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Exercise 0 (by Kuan-Wen).

This is an example of proof.

Remark. This is an example for how to write in this format.

2 Cohomology of Sheaves
Exercise 1 (by Chi-Kang Chang).

(a) Let Z be the constant sheaf on X, then ZU is a subsheaf of Z since the map
of stalks is obviuosly injective. Then the stalk (Z/ZU)x is Z if x = P,Q, and is
zero otherwise. Hence Z/ZU is the direct sum of skyscraper sheaves Z(P )⊕ Z(Q).
Then the short exact sequence

0→ ZU → Z→ Z(P )⊕ Z(Q)→ 0

induces the long exact sequence

0→ H0(X,ZU)→ H0(X,Z)→ H0(X,Z(P )⊕ Z(Q))→ H1(X,ZU)...

SinceH0(X,Z) = Z,H0(X,Z(P )⊕Z(Q)) = Z2, the mapH0(X,Z)→ H0(X,Z(P )⊕
Z(Q)) is not surjective. Hence H0(X,Z(P )⊕ Z(Q))→ H1(X,ZU ) is non-zero. In
particular, H1(X,ZU) 6= 0.

(b) Write ZY := Z/ZU . Then we induction on n = dimX. n = 1 is just (a).
Now if the consequence holds for dim < n, then for dim = n, consider the exact
sequence

0→ ZU → Z→ ZY → 0
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which will induces the long exact sequence

· · · → H i(X,Z)→ H i(X,ZY )→ H i+1(X,ZU)→ H i+1(X,Z)→ · · ·

Then since Z is constant, hence flasque, so we have H i(X,Z) = 0 if i > 0, hence
H i(X,ZY ) ∼= H i+1(X,ZU), so we can change to show that Hn−1(X,ZY ) 6= 0.

Now we write Y := ∪ni=0Hi be the union of n+ 1 general hyperplanes. Define
V := Y − ∪ni=1Hi = H0 − ∪ni=1(H0 ∩ Hi), then V is Pn−1 removes n general
hyperplane. Now we have the new exact sequence

0→ ZY−V → ZY → ZV → 0 (1)

which will induces the long exact sequence

· · · → Hn−1(X,ZY−V )→ Hn−1(X,ZY )→ Hn−1(X,ZV )→ Hn(X,ZY−V )→ · · ·

Then applying lemma 2.10 we have Hn−1(X,ZV ) = Hn−1(H0,ZV ) 6= 0 by the
induction hypothesis, and Hn(X,ZY−V ) = Hn(Y,ZY−V ) = 0 by Grothendieck
vanishing. Hence we have

Hn−1(X,ZY )→ Hn−1(X,ZV )→ 0 (2)

is exact and so Hn(X,ZU) = Hn−1(X,ZY ) 6= 0.

Exercise 2 (by Zi-Li).

P1
k is irreducible, hence K is flasque. By exercise II.1.21(d), K /O '

∑
ip(Ip),

hence it is also flasque. Morevoer, by exercise II.1.21(e), we have short exact
sequence:

0→ Γ(X,O)→ Γ(X,K )→ Γ(X,K /O)→ 0

Hence, H i(X,O) = 0 for all i > 0

Exercise 4 (by Pei-Hsuan Chang).

Take an injective resolution: 0→ F → I 0 → I 1 → · · · . Then for any i, we
have a commutative diagram:
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0

��

0

��

0

��
0 // ΓY1∩Y2(X,I

i)

��

// ΓY1(X,I
i)⊕ ΓY2(X,I

i)

��

// ΓY1∪Y2(X,I
i)

��

// 0

0 // Γ(X,I i)

��

// Γ(X,I i)⊕ Γ(X,I i)

��

// Γ(X,I i)

��

// 0

0 // Γ(X − Y1 ∩ Y2,I i)

��

// Γ(X − Y1,I i)⊕ Γ(X − Y2,I i)

��

// Γ(X − Y1 ∪ Y2,I i)

��

// 0

0 0 0

Since I i is flasque, the three columns are exact by Ex. 3.2.3(d). The second and
the third row are clearly exact. By nine lemma, the first row is exact, and take
cohomology long exact sequence, then get the desired result.

Exercise 5 (by Yu-Ting).

First, we shall prove that Γp(X,F ) ∼= Γp(Xp,Fp) for every sheaf F on X.

Γp(X,F ) = {s ∈ Γ(X,F )|sQ = 0 ∀Q 6= P,∈ X}.

Γp(Xp,Fp) =

{
(U, s) ∈ lim

U⊇Xp

F (U)

∣∣∣∣SQ = 0 ∀Q 6= P,∈ Xp

}
=

{
(U, s) ∈ lim

p∈U
F (U)

∣∣∣∣SQ = 0 ∀Q 6= P,∈ Xp

}
.

We have a natural map Γp(X,F )
f→ Γp(Xp,Fp). Suppose s ∈ ker f , there exists

an open set U ⊆ X and p ∈ U such that s|U = 0. Since s ∈ Γp(X,F ), for every
Q 6= P,∈ X, sQ = 0. Then sQ = 0 for every Q ∈ X. This implies s = 0 and f is
injective.
For any (U, t) ∈ Γp(Xp,Fp), V := USupp(t) is open. W := X \{p} is also an open
set in X, then {V,W} is an open cover of X. Define s1 = 0 on W and s2 = tV on
V . s1|W∩V = s2|W∩V . By glueing s1 and s2, we get s such that f(s) = t, then f is
surjective. We have proved that Γp(X,F ) ∼= Γp(Xp,Fp).
Let 0 → F → I . be any injective resolution of F , then 0 → F → I .

p is also
an injective resolution of Fp. Also for every i, Γp(X,I i) ∼= Γp(Xp,I i

p ). Hence,
H i
p(X,F ) = H i

p(Xp,Fp).

Exercise 6 (by Tzu-Yang Chou).
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In accordance with the hint, we procced in the following steps. First I ⇒ ∀
open set U ⊆ X, subsheaf R ⊆ ZU and f : R −→ I ,∃ an extension ZU −→ I :
One direction is by definition. Conversely, given 0 −→ F −→ G and φ : F −→ I ,
consider {φ̃ : F̃ −→ I |F ⊆ F̃ ⊆ G and φ̃ extends φ} with the partial order
given by extension. Zorn’s lemma says that ∃ a maximal ψ : F ′ −→ F and we
claim that F ′ = G .
Assume the contrary, say ∃U ⊆ X an open set with a section s ∈ G (U) \F ′(U).
This induces a monomorphism ZU −→ G mapping 1 to s. Now set R := ZU ∩F .
By assumption we get an extension ZU −→ I of φR , but now φ can be extended
to subsheaf of G , generated by F ′ and ZU (generated by s), which leads to a
contradiction to the maximality.
Next, we claim that any subsheaf R ⊆ ZU is finitely generated. ∀i, we have
R(Ui) ⊆ ZU(Ui) = Z, so we can find one generator xi, and hence {x1, · · · , xn}
generate R. Also, ∀θ : R −→ lim−→

α

Iα, we choose some α′ such that θ(xi) = yi in

Iα′(Ui), then we obtain that θ factors through Iα′ .
Finally, to show that lim−→

α

Iα is injective, by the first part, it suffices to prove that

given an open set U ∈ X, a subsheaf R ⊆ ZU and f : R −→ lim−→
α

Iα, there’s

an extension. But if we pick some β such that f factors through Iβ, we obtain
an extension Z −→ Iβ since Iβ is injective, so we get the desired extension by
composing the natural map Iβ −→ lim−→

α

Iα.
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3 Cohomology of a Noetherian Affine Scheme
Exercise 1 (by Pei-Hsuan Chang).

(⇒) Let X = SpecA. Then Xred = SpecA/R, where R is nilradical of A

(⇐) LetN be nilpotent element on X.
For any coherent sheaf F , define Gi = N iF/N i+1F , then Gi is a coherent
Ox/N -mod. (Notice that Ox/N = OXred

.)
Thus, we have Hj(X,Gi) = Hj(Xred,Gi), ∀i, j, since sp(X) = sp(Xred).
By theorem 3.3.5, H1(Xred,Gi) = 0, ∀i. (Gi is coherent sheaf of ideal.) Now,
since for all i,

0 //N i+1F //N iF // Gi // 0

is exact,

· · · // H1(X,N i+1F ) // H1(X,N iF ) // H1(X,Gi) = 0 // · · ·

is exact. Thus, H1(X,N i+1F ) // H1(X,N iF ) is surjective, for all i.
But N d = 0, for some large d⇒ H1(X,N dF ) = 0⇒ H1(X,N d−1F ) = 0.
Inductively, H1(X,F ) = 0. By Theorem 3.3.7, X is affine.

Exercise 2 (by Yi-Tsung Wang).

(⇒) Let Y ⊆ X be an irreducible component, and let X = SpecA. Since Y is a
closed subscheme of X, we see that Y = SpecA /I for some I � A. Thus Y is
affine.
(⇐) Let X = X1 ∪ . . . ∪Xk with ideal sheaves I1, . . . ,Ik. For any coherent sheaf
of ideal I , we have

I1 . . .IkI ⊆ I1 . . .Ik−1I ⊆ . . . ⊆ I1I ⊆ I

Note that I1 . . .Ik = 0 since X is reduced. Consider the exact sequence

0→ I1 . . .IrI → I1 . . .Ir−1I → I1 . . .Ir−1I
/
I1 . . .IrI → 0

and I1 . . .Ir−1I
/
I1 . . .IrI is a quasi-coherent sheaf and Xr is affine. By Serre

criterion,

H1
(
X,I1 . . .Ir−1I

/
I1 . . .IrI

)
= H1

(
Xr,I1 . . .Ir−1I

/
I1 . . .IrI

)
= 0

Thus we have

H1 (X,I1 . . .IrI )� H1 (X,I1 . . .Ir−1I )
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In particular we have

0 = H1 (X,I1 . . .IkI )� H1 (X,I )

which implies that H1 (XI ) = 0. By Serre criterion, X is affine.

Exercise 3 (by Wei-Ping).

(a) Check directly by definition.

(b) By ΓY (X, Ĩ) = Γα(I), and I · injective then Ĩ · is flasque resolution, trivial.

(c) Every H i
α(M) is a quotient of a group in Γα(I ·) so clearly every thing is

annihilate by multiplying high power of α.

Exercise 6 (by Shi-Xin).

(a) Recall the notation X =
⋃n
i=1 Ui =

⋃n
i=1 SpecAi and F|Ui

= M̃i for some
Ai-mod Mi. Denote the map Ui → X by fi and embed Mi into an injective
Ai-mod Ii, and then we can define G := ⊕fi∗(Ĩi). Note that we have a
natural inclusion F → G defined by F → fi∗.

Now, for any 0→ F ′ → F ′′ and a morhphism F ′ → G where F ′,F ′′ are quasi-
coherent sheaves of modules, we can get for any i, a morphism F ′|Ui

→ Ĩi
which is corresponding to F ′ → fi∗(Ĩi). Since Ii is injective, Ĩi is injective,
and hence for any i, it induces a morphism F ′′|Ui

→ Ĩi. Thus we get a
morphism F ′′ → G which must make the diagram commute.

(b) We use a generalization of exercise 3.7.

Proposition 1. X is a noetherian scheme, and F is a quasi-coherent sheaf
of modules on X. Let I be a quasi-coherent sheaf of ideals corresponding to
a closed subscheme Z = X − U for some open subset U . Then we have

lim−→
n

HomOX
(In,F) ∼= Γ(U,F).

Back to the problem, let I be an injective sheaf in the category of quasi-
coherent sheaves of modules on X. We apply the proposition to F = I ,
then for any open subset U , we have a commutative diagram

Γ(U,I ) lim−→n
HomOX

(In,I )

Γ(X,I ) lim−→n
HomOX

(OnX ,I )

φ

ψ

α β
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where φ, ψ are isomorphism. Moreover, since 0 → I → OX is exact, β is
surjective, and hence α is surjective. Thus I is flasque.

(c) By (b), we know that any injectives is flasque and hence acyclic. Consequently,
calculating the derived functors by taking injective resolutions gives the usual
cohomology functors.

Exercise 7 (by Shuang-Yen).

This is a sentence.

(a) Let a = 〈f1, . . . , fr〉. Define αn : HomA(an,M)→ Γ(U, M̃) by ϕ 7→ s where

s(p) =
ϕ(fn)

fn
∈Mp for f ∈ a \ p.

It’s clearly well-defined. Since the maps αn are compatible with each other,
we have a map

α : lim−→
n

HomA(an,M)→ Γ(U, M̃).

To show that α is injective, suppose α(ϕ) = 0 for some ϕ ∈ HomA(an,M).
Then ϕ(fni )/fni = 0 in Mf , so we have ϕ(fn+ni

i ) = 0 for some large ni. Since
we may take ni to be the same, ϕ(fNi ) = 0 for all i for some N , hence
ϕ(arN) = 0, or ϕ = 0. To show that α is surjective, let s ∈ Γ(U, M̃), then

s|D(fi) =
bi
fni
i

for some bi ∈M,ni ≥ 0 and
bi
fni
i

=
bj
f
nj

j

in D(fifj).

Similar to the proof of Γ(D(f), M̃) = Mf , we can take N large enough such
that we can define a map ϕ : aN →M such that

fm1
1 · · · fmr

r 7→ fm1
1 · · · f

mi−ni
i · · · fmr

r bi if mi ≥ ni,

this is well-defined by the condition above. Note that αN(ϕ) = s, so α is
surjective.

(b) It suffices to show that Γ(X, Ĩ) � Γ(U, Ĩ) for all U = X \ Z(a), then it’s
equivalent to show that HomA(A, I) = I � lim−→HomA(an, I). Note that
HomA(A, I)� HomA(an, I) for all n since I is injective, so the map above
is surjective. Hence Ĩ is flasque.

Exercise 8 (by Tzu-Yang Tsai).

Suppose θ : I → If , z 7→ 1
x0
, then z

1
= 1

x0
⇒ xk0(x0z − 1) = 0 for some k ∈ N0.

But this leads to xk+1
0 z = xk0 ⇒ xk+1

0 zak+1 = 0 = xk0ak+1 6= 0→←
Thus 1

x0
is not in the range, therefore θ is not surjective.
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4 Čech Cohomology
Exercise 1 (by Zi-Li).

Note that f∗F is quasi coherent on Y , we may compute cohomology via Čech
complex. Take an affine cover U = {Ui} of Y , then f−1U = {f−1(Ui)} is an
affine cover of X. We see that Cp(f−1U ,F ) = Cp(U , f∗F ), hence, H i(X,F ) '
H i(Y, f∗F )

Exercise 3 (by Yi-Heng).

Take the open cover U = D(x) ∪D(y),then 0 // C0 d // C1 // 0 where
d : C0 = k[x, y]x×k[x, y]y → C1 = k[x, y, x−1, y−1], (f, g) 7→ f−g. Thus,H1(U,OU )
is generated by {xiyj|i, j ∈ Z<0} as a k-vector space

Exercise 4 (by Yu-Ting).

(a) For every p, Cp(U,F )
λ̃p→ Cp(B,F ) can be induced from F (Uλ(j))→ F (Vj).

For α ∈ Cp(U,F ), p, and j0 < j1 < · · · < jp+1,

(λ̃(dα))j0j1···jp+1 = (dα)λ(j0)λ(j1)···λ(jp+1)

∣∣
Vj0j1···jp+1

=

p+1∑
k=0

(−1)kαλ(j0)··· ˆλ(jk)···λ(jp+1)

∣∣
Vj0j1···jp+1

=

p+1∑
k=0

(−1)k(λ̃α)j0···ĵk···jp+1

∣∣
Vj0j1···jp+1

= (d(λ̃α))j0j1···jp+1

The map λ̃ and d commute. Then we have the map Ȟp(U,F )→ Ȟp(B,F ).

(b) Let 0 → F → I . be an injective resolution. Then there is a map
C .(U,F )

fU→, which is unique up to homotopy. Also, we have C .(B,F )
fB→ I ..

Then λ ◦ fB is homotopic to fU and the map is compatible.

(c) Embed F in a flasque sheaf G , and let R = G /F . Then 0 → F →
G → R → 0 is exact. Define a complex D.(U) such that 0→ C .(U,F )→
C .(U,G )→ D.(U) is exact. We have the following long exact sequences:

· · · → Γ(X,G ) = Ȟ0(U,G )→ H0(D.(U))→ Ȟ1(U,F )→ Ȟ1(U,G ) = 0

· · · → Γ(X,G )→ Γ(X,R)→ H1(X,F )→ H1(X,G ) = 0

After taking the direct limit of the first sequence, we have

· · · → Γ(X,G )→ lim
→
H0(D.(U))→ lim

→
Ȟ1(U,F )→ 0.
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To show lim→ Ȟ
1(U,F ) ∼= H1(X,F ), it suffices to show lim

→
H0(D.(U)) ∼=

Γ(X,R). But by the definition ofD.(U), injectivity is clear. For α ∈ Γ(X,R),
by the surjectivity of stalks, there exists a refinement B such that α lies in
the image of C0(B,G ).

Exercise 6 (by Tzu-Yang Chou).

At P ∈ X, we have a short exact sequence 0 −→ IP −→ O∗X,P −→
(OX,P/IP )∗ −→ 0, which gives the sequence 0 −→ I −→ O∗X −→ O∗X0

−→ 0
since (IP )2 = (I 2)P = 0. Taking the long exact sequence of cohomology and use
Ex(III.4.5) we proves the assertion.

Exercise 7 (by Wei-Ping).

Two affines are k[x0
x2
, x1
x2

]/(f), k[x0
x1
, x2
x1

]/(f), Consider Čech complex 0→ Γ(U,OX)⊕
Γ(V,OX) → Γ(U ∩ V,OX) → 0. H0(X,OX) is pair of ( g

xn1
, h
xm2

) such that fq =

xm2 g − xn1h, where f, q, g, h are polynomials. The statement f(1, 0, 0) 6= 0 says
that f has pure degree of x0, then q can’t have term with pure zero degree since
xm2 g − xn1h doesn’t.
Now we want to write fq = xm2 g

′ − xn1h′ then comparing to original equation we
can substitute fq with 0 then conclude that g

xn1
= h

xm2
= c for some constant c.

Observe that every term in xm2 g − xn1h at least have degree m of x2 or degree n of
x1, so when we consider highest degree of x0 we see that every term in q also have
this property, hence we can write fq = xm2 g

′ − xn1h′ for some g′, h′, as we desired.
Therefore H0(X,OX) = k and dimension is 1. We can also use the fact that this
group is global section so it is constant k.
H1(X,OX) is calculated by quotient all elements in form g

xn1
, h
xm2

from degree zero
part of k[x0, x1, x2](x1,x2). Since every thing is written uniquely into k-linear com-

bination of xi+j
0

xi1x
j
2

, and we can reduce if i+ j > d = deg f , so the basis of H1(X,OX)

is those with 0 6 i+ j < d, which has 1
2
(d− 1)(d− 2). The reduction of degree

comes from f = xdeg f0 + f ′, where f ′ consists of term with at least one of degree of
x1 or x2 isn’t zero.

Exercise 8 (by Yi-Tsung Wang).

(a) By exercise 2.5.15(e), we may write F = ∪
α

Fα, where Fα can be taken to
be all coherent subsheaves, hence {Fα}α is a direct system and F = lim−→

α

Fα.

By proposition 3.2.9, we have lim−→
α

H i (X,Fα) = H i (X,F ). If Hr (X,G ) = 0

for any coherent sheaf G , then Hr (X,F ) = 0 in this case. Therefore it is
sufficient to consider only coherent sheaves on X.
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(b) Take a locally free coherent sheaf E such that E → F → 0 and take R
be the kernel. If Hr′ (X,E ′) = 0 for any locally free coherent sheaf E ′ and
any r′ ≥ r for some r, then Hr′+1 (X,R) = Hr′ (X,F ) for any r′ ≥ r. Now
since R is also coherent and HdimX+1 (X,R) = 0, by the induction we see
that Hr′ (X,F ) = 0 for any r′ ≥ r. Therefore it is even sufficient to consider
only locally free coherernt sheaves on X.

(c) Let U = {U0, . . . , Ur} be the open affine cover, then for any quasi-coherent
sheaf F and n ≥ r + 1, since Cn (U ,F ) = 0, we have Ȟn (U ,F ) = 0. By
theorem 3.4.5, for any n ≥ r + 1, Hn (X,F ) = 0. Thus cd (X) ≤ r.

(d)

(e) Write Y =
r
∩
i=1

Hi with Hi hypersurfaces, let U = X\Y =
r
∪
i=1

X\Hi, where
X\Hi is affine. By part (d) we see that cd (X) ≤ r − 1.
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5 The Cohohomology of Projective Spaces
Exercise 1 (by Zi-Li).

We have long exact sequence

...→ H i(X,F ′)→ H i(X,F )→ H i(X,F ′′)→ ...

Note that cohomology groups vanish for large i, and taking dimension as k-vector
space is additive, we have χ(F ) = χ(F ′) + χ(F ′′)

Exercise 2 (by Chi-Kang Chang).

(a) For a fixed closed immersion i : X ↪→ Pn, we have i is a closed im-
mersion, hence an affine morphism of Noetherian separated schemes, so by ex-
ercise 4.1 we have H i(X,F ) ∼= H i(PN , i∗F ), and OX(1) = i∗OPN (1). Hence
H i(X,F (n)) ∼= H i(PN , (i∗F )(n), so replace F by i∗F , we can assume X = PN .

Now we induction on N , when N = 0, χ(F (n)) is a constant, so there is
nothing to do. Suppose the consequence holds for dimension less than N , then for
PN , we consider the map ϕ : F (−1) → F obtained by multiple with a general
linear polynomial f , and the induced exact sequence

0→ kerϕ→ F (−1)→ F → cokerϕ→ 0.

This induces the two exact sequences

0→ kerϕ→ F (−1)→ imϕ→ 0

0→ imϕ→ F → cokerϕ→ 0

So by exercise 5.1 we have

χ(F (n)) = χ(cokerϕ(n)) + χ(imϕ(n)) = χ(F (n− 1)) + χ(cokerϕ(n))− χ(kerϕ(n)).

Then since both cokerϕ and kerϕ is supported on V (f) ∼= PN−1, by induc-
tion hypothesis both χ(cokerϕ(n)) and χ(kerϕ(n)) are numerical polynomials,
so χ(F (n))− χ(F (n− 1)) = χ(cokerϕ(n))− χ(kerϕ(n)) is also numerical polyno-
mial, hence by I.7.3 (χ(F (n)) is a numerical polynomial.

(b) Set M = Γ∗F =
⊕

n∈Z Γ(X,F (n)), then in I.7 we define ϕM(n) :=
dimkH

0(X,F (n)). Then by Serre’s vanishing, for n >> 0 we have

χ(F (n))− dimkH
0(X,F (n)) = dimk Γ(X,F (n)) = ϕM(n) = PM(n)

Hence χ(F (n)) = PM(n)).
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Exercise 3 (by Chi-Kang Chang).

(a) Since X is integral, we have X is a projective variety, hence H0(X,OX) ∼=
Γ(X,OX) = k. Hence we have

pa(X) = (−1)r(χ(OX)− 1)

= (−1)r(
r∑
i=1

(−1)iH i(X,OX))

=
r∑
i=1

(−1)r+iH i(X,OX)

=
r−1∑
i=0

(−1)iHr−i(X,OX).

(b) When X is a closed subvariety of Prk, we have χ(OX) = PM(0) with
M :=

⊕
n∈Z Γ(X,OX(n)) by exercise 5.2. And using the definition of I.7, we

havePX(n) = dimk S(X)n. Since OX = OPr
k
/IX , S(X) = k[x0, ..., xr]/I(X), and

OX(n) = S(X)(n)∼. We have Γ(X,OX(n)) = S(X)n, and so PX(n) = PM(n) for
n >> 0, therefore PX = PM , and hence pa(X)(in chapter III)=(−1)r(χ(OX)−1) =
(−1)r(PM(0)− 1) = (−1)r(PX(0)− 1) = pa(X)(in chapter I).

(c) Let f : X 99K X ′ be a birational map between nonsingular projective
curves. Then since a birational map between non-singular projective varieties
has indeterminacy codimension not less than 2, f is in fact a morphism. And
similarly the birational map f−1 can be extend to a morphism. So in fact f is an
isomorphism, hence X ∼= X ′ and then pa(X) = pa(X

′).
In particular pa(P1) = 0 by theorem III.5.1. And let X be a non-singular plane

curve of degree ≥ 3, then we have pa(X) = 1
2
(d − 1)(d − 2) ≥ 1, so X is not

rational.

Exercise 7 (by Shi-Xin).

(a) For any coherent OY -modules F , we have

H i(Y,F ⊗ (i∗L)n) = H i(X, i∗(F ⊗ (i∗L)n)) = H i(X, i∗F ⊗ Ln))

Then since i∗F is a coherent OX-modules, the ampleness of L implies the
ampleness of i∗L.

(b) (⇒) Since Xred is a closed subscheme of X, it follows from (a).
(⇐) Let N be the sheaf of nilradical ideals of OX . Then the Noetherian
condition implies N r = 0 for some r. Now, for any coherent OY -modules F ,
consider the filtration

F ⊃ NF ⊃ . . . ⊃ N rF = 0

12



Therefore, for each i = 1, . . . , r and any n, we have

0→ N iF ⊗ Ln → N i−1F ⊗ Ln → (N iF/N i−1F)⊗ Ln → 0

Wemight the long exact sequences induced by the above short exact sequences.
Moreover, for any i, N iF/N i−1F is a coherent OXred

-module where allow
us to apply the ampleness of Lred such that the cohomology group vanishes.
Thus by the descending induction on i and N rF = 0, we can deduce that
Hp(X, i∗F ⊗ Ln)) = 0 for any p > 0, n >> 0.

(c) (⇒) Since each irreducible component is obviously a closed subscheme of X,
it just follows from (a).
(⇐) By (b), we might assume X is reduced. Write X =

⋃r
i=1Xi with the

decomposition of irreducible components, and let Ii be the corresponding
sheaf of ideals of Xi. Consider the induction on r. Clearly, r = 1 is a trivial
case. Now, if r > 1, since we

0→ I1F → F → F/I1F → 0

Moreover, F/I1F is a coherent OX1-module, so for p > 0, n >> 0, we have

Hp(X, ((F/I1F))⊗ Ln)) = Hp(X1, ((F/I1F))⊗ (L ⊗OX1)
n)) = 0

Note that Supp(I1F) ⊂
⋃r
i=2Xi. Thus by the induction hypothesis,Hp(X, I1F⊗

Ln) = 0, and hence by the long exact sequences induced by the above short
exact sequences, we deduce that Hp(X, i∗F⊗Ln)) = 0 for any p > 0, n >> 0.

(d) (⇒) We only need finiteness, which preserves the coherent sheaves via
pushforward. Then by the same argument in (a), one can prove the result.
(⇐) By (b),(c), we might assume X, Y are integral. Let F be a coherent
OY -module. By exercise 4.2(a)(b), there is a coherent OX-module G and a
morphism β : f∗G → F⊕m for some m such that β is an isomorphism at the
generic point of Y . Then define K := ker(β), C := coker(β) and consider
the noetherian induction on Supp(F). We have two short exact sequence

0→ K → f∗G → Imβ → 0

0→ Imβ → F⊕m → C → 0

Then Supp(K) ( Supp(F), Supp(C) ( Supp(F). Furthermore, since
K,C are both coherent OY -modules, by the induction hypothesis, we have
Hp(Y,K⊗Ln) = 0, Hp(Y,C⊗Ln) = 0 for p > 0, n >> 0. Thus by the exact
sequences and projection formula, we conclude that

Hp(Y,F ⊗ Ln)⊕m = Hp(Y, f∗G ⊗ Ln) = Hp(X,G ⊗ (f ∗L)n) = 0

for p > 0, n >> 0.

13



Exercise 10 (by Pei-Hsuan Chang).

Let F 1 f1 //F 2 f2 //F 3 f3 // · · · fr−1 //F r be exact seqence of coherent sheaves
on X. Since X is noetherian, ker fi is also coherent, ∀i ∈ {1, . . . r − 1}. Apply
Theorem 3.5.2(b) to ker fi, then ∃ni such that ∀n ≥ ni, H1(X, (ker fk)(n)) = 0.
Since 0 // ker fi //F i // Im fi // 0 is exact, for all i. Take cohomology
long exact sequence, then get

0 // Γ(X, (ker fi)(n)) // Γ(X,F i(n)) // Γ(X, (Im fi)(n)) = Γ(X, (ker fi+1(n)) // 0 ,

if n ≥ ni. Now, let N = maxi ni, then for all n ≥ N ,

Γ(X,F 1(n)) // Γ(X,F 2(n)) // · · · // Γ(X,F r(n))

is exact.

14



6 Ext Groups and Sheaves
Exercise 3 (by Zi-Li).

(b) Let U = SpecA ⊂ X, then E xtiX(F ,G )|U ' E xtiU(F |U ,G |U), hence we
may assume X = SpecA,F = M̃,G = Ñ , where M is finitely generated. By
exercise 6.7, E xtiX(M̃, Ñ) ' ExtiA(M,N)˜, hence, E xtiX(F ,G ) is quasi-coherent.

(a) By 6.3(b), we remain to show that ExtiA(M,N) is finitely generated A module
when A is noetherian and M,N are finitely generated A module.
Take free projective resolution of M :

...→ Ak1 → Ak0 →M → 0

Then, we have

0→ HomA(Ak0 , N)→ HomA(Ak1 , N)→ ...

Note that HomA(Ak, N) ' Nk, hence ExtiA(M,N) is finitely generated.

Exercise 4 (by Chun-Yi).

Since we suppose C oh(X) has enough locally frees, ∀F ∈ C oh(X), F =
F ′/F ′′ for some locally free F ′. Consider the quotient map u : F ′ −→
F = F ′/F ′′, then F (u) : E xti(F ′,G ) −→ E xti(F ,G ) is zero map, since
E xtiX(F ′,G ) |U= E xtiU(F ′ |U ,G |U) = E xtiU(On

x ,G |U) = 0 ⇒ E xti(·,G ) is
coerasable contravariant δ-functor, hence universal.

Exercise 5 (by Wei-Ping).

This is similar to the version of Ext.

(a) 0→ F → F → 0 so one direction is easy. Conversely, we get Ext1(Fx,Gx) =
0 for arbitrary Gx, so Fx is projective over a local ring so is free. This holds
for all x ∈ X, so F is locally free.

(b) By definition just take the resolution with length less or equal to n, then one
direction is easy. For the converse direction, use the induction by "cutting"
technique, base case is just (a). Given a resolution · · · → L2 → L1 → L0 →
F → 0, cut down to · · · → L2 → L1 → ImL1 → 0 to get hd(ImL1) 6 n−1,
and by long exact sequence from 0 → ImL1 → L0 → F → 0 we have
E xti(F ,G ) ' E xti−1(ImL1,G ) for all i > 2, and the latter is zero by
induction when i > n.

(c) Taking stalk gives resolution again so we have ">". Let n = supx pdOx
Fx,

then stalk is zero when i > n, by(b) we conclude "6".
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Exercise 6 (by Jung-Tao).

(a) If M is projective, we are done.

Following the hint, we want to prove the claim Exti(M,N) = 0 for all i > 0
and all finitely generated A module N by applying descending induction on
i. (6.11.A) implies that we do have an induction basis.

Exti(M,A) = 0 =⇒ Exti(M,An) = 0, and ∀ finitely generated A module
N , there is a short exact sequence

0→ K → An → N → 0

For some finitely generated module K. The long exact sequence induced by
above shows that there is an isomorphism Exti(M,N) ∼= Exti+1(M,K) = 0,
so we have proved the claim.

Because M is also finitely generated, there is a short exact sequence

0→ K → An →M → 0

, Ext1(M,K) = 0 implies the exact sequence above splits, M is a direct
summand and is projective.

(b) Followed by induction. (cf. exercise 3.6.5)

Exercise 7 (by Pei-Hsuan Chang).

Take a free resolution of M , An• → M → 0. Then we get a locally free
resolution of M̃ , On•

X → M̃ → 0. Now,

ExtiX(M̃, Ñ) = hi(HomX(On•
X , Ñ)) = hi(HomA(An• , N)) (By Ex. 2.5.3) = ExtiA(M,N).

Also,

E i(M̃, Ñ) = hi(H (On•
X , Ñ)) = hi((Hom(An• , N))∼) = (hi(Hom(An• , N)))∼ = (ExtiA(M,N))∼.

For the third equality, we can check on every stalk: for any p ∈ SpecX,

hi((Hom(An• , N))∼)p = hi(((Hom(An• , N))∼)p) = hi(Hom(An• , N)p)

= hi(Hom(An• , N))p = ((hi(Hom(An• , N)))∼)p

Exercise 9 (by Tzu-Yang Chou).

(a) Recall that regular local rings are UFDs. Thus Ex(III.6.8) says that the
category Coh(X) has enough locally free and hence ∃ locally free resolution
of F . On the other hand, since OX,x is regular, by (III.6.11A) we have
pdFx ≤ dim OX,x,∀x ∈ X ⇒ hdF = sup

x
(pdFx) ≤ dim OX,x by Ex(III.6.5)

and hence the homological dimension of F is finite.
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(b) Similar to Ex(II.6.11). To show the independence of the choice of resolution,
we only need to consider the case that one resolution surjects to another.
Then we just need to look at the kernels and note that for an exact sequence
0 −→ Ln −→ · · ·L1 −→ 0, we have that

∑
i

(−1)i[Li] = 0 in K(X). (∗)

δ is a group homomorphism: for 0 −→ F ′ −→ F −→ F ′′ −→ 0, we first
choose two locally free resolutions for F ′ and F ′′ respectively. Then the
horseshoe lemma gives a locally free resolution for F .
ε and δ are mutually inverse: ε ◦ δ = 1 since we have (∗); δ ◦ ε = 1 since for
any locally free sheaf E , 0 −→ E −→ E −→ 0 is a locally free resolution.

Exercise 10 (by Shuang-Yen).

(a) Let U = SpecA ⊆ Y be open affine, then

H omY (f∗OX ,G )|U = H omU(f∗OX |U ,G |U) = H omU((f |V )∗OV ,G |U),

where V = f−1(U) = SpecB is also affine. Let ϕ : A → B be the map
defined by f |V and let G |U = M̃ , then

H omU((f |V )∗OV ,G |U) = H omU( B̃A, M̃) = HomA( AB,M )̃

by (Ex 6.7) since B is finitely generated A-module. So H omY (f∗OX ,G ) is
a quasi-coherent f∗OX-module since HomA( AB,M) is a B-module.

(b) Note that

f∗H omX(F , f !G ) = H omf∗OX
(f∗F ,H omY (f∗OX ,G )) = H omY (f∗F ,G ).

(c) Let 0→ f !G → I · be an injective resolution, then

ExtiX(F , f !G ) = hi(HomX(F ,I ·)) ∼= h(Homf∗OX
(f∗F , f∗I

·))

→ hi(HomY (f∗F , f∗I
·))→ hi(HomY (f∗F ,J ·)).

The last map is by the chain map f∗I · →J · lifting from f∗f
!G

id→ f∗f
!G .

So we have the map ExtiX(F , f !G )→ ExtiY (f∗F , f∗f
!G ). Note that we have

the map f∗f
!G = H omY (f∗OX ,G )

(f#)∗−→ H omX(f∗OX ,G ) = G . Hence,
there’s a natural map ExtiX(F , f !G )→ ExtiY (f∗F ,G ).

(d) Taking global sections on both side of the isomorphism in (b), we have

HomX(F , f !G ) ∼= HomY (f∗F ,G ),

17



which proves the case i = 0. Assume that F is locally free, then

ExtiX(F , f !G ) ∼= ExtiX(OX ,F∨ ⊗ f !G ) ∼= H i(X,H omX(F , f !G )).

Since f∗OX is locally free, f∗F is also locally free, so

ExtiY (f∗F ,G ) ∼= ExtiY (OY , (f∗F )∨ ⊗ G ) ∼= H i(Y,H omY (f∗F ,G )),

then by (b) and (Ex 4.1),

H i(X,H omX(F , f !G )) ∼= H i(Y, f∗H omX(F , f !G )) ∼= H i(Y,H omY (f∗F ,G )).

For general F , we induction on i. Define F i, Gi be the functors that map
F to ExtiX(F , f !G ) and ExtiY (f∗F ,G ) respectively. Let 0 → R → E →
F → 0 be exact where E is a locally free sheaf, then we have the following
commutative diagram:

F i−1(E ) F i−1(R) F i(F ) F i(E ) F i(R)

Gi−1(E ) Gi−1(R) Gi(F ) Gi(E ) Gi(R)

∼ ∼ ϕi ∼ ϕ′i

The first row is clearly exact. The second row is exact since 0 → f∗R →
f∗E → f∗F → 0 is exact by checking on open affine subsets of Y and the
fact that f is affine. By five lemma, ϕi is injective. Since F is arbitrary,
ϕ′i is also injective. By five lemma again, ϕi is surjective, hence ϕi is an
isomorphism.
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7 The Serre Duality Theorem
Exercise 1 (by Shi-Xin).

Since X is projective and hence of finite type, and L is ample, by Theorem 2.7.6,
Lm is very ample for some large m, i.e. it induces an closed immersion X → Pn
for some n Therefore, dimk(Γ(X,Lm)) = n + 1 > 1. Now if H0(X,L−1) 6= 0,
there must be some nonzero section s ∈ Γ(X,L−m). Then it defines a morphism
φ : Γ(X,Lm)→ Γ(X,OX) by multiplying s. However, we must have dim(Im(φ)) >
1 = Γ(X,OX), which leads to a contradiction.

Exercise 2 (by Yi-Tsung Wang).

(a) Let tY : Hn (Y, ωoY ) → k be the trace map. Then the trace map tX :
Hn
(
X, f !ωoY

)
→ k is given by

Hn
(
X, f !ω◦Y

) ∼= ExtnX
(
OX , f !ω◦Y

) Ex.3.6.10(c)−−−−−−→ ExtnY (f∗OX , ω◦Y )

→ ExtnY (OY , ω◦Y ) ∼= Hn (Y, ω◦Y )
tY−→ k

Now for any coherent sheaf F onX, f∗F is coherent on Y , hence HomY (f∗F , ω◦Y ) ∼=
Hn (Y, f∗F )′. Thus HomY

(
F , f !ω◦Y

) ∼= HomY (f∗F , ω◦Y ) ∼= Hn (Y, f∗F )′,
and by ex 3.4.1,Hn (Y, f∗F ) ∼= Hn (X,F ). Therefore we get that HomX

(
F , f !ω◦Y

) ∼=
Hn (X,F )′, i.e., f !ω◦Y is a dualizing sheaf.

(b) By cor 3.7.12, ωY = ω◦Y and ωX = ω◦X = f !ω◦Y = f !ωY , and we have a natural
map f∗f !ωY → ωY , thus a natural trace map t : f∗ωX → ωY .

Exercise 3 (by Shi-Xin).

By exercise 2.5.16(b)(c), since 0→ ΩX → OX(−1)n+1 → OX → 0, we have a
filtration

r∧
(OX(−1)n+1) = F0 ⊃ . . . ⊃ F r ⊃ F r+1 = 0

such that Fp/Fp+1 ∼= Ωp
X ⊗

∧r−pOX . Note that
∧kOX is OX for k = 0, 1, is 0

for k 6= 0. Therefore, the filtration is just F0 ⊃ F r ⊃ F r+1 = 0 where F r ∼= Ωr
X .

Then we have
r∧

(OX(−1)n+1)/Ωr
X
∼= F0/F r ∼= Ωr−1

X ⊗
1∧
OX ∼= Ωr−1

X ,

which gives the following short exact sequence

0→ Ωr
X →

r∧
(OX(−1)n+1)→ Ωr−1

X → 0
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By Serre duality theorem, we can deduce that H i(X,OX(−r)) = 0 whenever i < n
or r < n + 1, and hence the long exact sequence induced by the above short
exact sequence implies H i(X,Ωr

X) ∼= H i−1(X,Ωr−1
X ) whenever 1 ≤ i, r < n + 1

or 1 ≤ i < n, r ≥ n + 1. Moreover, since H0(X,Ω0
X) ∼= Γ(X,OX) ∼= k, we have

H i(X,Ωi
X) ∼= k. Also, since for i < n, H i(X,Ωn

X) ∼= H i(X,OX(−n − 1)) = 0, it
follows that H i(X,Ωr

X) = 0 whenever i < r, 0 ≤ r ≤ n. Again by Serre duality
theorem, we can show that H i(X,Ωr

X) = 0 whenever i > r, 0 ≤ r ≤ n. Thus we
conclude that H i(X,Ωr

X) is k if i = r, is 0 if i 6= r

Exercise 5 (by Shuang-Yen).

Let yi =
∑

j aijxj for some aij ∈ A. Define ε : E =
⊕n+r

i=1 → A by ei 7→ xi for
i = 1, . . . , n and en+i 7→ yi for i = 1, . . . , r. Let fi = en+i−

∑
j aijej for i = 1, . . . , r,

then ε(fi) = 0, and we have

d(ei1 ∧ · · · ∧ eis ∧ fj1 ∧ · · · ∧ fjt)

=
s∑

p=1

ε(eip)ei1∧ · · · ∧ êip ∧ · · · ∧ eis ∧ fj1 ∧ · · · ∧ fjt

+
t∑

q=1

ε(fjq)ei1 ∧ · · · ∧ eis ∧ fj1 ∧ · · · ∧ f̂jq ∧ · · · ∧ fjt

=
s∑

p=1

ε(eip)ei1∧ · · · ∧ êip ∧ · · · ∧ eis ∧ fj1 ∧ · · · ∧ fjt

Let Ks,t ⊆ Ks+t(ε) be the submodule generated by ei1 ∧ · · · ∧ eis ∧ fj1 ∧ · · · ∧ fjt ,
then d(Ks,t) ⊆ Ks−1,t. So

Hk(x,y;M) = hk(K· ⊗M) =
ker(Kk ⊗M → Kk−1 ⊗M)

Im(Kk+1 ⊗M → Kk ⊗M)

∼=
⊕

s+t=k ker(Ks,t ⊗M → Ks−1,t ⊗M)⊕
s+t=k Im(Ks+1,t ⊗M → Ks,t ⊗M)

∼=
⊕
s+t=k

ker(Ks,t ⊗M → Ks−1,t ⊗M)

Im(Ks+1,t ⊗M → Ks,t ⊗M)

∼=
⊕
s+t=k

Hs(x;M)⊗
∧t

A.

Exercise 7 (by Chi-Kang Chang).

(ONLY PARTIAL SOLUTION NOW) Let M be a f,g, A-module, then M
is free iff there is a minimal generating set of M is linearly independent. Let
m1, ...,mk be a minimal generation set.
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(⇐): If M is free, let x1, ..., xn ∈ A, then we have the folloeing are equivalent:
(1) xn is a zero divisor in M/

∑n−1
i=1 xiM

(2) there exist a1, ..., ak ∈ A s,t, xn(a1m1 + ... + akmk) ∈
∑n−1

i=0 xiM and a1m1 +
...+ akmk /∈

∑n−1
i=0 xiM

(3) there exist a1, ..., ak ∈ A− (x1, ..., xn−1) s,t, xnai ∈ (x1, ..., xn−1) for all i
(4) xn is a zero divisor in A/(x1, ..., xn−1).
(where (2) equivalent to (3) need the freeness, the others are just by definition.)

So by the above equivalent we see that x1, ..., xn is a M regular sequence iff it
is a A regular sequence. Hence depthM=depthA=dimA=dim(SuppM) since A is
a regular local ring.
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8 Higher Direct Images of Sheaves
Exercise 2 (by Zi-Li).

For any open affine U ⊂ Y , we have Rif∗(F )|U = Rif∗(F |f−1(U)), hence,
we may assume X, Y are affine. Then, Rif∗(F ) ' H i(X,F )̃ = 0. Hence, the
hypotheses of 8.1 are satisfied.

Exercise 3 (by Tzu-Yang Chou).

We first pick an injective resolution for F , say 0 −→ F −→ I .. Then,
0 −→ F ⊗ f ∗E −→ I . ⊗ f ∗E is also an injective resolution. On the other
hand, we note that f ∗E is still locally free and hence we can use the original
projection formula to yield that f∗(I ⊗ f ∗E ) ' f∗I ⊗ E . Now Rif∗(F ⊗ f ∗E ) '
H i(f∗(I ⊗ f ∗E )) ' H i(f∗I ⊗ E ) ' H i(f∗I )⊗ E ' Rif∗(F )⊗ E .

9 Flat Morphisms
Exercise 1 (by Yi-Heng).

By exercise II.3.18(c) and exercise II.3.19, it suffices to show that f(U) is stable
under generization for every open subset U in X. If y ∈ f(U) and y ∈ {y1}, we
want to prove y1 ∈ f(U). Let SpecA be an open affine neighborhood of y and
y1. Since f is flat, the local homomorphism Ay = Oy −→ Bx = Ox is flat where
y = f(x) and x ∈ SpecB ⊂ f−1(SpecA). Note that y1 ∈ SpecAy since y ∈ {y1}.
Moreover, the extension of the maximal ideal of Ay is contained in the maximal
ideal of Bx, which implies the homomorphism is faithfully flat. Thus, there exists
x1 ∈ SpecB such that f(x1) = y1.

Exercise 2 (by Yi-Tsung Wang).

LetX : {(x, y, z) = (t3, t2, t)} ⊆ A3, then for a 6= 0,Xa is given by {(x, y, z) = (t3, t2, at)}.
Take I�k[x, y, z, a] by eliminating t such that a is not a zero-divisor in k[x, y, z, a] /I ,
we get I = (a3x− z3, a2y − z2, x2 − y3, ax− yz, xz − ay2). Then for a = 0, we
have

I0 =
(
z3, z2, x2 − y3, yz, xz

)
=
(
z2, x2 − y3, yz, xz

)
At the origin O, there is an element z such that z2 = 0, hence we get an embedding
point at the cusp.
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10 Smooth Morphisms
Exercise 1 (by Tzu-Yang Tsai).

Let I be the corresponding ideal sheaf of X, A = A2
k, then we have an exact

sequence
I /I 2 → ΩA/k ⊗OX → ΩX/k → 0

Consequently, ΩX/k = ˜OXdx⊕OXdy/(2ydy). If we take a maximal ideal in
k[x, y]/(I , 2y) corresponding to a point p, ΩX/Y ⊗ k(p) has dimension 2, but its
relative dimension is 1, thus not smooth.

Exercise 3 (by Tzu-Yang Tsai).

(i)⇔(ii) By the definition of smooth.

(iii)⇒(ii) We have

my/m
2
y ⊗k(y) k(x) = (my ⊗Oy k(y))⊗k(y) k(x) = my ⊗Oy (Ox/myOx)

Also, my ⊗A Ox ∼= myOx = mx, thus

my ⊗ (Ox/myOx) = (my ⊗Ox)/m2
y = mx/m

2
x

Thus the map Tf , x is an isomorphism, i.e. it’s smooth of relative dimension
0.

(ii)⇒(iii) Fact: Let Ox = B,Oy = A, if Â→ B̂ is an isomorphism then f is unramified
at x.
Proof. We know mn

yOx = mn
x ∀n ∈ N, and the composition

A/mn
y → B/mn

yB → Â/mn
y Â

is an isomorphism, it’s left to show Â→ B̂ is injective, in other words,

mn
y Â ∩B = mn

yB ∀n ∈ N

Notice that B = A+mn
yB andmn

yB ⊆ mn
y Â, so ∀ b ∈ B, it can be represented

as a+ ε, a ∈ A, b ∈ mn
yB mn

y Â ∩B ⊆ mn
yB.

Conversely, if b ∈ mn
y Â, a ∈ myÂ ∩ A = mn

y , thus b ∈ mn
yB. Thus we

only need to prove Â → B̂ is an isomorphism, but Ox = Oy + mn
x,m

n
x =

mn+1
x + mn

y∀n ∈ N, thus Â → B̂ is an isomorphism. Also, by (II 8.6A),
dimk(x) ΩX/Y ⊗ k(x) ≥tr.deg k(x)/k(y), equality holds if and only if k(x) is
separately extended over k(y). Thus in this case, k(x) is separately extended
over k(y) of transcendental degree 0, i.e. a separable algebraic extension.
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11 The Theorem on Formal Functions
Exercise 1 (by Pe-Hsuan Chang).

Corollary 11.2 is false without the projective hypothesis. Let X = An
k , P =

(0, . . . 0), U = X − P , and f : U ↪→ X be the inclusion. Notice that the fibres of
f all have dimension 0. (So r = 0.) But we can show that Rn−1f∗OU 6= 0. Since
Rn−1f∗OU is associated to V 7→ Hn−1(f−1(V ),OU |f−1(V )), we just compute the
n− 1th Čech cohomology to show it is not zero. Take Ui = Spec k[x1, . . . , xn, x

−1
i ]

be an open cover of U . Then the Čech complex will be

. . .
n⊕
i=1

k[x1, . . . , xn, x
−1
1 , . . . , x̂i

−1, . . . x−1n ] k[x1, . . . , xn, x
−1
1 , . . . , x−1n ] 0

n⊕
i=1

fi

n∑
i=1

(−1)i−1fi

Thus, to show n−1th cohomology is not zero, just need to show the map above is not
surjective. But x−11 x−12 . . . x−1n is clearly not in the image. Hence, Rn−1f∗OU 6= 0.

Exercise 2 (by Pei-Hsuan Chang).

Use Stein factorization then we have a projective morphism g with connected
fibres and a finite morphism h such that the diagram commute:

X Y

Y ′

f

g h

Our goal is to show that g is an isomorphism so that f and h just deffer by
an isomorphism, and thus, f is a finite morphism. Since we can replace Y ′ by
Im g, so we may assume g is surjective. Notice that f−1(h(y′)) is finite and
g−1(y′) ⊆ f−1(h(y′)), but g−1(y′) should be connected, and hence, g−1(y′) is a
single point. Also, g is projective and thus, is proper, so g give a homeomorphism on
the under lying spaces. In the proof of Stein factorization, we see that g∗OX = OY ′ .
Thus, g is an isomorphism. This prove the statement.

Exercise 8 (by Pei-Hsuan Chang).

24



Our goal is to show that Rif∗(F )ŷ = 0. Since Rif∗(F ) is coherent, This imply
that Rif∗(F )y is zero. (Since for M : finitely generated A-module, A: noetherian
local ring, M̂ = M ⊗A Â, and notice Â is faithfully flat A-module.) So there must
exists some open set of y such that Rif∗(F ) = 0. Also, by theorem on formal
function, this is equivalence to show that H i(Xy,Oy/m

k
y ⊗F ) = 0, for all k.

To show this, we use induction on k. Notice that we already haveH i(Xy,Oy/my⊗
F ) = 0. Then for each k, we consider the exact sequance:

0→ mk
y/m

k+1
y → Oy/m

k+1
y → Oy/m

k
y → 0.

Since F is flat over Y , so we can tensor F and take cohomology to get:

· · · → H i(Xy,m
k
y/m

k+1
y ⊗F )→ H i(Xy,Oy/m

k+1
y ⊗F )→ H i(Xy,Oy/m

k
y⊗F )→ · · ·

By induction hypothesis, H i(Xy,Oy/m
k
y ⊗ F ) = 0. Also, mk

y/m
k+1
y is just the

direct sum of copies of Oy/my since it is a vector space over Oy/my. Thus,
H i(Xy,m

k
y/m

k+1
y ⊗F ) is also zero. Hence, H i(Xy,Oy/m

k
y⊗F ) = 0, for all k. This

proof the statement.

12 The Semicontinuity Theorem
Exercise 1 (by Yu-Ting Huang).

We may assume Y is affine. Since Y is finite type over k, we may further
assume that Y = Spec k[x1, x2, . . . , xn]/I, where I is generated by f1, . . . , fm. Then
dimmy/m

2
y = n− rk J , where J is the Jacobian matrix of fi at y. Note that the

determinant is a continuous function. For a submatrix J ′ of J , if det(J ′) 6= 0 at y,
then there exists a neighborhood U such that det(J ′) 6= 0 at y′ for y′ ∈ U . This
implies ϕ is upper semicontinuous.

Exercise 4 (by Yu-Ting Huang).

Note that

h0(y,L ⊗M−) = dimH0(Xy,Ly ⊗M−1
y ) = dimH0(Xy,OXy) = 1.

By Grauert, f∗(L ⊗M−1) is a locally free sheaf of rank 1. Since L ⊗M−1 and
f∗(L ⊗M−1) are both invertible sheaf, we have the isomorphism

f ∗f∗(L ⊗M−1)
∼→ L ⊗M−1.

Then N := f∗(L ⊗M−1) is what we want.

Exercise 5 (by Yu-Ting Huang).
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Let π : X → Y and E is of rank r. Define the map φ : PicY × Z→ PicX by
φ(L , n) = π∗L ⊗ OX(n). We will show that φ is bijective.
The injectivity part is same as II Ex.7.9 (i.e. the assumption that Y is regular
is not required.) Suppose that π∗L ⊗ OX(n) ' OX . By the projection formula,
OY ' π∗OX ' π∗(π

∗L ⊗ OX(n)) ' L ⊗ π∗OX(n). Then π∗OX(n) ' L −1. By
II.7.11, if n = 0, L = OX , and if n < 0, L −1 = 0 (contradiction). For n > 0,
π∗OX(n) ' Sn(E ), where the rank of Sn(E ) > 1. This contradicts that L is an
invertible sheaf. Hence, the injectivity is verified.
For M ∈ Pic(X), we consider sheaf My on the fiber Xy. Note that My is an
invertible sheaf. By II.9.9, since X is flat over Y , the Hilbert polynomial of My is
independent of y. Then we can write My = OPr(n) for all y ∈ Y . Now, we have
for each y ∈ Y , (M ⊗ OX(−n))y ' OXy . By Exercise 4, there exists N ∈ PicY
such that π∗N 'M ⊗ OX(−n), then M ' π∗N ⊗ OX(−n).
Now, we have φ : PicY × Z

∼→ PicX.
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