Ting Huang).
(a) Let G act on X, then $f^{-1}(f(P))$ is an orbit of the group action, then $\left|f^{-1} f(P)\right|=\frac{n}{r}$ and each element in $f^{-1} f(P)$ are of index r as P. By Hurwitz's theorem, $2 g(X)-2=n(2 g(Y)-2)+\sum_{p}\left(e_{p}-1\right)$. Then $\frac{2 g-2}{n}=\frac{1}{n} \sum_{P}\left(e_{P}-1\right)=\frac{1}{n} \sum_{i=1}^{s} \frac{n}{r_{i}}\left(r_{i}-1\right)=\sum_{i=1}^{s}\left(1-\frac{1}{r_{i}}\right)$.
(b) First, note that $2 g(Y)-2+\sum_{i=1}^{s}\left(1-\frac{1}{r_{i}}\right)=\frac{2 g(X)-2}{n}>0$, since $g(X) \geq 2$. If $g(Y)=0,-2+\sum_{i=1}^{s}(1+$ $\left.\frac{1}{r_{i}}\right)=\frac{2 g(X)-2}{n} \geq \frac{2}{n} \geq 0$. Thus, $\sum_{i=1}^{s}\left(1-\frac{1}{r_{i}}\right) \geq \frac{2}{n}+2$. Consider the minimal possibility of r_{i} such that $\sum_{i=1}^{s}\left(1-\frac{1}{r_{i}}\right) \geq \frac{2}{n}+2$. We find that $r_{i}=2,3,7$. Then, $-2+\frac{1}{2}+\frac{2}{3}+\frac{6}{7}=\frac{1}{42}=\frac{2(g-1)}{n}$. i.e. $n=84(g-1)$. In the case $g(Y)=0, n \leq 84(g-1)$.
As for $g(Y) \geq 1,2 g(Y)-2>0$, so $\sum_{i=1}^{s}\left(1-\frac{1}{r_{i}}\right)>0$. To find maximal n, we set $s=1, r_{1}=2, g(Y)=1$. Then $2-2+\left(1-\frac{1}{2}\right)=\frac{2 g-2}{n}$. i.e. $n=4(g-1) \leq 84(g-1)$. Now, we can conclude that $n \leq 84(g-1)$.

Exercise 6 (by Tzu-Yang Chou).
(a) Let D be effective. We first consider the short exact sequence $0 \longrightarrow \mathcal{O}_{X}(-D) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{D} \longrightarrow 0$ and apply f_{*}. Since f is finite, so $R^{1} f_{*} \mathcal{O}_{X}(-D)$ vanishes and hence we have $0 \longrightarrow f_{*} \mathcal{O}_{X}(-D) \longrightarrow$ $f_{*} \mathcal{O}_{X} \longrightarrow f_{*} \mathcal{O}_{D} \longrightarrow 0$ is exact. Taking determinant, we obtain $\operatorname{det}\left(f_{*} \mathcal{O}_{X}\right) \simeq \operatorname{det}\left(f_{*} \mathcal{O}_{X}(-D)\right) \otimes$ $\operatorname{det}\left(f_{*} \mathcal{O}_{D}\right)$. Now we only need that $\left(\operatorname{det}\left(f_{*} \mathcal{O}_{D}\right)\right)^{-1} \simeq \mathcal{O}_{X}\left(f_{*}(-D)\right)$ since then for a general divisor, we can write it as a difference of two effective ones and above formula proves the assertion. But this statement follows from $\operatorname{Ex}($ II.6.11)(c).
(b) (a) tells us that $\mathcal{O}_{X}\left(f_{*} D\right) \simeq \operatorname{det}\left(f_{*} \mathcal{O}_{X}(D)\right) \otimes\left(\operatorname{det}\left(f_{*} \mathcal{O}_{X}\right)\right)^{-1}$ and hence it only depends on the linear equivalence class of $D . f_{*} \circ f^{*}=n$ follows from their definitions, where $n=\operatorname{deg} f$.
(c) $\operatorname{By} \operatorname{Ex}($ III.7.2 $)$ and $\operatorname{Ex}\left(\right.$ III.6.10), we have the following sequence of isomorphisms: $\operatorname{det}\left(f_{*} \Omega_{X}\right) \simeq$ $\operatorname{det}\left(f_{*} \mathscr{H} \operatorname{om}_{X}\left(\mathcal{O}_{X}, \Omega_{X}\right)\right) \simeq \operatorname{det}\left(f_{*} \mathscr{H} \operatorname{om}_{X}\left(\mathcal{O}_{X}, f^{!} \Omega_{Y}\right)\right) \simeq \operatorname{det}\left(\mathscr{H} o m_{Y}\left(f_{*} \mathcal{O}_{X}, \Omega_{Y}\right)\right) \simeq \operatorname{det}\left(\left(f_{*} \mathcal{O}_{X}\right)^{-1} \otimes\right.$ $\left.\Omega_{Y}\right) \simeq\left(\operatorname{det}\left(f_{*} \mathcal{O}_{X}\right)\right)^{-1} \otimes \Omega_{Y}^{\otimes n}$
(d) $K_{X}=f^{*} K_{Y}+R \Rightarrow f_{*} K_{X}=n K_{Y}+B \Rightarrow \mathcal{O}_{X}(-B) \simeq \Omega_{Y}^{\otimes n} \otimes\left(\mathcal{O}_{X}\left(f_{*} K_{X}\right)\right)^{-1}$, and this is isomorphic to $\left(\operatorname{det}\left(f_{*} \mathcal{O}_{X}\right)\right)^{2}$ by (a) and (c).

Exercise 7 (by Po-Sheng Wu).
(a) Since f is finite flat, $f_{*} \mathcal{O}_{X}$ is locally free of rank 2. Plus, the injection $\mathcal{O}_{Y} \rightarrow f_{*} \mathcal{O}_{X}$ is also injective on residue field, so the kernel \mathcal{L} is locally free of rank 1 . By taking det for the short exact sequence we have $\mathcal{L} \cong \operatorname{det} f_{*} \mathcal{O}_{X}$, and then by $2.6(\mathrm{~d})$ we have $\mathcal{L}^{2} \cong \mathcal{O}_{Y}$ since f is etale.
(b) On the affine subset $U=\operatorname{Spec}(A) \subset Y$ such that \mathcal{L} is free, the constructed algebra is actually isomorphic to $A[t] /\left(t^{2}-u\right)$ via $(a, b v) \mapsto a+b t$, where v is a generator of $\mathcal{L}(U)$, and $u=\phi(v \otimes v)$ is a unit of A. Since $A[t] /\left(t^{2}-u\right)$ is unramified over $A, \operatorname{Spec}(\mathcal{O} \oplus \mathcal{L})$ is etale over Y.
(c) Conversely, if $X \mapsto Y$ is etale of degree 2, then locally $f_{*} \mathcal{O}_{X}(U)$ is an unramified algebra of rank 2 over A, which is always able to be written in the form $A[t] /\left(t^{2}-u\right)$, so the exact sequence in (a) is splitted by $f_{*} \mathcal{O}_{X} \rightarrow \mathcal{O}_{Y}$ where the map $A[t] /\left(t^{2}-u\right) \rightarrow A$ is given by taking the constant term. Now we see that (a) and (b) are converse to each other.

3 Embeddings in Projective Space

Exercise 1 (by Shi-Xin Wang).
Since $\operatorname{deg} D \geq 5=2 g(X)+1$, by Corollary $3.2, D$ is very ample. So we only need to show that if D is very ample, then $\operatorname{deg} D \geq 5$. We first show that $\operatorname{dim}|D| \geq 3$. Indeed, if $\operatorname{dim}|D|=1$, it defines a closed immersion to \mathbb{P}^{1}, which is impossible. Moreover, if $\operatorname{dim}|D|=2$, it defines a closed immersion from X to \mathbb{P}^{2} as a plane curve, and hence by Riemann-Roch formula,

$$
\operatorname{deg} D=g(X)-1+\operatorname{dim}|D|-\operatorname{dim}|K-D|=4
$$

Therefore, $g(X)=\frac{1}{2}(\operatorname{deg} D-1)(\operatorname{deg} D-2)=3 \neq 2$ is a contradiction. On the other hand, by ex.iv.1.5, $\operatorname{deg} D>\operatorname{dim}|D| \geq 3$. Then we may assume $\operatorname{deg} D=4$. Since $\operatorname{deg} D \geq 2 g(X)-2=2, \operatorname{dim}|K-D|=-1$. However, there is a contraction

$$
\operatorname{deg} D=g(X)-1+\operatorname{dim}|D|-\operatorname{dim}|K-D| \geq 5
$$

Thus we must have $\operatorname{deg} D \geq 5$.
Exercise 2 (by Yi-Tsung Wang).
(a) Let K be a canonical divisor. Since $\omega_{X}=\mathcal{O}_{X}(d-n-1)=\mathcal{O}_{X}(1)$, we see that $K=|K|^{*} L=X . L$ for some line L.
(b) Since X is a plane curve of degree 4 , we have $g(X)=3$. Since $\omega_{X}=\mathcal{O}_{X}(1)$ is very ample, so is $K . \ell(K-D)=\ell(K)-2=1$. By Riemann-Roch, $\ell(D)=\operatorname{deg} D+1-g+\ell(K-D)=1$, hence $\operatorname{dim}|D|=0$.
(c) Suppose not, let $f: X \rightarrow \mathbb{P}^{1}$ be a finite morphism of degree 2, then $D:=f^{*}(\infty)$ is an effective divisor of degree 2 . By part (b), $\ell(D)=1$, and since $f \in \Gamma(X, \mathscr{L}(D))$, f sends all $x \in X$ to $\infty \in \mathbb{P}^{1}$, contradiction. Hence X is not hyperelliptic.

Exercise 3 (by Tzu-Yang Chou).
By $\operatorname{Ex}(\mathrm{II} .8 .4), \mathcal{O}_{X}(K) \simeq \mathcal{O}_{X}(m)$ for some integer m. Moreover, $\operatorname{deg} K=2 g-20$ so $m>0$ and hence K is very ample. When $g=2, K$ has degree $2<5$ so cannot be very ample by $\operatorname{Ex}(I V .3 .1)$; thus X must not be a complete intersection.

Exercise 4 (by Yu-Chi Hou).
(a) For $d \geq 1$, let $\nu_{d}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d}$ be d-uple embedding of \mathbb{P}^{1} in \mathbb{P}^{d} and let X be its image. Recall the d-uple embedding is given by $\nu_{d}\left(\left[t_{0}, t_{1}\right]\right)=\left[t_{0}^{d}: t_{0}^{d-1} t_{1}: \cdots: t_{0} t_{1}^{d-1}: t_{1}^{d}\right]$. From Exercise I.2.12, we know that X is integral, $S(X)=k\left[x_{0}, \ldots, x_{d}\right] / I(X)$ is integral, and $I(X)=\operatorname{ker}(\theta)$, where $\theta: k\left[x_{0}, x_{1}, \ldots, x_{d}\right] \rightarrow$ $k\left[t_{0}, t_{1}\right]$ is given by $x_{i} \mapsto t_{0}^{d-i} t_{1}^{i}$. In other words, we can write $S(X)=k\left[t_{0}^{d}, t_{0}^{d-1} t_{1}, \ldots, t_{1}^{d}\right]$. Given $r \in \operatorname{Frac}(S(X))=k\left(t_{0}, t_{1}\right)$ which in integral over $S(X)$. Write $r\left(t_{0}, t_{1}\right)=\frac{f\left(t_{0}, t_{1}\right)}{g\left(t_{0}, t_{1}\right)}$, where $f, g \in k\left[t_{0}, t_{1}\right]$ and $\operatorname{gcd}(f, g)=1$, and there exists $a_{0}, a_{1}, \ldots, a_{n-1} \in S(X)$ such that

$$
r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}=0
$$

Repeating the proof that UFD are integrally closed (clean out the denominator g and use the relative primeness of g and f), we know that $g \in k^{*}$ and hence $r=f\left(t_{0}, t_{1}\right) \in k\left[t_{0}, t_{1}\right]$. Hence, above equation reads

$$
\begin{equation*}
f^{n}+a_{n-1} f^{n-1}+\cdots+a_{1} f+a_{0}=0 \tag{1}
\end{equation*}
$$

By comparing degree, we may assume that a_{0}, \ldots, a_{d-1} are homogeneous of degree k_{0}, \ldots, k_{n-1} in degree d monomial of t_{0}, t_{1} and g is homogeneous of degree m in t_{0}, t_{1}. Thus, equating the degree of (1) gives $m n=m(n-1)+d k_{n-1}+\cdots=m+d k_{1}=d k_{0}$. Hence, $m=d k_{n-1} \Rightarrow d \mid m$. Thus,
$f=\sum_{i} a_{i} t_{0}^{d n-1-i} t_{1}^{i}$. However, since each monomial $t_{0}^{k} t_{1}^{j}$ in a_{0}, \ldots, a_{d-1}, these exponents congruent to zero modulo d. As a result, $i \equiv 0 \bmod d$. In other words, $f \in S(X)$.
Alternatively, we see that $V:=\operatorname{Spec}\left(k\left[t_{0}^{d}, t_{0}^{d-1} t_{1}, \ldots, t_{1}^{d}\right]\right)$ is the affine toric variety associated to the cone $\sigma:=\mathbb{R}_{\geq 0}\left\langle e_{1}, e_{1}+d e_{2}\right\rangle \subset \mathbb{R}^{2}$. Since σ is strongly convex polyhedral cone, the affine monoid $S_{\sigma}=Z^{2} \cap \sigma$ is saturated, and hence the variety $V=\operatorname{Spec}\left(k\left[S_{\sigma}\right]\right)$ is normal. Also, observe that if V is an affine cone over a projective variety X, V is normal if and only if X is projectively normal by definition.

Next, we show that the homogenous ideal $I(X)$ is generated by homogeneous polynomial of degree 2 . More precisely, we show that that

$$
I(X)=\left\langle g_{i j}:=x_{i} x_{j+1}-x_{i+1} x_{j}: 0 \leq i<j \leq d-1\right\rangle \subset k\left[x_{0}, \ldots, x_{d}\right] .
$$

Obviously, $g_{i j} \in \operatorname{ker}(\theta)$ and hence $I(X) \supset\left\langle g_{i j}: 0 \leq i<j \leq d-1\right\rangle$. For the converse, given any homogeneous polynomial $f \in I(X)$ of degree n, choose the lexicographic order $x_{0}>x_{1}>\cdots>x_{d}$ as monomial ordering and let r be the remainder after division by $g_{i j}$'s. That is, $r=f-\sum_{0 \leq i<j \leq d-1} a_{i j} g_{i j}$, where $a_{i j} \in k\left[x_{0}, \ldots, x_{d}\right]$. By equating degree on both sides, we know that r is also a homogeneous polynomial of degree n. We now have two simple observations:
(1) r contains no monomial of the form $-x_{i}^{l}$, for $i=1, \ldots, d-1$. If there were such monomial, then such term can be subtracted by some multiple of $g_{i-1, i}:=x_{i-1} x_{i+1}-x_{i}^{2}$.
(2) Also, r contains no monomial involving variables x_{i}, x_{j} with $j-i \geq 2$. If there were, then again such term can be subtracted by some multiple of $g_{i, j-1}:=x_{i} x_{j}-x_{i+1} x_{j-1}$.

Following these two observations, r can be decomposed into

$$
r=h_{0}\left(x_{0}, x_{1}\right)+h_{1}\left(x_{1}, x_{2}\right)+\cdots+h_{d-1}\left(x_{d-1}, x_{d}\right),
$$

where each h_{i} is homogeneous of degree n, for all $i=0, \ldots, d-1$ and contains no term like x_{i}^{n}, for $i=1, \ldots, d-1$.
Finally, for $r=f-\sum_{i j} a_{i j} g_{i j} \in I(X)$, that is to say, $r\left(t_{0}^{d}, t_{0}^{d-1}, \ldots, t_{1}^{d}\right)=0$. For each $i=1, \ldots, d-2$,

$$
h_{i}\left(x_{i}, x_{i+1}\right)=\sum_{k=1}^{n-1} c_{k}^{(i)} x_{i}^{n-k} x_{i+1}^{k}
$$

and

$$
h_{0}\left(x_{0}, x_{1}\right)=c_{0}^{(0)} x_{0}^{n}+\sum_{k=1}^{n-1} c_{k}^{(0)} x_{0}^{n-k} x_{1}^{k} ; h_{d-1}\left(x_{d-1}, x_{d}\right)=\sum_{k=1}^{n-1} c_{k}^{(d-1)} x_{d-1}^{n-k} x_{d}^{k}+c_{d}^{(d-1)} x_{1}^{d}
$$

Thus, for $i=0, \ldots, d$, plugging x_{i} by $t_{0}^{d-i} t_{1}^{i}$, we see that:

$$
0=c_{0}^{(0)} t_{0}^{n d}+\sum_{k=1}^{n-1} c_{k}^{(0)} t_{0}^{n d-k} t_{1}^{k}+\sum_{k=1}^{n-1} c_{k}^{(1)} t_{0}^{n(d-1)-k} t_{1}^{r+k}+\cdots+\sum_{k=1}^{n-1} c_{k}^{(d-1)} t_{0}^{n-k} t_{1}^{n(d-1)+k}+c_{d}^{(d-1)} t_{1}^{n d}
$$

Therefore, $c_{k}^{(i)}=0$ for all i, k. That is, $r=0$.
(b) Let X be a curve of degree d in \mathbb{P}^{n} with $d \leq n$ and $X \nsubseteq H$, for any hyplerplane H in \mathbb{P}^{n}. Take any hyperplane H, let $D=X . H$ be the very ample divisor on X. Thus, $\operatorname{deg}(D)=\operatorname{deg}(X . H)=$ $\operatorname{deg}(X)=d$ and $\operatorname{dim}|D|=n$ (otherwise, there exists a proper subspace $V \subset h^{0}\left(X, \mathcal{O}_{X}(D)\right)$ such that $\left.X \subset \mathbb{P}\left(V^{*}\right) \subsetneq \mathbb{P}^{n}\right)$. Now, since $X \nsubseteq H$, there exists $P \notin \operatorname{Bs}|D|$, then $\operatorname{dim}|D-P|=\operatorname{dim}|D|-1=n-1$ and $\operatorname{deg}(D-P)=d-1$.
If $n>d$, then pick $P_{1}, \ldots, P_{d} \notin \mathrm{Bs}|D|$, inductive on aboce arguement gives $\operatorname{dim}\left|D-\sum_{i=1}^{d} P_{i}\right|=n-d>$ 0 yet $\operatorname{deg}\left(D-\sum_{i=1}^{d} P_{i}\right)=0$. Therefore, $D-\sum_{i=1}^{d} P_{i} \sim 0$. If so, then $h^{0}\left(X, \mathcal{O}_{X}\left(D-\sum_{i=1}^{n} P_{i}\right)=1\right.$, contradiction. Hence, $n=d$. By Exercise IV.1.5, $\operatorname{deg}(d)=\operatorname{dim}|D|$ if and only if $D \sim 0$ or $g(X)=0$. By assumption, $\operatorname{deg}(D)>0$, we then must have $g(X)=0$ and $\mathcal{O}_{X}(H)=\mathcal{O}_{\mathbb{P}^{1}}(d H)$. Therefore, $X \cong \nu_{d}\left(\mathbb{P}^{1}\right)$ up to $\operatorname{Aut}\left(\mathbb{P}^{n}\right)$.
(c) If X is of degree 2 in \mathbb{P}^{n}. If X is not contained in any hyperplane, then $n=2$ by (b). If there exists a hyperplane $H \cong \mathbb{P}^{n-1}$ such that $X \subseteq H$, then replacing n by $n-1$ and repeating the previous argument, we still get $n=2$. Hence, X is a plane conic.
(d) Let X be a curve of degree 3 . The same argument in (c) shows that $X \subseteq \mathbb{P}^{3}$. We now have two cases. If X is not contained in any plane \mathbb{P}^{2}, then $X \cong \nu_{3}\left(\mathbb{P}^{1}\right)$ by (b). It is indeed the twisted cubic curve up to a projective transform. If X falls into some plane, then it is a plane cubic.

Exercise 6 (by Tzu-Yang Chou).
(a) Let n be the smallest integer such that $X \subseteq \mathbb{P}^{n}$. First, $\operatorname{Ex}(\mathrm{IV} .3 .4)(\mathrm{b})$ implies that the case $n>3$ is contained in (1). Also, for the case $n=2$, we have $g=\frac{(4-1)(4-2)}{2}=3$. For $n=3$, we have $g<3$ by $\operatorname{Ex}(\mathrm{IV} .3 .5)(\mathrm{b})$, so it remains to show that the genus cannot be 2 in this case. But X embed into \mathbb{P}^{3} as a degree 4 curve, so there's a degree 4 very ample divisor D, which contradicts to $\operatorname{Ex}(I V .3 .1)$.
(b) Now we assume that $X \subseteq \mathbb{P}^{3}$ with $g=1$. We consider the cohomology sequence of $0 \longrightarrow$ $\mathscr{I}_{X}(2) \longrightarrow \mathcal{O}_{\mathbb{P}^{3}}(2) \longrightarrow \mathcal{O}_{X}(2) \longrightarrow 0$, which is a four-term one. We see that $h^{0}\left(\mathbb{P}^{3}, \mathscr{I}_{X}(2)\right)=$ $10-8+h^{1}\left(\mathbb{P}^{3}, \mathscr{I}_{X}(2)\right) \geq 2$. Then the assertion follows from Bezout's theorem.

Exercise 7 (by Yi-Heng Tsai).
Since char $k \neq 2$, the curve has only one node at $(x, y)=(0,0)$. Suppose there is a non-singular curve C which projects to it, then $\operatorname{deg}(C)=4$ and $g(C)=2$ (contradicts to Ex3.6).

Exercise 9 (by Pei-Hsuan Chang).
Let H be a plane in \mathbb{P}^{3}. We have: H intersect X least then d distinct point $\Leftrightarrow H$ contain a tangent line of X. Also, there are 3 intersection point of H and X are collinear $\Leftrightarrow H$ contain a multisecant of X.

Notice that $T:=\left\{H \in\left(\mathbb{P}^{3}\right)^{*} \mid H\right.$ contain a tangent line of $\left.X\right\}$ is locally a subset of $X \times \mathbb{P}^{1}$; thus, it has at most dimension 2. Consider $S:=\{$ mulitsecants of $X\} \subset(X \times X \backslash \triangle)$. It is a proper closed subset of $X \times X$, so S has at most dimension 1. Hence, $\left\{H \in\left(\mathbb{P}^{3} \mid H\right.\right.$ contains a multisecant of $\left.X\right\}$ has at most dimension 2. So, $T \cup$ is a proper closed subset of $\left(\mathbb{P}^{3}\right)^{*}$. Thus, there is an open set $U \subset\left(\mathbb{P}^{3}\right)^{*}$ as desired.

4 Elliptic Curves

Exercise 1 (by Chi-Kang).
By R-R, we have $h^{0}(n P)-h^{0}(K-n p)=n$. Note that $K=0$, so $h^{0}(K-n P)$ is zero if $n>0$, and is 1 if $n=0$. So $h^{0}(n P)=n$ for $n>0$, and $h^{0}(0 p)=1$.
Now embedded X by $|3 P|$ into \mathbb{P}^{2}, we say X in $k\left[z_{0}, z_{1}, z_{2}\right]$ is defined by $z_{1}^{3}=z_{0}\left(z_{0}-z_{2}\right)\left(z_{0}=\lambda z_{2}\right)$.
Now we choose $t_{0}=1$ be a generator of $H^{0}(P), x_{0} \in H^{0}(2 P) \mathrm{s}, \mathrm{t},\left\{t_{0}, x_{0}\right\}$ is a basis of $H^{0}(2 P)$, and similarly choose $y_{0} \in H^{0}(3 P) \mathrm{s}, \mathrm{t},\left\{t_{0}, x_{0}, y_{0}\right\}$ is a basis of $H^{0}(3 P)$. Then R is generated by t_{0}, x_{0}, y_{0} i,e, $R=k\left[t_{0}, x_{0}, y_{0}\right] /($ relations $)$. As the proof of proposition 4.6, after a change of coordinate we have $y+0^{2}=x_{0}\left(x-t_{0}\right)\left(x-\lambda t_{0}\right)$. Note that in fact $t_{0}=1 \in H^{0}(P)$, so $t_{0}^{2}=t_{0}$, thus we have the relation $y_{0}^{2}=x_{0}\left(x_{0}-t_{0}^{2}\right)\left(x_{0}-\lambda t_{0}^{2}\right)$. Hence the map

$$
k[t, x, y] /\left(y^{2}-x\left(x-t^{2}\right)\left(x \lambda t^{2}\right)\right) \rightarrow R
$$

is well-defined and surjective. Now the above 2 rings are intergal domain. Note that for any surjective homomorphism $f: A \rightarrow B$ between integral domain, if f is not an isomorphism we must have $\operatorname{dim} A>\operatorname{dim} B$. But for our map both LHS and RHS has Krull dimension 2, hence it must an isomorphism.

Exercise 2 (by Yu-Chi Hou).
Let X be a genus 1 curve and D is a divisor on X with $\operatorname{deg} D \geq 3$. Since $\operatorname{deg} D \geq 3, D$ is very ample (cf. Cor. IV.3.2). Hence, the complete linear system $|D|$ gives an embedding $\phi_{|D|}: X \hookrightarrow \mathbb{P}^{n}$, where $n=\operatorname{dim}|D|=\operatorname{deg} D+1$ using Riemann-Roch.
Lemma 1. X is projectively normal if and only if for any $m \geq 0$, the natural map $H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(m)\right) \rightarrow$ $H^{0}\left(X, \mathcal{O}_{X}(m)\right)$ is a surjection.

The lemma is really a special case of Ex. II.5.14.
To check the condition of the lemma, we proceeds inductively on m. For $m=1$, this follows directly from $\phi_{|D|}^{*} \mathcal{O}_{\mathbb{P}^{n}}(1)=O_{X}(D)$. Assume the induction hypothesis holds for $m-1$, then we consider the following diagram

where the horizontal maps are given by multiplication map and the vertical arrow is the natural map coming from $X \hookrightarrow \mathbb{P}^{n}$. By induction hypothesis, the left arrow is surjective. If we can prove the surjectivity of the bottom horizaontal arrow, then the surjectivity of $H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(m+1)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}((m+1) D)\right)$ will follows.

Starting from here, we use the assumption that X is an elliptic curve. First of all, we can pick $P \in X$ such that $d P \sim D$, where $d=\operatorname{deg} D$ and from Riemann-Roch,

$$
h^{0}\left(X, \mathcal{O}_{X}(n P)\right)= \begin{cases}1 & , n=0,1 \\ n & , n \geq 2\end{cases}
$$

Hence, for $k \geq 1$, we have a sequence of strict inclusion

$$
H^{0}\left(X, \mathcal{O}_{X}(k P)\right) \subsetneq H^{0}\left(X, \mathcal{O}_{X}((k+1) P)\right)
$$

Namely, there exists unique $f \in K(X)$ which is regular outside P and $\operatorname{ord}_{P}(f)=k+1$, for each $k \geq 1$. Thus, for any $f \in H^{0}\left(X, \mathcal{O}_{X}((n+m) P)\right)$ there exists $g \in H^{0}\left(X, \mathcal{O}_{X}(n P)\right), h \in H^{0}\left(X, \mathcal{O}_{X}(m P)\right)$ such that $g h=f$, for any $n, m \geq 3$.

As a result, we see that the multiplication map

$$
H^{0}\left(X, \mathcal{O}_{X}(m d P)\right) \otimes H^{0}\left(X, \mathcal{O}_{X}(d P)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}((m+1) d P)\right)
$$

is surjective since $d \geq 3$.
Exercise 3 (by Pei-Hsuan Chang).
Let $f=y^{2}-x(x-1)(x-\lambda)$. Then regular functions on X except P_{0} is $k[x, y] /<f>+: R$. Thus, $K(X)=\operatorname{Frac}(R)=\{a(x)+b(x) y \mid a(x), b(x) \in k(x)\}$. Now, for each $\varphi \in \operatorname{Aut}(X)$, we can assume $\varphi(x, y)=\left(x^{\prime}, y^{\prime}\right)=\left(u_{1}(x)+v_{1}(x), u_{2}(x)+v_{2}(x) y\right)$. Notice that $\forall P=(x, y) \in X, 0=\varphi(0)=\varphi(P+(-P))=$ $\varphi(P)+\varphi(-P)$ in the group law. So

$$
P_{0}=\varphi(x, y)+\varphi(x,-y)=\left(u_{1}(x)+v_{1}(x), u_{2}(x)+v_{2}(x) y\right)+\left(u_{1}(x)-v_{1}(x), u_{2}(x)-v_{2}(x) y\right)
$$

then $u_{1}(x)+v_{1}(x)=u_{1}(x)-v_{1}(x)$ and $u_{2}(x)+v_{2}(x) y=-\left(u_{2}(x)-v_{2}(x) y\right)$. Hence, $v_{1}(x)=u_{2}(x)=0$, so $\varphi(x, y)=\left(u_{1}(x), v_{2}(x) y\right)$.

Now, we homogenizes φ to get

$$
\tilde{\varphi}(x, y, z)=\left(u_{1}\left(\frac{x}{z}\right), v_{2}\left(\frac{x}{z}\right) \frac{y}{z}, 1\right)=\left(\tilde{u_{1}}(x, z), \tilde{v_{2}}(x, z) y, z^{n}\right),
$$

where $\tilde{u_{1}}, \tilde{v_{2}}$ are homogeneous rational functions of degree n and $n-1$ respectively. Since $\tilde{\varphi}\left(P_{0}\right)=P_{0}$, $\tilde{\varphi}(0,1,0)=\left(\tilde{u_{1}}(0,0), \tilde{v}_{2}(0,0) \cdot 1,0\right)=(0, t, 0)$ for some $t \neq 0$. Thus, $\tilde{v_{2}}(0,0) \neq 0 \Rightarrow \tilde{v_{2}}(x, z)$ is constant, say $\tilde{v_{2}}(x, z)=c$. Hence $n=1 \Rightarrow \tilde{u_{1}}$ is linear. Now, de-homogenize $\tilde{\varphi}$ and get $\varphi(x, y)=\left(x^{\prime}, y^{\prime}\right)=(a x+b, c y)$ for some constant $a, b, c \in k$ on the affine piece.

Exercise 4 (by Tzu-Yang Tsai).
The equation equivalent to $\left(y+\frac{a_{1}}{2} x+\frac{a_{3}}{2}\right)^{2}=x^{3}+\left(a_{2}+\frac{a_{1}^{2}}{4}\right)+\left(a_{4}+\frac{a_{1} a_{3}}{2}\right) x+a_{6}+\frac{a_{3}^{2}}{4}$, so by a linear transformation, we get $Y^{3}=x^{3}+A x^{2}+B x+C$, where $A, B, C \in k_{0}$.
Let the roots of $x^{3}+A x^{2}+B x+C=0$ be α, β, γ, we map $\left\{\begin{array}{l}\alpha \mapsto 0 \\ \beta \mapsto 1\end{array}\right.$ by a linear transformation, then $\gamma \mapsto \frac{\gamma-\alpha}{\beta-\alpha}=\lambda$. Thus

$$
\begin{aligned}
j(\lambda) & =2^{8} \frac{\left(1-\lambda+\lambda^{2}\right)^{3}}{\lambda^{2}(1-\lambda)^{2}} \\
& =2^{8} \frac{\left(\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right)^{3}}{(\alpha-\beta)^{2}(\beta-\gamma)^{2}(\gamma-\alpha)^{2}}
\end{aligned}
$$

, where both numerator and denominator are symmetric polynomial, which can be represented by elementary symmetric polynomial A, B, C. As a result, j is a rational function of $\left\{a_{i}\right\}$, furthermore, $j \in k_{0}$.
For $j \neq 0,1728$, take $A=0, C=t B$,

$$
j=2^{8} \frac{B^{3}}{4 B^{3}+27 C^{2}} \Rightarrow B=\frac{-27 j t^{2}}{4(j-1728)}
$$

so simply take $t=1$, notice that $B \in k$, we get an elliptic curve in k with j as j-invariant.
For $j=0, y^{2}+y=x^{3}$ is the curve; for $j=1728, y^{2}=x^{3}+x$ is the curve.
Exercise 5 (by Shuang-Yen Lee).
(a) By Hurwitz formula, f has no ramification points. Let $P_{0}+Q=f^{*} P_{0}$, then $P_{0} \neq Q$. Since $\ell\left(P_{0}+Q\right)=\ell\left(2 P_{0}\right)=\ell(2 Q)=2($ by R-R $)$, there exist $h_{1} \in L\left(P_{0}+Q\right), h_{2} \in L\left(2 P_{0}\right)$ and $h_{3} \in L(2 Q)$ which are not constant. Since $\ell\left(P_{0}\right)=\ell(Q)=1, h_{1}^{2} \neq L\left(2 P_{0}\right) \cup L(2 Q)$. So $L\left(2 P_{0}+2 Q\right)=\left\langle 1, h_{1}^{2}, h_{2}, h_{3}\right\rangle_{k}$. Note that

$$
(\pi \circ f)^{*}(\infty)=f^{*} \pi^{*}(\infty)=f^{*}\left(2 P_{0}\right)=2 P_{0}+2 Q
$$

$\pi \circ f \in k^{\times} h_{1}^{2}$, say $\pi \circ f=a^{2} h_{1}^{2}=\left(a h_{1}\right)^{2}$ for some $a \in k^{\times}$. Let $\pi^{\prime}=a h_{1}, g=\left[x \mapsto x^{2}\right]$, then $\pi \circ f=g \circ \pi^{\prime}$ and $\operatorname{deg} g=2$, so we get $\operatorname{deg} \pi^{\prime}=2$.
(b) $\mathrm{By}(\mathrm{a})$.
(c) The branch points of g are $0, \infty . \infty$ is a branch point of π since $\pi^{*}(\infty)=2 P_{0} .0$ is a branch point of π since $f^{*} \pi^{*}(0)=\pi^{\prime *} g^{*}(0)=2 \pi^{\prime *}(0)$ and note that f has no ramification points. Suppose that other two branch points of π are $1, \lambda$. Then

$$
\pi^{\prime *}((1)+(-1))=2 f^{*}\left(2 Q_{1}\right), \quad \pi^{\prime *}\left(\left(\lambda^{1 / 2}\right)+\left(-\lambda^{1 / 2}\right)\right)=f^{*}\left(2 Q_{2}\right)
$$

for some $Q_{1}, Q_{2} \in X$, so $1,-1, \lambda^{1 / 2},-\lambda^{1 / 2}$ are branch points of π^{\prime}.
Now we have two ways to count j. By the map π, we have

$$
j=2^{8} \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(1-\lambda)^{2}}
$$

By the map π^{\prime}, since the cross ratio

$$
\lambda^{\prime}:=\left(1,-1 ; \lambda^{1 / 2},-\lambda^{1 / 2}\right)=\left(\frac{1-\lambda^{1 / 2}}{1+\lambda^{1 / 2}}\right)^{2}
$$

we have

$$
j=2^{8} \frac{\left(\lambda^{\prime 2}-\lambda^{\prime}+1\right)^{3}}{\lambda^{\prime 2}\left(1-\lambda^{\prime}\right)^{2}}=2^{8} \frac{\left(\lambda^{2}+14 \lambda+1\right)^{3}}{16 \lambda(1-\lambda)^{4}}
$$

So $16\left(\lambda^{2}-\lambda+1\right)^{3}(1-\lambda)^{2}=\left(\lambda^{2}+14 \lambda+1\right)^{3} \lambda$.
(d) By solving the equation above, we have $\lambda=-1,3 \pm 2 \sqrt{2}, \frac{1}{32}(1 \pm 3 \sqrt{7} i), \frac{1}{2}(1 \pm 3 \sqrt{7})$ and

$$
j=2^{6} \cdot 3^{3}, 2^{6} \cdot 5^{3},-3^{3} \cdot 5^{3},-3^{3} \cdot 5^{3},
$$

respectively.
Exercise 9 (by Chi-Kang).
(a) The identity map is an isogenus, and the composition of 2 finite morphism is finite, so we only need to show if $f: X \rightarrow X^{\prime}$ is a finite morphism of degree n, then there exists $X^{\prime} \rightarrow X$ be another finite morphism. By exercise IV.4.7 we have a dual morphism $\hat{f}: X^{\prime} \rightarrow X \mathrm{~s}, \mathrm{t}, \hat{f} \circ f=n_{X}$ is a finite morphism with degree n^{2}, hence \hat{f} is also finite morphism with degree n, and thus isogenus is an equivalent realtion. (b) Suppose $f: X \rightarrow X^{\prime}, g: X \rightarrow X^{\prime \prime}$ are 2 finite morphism with the same (group theoritic) kernel, then $X^{\prime} \cong X^{\prime \prime}$ as abelian group. So there is a natural group isomorphism $g \circ f^{-1}: X^{\prime} \cong X /(\operatorname{ker} f) \cong X^{\prime \prime}$, and this is a morphism between curves since both f, g is. Thus $g \circ f^{-1}$ is a bijective morphism between curves, hence it is an isomorphism since $X^{\prime}, X^{\prime \prime}$ are smooth.

Now since $\hat{f} \circ f=n_{X}$ so ker $f \subset$ ker n_{X}. And by exercise 4.7 we have $f \circ \hat{f}=n_{X^{\prime}}$, so both f, \hat{f} has degree n, thus $\operatorname{deg} n_{X}=n^{2}$, so X has n^{2} element of order n, hence X has at most countably many subgroups G which is a subgroup of some ker n_{X}. Hence X has at most countablley many isogenus classes.

Exercise 10 (by Shi-Xin Wang).
To construct the map $\phi: \operatorname{Pic}(X \times X) \rightarrow R:=\operatorname{End}\left(X, P_{0}\right)$, we let $M \in \operatorname{Pic}(X \times X)$ and p_{1}, p_{2} be two projections from $X \times X$ to X. We may guess M should be sent to $M \otimes\left(p_{1}^{*}\left(\left.M\right|_{X \times\left\{P_{0}\right\}}\right) \otimes p_{2}^{*}\left(\left.M\right|_{\left\{P_{0}\right\} \times X}\right)\right)^{-1}$, denoted by N_{M}. However, N_{M} does not lie in R. Remark that we have an isomorphism $\varphi: \operatorname{Pic}^{0} X \rightarrow X$. Therefore, we may consider

$$
\phi(M):=\left[P \mapsto \varphi\left(\left.N_{M}\right|_{X \times P}\right)\right] .
$$

This is well defined since $\left.N_{M}\right|_{X \times P}$ has the same degree with $\left.N_{M}\right|_{X \times P_{0}}$, i.e. they are both in Pic ${ }^{0} X$. Clearly, $p_{1}^{*} \operatorname{Pic} X \oplus p_{2}^{*} \operatorname{Pic} X \subset \operatorname{ker} \phi$. Now let $M \in \operatorname{ker} \phi$. Since $\left.N_{M}\right|_{X \times P} \cong \mathcal{O}_{X \times P}$, by seesaw theorem, $N_{M} \cong p_{2}^{*} L$ for some $L \in \operatorname{Pic} X$. Therefore, $M=p_{1}^{*}\left(\left.M\right|_{X \times\left\{P_{0}\right\}}\right) \otimes p_{2}^{*}\left(\left.L \otimes M\right|_{\left\{P_{0}\right\} \times X}\right)$, and hence $p_{1}^{*} \operatorname{Pic} X \oplus p_{2}^{*}$ Pic $=k e r \phi$. On the other hand, for any $\operatorname{\alpha in} R$, consider the line bundle $M \in \operatorname{Pic}(X \times X)$ corresponding to the divisor

$$
D=\left(\alpha, i d_{X}\right)(X)-\left\{P_{0}\right\} \times X
$$

where $\left(\alpha, i d_{X}\right): X \rightarrow X \times X$ is the morphism given by $P \mapsto(\alpha(P), P)$. Then N_{M} still corresponds to the divisor D and

$$
\varphi\left(\left.N_{M}\right|_{X \times P}\right) \cong \varphi\left(\mathcal{O}_{X}\left(\alpha(P)-P_{0}\right)\right)=\alpha(P)
$$

Exercise 11 (by Pei-Hsuan Chang).
(a) Let L be the parallelogram, A be the area of L. Then area of $f(L)$ is $\left|\alpha^{2}\right| A$. Now,

$$
\operatorname{deg} f=[L: \alpha L]=\frac{\left|\alpha^{2}\right| A}{A}=|\alpha|^{2}
$$

(b) By exercise 4.4.7(c), we have $\hat{f} \circ f$ is an endomorphism corresponding to $\operatorname{deg} f=|\alpha|^{2}$. Thus, \hat{f} is an endomorphism corresponding to $|\alpha|^{2} \cdot \alpha^{-1}=\bar{\alpha}$.
(c) Let L be the lattice $\mathbb{Z} \oplus \tau \mathbb{Z}$. Now, if $\tau \in \mathbb{Q}(\sqrt{-d})$ and integral over \mathbb{Z}, then τ^{2} can be written as integral linear combination of τ and 1. Thus, $\mathbb{Z}[\tau]=\mathbb{Z} \oplus \tau \mathbb{Z}$. Also, for $a, b \in \mathbb{Z},(a+b \tau) \tau=a \tau+b \tau^{2} \in L$. Hence, $\forall a+b \tau \in \mathbb{Z}[\tau],(a+b \tau) L \subset L$, which means $\mathbb{Z}[\tau] \subset R$.
For any $f \in R$, say f corresponding to $\alpha \in \mathbb{C}$. Since $\alpha L \subset L$ and $1 \in L \Rightarrow \mathbb{Z} \oplus \tau \mathbb{Z} \Rightarrow R \subset \mathbb{Z}[\tau]$. To sum up, $R=\mathbb{Z}[\tau]$.

Exercise 12 (by Po-Sheng Wu).
(a)(b) Suppose the complex multiplication was given by α, then $|\alpha|^{2}=1$ for (a), 2 for (b) respectively. Since α is imaginary quadratic and integral, we can assume that $\alpha=(a+b \sqrt{-d}) / 2, b, d>0$, d squarefree, then $a^{2}+d b^{2}=4$ (or 8 , respectively). So $(a, b, d)=(0,2,1),(\pm 1,1,3)$ for (a), $(a, b, d)=$ $(0,2,2),(\pm 1,1,7),(\pm 2,2,1)$ for (b), and we get $\tau=i, \omega$ for (a), $\tau=\sqrt{-2},(1+\sqrt{-7}) / 2, i$ for (b), respectively. Moreover, we have $j(\sqrt{-2})=8000, j((1+\sqrt{-7}) / 2)=-3375, j(i)=1728$ comparing with $4.5(\mathrm{~d})$, using the fact that if $\operatorname{Re}(\tau)=0$ then $j(\tau)>0$.

Exercise 13 (by Yi-Heng Tsai).
Hasse invariant $=0$ i.e. $h_{p}(\lambda)=0 . \Rightarrow j=\frac{2^{8}\left(\lambda^{6}-3 \lambda^{5}+6 \lambda^{4}+6 \lambda^{3}+6 \lambda^{2}-3 \lambda+1\right)}{\left(\lambda^{2}-2 \lambda+1\right) \lambda^{2}}=\frac{2^{8}\left(2 \lambda^{4}-4 \lambda^{3}+2 \lambda^{2}\right)}{\left(\lambda^{2}-2 \lambda+1\right) \lambda^{2}}=2^{9}=5$.
Exercise 14 (by Tzu-Yang Tsai).
By 4.21, Hasse invariant of X is 0 if and only if the coefficient of $(x y z)^{p-1}$ in f^{p-1} is 0 . Now $f(x, y, z)=$ $x^{3}+y^{3}-z^{3}$, thus it's clear that $p \in \mathcal{B}$ if and only if $3 \mid p-2$, thus by Dirichlet's theorem the density of \mathcal{B} in prime is $\frac{1}{2}$.

Exercise 17 (by Ping-Hsun Chuang).
Proof. X is the curve $y^{2}+y=x^{3}-x$ in \mathbb{P}^{2} with $P_{0}=[0: 1: 0]$.
(a) Write $Q=[a: b: 1] \in X$. If $a=0$, then we have $y^{2}+y=0$ and thus $Q=[0: 0: 1]$ or $[0:-1: 1]$. Case 1: $Q=[0: 0: 1]=P$. The tangent line at $P[0: 0: 1]$ of X is $x=-y$ by the implicit function theorem. Solve $\left\{\begin{array}{l}x=-y \\ y^{2}+y=x^{3}-x\end{array}\right.$ and get $(x, y)=(0,0)$ and $(1,-1)$. Note that the solution $(0,0)$ has multiplicity 2 . Then, we have $2 P+R \sim 0$, where $R=[1:-1: 1]$. Now, the hyperplane $x-z=0$ passing through P_{0} and R. Solve $\left\{\begin{array}{l}x-z=0 \\ y^{2} z+y z^{2}=x^{3}-x z^{2}\end{array}\right.$ and get $[x, y, z]=[0: 1: 0]$, $[1:-1: 1]$ and $[1: 0: 1]$. In consequence, we have $R+R^{\prime} \sim 0$, where $R^{\prime}=[0: 1: 0]$ and thus $2 P \sim-R \sim R^{\prime}=[1: 0: 1]$.
Case 2: $Q=[0: 0: 1]=P$. The hyperplane $x=0$ passing through $P[0: 0: 1], Q[0:-1: 1]$, and $P_{0}[0: 1: 0]$. Then, we have $P+Q+P_{0} \sim 0$ and thus $P+Q \sim 0$.

Case 3: $a \neq 0$. The hyperplane $b x-a y=0$ passing through $Q[a: b: 1]$ and $P[0: 0: 1]$. Solve
$\left\{\begin{array}{l}b x-a y=0 \\ y^{2}+y=x^{3}-x\end{array} \quad\right.$ and get $(x, y)=(0,0),(a, b)$, and $\left(\frac{b^{2}}{a^{2}}-a, \frac{b^{3}}{a^{3}}-b\right)$. Then, $P+Q+R \sim 0$, where $R=\left(\frac{b^{2}}{a^{2}}-a, \frac{b^{3}}{a^{3}}-b\right)$. Now, the hyperplane $x-\left(\frac{b^{2}}{a^{2}}-a\right) z=0$ passing through P_{0} and R. Solve $\left\{\begin{array}{l}x-\left(\frac{b^{2}}{a^{2}}-a\right) z=0 \\ y^{2} z+y z^{2}=x^{3}-x z^{2}\end{array} \quad\right.$ and get $[x: y: z]=P_{0}, R, R^{\prime}=\left[\frac{b^{2}}{a^{2}}-a,-1+b-\frac{b^{3}}{a^{3}}: 1\right]$. Hence, $R+R^{\prime} \sim 0$, that is, $P+Q \sim-R \sim R^{\prime}=\left[\frac{b^{2}}{a^{2}}-a,-1+b-\frac{b^{3}}{a^{3}}: 1\right]$.
Finally, we use the above formula to find $n P$ for $n=1, \cdots, 10$:

P	$2 P$	$3 P$	$4 P$	$5 P$	$6 P$	$7 P$	$8 P$	$9 P$	$10 P$
$(0,0)$	$(1,0)$	$(-1,-1)$	$(2,-3)$,	$\left(\frac{1}{4}, \frac{-5}{8}\right)$	$(6,14)$	$\left(\frac{-5}{9}, \frac{8}{27}\right)$	$\left(\frac{21}{25}, \frac{-69}{125}\right)$	$\left(\frac{-20}{49}, \frac{-435}{343}\right)$	$\left(\frac{161}{16}, \frac{-2065}{64}\right)$

(b) If $p \neq 2$, then the curve become $\left(y+\frac{1}{2}\right)^{2}=x^{3}-x+\frac{1}{4}$. The discriminant of $x^{3}-x+\frac{1}{4}$ is $\frac{37}{16}$. Now, modulo p reduction gives non-zero discriminant if $p \neq 37$. This makes the curve non-singular.
If $p=37$, the curve is $(y+19)^{2}=(x+10)(x+32)^{2}$ which is singular.
If $p=2$, the partial derivative is given by $\frac{\partial f}{\partial x}=x^{2}+1$ and $\frac{\partial f}{\partial y}=1 \neq 0$. Thus, the curve is non-singular when $p=2$.

5 The Canonical Embedding

Exercise 1 (by Yu-Chi Hou).
Assume that X is complete intersection in \mathbb{P}^{n}, then there exists hypersurfaces H_{1}, \ldots, H_{n-1} in \mathbb{P}^{n} with degree d_{1}, \ldots, d_{n-1} respectively such that $X=H_{1} \cap H_{2} \cap \cdots H_{n-1}$. Using adjunction formula repeatly, one has $\omega_{X} \cong \mathcal{O}_{X}\left(\sum_{i=1}^{n-1} d_{i}-(n+1)\right)$. Let $d:=\sum_{i=1}^{n-1} d_{i}-(n+1)$. Since $g(X) \geq 2, \operatorname{deg}\left(K_{X}\right)>0$. Thus, $d>0$. We then onsider d-uple embedding $\nu_{d}: \mathbb{P}^{n} \hookrightarrow \mathbb{P}^{N}$ with $N=\binom{n+d}{n}-1$. Therfore, $\omega_{X} \cong\left(\left.\nu_{d}\right|_{X}\right)^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)$. Thus, K_{X} is very ample. However, if X is hyperelliptic, then K_{X} cannot be very ample, and thus X cannot be complete intersection. In particular, we know that genus 2 curves are hyperelliptic (Ex.IV.1.7) and thus X cannot be complete intersection. This also proves Ex. IV.3.3.

Exercise 2 (by Yu-Chi and Pei-Hsuan Chang).
We first prove a lemma.
Lemma 2 (by Yu-Chi). Let x be a curve of genus $g \geq 2, \tau \in \operatorname{Aut}(X)$ and $\tau \neq 1_{X}$, then τ fixes at most $(2 g+2)$-points.

Proof. Let s be the number of fixed points of τ. Consider a divisor $D=\sum_{i=1}^{g+1} P_{i}$ with P_{1}, \ldots, P_{g+1} are distinct and are not fixed point of τ. Then using Riemann-Roch,

$$
h^{0}(X, D)-h^{1}(X, D)=\operatorname{deg}(D)+1-g=g+1+1-g=2
$$

Hence, $h^{0}(X, D) \geq 2$ implies that there exists a non-constant morphism $f: X \rightarrow \mathbb{P}^{1}$ and $(f)+\sum_{i=1}^{g+1} P_{i} \geq 0$. In other words, the rational function f has at worst simple pole on P_{1}, \ldots, P_{g+1}. Since $\tau\left(P_{i}\right) \neq P_{i}$ for all $i, f \circ \tau-f$ is also a non-constant and has simple pole at most on $2 g+2$ points. On the other hand, for any fixed point Q of $\tau, Q \in(f \circ \tau-f)$ obviously. Hence, $f \circ \tau-f$ has at least s many zeros. From $\operatorname{deg}(f \circ \tau=f)=0$,

$$
0=\left|(f \circ \tau-f)_{\infty}\right|-\left|(f \circ \tau-f)_{0}\right| \leq 2 g+2-s
$$

Hence, $s \leq 2 g+2$.
Solution of exercise 2 (by Pei-Hsuan Chang).
Case 1: X is hyperelliptic $\exists f: X \rightarrow \mathbb{P}^{1}$ of degree 2. Every ramified point is of index 2. By Hurwitz's formula,

$$
2-2 g=2 \times 2-\sum_{P \in X}\left(e_{P}-1\right) .
$$

So f has $2 g+2$ ramified points. $\forall \varphi \in$ Aut $X, f \circ \varphi$ is also of degree 2 , so $f \circ \varphi$ and f are differ by an automorphism of \mathbb{P}^{1}. Hence, if $P \in X$ is a ramified point of f, then $\varphi(P)$ is also a ramified point of f, i.e. φ permute ramified points. Now, if φ is an automorphism of X which fix $2 g+2$ ramified points then by Lemma above, φ is either identity map or switch all the fibres. Hence,

$$
\mid \text { Aut } X\left|\leq 2 \times\left|S_{2 g+2}\right|<\infty\right.
$$

Case 2: X is not hyperelliptic Let $f: X \rightarrow \mathbb{P}^{g-1}$ be canonical embedding. By Exercise 4.4.6(b), X has
 φ permute hyperosulating points. In this case, g must bigger then 3 , so $(g-1)^{2} g+g d>2 g+2$. By the Lemma again, φ is an identity map. Hence,

$$
\mid \text { Aut } X\left|\leq\left|S_{(g-1)^{2} g+g d}\right|<\infty .\right.
$$

Exercise 3 (by Chi-Kang).
For the hyperelliptic case, let X be a hyperelliptic curve of $g=4$, then there is a degree 2 morphism $X \rightarrow \mathbb{P}^{1}$. By Hurwitz formula we have the ramification divisor R has degree 10 , and since degree is 2 therer are 10 distinct ramafication points. Since up to an automorphism on \mathbb{P}^{1} we may assume three of them are $0,1, \infty$, so the moduli space is 7 -dimensional.

For non-hyperelliptic case, use the very ample divisor $|K|$ we may assume X is a degree 6 curve in \mathbb{P}^{3}. So by example 5.2.2. X is a complete intersection of a unique quadric and a cubic.

To determine for a given quadric Q, how many complete intersection is, we needto compute $H^{0}\left(Q, \mathcal{O}_{Q}(3)\right)$. By the exact sequence $0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(1) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(3) \rightarrow \mathcal{O}_{Q}(3) \rightarrow 0$ and compute the cohomology we have
$h^{0}\left(Q, \mathcal{O}_{Q}(3)=h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)\right)-h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(1)\right)=16\right.$. Quotient the constant, we know that the dimension of moduli space of degree 3 surface complete intersection with Q is 15 . Since the dimension of moduli space of quadric is $h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(2)\right)-1=9$, we have the dimension of moduli space of genus 4 curves is $9+15-\operatorname{dim} \operatorname{Aut}\left(\mathbb{P}^{3}\right)=9+15-(16-1)=9$.

Finally, by example 5.5.2, a non-hyperelliptic curve with $g=4$ has a unique g_{3}^{1} iff Q is singular. Hence the dimension of the moduli space of such curve is $9-1=8$.

Exercise 4 (by Tzu-Yang Tsai).
Claim $P+Q+R \in g_{3}^{1} \Leftrightarrow P, Q, R$ are colinear under canonical embeding.
Proof: By Riemann-Roch theorem, $\operatorname{dim}|P+Q+R|-\operatorname{dim}|K-P-Q-R|=3+1-4=0$
, thus $P+Q+R \in g_{3}^{1} \Leftrightarrow \operatorname{dim}|K-P-Q-R|=1$, but in canonical embedding, $|K-P-Q-R|$ consists of hyperplanes containing P, Q, R, thus $\operatorname{dim}|K-P-Q-R|=1$ is equivalent to P, Q, R are colinear.
(a) Let σ_{1}, σ_{2} be the two g_{3}^{1}, then for any P not a base point of σ_{i} for $i=1,2,!\exists Q_{i} \neq R_{i}$ s.t. $P+Q_{i}+R_{i} \in$ $\sigma_{i} \forall i=1,2$. Thus we have a projection from $P, \phi: X-P \rightarrow \mathbb{P}^{2}$, which is nonsingular at everywhere except for $\phi\left(Q_{i}\right)=\phi\left(R_{i}\right)=T_{i} \forall i=1,2$. Use Riemann extension theorem we get $\bar{\phi}: X \rightarrow \mathbb{P}^{2}$, thus we represent X as a plane curve C with nodes T_{1}, T_{2}, and if $\operatorname{deg} C=r, \frac{(r-1)(r-2)}{2}=4+2=6 \Rightarrow r=5$, thereby a quintic curve.
(b)

Exercise 7 (by Po-Sheng Wu).
(a) Let f be the canonical embedding, then since $|K|$ is preserved under Aut X, f and $f \circ \sigma$ differ by an automorphism of $\mathbb{P}^{2}, \forall \sigma \in \operatorname{Aut} X$.
(b) Assume chark $\neq 3,7$. Obviously $\left(\begin{array}{ccc}\omega^{4} & 0 & 0 \\ 0 & \omega^{2} & 0 \\ 0 & 0 & \omega\end{array}\right)$ and $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right) \in \operatorname{PGL}(k, 2)$ induces automorphism of X of order 3 and 7 , and they generate $H \in$ Aut X of order 21. Since $(2 g(X)-2) / n=2 g(Y)-2+$ $\sum_{i=1}^{s}\left(1-1 / r_{i}\right)$ won't hold for $g(X)=3, n=21$ in Ex.2.5., there are automorphisms not in H. Now notice that $(1,0,0),(0,1,0),(0,0,1)$ are hyperosculating points on X with hyperosculating hyperplanes $z=0, x=0, y=0$, and H acts freely on $X \backslash\{(1,0,0),(0,1,0),(0,0,1)\}$, so Aut X acts transitively on the 24 hyperosculating points (Ex 4.6.) since there are extra automorphisms that are not permuting e_{i}. As a consequence, $24|\mid$ Aut $X|$ and $21=|H|| |$ Aut $X \mid$, so $168 \leq \mid$ Aut $X \mid \leq 84(g-1)=168$.
(c) Since most of the curves of genus 3 are nonhyperelliptic, we may consider only the curves of degree 4 in \mathbb{P}^{2}. Now we show that for each Jordan form J with $J^{p}=r I$, the family of curves with automorphism induced from some matrix conjugate with J has dimension $\leq \operatorname{dim}|4 H|=14$. J acts on $|4 H|$ via $\operatorname{Sym}^{4}(J)$. Denote $m(J)=\operatorname{dim}\left(|4 H|^{\operatorname{Sym}^{4}(J)}\right)=\max _{r} \operatorname{null}\left(\operatorname{Sym}^{4}(J)-r I\right)-1$ and $n(J)=\operatorname{dim}\left\{P J P^{-1} \mid P \in \operatorname{GL}(k, 3)\right\}=$ $9-\operatorname{dim}\{P \in \operatorname{GL}(k, 3) \mid P J=J P\}$. The goal is to show that $m(J)+n(J)<14$. If char $k \neq p$, then by scaling we may assume that $J=\left(\begin{array}{ccc}\omega^{a} & 0 & 0 \\ 0 & \omega^{b} & 0 \\ 0 & 0 & \omega^{c}\end{array}\right)$, where $\omega^{p}=1$. Then with some calculation we obtain
$m(J)=8, n(J)=4$ for $p=2$, and $m(J) \leq 6, n(J) \leq 6$ for $p \geq 3$. If char $k=p$, then again by scaling we may assume $J=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ or $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. For the former case, we calculate that $m(J) \leq 8, n(J)=4$, and for the latter case, we have $m(J) \leq 4, n(J)=6$ (Note that $p \neq 2$ in this case). As a result, $m(J)+n(J)<14$ holds for every cases, so most of the genus 3 curves has no automorphism by Bertini's theorem.

6 Classification of Curves in \mathbb{P}^{3}

Exercise 1 (by Shi-Xin).
Let X be a rational curve of degree 4 in \mathbb{P}^{3}. First, from the short exact sequence

$$
0 \rightarrow \mathscr{I}_{X} \rightarrow \mathcal{O}_{\mathbb{P}^{3}} \rightarrow \mathcal{O}_{X} \rightarrow 0
$$

where \mathscr{I}_{X} is the ideal sheaf of X, we have a long exact sequence

$$
0 \rightarrow H^{0}\left(\mathscr{I}_{X}(2)\right) \rightarrow H^{0}\left(\mathcal{O}_{\mathbb{P}^{3}}(2)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(2)\right) \rightarrow \cdots
$$

Note that $h^{0}\left(\mathcal{O}_{\mathbb{P}^{3}}(2)\right)=C_{3}^{5}=10$. Let D be a hyperplane section of X. Then by Riemann-Roch Theorem, $h^{0}(2 D)=9+h^{0}(K-2 D)=9$ since deg $K-2 D<0$. Therefore, $h^{0}\left(\mathscr{I}_{X}(2)\right) \geq 1$ which means X is contained in a quadric surface Q. If X is containd in two nonsingular quadric surface, by ex.ii.8.4 (g), $g(X)=\frac{1}{2} 2 \cdot 2(2+2-4)+1=1$ which leads to a contradiction. Indeed, since X is rational, it has 4 linearly independent points, and thus Q can not be $x_{1}^{2}, x_{1}^{2}+x_{2}^{2}$. Moreover, by Remark 6.4.1, Q can not be a cone. We conclude that Q is nondegenerate, i.e. nonsingular.

Exercise 2 (by Yu-Chi Hou).
Let X be a degree 5 rational curve in \mathbb{P}^{3}, consider the exact sequence of X twisting by $\mathcal{O}_{\mathbb{P}^{3}}(3)$,

$$
0 \rightarrow \mathscr{I}_{X}(3) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(3) \rightarrow \mathcal{O}_{X}(3) \rightarrow 0
$$

where \mathscr{I}_{X} is the ideal sheaf of X. Taking long exact sequence of cohomology, one has

$$
0 \rightarrow H^{0}\left(\mathbb{P}^{3}, \mathscr{I}_{X}(3)\right) \rightarrow H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(3)\right) \rightarrow H^{1}\left(X, \mathscr{I}_{X}(3)\right) \rightarrow H^{1}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)\right)=0
$$

Thus, we have $h^{0}\left(\mathbb{P}^{3}, \mathscr{I}_{X}(3)\right)-h^{1}\left(\mathbb{P}^{3}, \mathscr{I}_{X}(3)\right)=h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}\right)-h^{0}\left(X, \mathcal{O}_{X}(3)\right)$. Since $\operatorname{deg} X=5=\operatorname{deg}(D . H)$, where $H \subset \mathbb{P}^{3}$ is a plane. Also, $\operatorname{deg}\left(\mathcal{O}_{X}(3)\right)=\operatorname{deg}(3 D)=15, \operatorname{deg}\left(K_{X}\right)=2 g-2=-2<0$. Thus, Riemann-Roch gives $h^{0}\left(X, \mathcal{O}_{X}(3)\right)=15-0+1=16$. On the other hand, $h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}\right)=\binom{6}{3}=20$. In conclusion, $h^{0}\left(\mathscr{I}_{\mathscr{X}}(3)\right)=h^{1}\left(\mathscr{I}_{X}(3)\right)+4 \geq 4$. Thus, X must be contained in a cubic surface.

Now, suppose X is contained in a quadric surface $Q \subset \mathbb{P}^{3}$. If Q is non-singular, say X has type (a, b) in Q, then $a+b=5$ and $(a-1)(b-1)=0$. This leads a contradiction. If Q is singular, then remark IV.6.4.1 shows that $\operatorname{deg}(X)=2 a+1=5$ and $g(X)=a^{2}-a=2^{2}-2=2$, a contradiction to the assumption that X is rational.

Exercise 4 (by Yi-Heng Tsai).

Assume there exists such X, then we have a long exact sequence $0 \rightarrow H^{0}\left(\mathscr{I}_{X}(2)\right) \rightarrow H^{0}\left(\mathcal{O}_{\mathbb{P}^{3}}(2)\right) \rightarrow$ $H^{0}\left(\mathcal{O}_{X}(2)\right) \rightarrow \ldots$ with $\operatorname{dim}^{0} H^{0}\left(\mathcal{O}_{X}(2)\right)<\operatorname{dim} H^{0}\left(\mathcal{O}_{\mathbb{P}^{3}}(2)\right)=10$. Thus, $\operatorname{dim}^{0}\left(\mathscr{I}_{X}(2)\right) \geq 1$ which means X lies on some quadric surface. However, this contradicts to remark 6.4.1.

Exercise 6 (by Tzu-Yang Chou).
First recall that projectively normal is equivalent to $H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(l)\right) \longrightarrow H^{0}\left(X, \mathcal{O}_{X}(l)\right)$ is surjective for any non-negative l.
If $d=6$, we have $g \leq 4$, so we need that $g \neq 0,1,2$. Let D be the hyperplane section (so $\operatorname{deg} D=d=6$) which is nonspecial in these cases. Riemann-Roch imlies that $l\left(\mathcal{O}_{X}(1)\right)=6+1-g=7,6,5$ but $h^{0}\left(\mathcal{O}_{\mathbb{P}^{3}}(1)\right)=4$, which leads to a contradiction.
If $d=7$, we have $g \leq 6$. The above argument still works for $g=0,1,2,3$. For $g=4$, we use the divisor $2 D$. $l\left(\mathcal{O}_{X}(2)\right)=7 \times 2+1-4=11$ but $h^{0}\left(\mathcal{O}_{\mathbb{P}^{3}}(2)\right)=10$.

Exercise 8 (by Shuang-Yen Lee).
If D is a nonspecial divisor of degree d such that $|D|$ has no base point, then by R-R we have $\ell(D)=d+1-g$. If $d \leq g$, then $\operatorname{dim}|D| \leq 0$. So $|D|=\{E\}$ or \varnothing, this implies $|D|$ has base point or empty.

Conversely, suppose $d \geq g+1$. Let $S \subseteq X^{d}$ be the set of divisors $D \in X^{d}$ such that there exists $P \in X$ with $D-P \sim E \geq 0$ is a special divisor. Note that every $D \in X^{d}-S$ is a nonspecial base point free divisor of $\operatorname{deg} d$. So we want to show that $S \neq X^{d}$.

Let $D \in S$ be nonspecial, then there exist $P \in X$ such that $D-P \sim E \geq 0$ is special. We have $D=E+P+(f)$ for some $f \in K(X)$. By R-R, E special implies that

$$
\ell(E)=\operatorname{deg} E+1-g+\ell(K-E)=d-g+\ell(K-E) \geq d-g+1
$$

$E+P$ is nonspecial, so $\ell(E+P)=\operatorname{deg}(E+P)+1-g=d-g+1$. Since $L(E+P) \supseteq L(E), L(E+P)=L(E)$. So $f \in L(E+P)=L(E)$, hence $D=(E+(f))+P$ and $E+(f) \geq 0$ is special. Therefore

$$
S \subseteq\{E+P \mid E \geq 0 \text { special and } P \in X\} \cup\{\text { special divisors }\} .
$$

Since $\operatorname{dim}|K|=g-1$, the dimension of special divisors as a subset of X^{d-1} and X^{d} are both $\leq g-1$. Thus $\operatorname{dim} S \leq g<\operatorname{dim} X$. So $S \neq X$, as desired.

