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Exercise 0 (by Kuan-Wen).

This is an example of proof.

Remark. This is an example for how to write in this format.

1 Sheaves

Exercise 1 (by Chun-Yi).

Let F be the constant presheaf associated to A on X, F' be the constant
sheaf associated to A on X. Define §: F — F* by 0(U)(a) = (a,1,.....,1) € A",
where r is the number of components of U, then 6 is a sheaf morphism.

Now if ¢: F — G is a morphism, then ¢: F© — G defined by ¥(U)(ay, ......,a,) =
©(U)(aq) is the unique morphism such that ¢ = ¢o = F is the sheaf associated
to the presheaf F.

Exercise 2 (by Chun-Yi).
(a) Consider the commutative diagram, where p € U

Fu) 29 g

i ls

FPL) gp

Let 5 € ker (1), ' = () € (ker ), then p,(s') = 2 (£(5)) = g(p(U))(5) =
g(0) =0 —> (kerg), C kerg,

Conversely, given s’ € kerg,, we can pull back to s € kerg(U) such
that f(s) = s'. Let t = ¢(U)(s), then g(t) = 0, that is 3V such that
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(b)

()

tlv=0 = ¢(U)(s) =0 = §=(s,UNV) € (kerp),

Similarly, let t € imp(U), t' = g(t) (imy),, then 3s € F(U) such that
p(U)(s) = t. Now t' = g(p(U)(s)) = @p(f(s)) = #' € (imp),.
Conversely, if ¢’ € imyp,, then 35’ € ]—" such that ¢,(s") = t/, pull back to
s € F(U) such that f(s) = ¢, then g(gp(U)(s)) =t = t' € (imyp),.

¢ is injective <= ker ¢ = 0 <= ker ¢, = 0 Vp <= ¢, is injective Vp
¢ is surjective <= imy = G <= imy, = G, Vp <= ¢, is surjective Vp

A sequence of sheaves and morphisms is exact <= ker ¢! = imp'~! +=
ker ! = img’ ' Vp <= The corresponding sequence of stalks is exact Vp

Exercise 3 (by Pei-Hsuan).

(a)

Suppose ¢ : ¥ — ¢ is surjective, then ¢, : %, = ¥, is surjective, Vp € X.
YU C X, Vs € 9(U), we have commutative diagram:

zW) 22 g

!

7 g

hS]

Thus, 3t, € %, such that p,(t,) = s,, ¥p € X. This means 3V,: neigh-
borhood of p, 3t € F(U) such that ¢(t|y,) = s|v,. So, {V,}per is what we
desired.

Conversely, if YU C X, Vs € 4(U), there exists an open cover {U;}; of U
such that Vi, 3t; € F(U;), p(t;) = €%, say peU,.
Then pull s, back to s € 4(U). Thus, 3t; € F(U;) such that p(t;) = s|v,.
Push this ¢; forward to ¢; E Fp, then ¢,(t; = s,. Thus, ¢, : F, = G, is
surjective, Vp € X = ¢ : ¥ — ¢ is surjective.

Let X = U, UU,, where Uy, Uy are open and connected. Let .%# be a constant
sheaf defined by A. Consider ¢4 to be a constant presheaf defined by A.
FU) — G (U)

f o= flUNU)+ f(UNUy) "
surjective presheaf morphism. Now, consider ot : . % — 4T which is defined

A +
by JJ(tU) : (i(f()[’]()]) ,if U is disconnected. (Notice that 4(U) =941 (U),

if U C U, for some i.) Thus, Im(¢™) = (Imp)™ = 9T, so ¢ is surjective
sheaf morphism. But, ¢ is not surjective whenever U is disconnected.

Define ¢ : % — ¥ to be It is a

Exercise 4 (by Jung-Tao).



(a) ker p =0 = (ker ¢)p =0 = ker pp = 0, for all points P.
the map pp: Fp — Gp induces a map ¢}: Fp — G5,
since Fp = F5,Gp = GF,

ker op = 0,VP = ker ¢}, = 0,YP = ker ¢p" =0

The last equality is because V¢ an element in the group corresponds to some
open set X through the sheaf ker ¢*. ¢t = 0 locally means for every point P,
there is a neighborhood Up contains P, t |y,= 0. {Up} is an open cover of
X where t = 0 at every component, and ¢t = 0 by the definition of sheaf.

(b) the map ¢: ¢(F) — G is injective, where p(F) denote the image of F as a
presheaf, from (a) we get an inclusion map from im ¢ = p(F)" to GT =G

Exercise 5 (by Te-Lun).

Let ¢: F — G be a morphism of sheaves, then:

(¢ is an isomorphism <= ¢, is an isomorphism on stalk, for all p € X
<= ¢, is injective and surjective, for all p € X
<(—L)> © is injective and surjective, for all p € X

, where (x) is hold by Exercise 2(b).
Exercise 6 (by Te-Lun).

(a) Let F” be the presheaf defined by U — F(U)/F'(U), let the natural mor-
phism ¢: F — F/F be:

pU): FU) — (F/F)(U)
t = [s: U = Uper Fp by s(p) =1, the germ of ¢ in .7:1’3’]

, for all U CX. Tt s easy to check that this is indeed a morphism of
sheaves. Moreover, to show that this morphism is surjective, we consider
the induce map of ¢ on stalk ¢,: F, = (F/F), = F,/F', for p € X.
Let (U,s) € (F/F')y, with s € (F/F')(U), p € U. Then there exist a
neighborhood V- C U of p and t € F”(V) such that ¢, = s(q) for all
q € V. Pick a preimage of t € F"(V) = F(V)/F'(V) in F(V), say t'’. Then
op((Vi 1)) = (V,(t)) = (V.sly) = (U,s). Hence, ¢, is surjective for all
p € X, by Exercise 2(b), ¢ is surjective.

Last, note that obviously, (ker ¢), = ker ¢, = F, for all p € X, so kerp = F.



(b) (i) Let ¢': F — F be injective, then F' ~ Img as presheaves. (Here,
Imy is the presheaf of image, before sheafification), so there is an
isomorphism: ¢~!: Imy — F’, behold that we have the following:

Imgp —Ml F'

f

(lmg)* &2 (F)r = F

(™1™ is injective since ¢ is (Exercise 4(a)), and it is sujctive since
e l= ()T ofis, so (o~ 1) is an isomorphism (Exercise 5). Hence
F’ is iormorphic to Imgp regarded as a subsheaf of F. (Exercise 4(b))
(i) Letv: F — F" be surjective, define the presheaf G: U +— F(U)/ ker ¢(U),
then we have F” ~ G as presheaves, doing sheafification as in part (i),
then we have F” ~ Gt = F/kerv v F/Imyp. Where (*) holds by

exactness.
Exercise 7 (by Shi-Xin).

(a) Since F(U)/ker(p(U)) = im(p(U)) for any open set U, .% / ker ¢ and imgp
are isomorphic as presheaves, and hence they are isomorphic as sheaves.

(b) For the same reason to (a), since ¢4(U)/im(¢(U)) = coker(o(U)) for any
open set U, ¢ /imy and cokerp are isomorphic as sheaves.

Exercise 8 (by Yi-Heng).

It suffices to check that ker(¥(U)) C im(p(U)) where o(U) : F'(U) —
FU),YvU) : F(U) — F"(U). Note that 0 - ¥, — Fp — F/. Thus, for
s € ker(v(U)), sp = p(tp) for some tp € Fp. Let t©' € F'(VF) represents tp,
then t¥|y raye = t9|yraye since o is injective. Therefore, there exists t € F'(U)
such that t|,» = t* for all P € U, and p(U)(t) = s. Hence, we get ker(y(U)) C

im(p(U)).
Exercise 9 (by Pei-Hsuan).

U F(U)®dYU) is clearly a presheaf. For open set U C X, if {V;} is an
open cover of U, then:

L.Ifspte Z(U)DdY(U), and s D t|y, =0, for all i. Then s
for all 7. Thus, s =0,t=0,s0 st =0.

v =0,t

v, =0,



2. If we have Si@ti S egg(‘/;) @g(‘/l), and Si@ti VNV = Sj @t]"vimvj, for all Z,]
Then Si’ViﬂVj = Sj|lvinv; and t; vinv; = tj vinv;, SO ds € g(U) and t € g(U)
such that s|y, = s; and t|y, = t;, for all i. Thus, s ® t|y, = s; B t;, for all .

Hence, U — F(U) ® ¥ (U) is a sheaf.
Exercise 10 (by Wei).

For a given direct system {F;};c; over a set I in the category of presheaves
over some topological space X such that %ﬂie s Fi(U) exists for each U, define a

presheaf liglie ,Fi by
lim 7, | (U) = ( i Fy(U)

on the level of open sets, and on the level of inclusions that for each V' C U, define
(Hg E) V) (13 E-) V)
iel iel
by the maps
FiU) = F(V) = (@f) V)

ief
There are canonical maps

The data {a; y}y form a sheaf morphism, and that the diagrams

Fi —— Fu
i ieI'E

commutes for each s : 7 — ', by our definition of @ie T

Now we verify that ligie | Fi is the direct limit of the direct system {F;}ic; in the
category of presheaves over a topological space X. For a given presheaf G, and
given presheaf morphisms p; : F — G such that for each arrow s :i — i’ in [ the
diagram commutes :

Fi —=G

o
Fo
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that is, an element in the set
Hm Homygp,, (x) (Fi, )
iel

we try to find a unique element ¢ in HompShAb(X)(hﬂie[ Fi,G) such that

Fi — iy,
ﬁm\y
g

commutes for each ¢ € I. Notice that by universal property of ligie ; Fi(U), we
can find for each open set U a map ¢y such that the diagram commutes :

Fi(U) =% lim,_, Fi(U)

Ggu)

It is easy to check that the data {¢y}y defines a sheaf morphism. So far we have
proved existence. On the other hand, suppose there is another ¢, then since on
each U and 7 € I, we have

Fi(U) =% lim,_ Fi(U)

m%u@f
Gg(U)

we have ¢y, = ¢y, and hence ¢’ = ¢.

Having shown that @ie , Fi is the direct limit of the direct system {F:}icr in the
category of presheaves, we now consider sheaves. Suppose given a direct system of
sheaves {F;}icr, we show that (hgrlle ; Fi)*t is the direct limit in the category of

sheaves, where the maps F; — (hglle ; F;)" are defined by the composition
Fi— i F, — (i F)*
iel iel

Let G be another sheaf, and suppose given maps from F; to G compatible with
the original system, then we have a unique presheaf morphism between ligie ; Fi

and G, which corresponds to a unique sheaf morphism between Glﬂze ; Fi)T and G.
Check that this morphism is then the desired one.
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Remark. In categorical language, the existence of direct limits indexed by a small
category can often be expressed in terms of representability of the functor

X = l'&lHomc(]—},X)

1€l

with the representing object denoted hﬂie I.E-. In a more general setting, this
exercise expresses the categorical facts :

(1)

Let I, J,C be categories with I being small. Suppose C admits direct limits
indexed by I, then the functor category [J, C] admits direct limits indexed by
I, and the direct limit can be computed pointwisely; namely, is F : [ — [J,C]
a functor, then we have

(gf) () = (ngm))

for each j € J. (In this exercise, C' is the category of abelian groups, J is
the opposite category of open sets associated to the topological space X)

Given a pair of adjoint functors L 4 R between categories
L
4
c 1L D
~
R

and assuming that D admits direct limits indexed by I, then by the chain of
natural isomorphisms

@HomD(Lﬂ, Y) ~ @Homc(Fi, RY) ~ Homc(lig F;,, RY)
iel iel iel
~ Homp (L lim F;,Y)
we have, by fully faithfulness of the Yoneda embedding, that
lim(LF;) ~ L(lim F;)

(In the exercise, the categories are (C,D) = (pShy,(X),Shap(X)), L is
sheafification, R is forgetful functor).

Exercise 12 (by Wei).



For a given inverse system {F;};c; over a set I in the category of presheaves
over some topological space X such that l'rniG s Fi(U) exists for each U, we define,
as in exercise 10, the presheaf @ie 1‘7:" y the same law, then a routine check
shows that 1'&11,e ; F; is the inverse limit of the inverse system of presheaves {F; }ic;
in the category of presheaves. Now suppose {F;}icr is an inverse system of sheaves,

we show that the inverse limit of the system taken in the category of presheaves is
actually a sheaf. [TBD|

Remark. In categorical language, the existence of inverse limits indexed by a small
category can often be expressed in terms of representability of the functor

X — @Homc(X,]-})
iel
with the representing object denoted @ie IE. We have these statements for
inverse limits ((2’) is a little different from (2) in remark to exercise 10)

(1) Let I,J,C be categories with I being small. Suppose C admits inverse
limits indexed by I, then the functor category [J,C| admits inverse limits
indexed by I, and the inverse limit can be computed pointwisely; namely, is
F : I°° — [J,C] a functor, then we have

(@f) () =~ (@ﬂu))

for each j € J. (In this exercise, C' is the category of abelian groups, J is
the opposite category of open sets associated to the topological space X)

(2’) Given a pair of adjoint functors L 4 R between categories
L
—
c 1L D
~— ~—
R

and assuming that D admits inverse limits indexed by I, and that the
functor R is fully faithful, then we have the chain of natural isomorphisms

@Homp(X, F) ~ @Homc(RX, RF;) ~ Hom¢(RX, MRFJ
iel iel iel
~ Homp (X, L Jim RF;)
iel
we have by fully faithfulness of the Yoneda embedding, that
hm F; ~ L(lim RF)

el el



(In this exercise, the categories are (C,D) = (pShypy,(X),Shan(X)), L is
sheafification, R is forgetful functor; notice that by definition, Shay,(X) is
already a full subcategory of pShy,(X))).

Exercise 14 (by Tzu-Yang Tsai).

It’s equivalent to show A := {P € Ul|sp = 0} is open, but if sp = 0,3V a
neighborhood of P s.t. s|y =0=V C A = A is open.
Take any nonempty open subset U C X, let ji(-#) be the sheaf obtained by
extending .% outside of U, as in Ex 1.19 (b) below. Then Supp.# = U is open,
thereby Supp.# need not to be closed.

Exercise 15 (by Tzu-Yang Tsai).

Vf,h € Hom(Z|y,¥|v), define f+h as (f+h)(s) = f(s)+h(s)Vs € I'(U, F|v),
then it has a natural structure of abilian group.
To show .7 : U — Hom(% |y, ¥|), we have to check two conditions:

1.

2.

If {Vi}ier is an open cover of V, and ¢ € I'(V, ) s.t. ¢|y,Vj € I, then
é(s|v,) = 8|y, (s) = 0¥s € D(V,F) = ¢ =01in V.

If {¢;}jer is a set of morphism s.t. ¢; € T'(V;,0y;) and ¢ilv,ay, =
Gilviav, Vi,j € I, one can define ¢ € I'(V,2¢) = Hom(ZF|y,¥|y) s.t.
o(slv,) = ¢lv(s)Vs € I'(V, F). It’s well-defined due to assumption, and
we have ¢|y, = ¢;Vi € I.

Conclude above, we have 7 is a sheaf.

Exercise 16 (by Tzu-Yang Chou).

(a)

Given a constant sheaf for G .% on X where X is irreducible, let V C U
be open sets in X. For f € % (V), we claim that f is a constant map, and
hence it is the restriction of the constant map of the same value on U. G
has the discrete topology, so for any g € G, both f~'(g) and V' \ f~!(g)
are closed in V. Find closed sets A, B C X such that ANV = f~!(g) and
BNV =V\ f7!(g), and then X = (X \ V)U AU B. Now if g € f(V), then
f~Yg) # 0, and hence X = A by irreducibility.

It suffices to show that .7 (U) — 7 (U) is epic by the left exactness of

section functor. Let s € .#”(U). Recall by exercise 2.1.3 we obtain a covering

U;(i € I) of U with sections t; € .# (U;) which map to s|y,.

Now let S := {(I',s')|I' C I,s' € F(U), where U := U U; with s" — s|g},
jer

equipped with a ordering given by (I',s') < (I”,s”) < I' C I” and s”



restricts to s. Then Zorn’s lemma gives a maximal element in S, say (I’,s).
We claim that I’ = I: otherwise, there is some ig ¢ I’. Consider ¢'| vy

tio‘UﬂUiO 0. Then by exactness, 3a € .#'(UNU;,) which maps to s’\m% —
ti0|UmUi07 and since .# is flasque, there is some b € .#'(U,,) whose restriction
is a. Thus, t;, + b and s’ are compatible and glue to give some section
mapping to s| v, S0 we enlarge (I',s") and obtain a contradiction. That
is, I' = 1.

Given open sets V' C U in X, since .#’ is flasque, by (b) we have two short
exact sequences and maps between them making the diagram commutes.
Now since .Z is alsp flasque, we obtain the desired epimorphism #”(U) —
F(V), so Z” is flasque.

By definition, f,.Z(U) — f.Z (V) is just Z(f~Y(U)) — Z(f~1(V))
which is epic since .Z is flasque.

First note that ¢ is flasque: for any V' C U in X and s € 4(V), the section
defined to be s on V' and 0 elsewhere in ¢ (U) restricts to s.

Z is a sheaf so . ~ . and then by definition of sheafification we can
embed F 1 into ¥.

Exercise 17 (by Yu-Ting).

For Q € {P},if Q € U, i,(A)(U) = A, hence (i,(A))q = A. For A € Ext {P},
there exists an open set V' C Ext{P} containing @) such that P ¢ V and
in(A)(V) = 0, then (iy(A))g = .

Exercise 19 (by Pei-Hsuan).

(a)

(b)

IfpeZ,
(1.7)p = hﬂ iWF (V) = hg FVNZ)=Fp.
PeV PeVNZ
IfP¢Z,
(1.7 )p = hgz*(f(\/) = hﬂ F(0) = 0.
PeV PevVnZ
IfpelU,
(G P))p = lim ji(F)(V) =l F(V) = Fp.
PeV PevCU
If P¢U,
G(P)p = lm y(F)(V) =l F(V)= lm 0=Fp.
pPeV PeVCX\U PeVCX\U
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Since ¢ : .# — ¥ is a sheaf isomorphism. < ¢p : Fp — ¥p is isomorphism,
Vp € X. Thus, the uniqueness of j(.%) follows. Also, for any open set
VU, (F)oV)=5FV)=FV)=iFlv=7.

(c) If pe U, then 0 — Fp — Fp — 0 — 0 is exact.
=0— (jl(ghj)}: — yp — (Z*(g‘z))P — 0 is exact.
Ifpe Z then 0 — 0 — Fp — Fp — 0 is exact.
=0— (]l(ﬁhj))P — 40/\]3 — (h(ﬁjz))p — 0 is exact.
Thus, 0 = (jI(Z|v))p = Fp — (i.(F|z))p — 0 is exact, since it is exact
at every stalk.

Exercise 21 (by Shi-Xin).

(a) Let U be an open subset with a covering U = (JU,. If there are sections
s; € Iy (U;) C Ox(U;) such that s;|y,nu, = sj]v,nv, for any i, j, then there
is an unique element s € Ox(U) such that s|y, = s;. Since s;|yny, = 0 for
every 4, s must vanish on |J,(Y NU;) =Y NU. Thus s € #(U).

(b) Note that i,Oy(U) = Oy (i }(U)) = Oy(Y NU). Since we have a short

exact sequence
0= A U) = O0x(U) = O0y(YNU) =0,
.0y (U) = Ox(U)/ &y (U), which follows that i.Oy = Ox/.%y as sheaves.
(c) Since Ox(P') 2 k, the induced map on global sections is
0=>0—k—=kdk
It is obvious that the map from k& to k & k can’t be surjective.

(d) For any open subset U C X, we have the natural map O(U) — #(U)
sending f to f = { Clearly, if f =0, then f = f|y =0, and hence O — %
is injective.

Furthermore, for any ¢ € X, (#/0), = #,/0, = K/O, = I, = (i,(1)), =
> pexip(lp))g- Thus /O =37\ (ip(I)) as sheaves by Propl.1.

(e) It suffices to show that K = I'(X, %) — (X, 2/O) = @,x K/O, is
surjective. Note that every element [f] in K/O, lifts to an element f in K.
So all we need to show is that for any f = % € K and p € X, there is a
g € K such that g € O, for every ¢ #p and g — f € O,.

Write fy = gohe where Z(g2) = p and p ¢ Z(hs). Then by making into one
variable and partial fraction, we can write f = %—I—Z—; for some g1, hy € O(P).
Then setting g = i—; gives the desired result.
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Exercise 22 (by Yi-Heng).

For V! C V C X open, define Z# (V) = {(s)|s; € Fi(V NUs), pi(silvavinu;) =
silvaviny; } and F(V) — F(V'),(si) = (silvirp,). Thus, F is a sheaf on X,
and V(W) + F|u, (W) — F(W),(si) — s is an isomorphism with inverse
sk — (ri(sklwru,)) for each open subset W in Uy,. Moreover, we have ¢y;01, = 1);
on U; N Uy by the definitions.
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2

Schemes

Exercise 1 (by Chi-Kang).

We have V(f) = {p € Spec(A)|f € p}, so D(f) = {p € Spec(A)[f & p}.
Now let S := {f"|n € N U{0}}, then Ay = S'A, and there is a one-to-

one correspondence {p € Spec(A)|pN S = 0} < {S~'p € Spec(A;)}. Now
since pNS =0 < f € p, we have the underlying topology space of Spec(Ay)
and D(f) has a naturally bijection. Moreover, since Ay = Ox(D(f)), we have
Ospec(ay) = O(D(f)), hence Spec(Ay) = (D(f)), Ox|p(s)-

Exercise 3 (by Shuang-Yen).

(a)

Let X = [JX, where X, = SpecA,. The only if part is trivial since
localization of a reduced ring is also reduced. For the if part, let U C X and
let Uy, =UNX,, if a € Ox(U) is a nilpotent element, then a, := aly, is
nilpotent. Since a, is a map U, — U(A,), that is locally constant, for any
p, there is a neighborhood Vj, such that

which implies a,|, = 0, then a, = 0, Yo = a = 0, hence Ox(U) is
reduced.

May assuem that X is affine, say Spec A. I claim that X,.q = Spec A,eq. For
the topological structure, it’s clear by the fact that 9(A) = (p. For the
sheaf structure, we have morphism induced by (Ox(U))sea — Ospec a,.4(U)
of presheaves, then we have a map from Ox,_, — Ogspeca,, Which is an
isomrphism since it’s an isomorphism on stalk. Then we can define the map
¢ Xea — X that is glued by the morphism of schemes induced by the
ring homomorphism A — A,q. It’s an homeomorphism since Spec A —
Spec Aseq-

Let i : Y — Y;eq be the natural map. To define g : X — Yieq, (g, g7) satisfies

(f. /7)) = (i,i%) o (9,97) = (i0 g,ing” 0 i) = (9,97 o).

So we need f = g and f# = g# o i#, define g = f and define g% : Oy, , —
9xOx to be the morphism induced by the induced map (Oy(U))iea =
Oy (U)/NOy(U)) — Ox(fY(U)) = Ox(g7*(U)), which is clearly satis-
fies f#* = ¢g* o4 and unique. To show that g# is local, note that fg# is local
then (g;%)_1 = (ff)_l(mx,p>/m(0y7f(p)) is the maximal ideal of (Oy,f(y))red-
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Exercise 5 (by Zi-Li).

By 2.4, Homgu (X, SpecZ) = Hom(Z,T'(X, Ox)), however, there is only a
unique Z — I'(X, O). Hence, SpecZ is final object in category of schemes.

Exercise 6 (by Jung-Tao).

There is no prime ideal in a zero ring, so SpecR = ¢, and is an initial object
for the category of schemes.

Exercise 7 (by Tzu-Yang Chou).

Given (¢, ") : Spec K — X, let z := ¢(0g) € X. ¢¥ gives a local ring
hOIIlOIIlOI‘phiSIn ﬁX@ — ﬁSpecK,O- But ﬁSpeCK’O =K = MSpec K,0 = 0. This
induces Ox . /mx . = k(x) — K.

Conversely, given x € X and k(z) included in K, we define ¢ : Spec K — X
by mapping the only point to x. For the sheaf map, note that for any open set

U, (¢04Ospec k(U) = Ospec k(¢ (U)) = K if z € U, 0 otherwise. So we can define
¢* (U) := the composition Ox(U) — Ox., — k(z) — K if & € U, 0 otherwise.

Exercise 8 (by Shuang-Yen).

Let f : X — Speck and let i : Spec k[e]/(¢?) — Spec k. Let g : Spec k[e]/(g%) —
X be a k-morphism, then

(f. [F)olg,9%) = (i,i") = (fog, fug® o [F) = (i.i).

Note that fog =i is always true. If x = ¢g((2)), then g(ﬁ) is a local homomorphism
if and only if g%, : k(z) = k((2)) = k is well-defined and g (mx.) € (€). This
means k(x) = k since g% o f# = i#. Also, g (mx,) implies that g (m% ) = (0),
hence gz is uniquely determined by géﬂmx@ s myx/m%, — kle]/(€?), which is
equivalent to choose an element in T, = Homy () (my . /m% ., k(x)).
Exercise 9 (by Yi-Tsung).

Take U = SpecA C X such that U N Z # (). Since U N Z is an irreducible

open

closed subset of U, we can write U N Z = V (p) for some p € U. Since mU =

V(p) =U N Z, we see that mz = (@UQZ> —Unz? =27

If Z ={p1} = {p2}, since V (p;) = {p:;} = Z, both p; are prime ideals since Z is
irreducible, and then p; = /p1 = /P2 = p2. Hence every irreducible closed subset
has a unique generic point.

Exercise 10 (by Jung-Tao).
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prime ideals (points) in Rz]| is of the form (0), (z — a), (z — b)(x — b), where
a € R, b € C, and every proper closed set is finite points without (0).

Exercise 11 (by Jung-Tao).

prime ideals in k[z] is (0) or (f), where f is a irreducible polynomial, and every
proper closed set is finite points without (0).
The residue field of (0) is k().
The residue field of (f) is k[z]/fk[z]; = k[z]/ f = FY, where d = degf
Only one point (0) has the residue field k(x), and the number of points having the
residue field F;l is the number of irreducible polynomial degree d, denote as N(d).
Notice that p? = 37, ,iN (i), = N(d) = 3> ,,1(4)p’, where p(z) is the
Mobius function.

Exercise 12 (by Yi-Heng).

Let X =[[Xi/(x; € X; ~xj € X; & ¢;(x;) = z;) and ¢; : X; — X be the
inclusion. Get Ox by glueing (1;).0x, via ¢;;. Since X,’s are schemes, X is a
scheme. By the definition, (1)-(4) can be checked directly.

Exercise 13 (by Yi-Tsung).

(a) (=) Any open subsets is noetherian by ex.1.1.7(c) and is quasi-compact by
ex.1.1.7(b).
(<) For any chain U; C U, C ... of open subsets of X, let U =UU; C X.

? open
Since U is quasi-compact, there is n € N such that U = '61 U;. Thus for any
J:
k > n, U, = Uy, that is, X is noetherian.

(b) Let X = Spec A and {U;},.; be any open cover of X. We may assume
U; = D (f;) for some f; € A since D (f;) form a base. Then

i€l

v (Z <fi>> = DV((f) =X\ U D((f) =0

gives 1 € Z] (fi). Write 1 Z]ajfj for some finite set J C I, then we have
1€ JjE
1€ > (fj), and thus

JET

U D((f;) =X\ 0V ((£) = X\V (Z (fj)> =X

jed ,
JjeJ

15



This gives a finite subcover, hence X is quasi-compact.

For instance, take A = k[zy,z,...], then V(z1) 2 V(z1,22) C is a chain
of closed subsets of Spec A, which will not terminate, hence Spec A is not
noetherian.

(c) For any chain V; D V5 D ... of closed subsets of Spec A, let V; = V(1;). Then
I, C I, C...is a chain of ideals in A. Since A is noetherian, there is n € N
such that for any k& > n, I, = I, which implies V,, = V.. Hence Spec A is
noetherian.

(d) Consider A = klxy, 2o, . ] /(x%)gj%,) For any p € Spec A, 22 =0 € p,

thus z; € p, and then (z1,z5,...) C p. However A/(xl,xg, L) =kisa

field, thus (x1,z9,...) is a maximal ideal. Therefore Spec A is just a point,
which is obviously noetherian. However A is clearly not a noetherian.

Exercise 18 (by Chi-Kang).
(a)

We have f is nilpotent < f* =0 for some n € N& f € L Nyespecap & V(f) =
Spec(A) < D(f) = 0.

(b)

Let ¢ : A — B be a ring homomorphism, and f : Spec B — Spec A be the
induced map. Then the sheaf map Oy — f.Oy is given by Ox (V) — f.Oy (V) =
Oy (f V), and the map on the stalk at p is Aps) — By, which is injective if
¢ is. Conversely if Ox — f.Oy is injective, we have A = Ox(X) — f.Oy(X) =
Oy (f~YX) = Oy(Y) = B is also injective.

When the case ¢ is injective, we have f(Y) = f(V(0)) = {¢o ' (p)l0 C p} ={p €
Spec(A)|¢~1(I) C p} = V(e 1(0)) = X, where the last equality since ¢~(0) = 0
by the injectivity of ¢, so f is dominant. (c)

When ¢ is surjective, we can realize B = A/I for some ideal I, then every prime
ideal in B is in the form p/I for some p € V(I) C Spec(A). Hence f(p/I) =p
implies the injectivity of f, in particular this induced a bijection Spec B — V(I),
and f~1(V(J)) = V(J/I) implies the map is continuous, hence Spec B — V(I)
is a homeomorphism. And similar to (b) the map of the sheaves on the stalk is
Aypepy — By, since @ is surjective, all the localization maps are surjcetive, hence
Ox — f.Oy is surjective.

(d)

Now we have Y = f(Y) with f(Y) is a closed subset of X. Note that we have
f:Oyy = limpey Oy (fH(U)) = limp-1(pyer Oy (U) = Bjy-1(p, where the second
equality is since f is a homeomorphism. Now consider the maps on the stalk
Ay, — Bj-1,, which is surjective by assmuption, hence by the local-global principal,
A — B is also surjective.

16



Exercise 19 (by Yi-Tsung).

((i)=(iil)) Let SpecA=UUV with UNV =0 and U,V C Spec A. Write U =

clopen
V(I) and V = V/(J) for some ideals I, J in A. Since V(I +J) =V(I)NV(J) =0,
we have [ +J = A, and V(IJ) =V (I) UV (J) = Spec A, we have I.J = (0). By
Chinese remainder theorem, A = A /77 = A /1 x A/ where A /7, A/ are
nonzero.
((iii)=-(i1)) If A = Ay x A,, take e; = (1,0) and e = (0, 1). Then it is clear that
e1eg = 0,2 = e1,63 = ey and €1 + €9 = 1.
((ii)=-(i)) For any p € Spec A, if p ¢ V(e1), then e; ¢ p. Since e;es =0 € p, we
have ey € p, that is, p € V(ey). Hence Spec A = V(e1)UV (e2). If Vi(er) NV (ea) P,
let p € V(e1)NV (ez), then we have e, e5 € p, and then 1 = e; +ey € p, thus p = R,
contradiction. Therefore V(e;) NV (ez) = (), and thus Spec A is disconnected.

17



3 First Properties of Schemes
Exercise 1 (by Yi-Heng).

One direction is followed by the definition. For the converse, we may assume
Y = SpecB = U(V; = SpecB,) and f~!(V;) = U(U;; = SpecA;;) with A;; finitely
generated Bj-algebra. Thus, f~1(V;) = Spec(A;j)g where g is the image of g.
Moreover, (A;;)7 is a finitely generated B-algebra since B, = (B;),.

Exercise 2 (by Tzu-Yang Chou).

One direction is trivial. For the converse, we first write Y as the union of
some open affines, say Spec A;, with each f~1(Spec A;) quasi-compact. Given some
open affine Spec R C Y, we know that there is a covering of Spec R, consisting of
Spec(A;)q,, which is finite since Spec R itself is quasi-compact.
f~Y(Spec 4;) is quasi-compact, so each of them has a finite affine covering by
Spec B;;, and hence f~'(Spec(A;),,) also have a finite affine covering. Now
f~Y(Spec R) is a finite union of quasi-compact sets; therefore, itself is quasi-
compact.

Exercise 3 (by Jung-Tao).
(a) by 3.1, 3.2
(b) by 3.1, 3.2, 3.3(a)

(c) Similar to 3.1, we can assume Y = Spec B, and we can reduce to the case
Spec A = USpec A;, where A; = Ay, are finitely generated B module, and
UD(f;) is a cover of Spec A, which means A is a finitely generated B module
by the same trick in proposition 3.2.

Exercise 4 (by Shi-Xin).

(<) trivial. (=) Let Y = |J SpecB; be covered by affine open subsets such
that for any i, f~'(SpecB;) = SpecA; and A; is a finitely generated B;-module.
Denote ¢; be the canonical homomorphism from B; to A;. For any affine open V' =
SpecB C Y, we have V N SpecB; = i, Spec(B;)y,, for fi, € B;. Then since V'
is quasi-compact, we may assume V = J;_, SpecB; where f~!(SpecB;) = SpecA,;
and A; is a finitely generated B;-module. Therefore U = f~1(V) = JI_, SpecA; is
affine by the criterion of affineness (exercise 2.17(b)). Moreover, by using the same
trick in proposition 3.2., one can show that A is a finitely generated B-module.

Exercise 5 (by Shuang-Yen).
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(a) Let y € Y and let Spec B = V' C Y that contains y. f is finite implies
that f~1(V) = Spec A for some A that is finitely generated as a B-module.
Then every prime that lies over y = p € Spec B is finite by some algebraic
results. Indeed, we may assume that ¢ : B — A is injective, then since
B — A is finite integral, localization by B — p and quotient p we have
K = Quot (B/p) = (A/pA)p_, =: R is finite. K is a field implies that R
has only finitely many prime ideal since it’s artinian. So f~!(y) is finite,
hence f is quasi-finite.

(b) May assume that Y is affine, then it suffices to show that f : Spec A — Spec B
that comes from ¢ : B — A is a closed map, which is clearly true since

V) ={fp) [p 2 I} = V(™' (1)).

(c) Let X be the affine line with origin doubled and let Y = Al be the affine
line with the natural morphism f. Then it satisfies the condition but not
finite since X is not affine.

Exercise 6 (by Yi-Tsung).
For any open affine subset U = Spec A C X, since X is integral, A is an integral

open

domain. Since X is irreducible, the (unique) generic point £ must contain in
U. Now ¢ is corresponding to the minimal prime in A, which is just (0). Thus
O¢ = (O |v)(g) = Frac(A) is a field, and we see that K(X) is isomorphic to the
quotient field of A.

Exercise 9 (by Jung-Tao).
(a) Note that in affine case, fiber product is coincide with tensor product, so
Spec(E{z]) Xspeeqty Spec(klz]) = Spec(klz] 4 kfz]) = Spec(k{z, 1))

And the corresponding topological space is different from Spec(k[z] x k[z]),
because that prime ideals in k[z] x k[z] is of the form (f) x k[x] or k[z] x (f),
does not containing ideals such as = +y or zy — 1 in k[x, y]

(b) Similarly,

Spec(k(s)) Xspec(r) Spec(k(t)) = Spec(k(s) @ k(t))

Note that summation of £ x 2 can be represented as 424
g1(@) 7 g2(y) f(@)g(y)

h € klz,y] and f,g € k[z] by reducmg to the common denominator, denote
this ring R. ﬁ is invertible in R, so prime ideals in R is corresponds to

where

prime ideals in k[z,y], and proper prime ideal in R is the prime ideal in
k[x,y] which does not touch f(z) or g(y), and is the set of curves in Zariski
topology without those axis-parallel line.
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Exercise 13 (by Shi-Xin).

(a)

If f: X — Y is a closed immersion for any affine piece V= Spec A C Y,
flg1vy is still a close immersion, i.e. X NV = SpecA/I for some ideal
I C A. Then clearly, f is of finite type since A/ is a finitely generated
A-algebra.

If f: X =Y is a quasi-compact open immersion, then for any affine open
V =S8pecADY, f~4V) =V NXisopenin V; that is, f~1(V) = UD(fZ)
for some f; € A, and hence by quasi-compactness we might assume f~}(V) =

U, D(fi) = UZ:1 SpecAy,. Since each Ay, is a finitely generated A-algebra,
f is of finite type.

Let f: X =Y, g:Y — Z be two of finite type morphisms. We might
assume Y = |J SpecA;, Z = | SpecB; are the affine open covers satisfying
the definition of finite type.

Suppose f~(SpecA;) = Ui, Air, 9~ (SpecB;) = Y, Bji. Then

my

(g0 ) (SpecB,) U

fzmte
= U (SpecA; N Bj;))
l,i
finite

= U Spec(ffik)ﬁ

li,k,m

Since each (Ay) siis a finitely generated Bji-algebra and hence a finitely
generated Bj-algebra

For a morphism f : X — S of finite type, we need to show that f : X =
X xXgY — Y is of finite type.

(1) First, we might assume S = SpecB,Y = SpecC and X = ] SpecA;
is an affine open cover s.t. A; are a finitely generated B-algebra, and
hence A; ®p C' are C-algebra, which shows that f is of finite type.

(2) If Y = SpecCy = UV, then by (1), fr : X x5 SpecCy — SpecCy, is
of finite type. Since f~!(SpecCy) = X xg SpecCy, it follows that f is
of finite type.

3) If S = USpecB; = |US;, denoting g : ¥ — S, then gluing the
morphisms of finite type defined by f; : f~1(Vi) xs, ¢ *(V;) = g~ (V3)
shows that f is of finite type.

20



(e) It just follows from A ®g B is a finitely generated S-algebra whenever A, B
are finitely generated S-algebra. On the other hand, one can use (¢) + (d) to
see that X XxgY — Y — S is a composition of two morphism of finite type
and hence is still of finite type.

(f) Since gof is of finite type, there is an affine open cover Z = | J Z;, = |J SpecCy,
such that for any k, (go )~ (Zx) = U2, SpecAx; where each Ay is a finitely
generated Cj-algebra. Let Y == |JY; = |J SpecB; be an affine open cover.
Then we have

Uf ~Y(Z},) N SpecB;) U USpec Ari)s)
ka,l

for some fj € Ag,; Therefore, f~(Y;) is covered by Spec(Ay.;) £, Where each
(Aki)y, is a finitely generated Bj-algebra, and hence f is locally of finite
type. Thus by exercise 3.3.(a), f is of finite type since it is quasi-compact.

(g) Let Y =i, Y; = U, SpecB; be a finite affine open cover with each B;
being Noetherian. The X = J., f~'(SpecB;) = U, ; SpecA;; is covered
by finitely many affine open subsets where each A;; is a finitely generated
Bj-algebra. Thus {A;;} form a finite affine open cover of X with each A;;
being Noetherian, and hence it follows that X is Noetherian.

Exercise 14 (by Tzu-Yang Tsai).

Since X is of finite type over field k, we can write X = Speck[z1,...,z,]/] =
Spec A for some I < k[xy,...,z,]. Recall that Jacobson ring is a ring such that
its nilradical is equal to its Jacobson radical. Since k is a Jacobson ring, by the
property of Jacobson ring, A is also a Jacobson ring. Thus (1. mal ideal ina =
Niltad(A) = Jrad(A) = 0. Combining the fact that maximal ideals and closed
points are one-one correspondence, we get closed points are dense in X.

For the example of closed points not being dense without assumption, let X =
Z]6Z,(2), (3) are the only two maximal ideals, whose closure is not X.

Exercise 18 (by Wei).

(In the following, X is always Zariski, and that ¢ will denote the set of open
sets of X.) Let Q C P(P(X)) be collection of all T C P(X) satisfying

(Cl) T2OU.
(C2) ¥ is closed under taking finite intersections.

(C3) ¥ is closed under taking complements.

21



Consider the set

=%

TeQ
This set lies in €2 and is the smallest element in it. We say a subset of X is
constructible if it belongs to §. This description of § is abstract and unusable, so
we try to give an explicit description. Define an ascending chain of subsets of § by

$1=U, 3n+1:{ﬂfYkiYkESn}U{X\Y5Y€Sn}
k

where the symbol "()/" means finite intersection. Consider | J;*, §. This set
satisfies the conditions (C1)-(C3), so by minimality of §, we have | J;-, §x = §.
Under this description, we see that elements in § are really "constructible" in
the sense that it can be constructed from open sets in finitely many operations
consisting of taking finite intersections or taking complements.

(a) (A set is constructible iff it is a finite disjoint union of locally closed sets)
For brevity, we will denote the set of locally closed sets (resp. finite union of
locally closed / disjoint finite union of locally closed) as Ay (resp. A, A');
schematically, we may write

Ao ={UNC:Uel,(X\C)elU}
, f
A ::{I_l Y Y € Ao}
2

f
AZI{U Yk:YkEA()}
k

we directly have the following inclusions :
Ay CA CA
I claim the following :

(i) A is closed under taking finite intersections, taking complements.
(ii) Under the condition that X is Noetherian, A = A'.

Suppose (i) is true, we notice that since Fo =U C Ay, we have §F C A.
(this is by our explicit decomposition of §)

Suppose (ii) is true, we then have § C A'.

Let us show A’ C §. Let Uy be open, C} be closed, we have

L (sena) =3\ (Y (0 00 3\ ¥ )

this clearly lies in §.
Now we prove the unproved claims (i), (ii) :
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Proof of (i). Notice that

(Ll;JfYk> n (U Yk’) U U (Y. NY})

where Y}, Y/ € Ay, but it is easy to check that A, is closed under finite
intersections, so A is closed under finite intersections.
For complements, notice that

X\ (Un) =N e = (oo a)

where Yy, = U N Cy with Uy open, Cy closed, then we have (X \ Y;) € A.
Since A is closed under finite intersection, we are done. O

Proof of (ii). Recall that X is Zariski and hence Noetherian. I claim that
for two elements in Ag, their union lies in A’. Consider

Y=(VnAUWnNB)
Notice that Y = (VN A) U (WNB\VNA), and that
WAB\VNA= (Wm(B\V)) U ((W\A)mB)
so if we inductively define sets
Vil =W\ AL, A =R, W =w' Btl=p\V'
with initial condition
Vi=v, A=A W°=Ww, B°=B
we have
WinB\VinA = ((W”l N B+ U (Vi 0 Ai“)) (%)

and so for each m > 1 that
m—1
Y = ( | Jvin A”)) L ((Wm NB™) U (V™ N Am)> (%)
i=0
Notice that by our definition of the W%, B, we have
wWi=w° B°2>B'2>B*D>
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so since X is Noetherian, the chain
W'nB) D (W'nBHYD (W?*NB*)D...

stabilizes, say (W™ N B™) = (W™ N B™*1) but then by (), we would
have (W™ N B™)N (V™ N B™) =), so by (%), we have decomposed Y into a
finite disjoint union of locally closed sets. This proves our claim.

Now we show that given an element in A’ and another element in Ay, their
union lies in A’. Write

Y =(UnC)u <|_|(V;ﬂD,-))
=0
Notice by above, in each (V N A) U (W; N B;), we can break (W; N B;) into
pieces to obtain a disjoint union decomposition of (V' N A) U (W; N B;), and
collecting all the decompositions together, we are done.
We are now ready to show that A" = A. We do this also by induction. Notice
that A can also be written as union of its subsets A,, (for n > 1) defined by

A, ={Y, 1 UYy: Y, €A, 1,V € A}

then since Ay C A’ and A’ is closed under union with elements in A, we
have A, C A’ by induction, and hence A C A’. O

(b) (Suppose X is irreducible with generic point n and 'Y is constructible
then'Y is dense iff n € Y.)
Let n be the generic point of X, and let Fy € Y. Appealing to the identity :

A(Py) Cely) < | el(P)

Pey

and notice that
CX P .
= X, P=n.

we immediately have the claim (The proof above shows that we needn’t
assume Y to be constructible nor X to be Zariski).

(If the above happens, it contains an open set)

Notice that for a locally closed set C'NU, if n € CNU, we immediately have
C = X; this shows U = C'NU. Apply the finite disjoint union decomposition
to the constructible set given in (a), we are done.
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(c) (A set is closed iff constructible and stable under specialization)
By definition of constructibility and Exercise 11.3.17.(d), one of the impli-
cation is clear. For the converse, let Y be constructible and stable under
specialization. By (a), there exists open sets Uy, closed sets Cy such that

Y = |_|f(Uk N Ck)

Define the sets :

c=J e z0=c 27 = dgn(y n2m) = do(y N 2™
k

we get a descending chain of closed subsets
Z2°27' 27D ...

so there exists some [ > 0 such that Y'NZ' is dense in Z!. Decomposing Z' into
finite union of irreducible components, Y will contain all the generic points
of these components (if not, then Y isn’t dense in some of the component by
(b) and will not be dense in Z'), and since Y is stable under specialization,
we have Y N Z! = Z'. By our definition, we get for each m > 1 that

YNZM={¥Nn(le(YNZ™No Y nzmH oY nzm

we see that Y N Z™~! =Y N Z™. By induction, Y N Z° =Y N Z!' = Z!, but
recall that Y C C' = Z°, which gives us Y = Z!, so Y is closed.

(A set is open iff constructible and stable under generization)

Since a set is stable under specialization iff its complement is stable under
generization, we are done. For a proof of this fact, notice that

meY < cl(n) CY]
[cl(n) Y ©n ¢ Y]
[cl(n) N(X\Y) #0 < ne X \Y]
X \ Y is stable under generization

Y is stable under specialization <

=
=
=

(d) (Inverse image of a constructible set under a continuous map is constructible)
By (a), it suffices to show this for locally closed set, which is by

fUnC) = U)Nf(0)
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4 Separated and Proper Morphisms
Exercise 1 (by Zi-Li).

Let f: X — Y be a finite morphism between schemes. First, f is finite
type since it is finite. Second, f is separated since it is an affine morphism.
Last, we remain to check that f is universally closed. Let Y — Y’ and X' =
X xy Y’ closedness can be checked locally, we may assume thatY = SpecR, X =
SpecA,Y' = SpecB, X' = SpecA®pr B, where A is finite R module. Hence,A®r B
is finite B module, by exercise 3.5(b), a finite morphism is closed, this completes
the proof.

Exercise 6 (by Pei-Hsuan).

Let X = Spec A, Y = Spec B where A, B are integral domains. Suppose
f: X =Y is proper, Let K = Frac(A), R be any valuation ring of K containing
f(B). Form now on, we abuse of notion with f and the induced map A — B.Then
we have the commutative diagram:

A

<—7
// f

—

i

X X

1

Notice that ¢ exists since f is proper. Thus, A C R, for every valuation ring R
which containing f(B). By Theorem 2.4.11A;

f(B) = f R.

f(B)CR,R:valuation ring

Thus, A C f(B), so f is integral. f is both of finite type and integral, so f is
finite. This complete the proof.
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5 Sheaves of Modules

Exercise 3 (by Zi-Li).

Define o : Homa(M,T'(X, F)) — HomX(M, F) by:
Given ¢ : M — I'(X,.7), define /(D(f)) : M( (f) =M®asAr = F(D(f)), m®

a — ap(m). Glue ¥(D(f)) to get ¢ : M— F.
The inverse of « is taking global section, hence, and I' are adjoint pair.

Exercise 6 (by Tzu-Yang Tsai).

(a)

(b)

(e)

(C) If p €Suppm, i.e. m, # 0, if p ¢ V(Annm),
Ire Amnm\pst. rm=0=2 =9

(D) If p € V(Annm), that is, p D Annm = Pr € M\ pst. rm =0 =
my, # 0

(Q) If p €Supp%, ie. Z, = M, # 0, by finitely generated, we may have
M =A< my,...,m, > for some {m;}", = p D N’ ;Annm; = p €
V(AnnM)

(D) If pe V(AnnM), then p € AnumVi=1~n= M,=.%,#0=p€
Supp.#

Since Z# is coherent, Z|y = M for some A-module M, where U is an
open affine subset = Spec A. Then Supp.Z |y = V(AnnM) is closed, thus
SuppZ = Upc . x is closed.

Recall that 0 — %) — % — j.(Z|y) — 0 is an exact sequence, where
U=X\Z,j:U < X is the inclusion map (Ex 1.20). Since j is open
immersion, j, is quasi-compact and separated, and .# |y is quasi-coherent,
these imply j.(.Z|y) is quasi-coherent. Combining that .# is also quasi-
coherent, 7, is quasi-coherent. By definition I'z(.#) = {p € X|Suppp C Z}
= {p € X|p € V(Anna)}, since A is Noetherian = « is finitely generated.
Therefore I'z(#) = {m € M|a"mfor somen € N} =T, (M)

= Lo(M) =T2(F) = 7

The quasi-coherent case has been proved in (d). )
For the coherent case, I'z(.%) is finitely generated, thus = ) = ['z(%) is
coherent.

Exercise 15 (by Shi-Xin).
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(a)

Let X = Spec A be an affine scheme where A is noetherian ring and F be
a quasi-coherent sheaf on X. Then F = M for some A-module M. Since
M = limyea M, where M,|a € A are all finitely generated A-submodule
of M, for any f € A, we must have M; = lim,(M,);. It follows that

F(D(f)) = limy M(D(f)). Moreover, because D(f) form a basis, F(U) =

lim, M (U) for any open set U. Thus F = lim, F,, where each F, = M, is
a coherent sheaf.

Let ¢ : U — X be the inclusion map. Since X is noetherian, U is also
noetherian, and hence by Proposition 2.5.8, i, (F) is quasi-coherent. Then by
(a), we can write i, (F) = lim, F,. Therefore for any affine open subset V' C
U, we must have F|y = limy(F,)|v. We might assume F|y = M, Fo|y = M,
where M, M, are finitely generated. Then we have M == M. Since M is
finitely generated, there must be some M, containing all generators of M.
Moreover, U can be covered by finitely many affine open subsets, so we can
choose F' := F, for some « such that F'|y = F.

Let p be the natural map G — i.(G|y). Since p~' (i, F)|y = F and it is
quasi-coherent, there is a coherent subsheaf 7’ of p~!(i,F) such that F}, = F.
Moreover, F' C p~ (i, F) C p~*(i.Glv) € G

Let X be a noetherian scheme covered by affine open subsets |J;_, U;. We
have proved the desired result when n = 1. It suffices to show that we can
extend over one of them at a time. We might assume n > 2 and suppose that
we have a coherent subsheaf F| C G|y, on U such that Fi|unv, = Fluno,-
Then we might apply (c) to F] on Uy, so we obtain a coherent sheaf F, C G|y,
on Uy UU; such that Fy|unw,uvs) = Flunw,uu,)- Thus by induction we prove
desired result. Moreover, taking G = 7,F shows that we can extend a coherent
sheaf from an open subset U to X.

Clearly, F 2 | J F, for all coherent subsheaves F, of F. Conversely, if s is a
section in F(U) where U is an open set of X, let G be the subsheaf of Fy

generated by s. Then by (d) we can extend G to a coherent subsheaf G’ of
F such that s € G'(U). Thus F C | Fa.
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6 Divisors
Exercise 1 (by Wei-Ping).

X x P™" is regular and codimension one since locally it is X x A". Irreducible
since it is union of two affine pieces with nonempty intersection, and reduced
is again local condition, hence X x P" is integral. Also it is separated since
X x P" — X is projective and X is separated.

Now we have Z — Cl(X x P") — Cl(X x A™) — 0, where first map is 1 — X x H,
H = {zq = 0}. Since CI(X x A™) ~ CI(X), it suffices to show the sequence is exact,
then taking closure results a converse map of second map so sequence splits. Let

f be element in function field, if (f) =m - (X x H), then vx«g(f) =m, f = %xgl.
If m # 0 then h or g involves other divisors, a contradiction. Hence m = 0 and

first map is injective, done.
Exercise 2 (by Wei-Ping).

(a) To prove well-defined, let  be generic point of divisor Y;, then consider two
choices of covering, say {(U;, f;)},{(V},g;)}. Now choose n € U;,n € V;, then
}c— has same valuation on open set U; NV}, so }c— e I'(U; NV}, 0%). Therefore

J J

vy, (fi) = vy (75)-

(b) We claim that (f)- X = (f).

() X = o ()Y - X) = S vn(£)(5, vy, () Vi) Given any generic
point of a divisor Z on X, say 7, we consider an open neighborhood W of n
disjoint with all divisors Y; occurring in (f) such that n ¢ ¥; N X. For every
covering from Y;, choose one open set such that 7 is in it, say (U, fir,),
then consider product h =[], f;;::(f) on their intersection. Then % is unit on
(N, Uir;) N W since valuation is the same on this open set and note that the
coefficient is same as those in the previous sum. Therefore Uy, () is same as
coeflicient of divisor Y;; in (f) - X, as we desired.

Combining (a) and the fact that any divisor on P" can be change to some

multiple of any hyperplane, in particular, not containing X, we get a homo-
morphism CIP" — X.

(¢) By linearity reduce to the case where H = V' (f) is a hypersurface. i(X, H;Y;)
i, (S/ I, + (f)) where p; is the prime ideal correspond to Y;. The valua-
tion ring of Y; is (S/1;)(p,) and p,, (S/1; + (f)) can be viewed as length of
(S/Ly 4+ (f)) @) over (S/1;)p,). Write f = ua™ in the valuation ring, then
we have filtration

(S/L + (f))py = (@) 2 (a*1) 2--- 20
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where @™ is image under quotient and localization. Therefore n; = i(X, H,Y};),
and by Bezout thm we get

deg(D - X) = (deg D) - (deg X)

(d) K(X) = S(X)0) so we can find some f € K* such that f restricting on X

is f, so by (b) get (f)-X = (f) Hence for any principal divisor D on X,
deg(D - X) = deg((f) - X) = (deg(f)) - (deg X) = 0. The degree function
defines a homomorphism to Z and we get commutative diagram

ClP" —— ClX

degl: ldeg

7 -(deg X) 7

Exercise 4 (by Shuang-Yen).

Since Quot(A) = k(zy,...,z,)[z]/(z* — f), [Quot(A) : k(zy,...,x,)] = 2. For
a =g+ hz € Quot(K), where g, h € k(z1,...,x,), the minimal polynomial of «
over k(xy,...,x,) is

{X2—2gX+(92—h2f), it h 0

X —y, ifth=20

When h = 0, « is integral over klxy,...,z,| if and only if o = g € k[xy, ..., ;)]
since k[z1,...,z,] is a UFD.

When h # 0, « is integral over klzy,...,z,] if and only if —2g,¢g*> — h2f €
klz1,...,2z,]. Since the characteristic of k is not 2, it’s equivalent ti g, h%f €
klxy,...,z,). Write h = a/b with a,b € k[xy,...,xz,]| and a, b are coprime to each
other, then h?f = a®f/b?, but f is square-free, so h*f € k[x1,...,x,] if and only
if b € k* if and only if h € k[zy,...,z,]. Hence, « is integral over klzy, ..., z,| if

and only if g, h € k[xq,...,x,] if and only if o« € A, so A is integrally closed since
z is also integral over k[xy, ..., x,].

Exercise 6 (by Chun-Yi).

(a) (=) If P,Q, R are collinear. Let L be the line attaching P, (), R. Since degX
=3, LN X has only three points P, @, R. Since L ~ [z = 0], P+Q+ R ~ 3F,
=P-P+Q—-Qy+R—Ry~0= P+Q+ R =0 in the group law of X.
(<) If P,@Q,R = 0. Let L be the line passing through P, Q. By Bezout’s
thm, LN X has three points, say P, @, S, then P+Q+T = 0. By (=), since
the inverse of P+ @) is unique, T'= R = R € L = P,(Q), R are collinear.
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(b) (=) Let L be the tangent line passing through P. By Bezout’s thm, L N X
has three points, say P, P, S, then by (a), P+ P +T = 0. Since the inverse
is unique and P+ P =0= T = F,.
(<) Let L be the tangent line at P, passing through P, then by Bezout’s
thm, L intersect X at P with multiplicity 2. By (a), P+ P+ P, =0 =
P+ P =0 = P has order 2.

(¢) (=) Let L be the tangent line at P, then LN X = {P, PS} for some S € X,
and P+ P+ S = 0. Since 3P =0, S = P = L intersects X at P with
multiplicity 3.

(<) If P is an inflection point, since L N X has only three points, L N X =
{P, P, P}, thus P+ P + P = 0, again by (a).

(d) By Mordell-Weil theorem, the points of X with coordinates in Q form a
subgroup of X. If z = 0, the only rational point in (0,1,0). If z # 0, it
suffices to find rational points of y*> = x* — z, which is only (1,0),(0,0),(-1,0)
= the subgroup is Z/27Z x 7./ 27.

Exercise 7 (by Yi-Tsung).

In example 6.11.4, we have seen that there is 1-1 correspondence between the
set of nonsingular closed points of X and the kernel CaCl°X of the degree map.
It suffices to show that the set of nonsingular closed points of X endowed the
group structure is isomorphic to G,,. The set of nonsingular closed points of X
is just X'\ {(0,0,1)}, say Z = {(0,0,1)}. Consider ¢ : X\Z — G, (z,y,2) —
y—x
yt+w )
then X\Z = {2'v/2' = (' — v')*} \ {(0,0,1)}, and ¢(2',¢/,7') = % Now setting
y =1, then X\Z = {22/ = (' — 1)3} in A} and ¢/(2/,2) := ¢(2/,1,2) = o/,

t—1)3
and clearly its inverse map G,, — X\Z is defined by t — (t, ( ; ) ) Thus

. Consider the coordinates change: (z,y,2) = (42’ — 4y, 42" — 4y, 2'),

¢ is bijective as sets. To show that ¢ is a group homomorphism, since for
p € X\Z, we have ¢(—P) = ¢(P)~!, hence it suffices to show that for P,Q, R €
X\Z collinear, we have ¢(P)p(Q)p(R) = 1, and it is enough to prove the same
thing for ¢', i.e. to prove ¢'(P)¢'(Q)¢'(R) = 1. Let L : 2/ = az’ + b be the
line passing through P, @, R, then ¢'(P), ¢ (Q),¢'(R) are roots of a'(ax’ + b) =
(2 — 1)3, thus we see that ¢'(P)¢'(Q)¢'(R) = 1, yielding that ¢ is a group
homomophism, and hence an isomorphism. Therefore we see that CaCl’X =
{nonsingular closed points of X} = G,, as groups.

Exercise 8 (by Chi-Kang).
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(a) We need to show that f*(.€ ®¢, )= (f*L) Qp, (f*#). Note that

f*(,,ﬁ,ﬂ oy '%)(U) - f_l(g oy %) ®f Loy X(U)
= lm (Z(V) Qe v) A(V)) oy (v) Ox(U)

VDO f(U)
= Vljlﬂ(l )(-i”(V) Reoyv) Oy (V) @ay ) (A (V) @ay vy Oy (V) @y vy Ox(U)
= Vljijgl(lU)(f(V) Royv) Ox(U)) @ay vy (A (V) ey vy Ox(U))
= (f*Z2U)) @oxw) (f* 2 (U))

so we are done.
(f(ZLe#)= (L) (f* ) holds for any sheaves, not need invertible).

(b) We need to show that f*Z (D)= Z(f*(D)). Since f is finite and sheaf

isomorphism can be check locally, we may assume X = Spec B,Y = Spec A with
B is a finite A module, f is induced by the map ¢ : A — B, and both A, B are
integral domain of dimension 1.
Note that Z(D)(U) := {s € K(X) = K(U)|(div(s) + D)|y > 0} by construction.
Now since X,Y are non-singular affine, every divisor is principal, so thgljgis
s € K(Y) 2 Q(A) st, div(s) = D, hence Z(D) = As, and so Z(f*D) = Be(s).
Hence we have

f*z(D>P = g(D>f(P) ®ﬁY,f(P) ﬁX,P
= AS¢_1P ®A¢_1P BP = B(¢(S))P =~ g(f*D)p
(c¢) We need to show f*Z (D) = Z(D.X) for D € Div(P™) and D.X defined in

6.2. Since for U C P™ we have Z(D)(U) := {s € K(X) = K(U)|(div(s)+ D)|y >
0}, we have

[FZ(D)V)=(7Z(D) ®f-160 Ox)(V)
= 11]151;1/ ZL(D)(U) @gpny Ox(V)
= {s € K(X) = K(U)|(div(s) + D)|v = 0} ®gpn|y, Ox (V)
={s € K(X) = K(U)|(div(s) + D.X)|v > 0} ®sy(v) Ox (V)
~ Z(D.X)(V).

So we are done.
Exercise 10 (by Tzu-Yang Chou).
(a) AL = Specklz], so given any .# € Proj(A}), we have .# ~ M for some finite

k[x] module M. Since k[z]| is a PID, M is finitely presented. Taking tilde
functor we have 0 — 0% — 0% — .7 — 0.
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Define ¢ : K(X) — Z by .% +—— n — m. Note that this is in fact mapping
Z ti the rank of the free part of M. Also, ¢ is epic since O — n. ¢ is
mono, since # — 0 & n=m< 30 — O — O% — % — 0, that is
[#] =0in K(X). Hence ¢ is the desired isomorphism.

(b) The rank function define a map K(X) — Z since any short exact sequence
of sheaf gives the stalk sequence at the generic point. Surjectivity is similar
as in (a).

(c¢) The exactness at K(X) — K(X\Y) — 0 follows from Ex(II.5.15) For the
exactness at K(Y) — K(X) — K(X \Y), it’s clear that the composition
is zero, so it remains to show that if .#|x\y = 0, then 36y module ¢ such
that [i,9] = [#] where i is the inclusion Y — X.

Let .# be a coherent sheaf on X only supported on Y, we’ll elaborate a finite
filtration 0 = %, C --- C %y = Z such that Z#; /%, is an Oy module. We
claim that .%; := ker(.%;_1 — ,i*.%;_1 will satisfy the condition, where the
map is given by adjunction.

First, VU = Spec A C X, Y NU is a closed subset of U and hence Y NU =
Spec(A/I) for some ideal I C A. So if .Z |y ~ M, them i,i*F |y ~ M/IM.
Similarly, we see that .%;|y ~ IiM.

Now note that (X \Y)NU = |, Spec(A,,) where z; are the generators of
I. Since .7 is supported on Y, we have M, = 0 = z;" annihilate M for
some n;. There are finitely many ¢, so 3 a uniform N, that is, I"M = 0,
amd thus the filtration is locally finite. X is a Noetherian scheme and
in particular quasi-compact, again there exists a uniform n such that the
filtration terminates at .%,,.

Exercise 11 (by Tzu-Yang Chou).

(a) Consider the exact sequence 0 — ¥ — Ox — Op — 0, then we
see that Op is isomorphic to the direct sum of the skyscraper sheaf of
coker(#p p —» Ox p) at P, where P is a point whose coefficient in D is

nonzero. More precisely, at P, Op is ﬁx,p/m}fp if we write D = Z npP.
P

In particular, in K(X), [0p] = Z[ﬁy} Now since X is a nonsingular curve,
P
we have Ox p/mxp ~ mxp/mip ~ mggp/m’;}g,w. This together with
0— mZX’P/m’)I}D — ﬁx,p/mggpﬁ)(’p/m?}g — 0 giVGS [ﬁp] = np[k?(P)],
where k(P) is the skyscraper sheaf of residue field at P. Hence, [0p] =
> np[k(P)] = ¥(D).
P

For D, D’ : divisors with D ~ D', we need to show ¢ (D) = (D). We
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may write both of them as differences of effective divisors, so we can assume
they are effective. Now, (D) = [Op]| = [Ox]| — [ #p] = [Ox]| — [Z(—D)] =
[0x] = [Z(=D")] = [Ox] = [Ip] = [Op] = (D).

Find a locally free sheaf & with epimorphism & — %', where .%’ is the
extension of .Z to X. Restricting on X and taking the kernel, we obtain
0 — H — &j|lx — -F — 0. We claim that %" is locally free of finite
rank. At P, #p C (&|x)p = O% p for some m. Since X is nonsingular,
Ox p is PID = Jp is free of finite rank. This proves the existence of the
resolution.

Independence of the choice: Conised two locally free resolutions of .Z#,
0—& — & — F —0and 0 — & — & — F — 0 with the
maps named after f1, fo, f], f{ respectively. We construct a third locally free
resolution which maps surjectively to both of them. Let 4 = {(u.t/) €
EydE" | fo(u) = fi(u)} and let &7 be a locally free sheaf with a epimorphism
&0 — 4. Let 7o : &7 — 4% — #. Then we have two surjections
&7y — & and &y — & by natural projections. Next, let J&), 7, 7"
be kernels of fy, fi, f7o respectively. Let 4 := {(u,v') € & @ &/|Fu” € A7
such that fi(u) = p(u”), fi(u”) = p'(u”)} where p,p’ are the epimorphisms
from €7 to 4 and JE) respectively. We also let &1 be a locally free
sheaf with an epimorphism &7 — ¢. Then as above, we obtain that &
surjects to all &1, 8] and &”q. In fact, this works for locally free resolutions
of any length inductively.

Now consider two resolutions with an epic chain map from one to another.
Taking kernels in each part and computing determinant we obtain the trivial
sheaf, that is these two resolutions have the same determinant (and hecne
by symmetry, any two resolutions have the same determinant.) Also, for
a short exact sequence 0 — %' — % — F7 — 0, we have det . ¥ =
det ' @ det .#”. This gives a map from K(X) to Pic X.

To show that det(y)(D)) = £(D), first consider the effective case. Since
0 — Ip — Ox — Op — 0 is a locally free resolution, we have
det(¥(D)) = Ox @ It = I = L(—D)~' = Z(D). For general D, write
D = A — B with A, B effective and the same argument works.

Given a coherent sheaf .# on X, let .2 € Pic(X) be an ample invertible
sheaf, In € N such that .# @ £®" is globally generated, say by si, ..., Spm.
Hence 3 an epimorphism 0% — % @ £%". At generic point £, this gives
an epimorphism K(X)™ — F¢, so 30 < r < m such that K(X)" — Z.
Call this isomorphism ¢, and then there’s a dense open set U C X such
that ¢ : 0}, — Z ® £®"|y is an isomorphism. Now consider 0 —
ker¢p — O% — F @ L% — cok ¢ — 0. Note that (ker¢)p is
a submodule of 0% p and hence is free. Also, (ker¢)p = 0 on U and
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hence ker ¢ = 0 on X by Ex(I1.5.7)(a). Tensoring (.£*)®", we obtain that
0— (£)®" — F — 7 — 0. Tt remains to check that .7 is a torsion
sheaf: looking at the stalk sequence at & and we have a exact sequence of
vector spaces, so Jg = 0.

Now [#]| — r[Ox] € Imy: [F] = r[Z(D)] + [7] by above. Hence [.Z] —
rlOx] = [T+ r([Z(D)] — [Ox]). The latter term lies in Imt by part (a),
so it suffices to check that the class of a torsion sheaf lies in the image of 1.
But since 7 = 0, Supp.7 C X is closed and hence is finitely many points;
thus 7 is a direct sum of skyscraper sheaves at each P € Supp.7, which in
K(X) is equal to a multiple of [k(P)], which lies in the image of .

Combining all above, we obtain a split exact sequence 0 — Pic(X) —
K(X)—Z—0.

Exercise 12 (by Tzu-Yang Chou).

Define degree of .# by the degree of the determinant of .%, then all properties

hold by Ex(I.6.11). For the uniqueness, we induct on n :

rk%. When n =0

we use (2); when n = 1 we use (1); when n > 1 we use (3) and the induction
hypothesis applies.
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7 Projective Morphisms
Exercise 1 (by Yi-Heng).

It suffices to show that f} is injective for each P € X. Since f}; : Lp(= Op) —»
Mp(= Op) as a homomorphism of @p-modules, we have f}(a) = affi (1) = 1 for
some a € Op. Thus, f#(l) is a unit, which implies fﬁ is injective.

Exercise 3 (by Chi-Kang).

(a) Let ¢ : P" — P™ be a morphism send = to [so(z),..., S;m(2z)], then it
is induced by a graded ring homo ¢ : klzo, ...,z — klzo,...,z,] sends z; to
si(xo, ..., T,) with each s; homogeneous of degree d for some d > 0.

Now if ¢ is non-constant, then at least one of s; (and hence all s;) are non-
constant, so d > 0. And since ¢ is a morphism, these s; cannot have common zero
other than [0,...,0], so there is at least n + 1 equations, hence m > n.

Now we have dim(imy) = dim(im@)-1 = dimk[s,, ..., s,,] — 1 < n since ¢ is a
morphism. To show dim(im¢) > n. By the above inequality, it is equivalent to
find n + 1 algebraically independent element in ks, ..., Sy

Taking n + 1 of these s;’s which have no common zero other than zero in
the before paragraph. Say sq, ..., s,. to show they are algebraically independent,
we prove by contradiction. Suppose that there is a non zero polynomial F' s,t,
F(sg,...,8,) = 0. Then F defines a hypersurface H C A™"!. Note that F must
has no constant term, so 0 € H, and F(sq(a), ..., s,(a)) = 0 for all a € k"™, so we
get a morphism ¢ : A" — H by 1(z) = (so(x), ..., sp(z)). Since these s; have no
common zero other than 0, therefore 1~1((0,...,0)) = 0 is a single point, so ¥ is a
finite morphism, but dim A"*! > dim H, which is a contradiction. Hence these s;
must be algebraically independent.

(b) by the condition (3), we may assume imey is not contained in any linear
subspace. So by (a), we have each s; is homogeneous with degree d > 0. Now let
My, ..., My be the all degree d monic monomials, we have the d-uple embedding
pa: Py . — PN bysending x to [My(X),..., My(z)]. Now for each s; we
have s; = ) a;;M; for some a;; € k, consider the subspace L := V' ({s;}), we get a
linear projection p : P — L — P™ by p([20, ..., zn]) = [ @0j2j, --» O am;2;]. Hence
po pa(r) = [0 agiMj, ... 32 ami Mj] = [so(x), .., sm(z)] = @(x).

Exercise 4 (by Shuang-Yen).

(a) Let .Z be an ample sheaf on X over A, then there exists m > 0 such that
ZL®™ ig very ample on X over A. So there’s an immersion X — P’ for some
r, since P, is separated over A, hence over Z, X is separated.
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(b)

Let X = U; U U, where U; = Speck[z]. Let £ € Pic X, then Z|y, =
f71O0x(U;) = f;'k[z] for some f; € k[z] such that

filfa € OULNUL)" = (K[2].) = {2" [ n € Z}.

So there are m,n € Z such that Z|y, = 2™k[x], Z|y, = «"k[z]. Since
L =2, we may assume m = 0. So PicX ® Z. Whenn =0, &
is trivial, hence generated by global sections. When n # 0, WLOG let
n > 0, then at the point P € U; that corresponds to (z) € Spec k[x], we
have Ox p = k[z],) and Zp = k[z]). Note that I'(X,.Z) = a"k[x], so
Z, is not generated by global sections. It’s clear that Ox is coherent, but
Ox ® (Lo4)em = pemd i not generated by global sections, so .£®? is not
ample, also, OF" ® £ is not generated by global sections, so Ox is not
ample. So X has no ample sheaf on it.

Exercise 5 (by Tzu-Yang Tsai).

(a)

Because .Z is ample, V.% is coherent, dn € Ns.t..% ®.£"Vn > ng is generated
by global sections. Since .# ® £, . # are coherent, V.% is coherent, and
tensor of sheaves that are generated by global sections is still generated by
global sections, .# ® (£ ® A4)" = (¥ @ L") ® M#™ is generated by global
sections Vn > ng.

Since .# is coherent, . is ample, 3mg € Ns.t..# ® Z™Vm > my is generated
by global sections. Similarly, .% is coherent, Im; € Ns.t..% ® £"Vm > m,
is generated by global sections.

Then for m > mo+my, FR(MRL™) = FRL™Q(ML™ ) @.L 00D
is generated by global sections Vi large enough, thereby .Z ® ™ is ample.

Since ., # are ample, V.% is coherent, Imq, my € N s.t.
F QL (F L™ @ M™ are generated by global sections, then take
m = max{my,mq},.# ® (L @ #)" is generated by global sections Vn > m.

Since . is very ample, Ji : X ey Py st i*(0O(1) =2 Z.

On the other hand, due to .# is generated by global sections and finite (by
X is of finite type over A), 3i: X — P§ s.t. ¢*(O(1)) = A .

Then by Segre embedding, 3 : X — Py st *(O(1)) X4 @ L. It’s
left to show v is a closed immersion, then as a consequence, # ® .Z is very
ample. Observe that ¢ can be factor into

id X i X id S /
X X0 X py B proy py S8y prbstrs

Notice ¢ x id, Segre’s embedding are closed embedding, and id X ¢ is

Segre’s

Py x Py —— X x Py**™ under base change, it’s a closed embedding
since P is separated. Thus 1 is closed embedding.
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(e) Because . is ample, Ing s.t. £ is very ample.
Besides, Iny s.t. £ is generated by global sections Vn > nq, thus by (d),
£ is very ample Vi > n' = ng + ny.

Exercise 6 (by Pei-Hsuan).

(a) i: X < P} is closed immersion, say X = Proj Sm where S = k[zo, ..., z,]/I(X).
& is very ample, so £ = i*Opr = S(1)~.
Also, we have I'(X, Z") = I'(X, S(n)~) = S(n) Thus, for n large enough,
dim [nD| = dimI'(X, £") — 1 =dim S,, — 1 = Px(n) — 1.

(b) If r|n, then |[nD| = {0}. Thus, dim |[nD| = 0.
If r { n. Suppose E ~ nD with E is effective, then degrE' > 0. But degrE =
degrnD = 0 leads a contradiction. Thus, [nD| = ), so dim |[nD| = —1.

Exercise 8 (by Jung-Tao).

Given a morphism f : X — P(£), take £ = f*(O(1)), the map &€ — L is
surjective since there is a natural surjective map from 7*€ to O(1).

Conversely, for any local, which is free, to give a surjective morphism £ =
O — L is equivalent to give n sections generate £, and there is an unique such f

st. f*r*€ — L = f*(O(1)) is consistent with the map 7*& — O(1).
Remark. 1t’s exactly the case X =Y, g = id in proposition 7.12

Exercise 9 (by Shi-Xin).

1. Denote Opg)(n) simply by O(n). Consider ¢ : PicX x Z — PicP(€) by
o(L,n) =1L O(n) where 7 : P(€) — X.

First, we show that this map is injective. If ¢(L,n) = Ope), we have
Ox = m.0p¢) = T ("L ® O(n)) = L ® m,O(n) where the last isomorphism
follows from projection formula. Then by proposition 7.11., we know that
m.0(n) = S™(€) and hence n should be 0 since m.O(n) need to be an
invertible sheaf. Therefore £ = Ox.

For surjectivity, let M € PicP(€) and X = |JU; = |J SpecA; be covered by
finitely many affine open subsets such that £|y, = Ox. Then V; = P’A:l =
U; x P=1 cover PicP(E) where r = rank(€), and we have Pic V; = PicU; X Z.
Therefore M; = M|y, = 7/L; @ O,,(n;) for some L; € PicU;, n; € Z.
Moreover, since M;|y,nv, = M;l|y,nv;, it forces that n; = n; = n for some n.
Thus OVZ|VJTV] = O\/] Viny; 1mphes £z|VZﬂV] = £]|VZF1V] Finally, let £ be the
sheaf glued from £;, we have ¢(L,n) = M.
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2. (=) Let ¢ be the isomorphism from P(£) to P(E’). Since PicP(£) = PicP(&'),
by using the result in (a), there is an invertible sheaf £ € Pic(X) such that

¢*Op(g/) = Op(g) (029 7T*£
Thus using projection formula, we have

E =1 0pey Zm(Opey@m L) =ZERL

(<) Remind that P(£) is defined by Proj.# where .# = @,.,-#* and
I = 84(&). Since & = £ ® L, we must have

=54 =5 0Lt =0 L]
Then by proposition 7.9., P(E) = P(&’)
Exercise 12 (by Shuang-Yen).

Since X = Proj(.7 (% + .#7)) is glued by Proj(.7 (% (U) + F2(U))), where
U is an open affine subset of X, so we may assume that X = Spec A is affine.
Let fy = Iy7fz = ]Z where ]Y;]Z < A. Then X = PI‘O‘](y(]Y +]Z)) Y =
Proj(.S (Iy + I7/1y)), Z = Proj(#(Iy + Iz/1,)). Suppose that p € Y N Z, then

since
y(IY"i_IZ/IY) :@([Y+[Z/Iy>d:@<[Y+Ig/]y>7
d>0 d>0

pa 2 I¢ and pg; D I¢. In particular, p; O Iy,p1 2 Iz, which implies that
p1=1Iy +1z,50p 2 @,y + I7)?, hence p ¢ Proj(.7(Iy + Iz)) = X. So
YNZ=g2.

39



8 Differentials

Exercise 1 (by Yi-Tsung).

(a)

(Denote [M] as "Matsumura, Commutative Ring Theory") By [M] theorem
26.1, since k(B) separably generated extension field, it is separable (a k-
algebra A is separable if for any extension field k" of k, A ®j k" is reduced.)
By [M] theorem 26.9, k(B) is also 0-smooth (a k-algebra A is 0-smooth
if for any k-algebra C' and any ideal N < C satisfying N? = 0, and any
k-homomorphism u : A — A /C', there exists a lifting k-homomorphism
v:A— Cof utoC.) Finally by [M| theorem 25.2, we see that

is split, and in particular exact.

Alternative solution (by Shuang-Yen): To show that ¢ is injective, it suf-
fices to show that 0* : Homyg) (g, ® k(B), k(B)) — Homyg) (m/m?, k(B))

is surjective. Note that
Homk(B)(QB/k ® l{?(B), k’(B)) = HOIHB(QB/k, k(B)) = Derk(B, l{?(B))

Given a map h € Homy gy (m/m? k(B)), we define d € Dery(B, k(B)) as
follows: for b € B, b € B/m?. Since B/m? is a complete local ring and
k(B/m?) = (B/m?)/(m/m?) = B/m = k(B) is a separably generated
extension of k, there’s & C K C B/m? such that K = k(B/m?) = k(B).
Hence there is a unique way to write b = A + ¢ where A € K, ¢ € m/m?.
Define d(b) = h(¢), then d is a k-derivation and §*(d) = h. So ¢ is injective.

Say B = A,, where A is finitely generated k-algebra and p € Spec A.

(=) If B is a regular local ring, since k(B) is separably generated over k, we
have dim Qp/, ® k(B) = dim Qg /, + dim ™ /32 = tr.deg k(B)/k + dim B.
Let @) be the quotient field of B, then we have Qp/, ®5 Q) = Qg/;. Now since
k is perfect, @) is separably generated extension field of k, and so dimg Qg /1, =
tr.deg Q/k = dim A. Note that Qg is finitely generated B-module and
dim Qg ®p Q = dim A = htp + dim A /p = dim B + tr.deg k(B)/k. By
lemma 8.9, Qp/, is free of rank dim B + tr.deg k(B)/k.

(<) By (a), dimB = dim Qg ® k(B) — tr.deg k(B)/k = dim™M /n2 +
dim Q) — dim Q) = dim M /2. Thus B is regular.

Take an affine neghborhood U = Spec A C X of z, then Ox, = A,. By (b),
Ox . is regular iff (Qx/k)x = Qoy.,/k is free of rank dim A, +tr.deg k(A)/k =
dim A. Since now X is irreducible of finite type over k, we have dim A =
dim X. Thus Oy, is regular iff (Q2x ) is free of rank n = dim X.
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(d) By theorem 8.16, there is a dense open subset V' C X which is nonsingular
on V, ie., V CU. Thus U is dense, and now it suffices to show that U
is an open subset. For x € U, (QX/k)x is free of rank n, then there exists

x € U C X such that (Qx/k) |7 is free of rank n. Now for any 2’ € U,

open
(QX/k)I, is free of rank n, hence ' € U, and we see that U is open.

Exercise 2 (by Pei-Hsuan).

Consider B = {(z,s) € X x Vs, € m;&,}, and m: B o= For 2y € X,
(x,8)
7 (20) = {(20,8) € {@0} X V84, € My, Es } +— global sections that vanish at
w: V. o= &

xo. Thus, piy is surjective. Also, consider . Since & is generated

S = Su
by V', we get

dimV = rank & + dim 7, ! (70) = dim X + dim V — rank & < dim V.

m: B — V , then dim my(B) < dim B < dim V. Hence, 3s € V '\ B
@s) = s

is what we want.

Let

f: O0x — &
g = g-s
é%ﬁp — é%
9p = Gp-Sp
&, Oxp = ﬁ’;‘?gank&*l) is locally free, so coker f is locally free.
Hence, 0 —» Ox — & — &' = cokeer f — 0 is exact.

Now, fix this s, consider . Notice that X is a variety, so

X is integral. Thus, for all p € X, Io: is injective. Also,

Exercise 3 (by Tzu-Yang Chou).

(a) Use the first exact sequence twice and the fact that Qx . v/x ~ pyQy s, Qxxgy/y

Px QX/s-

(b) wxxy ~ A" Qv = A" 010 k@05 ) ~ A" (05 ) OA™ (050 1) ~

PYA Qxye) @ 5 (A™ Qyjr) ~ p™wx @ piwy.

(c) For the arithmetic genus, we first note that p,(Y’) = 1 since Y has degree 3.
So by Ex(1.7.2) we see that p,(X) = p,(Y xY) = —1.
For the geometric genus, we know that wy ~ @y and hence by (b) wyyy =~
Oyxy = py(X) =dimI['(X,wx) = dim (X, Ox) = 1 since X is proper over
k. (Here we use Ex(I1.4.5)(d).)

Exercise 5 (by Shi-Xin).
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1. Since X is nonsingular, we have Pic(X) = CaCl(X) = CI(X). By proposition
6.5.(c), we have an exact sequence

Z % Pic(X) = Pic(X —Y') = 0

where « is defined by a(n) = nY”’. In fact, if a(n) = 0 for some n # 0, then

nY' must be a principal divisor, says (f) for some f € K(X)*. Note that
K(X)* = K(X)*. Hence by pulling back, it follows that Y is given by f,
which leads to a contradiction since codimx(Y) > 2. Therefore « is injective.

Moreover, because X — Y’ = X —Y and codimx(Y) > 2, we must have
Pic(X —Y’) = Pic(X —Y) = Pic(X)

We conclude that

0 = Z — Pic(X) — Pic(X) —» 0

On the other hand, the pulling back 7* Pic(X) — Pic(X) gives the right

exactness. Thus Pic(X) = Pic(X) & Z

2. By (a), we can write wg = m*M ® L(qY") for some invertible sheaf M on
X and ¢q € Z. Note that we have Pic(X — Y”') = Pic(X —Y) = Pic(X). It
follows that

wy Fwx|x-y Fwglg oy = (M@ L(GY))|x-y = M|xy =M

Y

Now, we may write wg = 7wy ® L(¢Y’). We are going to show that
wg = mwx ® Oy/(—q — 1). In fact, by adjunction formula, we deduce that

Wy = Wy & [,(Y/) & Oy/
> rm'wx @ L((¢+ 1Y) @ Oy
= 7T*CL)X X Oy/(—q - 1)

Then take a closed point y € Y and let Z = 7~ 1(y) = {y} xy Y’ be the fiber
of Y" over y. Hence by Exercise 2.8.3(b), we have wy = mjw, ® mjwy: =
Oz(—q —1) Since Z 2 P! it is clear that wy & Oz(—r). Thus ¢ =1 — 1,
and hence we show that wg = m*wx @ L((r — 1)Y”).

Exercise 6 (by Shuang-Yen).
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(a)

(=) We have
0(ad’) — ab(a’) — a'0(a)
= g(a)g(d’) — ¢'(a)g'(a') = f(a)(g(a) — g'(a)) — f(a)(g(a) — ¢'(a))
= [(9(a) = f(a))0(a') + g(a)g'(a")] + [(¢'(a) — f(a'))0(a) — g(a)g'(d')]
= (g9(a) = f(a))8(d") + (¢'(a) = f(a"))0(a) € I* = 0.
So 6 € Dery (A, I).
(<) For any 6 € Homa(Q4/x, ) = Dery (A, I),

¢ (aad") = g(aa’) + 0(aa’)
= g(a)g(a’) + f(a)f(a’) + f(a')0(a)
= (g+0)(a)(g+0)(d) + (f(a) — g(a))d(d)
( /

!/

=¢'(a)g'(a’).
So ¢’ is a homomorphism.

For any i, pick b € B’ such that b = f(7;), define h(z;) = b, then we may
extend it to h : k[xq,...,z,] — B’. It commutes by the construction. Note
that h(a) = f(a) = f(0) = 0 and h(af) = h(a)h(B) € I> = 0, so h is well-
defined. For any 8 € A,@ € J/J?, h(Ba) = h(Ba) = f(B)h(a) = f(B)h(a),

which is A-linear.

Since SpecA is nonsingular in SpecP = A}, which is also nonsingular, so we
have the exact sequence

0— &/ I — Qi @ Ospeca — Qspecayy — 0,
where . = J. Taking global sections, we have
0— J/J* — Qpp ® A — Qap — 0
is exact since they’re quasi-coherent. Then
0 — Homa(Qayx, 1) — Homp(Qpsk, I) — Homa(J/J? T) — Extly(Qasr, I).

Note that €24 is locally free, which means €24, is projective, so Extz(QA/k, I =
0. Let 6 € Homp(Qpsx, I) = Dery,(P,I) that maps to h : J/J? — I. Let
h' = h —#, then h' is a homomorphism by letting A = P and f = fowx in
(a) where m : P — A is the projection. Note that Vo € J,

B (a) = h(a) — 0(a) = h(a) — 0(da) = h(a) — h(@) = 0.
So h'(J) =0, hence g = I : A — B’ lifts f.
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Exercise 7 (by Jung-Tao).

We can translate the statement, F is coherent, and X is affine, so we ma
assume F = M, and P = I the sheaf of ideal is isomorphic to F with I? = 0.
According to exercise 2.8.6, we can lift the exact sequence

0—=1—0x —-0x—0
so the exact sequence split and the extension is the trivial one.
Exercise 8 (by Chun-Yi).

Consider the rational map X — X’. Let V C X be the largest open set such
that f: V' — X’ represents the rational map. By first fundamental sequence, we
have a map f*Qx//, — Qy,. Taking q'" exteior power, we get fx :
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9 Formal Schemes
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