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Exercise 0 (by Kuan-Wen).

This is an example of proof.

Remark. This is an example for how to write in this format.

1 Sheaves
Exercise 1 (by Chun-Yi).

Let F be the constant presheaf associated to A on X, F+ be the constant
sheaf associated to A on X. Define θ: F → F+ by θ(U)(a) = (a, 1, ......, 1) ∈ Ar,
where r is the number of components of U, then θ is a sheaf morphism.
Now if ϕ: F → G is a morphism, then ψ: F+ → G defined by ψ(U)(a1, ......, ar) =
ϕ(U)(a1) is the unique morphism such that ϕ = ψ◦θ =⇒ F+ is the sheaf associated
to the presheaf F .

Exercise 2 (by Chun-Yi).

(a) Consider the commutative diagram, where p ∈ U

F(U) G(U)

Fp Gp

ϕ(U)

f g

ϕp

Let s ∈ kerϕ(U), s′ = f(s) ∈ (kerϕ)p, then ϕp(s′) = ϕp(f(s)) = g(ϕ(U))(s) =
g(0) = 0 =⇒ (kerϕ)p ⊆ kerϕp
Conversely, given s′ ∈ kerϕp, we can pull back to s ∈ kerϕ(U) such
that f(s) = s′. Let t = ϕ(U)(s), then g(t) = 0, that is ∃V such that
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t |V = 0 =⇒ ϕ(U)(s) = 0 =⇒ s̄ = 〈s, U ∩ V 〉 ∈ (kerϕ)p
Similarly, let t ∈ imϕ(U), t′ = g(t) ∈ (imϕ)p, then ∃s ∈ F(U) such that
ϕ(U)(s) = t. Now t′ = g(ϕ(U)(s)) = ϕp(f(s)) =⇒ t′ ∈ (imϕ)p.
Conversely, if t′ ∈ imϕp, then ∃s′ ∈ Fp such that ϕp(s′) = t′, pull back to
s ∈ F(U) such that f(s) = s′, then g(ϕ(U)(s)) = t′ =⇒ t′ ∈ (imϕ)p.

(b) ϕ is injective ⇐⇒ kerϕ = 0⇐⇒ kerϕp = 0 ∀p⇐⇒ ϕp is injective ∀p
ϕ is surjective ⇐⇒ imϕ = G ⇐⇒ imϕp = Gp ∀p⇐⇒ ϕp is surjective ∀p

(c) A sequence of sheaves and morphisms is exact ⇐⇒ kerϕi = imϕi−1 ⇐⇒
kerϕip = imϕi−1

p ∀p⇐⇒ The corresponding sequence of stalks is exact ∀p

Exercise 3 (by Pei-Hsuan).

(a) Suppose ϕ : F → G is surjective, then ϕp : Fp → Gp is surjective, ∀p ∈ X.
∀U ⊆ X, ∀s ∈ G (U), we have commutative diagram:

F (U) G (U)

Fp Gp

ϕ(U)

ϕp

Thus, ∃tp ∈ Fp such that ϕp(tp) = sp, ∀p ∈ X. This means ∃Vp: neigh-
borhood of p, ∃t ∈ F (U) such that ϕ(t|Vp) = s|Vp . So, {Vp}p∈U is what we
desired.

Conversely, if ∀U ⊆ X, ∀s ∈ G (U), there exists an open cover {Ui}i of U
such that ∀i, ∃ti ∈ F (Ui), ϕ(ti) = s|Ui . Then ∀p ∈ X, ∀sp ∈ Gp, say p ∈ Ui.
Then pull sp back to s ∈ G (U). Thus, ∃ti ∈ F (Ui) such that ϕ(ti) = s|Ui .
Push this ti forward to t̄i ∈ Fp, then ϕp(t̄i = sp. Thus, ϕp : Fp → Gp is
surjective, ∀p ∈ X ⇒ ϕ : F → G is surjective.

(b) Let X = U1tU2, where U1, U2 are open and connected. Let F be a constant
sheaf defined by A. Consider G to be a constant presheaf defined by A.

Define ϕ : F → G to be F (U) → G (U)
f 7→ f(U ∩ U1) + f(U ∩ U2)

. It is a

surjective presheaf morphism. Now, consider ϕ+ : F → G + which is defined

by F (U) → G +(U)
f 7→ (ϕ(f), 0)

, if U is disconnected. (Notice that G (U) = G +(U),

if U ⊆ Ui, for some i.) Thus, Im(ϕ+) = (Imϕ)+ = G +, so ϕ+ is surjective
sheaf morphism. But, ϕ+

U is not surjective whenever U is disconnected.

Exercise 4 (by Jung-Tao).
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(a) ker ϕ = 0 =⇒ (ker ϕ)P = 0 =⇒ ker ϕP = 0, for all points P .
the map ϕP : FP → GP induces a map ϕ+

P : F+
P → G

+
P ,

since FP = F+
P ,GP = G+

P ,

ker ϕP = 0,∀P =⇒ ker ϕ+
P = 0, ∀P =⇒ ker ϕ+ = 0

The last equality is because ∀t an element in the group corresponds to some
open set X through the sheaf ker ϕ+. t = 0 locally means for every point P ,
there is a neighborhood UP contains P , t |UP= 0. {UP} is an open cover of
X where t = 0 at every component, and t = 0 by the definition of sheaf.

(b) the map φ : ϕ(F)→ G is injective, where ϕ(F) denote the image of F as a
presheaf, from (a) we get an inclusion map from im ϕ = ϕ(F)+ to G+ = G

Exercise 5 (by Te-Lun).

Let ϕ : F → G be a morphism of sheaves, then:

ϕ is an isomorphism⇐⇒ ϕp is an isomorphism on stalk, for all p ∈ X
⇐⇒ ϕp is injective and surjective, for all p ∈ X

(∗)⇐⇒ ϕ is injective and surjective, for all p ∈ X

, where (∗) is hold by Exercise 2(b).

Exercise 6 (by Te-Lun).

(a) Let F ′′ be the presheaf defined by U 7→ F(U)/F ′(U), let the natural mor-
phism ϕ : F → F/F ′ be:

ϕ(U) : F(U) → (F/F ′)(U)

t 7→
[
s : U →

⋃
p∈U F ′′p by s(p) = tp the germ of t in F ′′p

]
, for all U

open
⊂ X. It is easy to check that this is indeed a morphism of

sheaves. Moreover, to show that this morphism is surjective, we consider
the induce map of ϕ on stalk ϕp : Fp → (F/F ′)p = Fp/F ′p for p ∈ X.
Let 〈U, s〉 ∈ (F/F ′)p, with s ∈ (F/F ′)(U), p ∈ U . Then there exist a
neighborhood V ⊂ U of p and t ∈ F ′′(V ) such that tq = s(q) for all
q ∈ V . Pick a preimage of t ∈ F ′′(V ) = F(V )/F ′(V ) in F(V ), say t′. Then
ϕp(〈V, t′〉) = 〈V, ϕ(t′)〉 = 〈V, s|V 〉 = 〈U, s〉. Hence, ϕp is surjective for all
p ∈ X, by Exercise 2(b), ϕ is surjective.
Last, note that obviously, (kerϕ)p = kerϕp = Fp for all p ∈ X, so kerϕ = F .
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(b) (i) Let ϕ′ : F → F be injective, then F ′ ' Imϕ as presheaves. (Here,
Imϕ is the presheaf of image, before sheafification), so there is an
isomorphism: ϕ−1 : Imϕ→ F ′, behold that we have the following:

Imϕ F ′

(Imϕ)+ (F ′)+ = F ′

ϕ−1

θ Id

(ϕ−1)+

(ϕ−1)+ is injective since ϕ is (Exercise 4(a)), and it is sujctive since
ϕ−1 = (ϕ−1)+ ◦ θ is, so (ϕ−1)+ is an isomorphism (Exercise 5). Hence
F ′ is iormorphic to Imϕ regarded as a subsheaf of F . (Exercise 4(b))

(ii) Let ψ : F → F ′′ be surjective, define the presheaf G : U 7→ F(U)/ kerψ(U),
then we have F ′′ ' G as presheaves, doing sheafification as in part (i),
then we have F ′′ ' G+ = F/ kerψ

(∗)
= F/Imψ. Where (*) holds by

exactness.

Exercise 7 (by Shi-Xin).

(a) Since F (U)/ ker(ϕ(U)) ∼= im(ϕ(U)) for any open set U , F/ kerϕ and imϕ
are isomorphic as presheaves, and hence they are isomorphic as sheaves.

(b) For the same reason to (a), since G (U)/im(ϕ(U)) ∼= coker(ϕ(U)) for any
open set U , G /imϕ and cokerϕ are isomorphic as sheaves.

Exercise 8 (by Yi-Heng).

It suffices to check that ker(ψ(U)) ⊂ im(ϕ(U)) where ϕ(U) : F ′(U) →
F (U), ψ(U) : F (U) → F ′′(U). Note that 0 → F ′

P → FP → F ′′
P . Thus, for

s ∈ ker(ψ(U)), sP = ϕ(tP ) for some tP ∈ F ′
P . Let tP ∈ F ′(V P ) represents tP ,

then tP |V P∩V Q = tQ|V P∩V Q since ϕ is injective. Therefore, there exists t ∈ F ′(U)
such that t|V P = tP for all P ∈ U , and ϕ(U)(t) = s. Hence, we get ker(ψ(U)) ⊂
im(ϕ(U)).

Exercise 9 (by Pei-Hsuan).

U 7→ F (U) ⊕ G (U) is clearly a presheaf. For open set U ⊆ X, if {Vi} is an
open cover of U , then:

1. If s⊕ t ∈ F (U)⊕ G (U), and s⊕ t|Vi = 0, for all i. Then s|Vi = 0, t|Vi = 0,
for all i. Thus, s = 0, t = 0, so s⊕ t = 0.
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2. If we have si⊕ ti ∈ F (Vi)⊕G (Vi), and si⊕ ti|Vi∩Vj = sj ⊕ tj|Vi∩Vj , for all i, j.
Then si|Vi∩Vj = sj|Vi∩Vj and ti|Vi∩Vj = tj|Vi∩Vj , so ∃s ∈ F (U) and t ∈ G (U)
such that s|Vi = si and t|Vi = ti, for all i. Thus, s⊕ t|Vi = si ⊕ ti, for all i.

Hence, U 7→ F (U)⊕ G (U) is a sheaf.

Exercise 10 (by Wei).

For a given direct system {Fi}i∈I over a set I in the category of presheaves
over some topological space X such that lim−→i∈I Fi(U) exists for each U , define a
presheaf lim−→i∈I Fi by (

lim−→
i∈I
Fi

)
(U) =

(
lim−→
i∈I
Fi(U)

)
on the level of open sets, and on the level of inclusions that for each V ⊆ U , define(

lim−→
i∈I
Fi

)
(U)→

(
lim−→
i∈I
Fi

)
(V )

by the maps

Fi(U)→ Fi(V )→

(
lim−→
i∈I
Fi

)
(V )

There are canonical maps

αi,U : Fi(U)→ lim−→
i∈I
Fi(U)

The data {αi,U}U form a sheaf morphism, and that the diagrams

Fi Fi′

lim−→i∈I Fi

F(s)

αi
αi′

commutes for each s : i→ i′, by our definition of lim−→i∈I Fi.
Now we verify that lim−→i∈I Fi is the direct limit of the direct system {Fi}i∈I in the
category of presheaves over a topological space X. For a given presheaf G, and
given presheaf morphisms ρi : F → G such that for each arrow s : i→ i′ in I the
diagram commutes :

Fi G

Fi′

F(s)

ρi

ρi′
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that is, an element in the set

lim←−
i∈I

HompShAb(X)(Fi,G)

we try to find a unique element φ in HompShAb(X)(lim−→i∈I Fi,G) such that

Fi lim−→i∈I Fi

G
ρi

αi

φ

commutes for each i ∈ I. Notice that by universal property of lim−→i∈I Fi(U), we
can find for each open set U a map φU such that the diagram commutes :

Fi(U) lim−→i∈I Fi(U)

G(U)

ρi,U

αi,U

φU

It is easy to check that the data {φU}U defines a sheaf morphism. So far we have
proved existence. On the other hand, suppose there is another φ′, then since on
each U and i ∈ I, we have

Fi(U) lim−→i∈I Fi(U)

G(U)

ρi,U

αi,U

φ′U φU

we have φ′U = φU , and hence φ′ = φ.
Having shown that lim−→i∈I Fi is the direct limit of the direct system {Fi}i∈I in the
category of presheaves, we now consider sheaves. Suppose given a direct system of
sheaves {Fi}i∈I , we show that (lim−→i∈I Fi)

+ is the direct limit in the category of
sheaves, where the maps Fi → (lim−→i∈I Fi)

+ are defined by the composition

Fi → lim−→
i∈I
Fi → (lim−→

i∈I
Fi)+

Let G be another sheaf, and suppose given maps from Fi to G compatible with
the original system, then we have a unique presheaf morphism between lim−→i∈I Fi
and G, which corresponds to a unique sheaf morphism between (lim−→i∈I Fi)

+ and G.
Check that this morphism is then the desired one.
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Remark. In categorical language, the existence of direct limits indexed by a small
category can often be expressed in terms of representability of the functor

X → lim←−
i∈I

HomC(Fi, X)

with the representing object denoted lim−→i∈I Fi. In a more general setting, this
exercise expresses the categorical facts :

(1) Let I, J, C be categories with I being small. Suppose C admits direct limits
indexed by I, then the functor category [J, C] admits direct limits indexed by
I, and the direct limit can be computed pointwisely; namely, is F : I → [J, C]
a functor, then we have(

lim−→
i∈I
Fi

)
(j) '

(
lim−→
i∈I
Fi(j)

)

for each j ∈ J . (In this exercise, C is the category of abelian groups, J is
the opposite category of open sets associated to the topological space X)

(2) Given a pair of adjoint functors L a R between categories

C D
L

⊥
R

and assuming that D admits direct limits indexed by I, then by the chain of
natural isomorphisms

lim←−
i∈I

HomD(LFi, Y ) ' lim←−
i∈I

HomC(Fi, RY ) ' HomC(lim−→
i∈I

Fi, RY )

' HomD(L lim−→
i∈I

Fi, Y )

we have, by fully faithfulness of the Yoneda embedding, that

lim−→
i∈I

(LFi) ' L(lim−→
i∈I

Fi)

(In the exercise, the categories are (C,D) = (pShAb(X), ShAb(X)), L is
sheafification, R is forgetful functor).

Exercise 12 (by Wei).

7



For a given inverse system {Fi}i∈I over a set I in the category of presheaves
over some topological space X such that lim←−i∈I Fi(U) exists for each U , we define,
as in exercise 10, the presheaf lim←−i∈I Fi by the same law, then a routine check
shows that lim←−i∈I Fi is the inverse limit of the inverse system of presheaves {Fi}i∈I
in the category of presheaves. Now suppose {Fi}i∈I is an inverse system of sheaves,
we show that the inverse limit of the system taken in the category of presheaves is
actually a sheaf. [TBD]
Remark. In categorical language, the existence of inverse limits indexed by a small
category can often be expressed in terms of representability of the functor

X → lim←−
i∈I

HomC(X,Fi)

with the representing object denoted lim←−i∈I Fi. We have these statements for
inverse limits ((2’) is a little different from (2) in remark to exercise 10)

(1’) Let I, J, C be categories with I being small. Suppose C admits inverse
limits indexed by I, then the functor category [J, C] admits inverse limits
indexed by I, and the inverse limit can be computed pointwisely; namely, is
F : Iop → [J, C] a functor, then we have(

lim←−
i∈I
Fi

)
(j) '

(
lim←−
i∈I
Fi(j)

)
for each j ∈ J . (In this exercise, C is the category of abelian groups, J is
the opposite category of open sets associated to the topological space X)

(2’) Given a pair of adjoint functors L a R between categories

C D
L

⊥
R

and assuming that D admits inverse limits indexed by I, and that the
functor R is fully faithful, then we have the chain of natural isomorphisms

lim←−
i∈I

HomD(X,Fi) ' lim←−
i∈I

HomC(RX,RFi) ' HomC(RX, lim←−
i∈I

RFi)

' HomD(X,L lim←−
i∈I

RFi)

we have by fully faithfulness of the Yoneda embedding, that

lim←−
i∈I

Fi ' L(lim←−
i∈I

RFi)
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(In this exercise, the categories are (C,D) = (pShAb(X), ShAb(X)), L is
sheafification, R is forgetful functor; notice that by definition, ShAb(X) is
already a full subcategory of pShAb(X))).

Exercise 14 (by Tzu-Yang Tsai).

It’s equivalent to show A := {P ∈ U |sP = 0} is open, but if sP = 0,∃V a
neighborhood of P s.t. s|V = 0⇒ V ⊆ A⇒ A is open.
Take any nonempty open subset U ⊆ X, let j!(F ) be the sheaf obtained by
extending F outside of U , as in Ex 1.19 (b) below. Then SuppF = U is open,
thereby SuppF need not to be closed.

Exercise 15 (by Tzu-Yang Tsai).

∀f, h ∈ Hom(F |U ,G |U ), define f+h as (f+h)(s) = f(s)+h(s)∀s ∈ Γ(U,F |U ),
then it has a natural structure of abilian group.
To show H : U 7→ Hom(F |U ,G |U), we have to check two conditions:

1. If {Vi}i∈I is an open cover of V , and φ ∈ Γ(V,H ) s.t. φ|Vj∀j ∈ I, then
φ(s|Vj) = φ|Vj(s) = 0∀s ∈ Γ(V,F )⇒ φ = 0 in V .

2. If {φj}j∈I is a set of morphism s.t. φi ∈ Γ(Vi,H |Vi) and φi|Vi∩Vj =
φj|Vi∩Vj ∀i, j ∈ I, one can define φ ∈ Γ(V,H ) = Hom(F |V ,G |V ) s.t.
φ(s|Vi) = φ|Vi(s)∀s ∈ Γ(V,F ). It’s well-defined due to assumption, and
we have φ|Vi = φi∀i ∈ I.

Conclude above, we have H is a sheaf.

Exercise 16 (by Tzu-Yang Chou).

(a) Given a constant sheaf for G F on X where X is irreducible, let V ⊂ U
be open sets in X. For f ∈ F (V ), we claim that f is a constant map, and
hence it is the restriction of the constant map of the same value on U. G
has the discrete topology, so for any g ∈ G, both f−1(g) and V \ f−1(g)
are closed in V . Find closed sets A,B ⊂ X such that A ∩ V = f−1(g) and
B ∩ V = V \ f−1(g), and then X = (X \ V )∪A∪B. Now if g ∈ f(V ), then
f−1(g) 6= ∅, and hence X = A by irreducibility.

(b) It suffices to show that F (U) −→ F”(U) is epic by the left exactness of
section functor. Let s ∈ F”(U). Recall by exercise 2.1.3 we obtain a covering
Ui(i ∈ I) of U with sections ti ∈ F (Ui) which map to s|Ui .
Now let S := {(I ′, s′)|I ′ ⊂ I, s′ ∈ F (Ũ), where Ũ :=

⋃
j∈I′

Uj with s′ 7→ s|Ũ},

equipped with a ordering given by (I ′, s′) ≤ (I”, s”) ⇔ I ′ ⊆ I” and s”
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restricts to s′. Then Zorn’s lemma gives a maximal element in S, say (I ′, s′).
We claim that I ′ = I: otherwise, there is some i0 /∈ I ′. Consider s′|Ũ∩Ui0 −
ti0|Ũ∩Ui0 7→ 0. Then by exactness, ∃a ∈ F ′(Ũ ∩Ui0) which maps to s′|Ũ∩Ui0−
ti0|Ũ∩Ui0 , and since F is flasque, there is some b ∈ F ′(Ui0) whose restriction
is a. Thus, ti0 + b and s′ are compatible and glue to give some section
mapping to s|Ũ∪Ui0 . So we enlarge (I ′, s′) and obtain a contradiction. That
is, I ′ = I.

(c) Given open sets V ⊂ U in X, since F ′ is flasque, by (b) we have two short
exact sequences and maps between them making the diagram commutes.
Now since F is alsp flasque, we obtain the desired epimorphism F”(U) −→
F”(V ), so F” is flasque.

(d) By definition, f∗F (U) −→ f∗F (V ) is just F (f−1(U)) −→ F (f−1(V ))
which is epic since F is flasque.

(e) First note that G is flasque: for any V ⊂ U in X and s ∈ G (V ), the section
defined to be s on V and 0 elsewhere in G (U) restricts to s.
F is a sheaf so F ' F + and then by definition of sheafification we can
embed F + into G .

Exercise 17 (by Yu-Ting).

For Q ∈ ¯{P}, if Q ∈ U , ip(A)(U) = A, hence (ip(A))Q = A. For A ∈ Ext {P},
there exists an open set V ⊂ Ext {P} containing Q such that P /∈ V and
ip(A)(V ) = 0, then (ip(A))Q = 0.

Exercise 19 (by Pei-Hsuan).

(a) If p ∈ Z,

(i∗F )P = lim−→
P∈V

i∗F (V ) = lim−→
P∈V ∩Z

F (V ∩ Z) = FP .

If P /∈ Z,
(i∗F )P = lim−→

P∈V
i∗(F (V ) = lim−→

P∈V ∩Z
F (∅) = 0.

(b) If p ∈ U ,
(j!(F ))P = lim−→

P∈V
j!(F )(V ) = lim−→

P∈V⊆U
F (V ) = FP .

If P /∈ U ,

(j!(F ))P = lim−→
P∈V

j!(F )(V ) = lim−→
P∈V⊆X\U

F (V ) = lim−→
P∈V⊆X\U

0 = FP .
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Since ϕ : F → G is a sheaf isomorphism. ⇔ ϕP : FP → GP is isomorphism,
∀p ∈ X. Thus, the uniqueness of j!(F ) follows. Also, for any open set
V ⊆ U , j!(F )|U(V ) = j!F (V ) = F (V )⇒ j!F |U ∼= F .

(c) If p ∈ U , then 0→ FP → FP → 0→ 0 is exact.
⇒ 0→ (j!(F |U)P → FP → (i∗(F |Z))P → 0 is exact.
If p ∈ Z, then 0→ 0→ FP → FP → 0 is exact.
⇒ 0→ (j!(F |U))P → FP → (i∗(F |Z))P → 0 is exact.
Thus, 0 → (j!(F |U))P → FP → (i∗(F |Z))P → 0 is exact, since it is exact
at every stalk.

Exercise 21 (by Shi-Xin).

(a) Let U be an open subset with a covering U =
⋃
Ui. If there are sections

si ∈ IY (Ui) ⊂ OX(Ui) such that si|Ui∩Uj = sj|Ui∩Uj for any i, j, then there
is an unique element s ∈ OX(U) such that s|Ui = si. Since si|Y ∩Ui = 0 for
every i, s must vanish on

⋃
i(Y ∩ Ui) = Y ∩ U . Thus s ∈ IY (U).

(b) Note that i∗OY (U) = OY (i−1(U)) = OY (Y ∩ U). Since we have a short
exact sequence

0→ IY (U)→ OX(U)→ OY (Y ∩ U)→ 0,

i∗OY (U) ∼= OX(U)/IY (U), which follows that i∗OY ∼= OX/IY as sheaves.

(c) Since OX(P1) ∼= k, the induced map on global sections is

0→ 0→ k → k ⊕ k

It is obvious that the map from k to k ⊕ k can’t be surjective.

(d) For any open subset U ⊂ X, we have the natural map O(U) → K (U)
sending f to f̄ = f

1
. Clearly, if f̄ = 0, then f = f̄ |U = 0, and hence O → K

is injective.

Furthermore, for any q ∈ X, (K /O)q = Kq/Oq = K/Oq = Iq = (iq(Iq))q =∑
p∈X(ip(Ip))q. Thus K /O ∼=

∑
p∈X(ip(Ip)) as sheaves by Prop1.1.

(e) It suffices to show that K = Γ(X,K ) → Γ(X,K /O) =
⊕

p∈X K/Op is
surjective. Note that every element [f ] in K/Op lifts to an element f in K.
So all we need to show is that for any f = f1

f2
∈ K and p ∈ X, there is a

g ∈ K such that g ∈ Oq for every q 6= p and g − f ∈ Op.
Write f2 = g2h2 where Z(g2) = p and p /∈ Z(h2). Then by making into one
variable and partial fraction, we can write f = g1

g2
+ h1
h2

for some g1, h1 ∈ O(P1).
Then setting g = g1

g2
gives the desired result.
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Exercise 22 (by Yi-Heng).

For V ′ ⊂ V ⊂ X open, define F (V ) = {(si)|si ∈ Fi(V ∩Ui), ϕij(si|V ∩Ui∩Uj ) =
sj|V ∩Ui∩Uj} and F (V ) → F (V ′), (si) 7→ (si|V ′∩Ui). Thus, F is a sheaf on X,
and ψk(W ) : F |Uk(W ) → Fk(W ), (si) 7→ sk is an isomorphism with inverse
sk 7→ (ϕki(sk|W∩Ui)) for each open subsetW in Uk. Moreover, we have ϕkj◦ψk = ψj
on Uj ∩ Uk by the definitions.
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2 Schemes
Exercise 1 (by Chi-Kang).

We have V (f) = {p ∈ Spec(A)|f ∈ p}, so D(f) = {p ∈ Spec(A)|f /∈ p}.
Now let S := {fn|n ∈ N ∪ {0}}, then Af = S−1A, and there is a one-to-
one correspondence {p ∈ Spec(A)|p ∩ S = ∅} ⇐⇒ {S−1p ∈ Spec(Af)}. Now
since p ∩ S = ∅ ⇔ f ∈ p, we have the underlying topology space of Spec(Af)
and D(f) has a naturally bijection. Moreover, since Af ∼= OX(D(f)), we have
OSpec(Af )

∼= O(D(f)), hence Spec(Af ) ∼= (D(f)),OX |D(f).

Exercise 3 (by Shuang-Yen).

(a) Let X =
⋃
Xα where Xα

∼= SpecAα. The only if part is trivial since
localization of a reduced ring is also reduced. For the if part, let U ⊆ X and
let Uα = U ∩ Xα, if a ∈ OX(U) is a nilpotent element, then aα := a|Uα is
nilpotent. Since aα is a map Uα → t(Aα)p that is locally constant, for any
p, there is a neighborhood Vp such that

aα|Vp =
bp
sp
∈ OX,p,

which implies aα|p = 0, then aα = 0, ∀α =⇒ a = 0, hence OX(U) is
reduced.

(b) May assuem that X is affine, say SpecA. I claim that Xred
∼= SpecAred. For

the topological structure, it’s clear by the fact that N(A) =
⋂
p. For the

sheaf structure, we have morphism induced by (OX(U))red → OSpecAred(U)
of presheaves, then we have a map from OXred → OSpecAred which is an
isomrphism since it’s an isomorphism on stalk. Then we can define the map
ϕ : Xred → X that is glued by the morphism of schemes induced by the
ring homomorphism A → Ared. It’s an homeomorphism since SpecA →
SpecAred.

(c) Let i : Y → Yred be the natural map. To define g : X → Yred, (g, g#) satisfies

(f, f#) = (i, i#) ◦ (g, g#) = (i ◦ g, i∗g# ◦ i#) = (g, g# ◦ i#).

So we need f = g and f# = g# ◦ i#, define g = f and define g# : OYred →
g∗OX to be the morphism induced by the induced map (OY (U))red =
OY (U)/N(OY (U)) → OX(f−1(U)) = OX(g−1(U)), which is clearly satis-
fies f# = g# ◦ i# and unique. To show that g#

p is local, note that f#
p is local

then (g#
p )−1 = (f#

p )−1(mX,p)/N(OY,f(p)) is the maximal ideal of (OY,f(p))red.

13



Exercise 5 (by Zi-Li).

By 2.4, HomSch(X,SpecZ) = Hom(Z,Γ(X,OX)), however, there is only a
unique Z→ Γ(X,OX). Hence, SpecZ is final object in category of schemes.

Exercise 6 (by Jung-Tao).

There is no prime ideal in a zero ring, so SpecR = φ, and is an initial object
for the category of schemes.

Exercise 7 (by Tzu-Yang Chou).

Given (φ, φ#) : SpecK −→ X, let x := φ(0K) ∈ X. φ# gives a local ring
homomorphism OX,x −→ OSpecK,0. But OSpecK,0 = K ⇒ mSpecK,0 = 0. This
induces OX,x/mX,x = k(x) −→ K.
Conversely, given x ∈ X and k(x) included in K, we define φ : SpecK −→ X
by mapping the only point to x. For the sheaf map, note that for any open set
U , (φ∗OSpecK(U) = OSpecK(φ−1(U)) = K if x ∈ U , 0 otherwise. So we can define
φ#(U) := the composition OX(U) −→ OX.x −→ k(x) −→ K if x ∈ U , 0 otherwise.

Exercise 8 (by Shuang-Yen).

Let f : X → Spec k and let i : Spec k[ε]/(ε2)→ Spec k. Let g : Spec k[ε]/(ε2)→
X be a k-morphism, then

(f, f#) ◦ (g, g#) = (i, i#) =⇒ (f ◦ g, f∗g# ◦ f#) = (i, i#).

Note that f ◦ g = i is always true. If x = g((ε)), then g#
(ε) is a local homomorphism

if and only if g#
(ε) : k(x) → k((ε)) = k is well-defined and g(ε)(mX,x) ⊆ (ε). This

means k(x) ∼= k since g# ◦ f# = i#. Also, g(ε)(mX,x) implies that g(ε)(m
2
X,x) = (0),

hence g(ε) is uniquely determined by g#
(ε)|mX,x : mX,x/m

2
X,x → k[ε]/(ε2), which is

equivalent to choose an element in Tx = Homk(x)(mX,x/m
2
X,x, k(x)).

Exercise 9 (by Yi-Tsung).

Take U = SpecA ⊆
open

X such that U ∩ Z 6= ∅. Since U ∩ Z is an irreducible

closed subset of U , we can write U ∩ Z = V (p) for some p ∈ U . Since {p}
U

=

V (p) = U ∩ Z, we see that {p}
Z

=
(
{p}

U∩Z)Z
= U ∩ ZZ

= Z.

If Z = {p1} = {p2}, since V (pi) = {pi} = Z, both pi are prime ideals since Z is
irreducible, and then p1 =

√
p1 =

√
p2 = p2. Hence every irreducible closed subset

has a unique generic point.

Exercise 10 (by Jung-Tao).
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prime ideals (points) in R[x] is of the form (0), (x− a), (x− b)(x− b̄), where
a ∈ R, b ∈ C, and every proper closed set is finite points without (0).

Exercise 11 (by Jung-Tao).

prime ideals in k[x] is (0) or (f), where f is a irreducible polynomial, and every
proper closed set is finite points without (0).
The residue field of (0) is k(x).
The residue field of (f) is k[x]f/fk[x]f ∼= k[x]/f ∼= F d

p , where d = degf
Only one point (0) has the residue field k(x), and the number of points having the
residue field F d

p is the number of irreducible polynomial degree d, denote as N(d).
Notice that pd =

∑
i|d iN(i), =⇒ N(d) = 1

d

∑
i|d µ(d

i
)pi, where µ(x) is the

Mobius function.

Exercise 12 (by Yi-Heng).

Let X =
∐
Xi/(xi ∈ Xi ∼ xj ∈ Xj ⇔ ϕij(xi) = xj) and ψi : Xi → X be the

inclusion. Get OX by glueing (ψi)∗OXi via ϕij. Since Xi’s are schemes, X is a
scheme. By the definition, (1)-(4) can be checked directly.

Exercise 13 (by Yi-Tsung).

(a) (⇒) Any open subsets is noetherian by ex.1.1.7(c) and is quasi-compact by
ex.1.1.7(b).
(⇐) For any chain U1 ⊆ U2 ⊆ . . . of open subsets of X, let U = ∪

i
Ui ⊆

open
X.

Since U is quasi-compact, there is n ∈ N such that U =
n
∪
j=1

Uj . Thus for any

k ≥ n, Un = Uk, that is, X is noetherian.

(b) Let X = SpecA and {Ui}i∈I be any open cover of X. We may assume
Ui = D (fi) for some fi ∈ A since D (fi) form a base. Then

V

(∑
i∈I

(fi)

)
= ∩

i∈I
V ((fi)) = X\ ∪

i∈I
D ((fi)) = ∅

gives 1 ∈
∑
i∈I

(fi). Write 1
∑
j∈J

ajfj for some finite set J ⊆ I, then we have

1 ∈
∑
j∈J

(fj), and thus

∪
j∈J

D ((fj)) = X\ ∩
j∈J

V ((fj)) = X\V

(∑
j∈J

(fj)

)
= X

15



This gives a finite subcover, hence X is quasi-compact.
For instance, take A = k[x1, x2, . . .], then V (x1) ) V (x1, x2) ( is a chain
of closed subsets of SpecA, which will not terminate, hence SpecA is not
noetherian.

(c) For any chain V1 ⊇ V2 ⊇ . . . of closed subsets of SpecA, let Vi = V (Ii). Then
I1 ⊆ I2 ⊆ . . . is a chain of ideals in A. Since A is noetherian, there is n ∈ N
such that for any k ≥ n, In = Ik, which implies Vn = Vk. Hence SpecA is
noetherian.

(d) Consider A = k[x1, x2, . . .]
/

(x2
1, x

2
2, . . .) . For any p ∈ SpecA, x2

i = 0 ∈ p,

thus xi ∈ p, and then (x1, x2, . . .) ⊆ p. However A
/

(x1, x2, . . .) = k is a
field, thus (x1, x2, . . .) is a maximal ideal. Therefore SpecA is just a point,
which is obviously noetherian. However A is clearly not a noetherian.

Exercise 18 (by Chi-Kang).

(a)
We have f is nilpotent ⇔ fn = 0 for some n ∈ N⇔ f ∈ 0

=
∩p∈SpecA p ⇔ V (f) =

Spec(A)⇔ D(f) = ∅.
(b)
Let ϕ : A → B be a ring homomorphism, and f : SpecB → SpecA be the
induced map. Then the sheaf map OX → f∗OY is given by OX(V )→ f∗OY (V ) =
OY (f−1(V ), and the map on the stalk at p is Af(P) → B(p, which is injective if
ϕ is. Conversely if OX → f∗OY is injective, we have A = OX(X)→ f∗OY (X) =
OY (f−1(X) = OY (Y ) = B is also injective.
When the case ϕ is injective, we have f(Y ) = f(V (0)) = {ϕ−1(p)|0 ⊂ p} = {p ∈
Spec(A)|ϕ−1(I) ⊂ p} = V (ϕ−1(0)) = X, where the last equality since ϕ−1(0) = 0
by the injectivity of ϕ, so f is dominant. (c)
When ϕ is surjective, we can realize B = A/I for some ideal I, then every prime
ideal in B is in the form p/I for some p ∈ V (I) ⊂ Spec(A). Hence f(p/I) = p
implies the injectivity of f , in particular this induced a bijection SpecB → V (I),
and f−1(V (J)) = V (J/I) implies the map is continuous, hence SpecB → V (I)
is a homeomorphism. And similar to (b) the map of the sheaves on the stalk is
Af(P) → B(p, since ϕ is surjective, all the localization maps are surjcetive, hence
OX → f∗OY is surjective.
(d)
Now we have Y ∼= f(Y ) with f(Y ) is a closed subset of X. Note that we have
f∗OY,p = limp∈U OY (f−1(U)) = limf−1(p)∈U OY (U) = Bf−1(p, where the second
equality is since f is a homeomorphism. Now consider the maps on the stalk
Ap → Bf−1p, which is surjective by assmuption, hence by the local-global principal,
A→ B is also surjective.
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Exercise 19 (by Yi-Tsung).

((i)⇒(iii)) Let SpecA = U ∪ V with U ∩ V = ∅ and U, V ⊆
clopen

SpecA. Write U =

V (I) and V = V (J) for some ideals I, J in A. Since V (I + J) = V (I)∩ V (J) = ∅,
we have I + J = A, and V (IJ) = V (I) ∪ V (J) = SpecA, we have IJ = (0). By
Chinese remainder theorem, A = A /IJ ∼= A /I × A /J , where A /I , A /J are
nonzero.
((iii)⇒(ii)) If A ∼= A1 × A2, take e1 = (1, 0) and e2 = (0, 1). Then it is clear that
e1e2 = 0, e2

1 = e1, e
2
2 = e2 and e1 + e2 = 1.

((ii)⇒(i)) For any p ∈ SpecA, if p /∈ V (e1), then e1 /∈ p. Since e1e2 = 0 ∈ p, we
have e2 ∈ p, that is, p ∈ V (e2). Hence SpecA = V (e1)∪V (e2). If V (e1)∩V (e2) 6 ∅,
let p ∈ V (e1)∩V (e2), then we have e1, e2 ∈ p, and then 1 = e1 +e2 ∈ p, thus p = R,
contradiction. Therefore V (e1) ∩ V (e2) = ∅, and thus SpecA is disconnected.
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3 First Properties of Schemes
Exercise 1 (by Yi-Heng).

One direction is followed by the definition. For the converse, we may assume
Y = SpecB = ∪(Vi = SpecBg) and f−1(Vi) = ∪(Uij = SpecAij) with Aij finitely
generated Bi-algebra. Thus, f−1(Vi) = Spec(Aij)g where g is the image of g.
Moreover, (Aij)g is a finitely generated B-algebra since Bg = (Bi)g.

Exercise 2 (by Tzu-Yang Chou).

One direction is trivial. For the converse, we first write Y as the union of
some open affines, say SpecAi, with each f−1(SpecAi) quasi-compact. Given some
open affine SpecR ⊆ Y , we know that there is a covering of SpecR, consisting of
Spec(Ai)ai , which is finite since SpecR itself is quasi-compact.
f−1(SpecAi) is quasi-compact, so each of them has a finite affine covering by
SpecBij, and hence f−1(Spec(Ai)ai) also have a finite affine covering. Now
f−1(SpecR) is a finite union of quasi-compact sets; therefore, itself is quasi-
compact.

Exercise 3 (by Jung-Tao).

(a) by 3.1, 3.2

(b) by 3.1, 3.2, 3.3(a)

(c) Similar to 3.1, we can assume Y = Spec B, and we can reduce to the case
Spec A = ∪Spec Ai, where Ai = Afi are finitely generated B module, and
∪D(fi) is a cover of Spec A, which means A is a finitely generated B module
by the same trick in proposition 3.2.

Exercise 4 (by Shi-Xin).

(⇐) trivial. (⇒) Let Y =
⋃
SpecBi be covered by affine open subsets such

that for any i, f−1(SpecBi) = SpecAi and Ai is a finitely generated Bi-module.
Denote φi be the canonical homomorphism from Bi to Ai. For any affine open V =
SpecB ⊂ Y , we have V ∩ SpecBi =

⋃ni
k=1 Spec(Bi)fik for fik ∈ Bi. Then since V

is quasi-compact, we may assume V =
⋃n
i=1 SpecBi where f−1(SpecBi) = SpecAi

and Ai is a finitely generated Bi-module. Therefore U = f−1(V ) =
⋃n
i=1 SpecAi is

affine by the criterion of affineness (exercise 2.17(b)). Moreover, by using the same
trick in proposition 3.2., one can show that A is a finitely generated B-module.

Exercise 5 (by Shuang-Yen).

18



(a) Let y ∈ Y and let SpecB = V ⊂ Y that contains y. f is finite implies
that f−1(V ) = SpecA for some A that is finitely generated as a B-module.
Then every prime that lies over y = p ∈ SpecB is finite by some algebraic
results. Indeed, we may assume that ϕ : B → A is injective, then since
B → A is finite integral, localization by B − p and quotient p we have
K := Quot (B/p) → (A/pA)B−p =: R is finite. K is a field implies that R
has only finitely many prime ideal since it’s artinian. So f−1(y) is finite,
hence f is quasi-finite.

(b) May assume that Y is affine, then it suffices to show that f : SpecA→ SpecB
that comes from ϕ : B → A is a closed map, which is clearly true since

f(V (I)) = {f(p) | p ⊇ I} = V (ϕ−1(I)).

(c) Let X be the affine line with origin doubled and let Y = A1
k be the affine

line with the natural morphism f . Then it satisfies the condition but not
finite since X is not affine.

Exercise 6 (by Yi-Tsung).

For any open affine subset U = SpecA ⊆
open

X, since X is integral, A is an integral

domain. Since X is irreducible, the (unique) generic point ξ must contain in
U . Now ξ is corresponding to the minimal prime in A, which is just (0). Thus
Oξ = (O |U)(0) = Frac(A) is a field, and we see that K(X) is isomorphic to the
quotient field of A.

Exercise 9 (by Jung-Tao).

(a) Note that in affine case, fiber product is coincide with tensor product, so

Spec(k[x])×Spec(k) Spec(k[x]) = Spec(k[x]⊗k k[x]) = Spec(k[x, y])

And the corresponding topological space is different from Spec(k[x]× k[x]),
because that prime ideals in k[x]×k[x] is of the form (f)×k[x] or k[x]× (f),
does not containing ideals such as x+ y or xy − 1 in k[x, y]

(b) Similarly,

Spec(k(s))×Spec(k) Spec(k(t)) = Spec(k(s)⊗k k(t))

Note that summation of f1(x)
g1(x)
× f2(y)

g2(y)
can be represented as h(x,y)

f(x)g(y)
, where

h ∈ k[x, y] and f, g ∈ k[x] by reducing to the common denominator, denote
this ring R. 1

f(x)
is invertible in R, so prime ideals in R is corresponds to

prime ideals in k[x, y], and proper prime ideal in R is the prime ideal in
k[x, y] which does not touch f(x) or g(y), and is the set of curves in Zariski
topology without those axis-parallel line.

19



Exercise 13 (by Shi-Xin).

(a) If f : X → Y is a closed immersion for any affine piece V = SpecA ⊂ Y ,
f |f−1(V ) is still a close immersion, i.e. X ∩ V = SpecA/I for some ideal
I ⊂ A. Then clearly, f is of finite type since A/I is a finitely generated
A-algebra.

(b) If f : X → Y is a quasi-compact open immersion, then for any affine open
V = SpecA ⊃ Y , f−1(V ) = V ∩X is open in V ; that is, f−1(V ) =

⋃
D(fi)

for some fi ∈ A, and hence by quasi-compactness we might assume f−1(V ) =⋃n
i=1 D(fi) =

⋃n
i=1 SpecAfi . Since each Afi is a finitely generated A-algebra,

f is of finite type.

(c) Let f : X → Y, g : Y → Z be two of finite type morphisms. We might
assume Y =

⋃
SpecAi, Z =

⋃
SpecBj are the affine open covers satisfying

the definition of finite type.

Suppose f−1(SpecAi) =
⋃ni
k=1 Ãik, g

−1(SpecBj) =
⋃mj
l=1 B̃jl. Then

(g ◦ f)−1(SpecBj) = f−1(

mj⋃
l=1

B̃jl)

= f−1(

finite⋃
l,i

(SpecAi ∩ B̃jl))

=

finite⋃
l,i,k,m

Spec(Ãik)f ilm

Since each (Ãik)f ilm is a finitely generated B̃jl-algebra and hence a finitely
generated Bj-algebra

(d) For a morphism f : X → S of finite type, we need to show that f̃ : X̃ =
X ×S Y → Y is of finite type.

(1) First, we might assume S = SpecB, Y = SpecC and X =
⋃
SpecAi

is an affine open cover s.t. Ai are a finitely generated B-algebra, and
hence Ai ⊗B C are C-algebra, which shows that f̃ is of finite type.

(2) If Y =
⋃
SpecCk =

⋃
Yi, then by (1), fk : X ×S SpecCk → SpecCk is

of finite type. Since f−1(SpecCk) = X ×S SpecCk, it follows that f is
of finite type.

(3) If S =
⋃
SpecBj =

⋃
Sj, denoting g : Y → S, then gluing the

morphisms of finite type defined by fi : f−1(Yi)×Si g−1(Yi)→ g−1(Yi)
shows that f is of finite type.
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(e) It just follows from A⊗S B is a finitely generated S-algebra whenever A,B
are finitely generated S-algebra. On the other hand, one can use (c) + (d) to
see that X ×S Y → Y → S is a composition of two morphism of finite type
and hence is still of finite type.

(f) Since g◦f is of finite type, there is an affine open cover Z =
⋃
Zk =

⋃
SpecCk

such that for any k, (g◦f)−1(Zk) =
⋃mk
i=1 SpecAk,i where each Ak,i is a finitely

generated Ck-algebra. Let Y ==
⋃
Yj =

⋃
SpecBj be an affine open cover.

Then we have

f−1(Yj) =
⋃
k

f−1(g−1(Zk) ∩ SpecBj) =
⋃
k

(
⋃
i,l

Spec(Ak,i)fjl)

for some fjl ∈ Ak,i Therefore, f−1(Yj) is covered by Spec(Ak,i)fjl where each
(Ak,i)fjl is a finitely generated Bj-algebra, and hence f is locally of finite
type. Thus by exercise 3.3.(a), f is of finite type since it is quasi-compact.

(g) Let Y =
⋃n
i=1 Yi =

⋃n
i=1 SpecBi be a finite affine open cover with each Bi

being Noetherian. The X =
⋃n
i=1 f

−1(SpecBi) =
⋃
i,j SpecAij is covered

by finitely many affine open subsets where each Aij is a finitely generated
Bi-algebra. Thus {Aij} form a finite affine open cover of X with each Aij
being Noetherian, and hence it follows that X is Noetherian.

Exercise 14 (by Tzu-Yang Tsai).

Since X is of finite type over field k, we can write X = Spec k[x1, . . . , xn]/I =
SpecA for some I � k[x1, . . . , xn]. Recall that Jacobson ring is a ring such that
its nilradical is equal to its Jacobson radical. Since k is a Jacobson ring, by the
property of Jacobson ring, A is also a Jacobson ring. Thus

⋂
maximal ideal inA =

Nilrad(A) = Jrad(A) = 0. Combining the fact that maximal ideals and closed
points are one-one correspondence, we get closed points are dense in X.
For the example of closed points not being dense without assumption, let X =
Z/6Z, (2), (3) are the only two maximal ideals, whose closure is not X.

Exercise 18 (by Wei).

(In the following, X is always Zariski, and that U will denote the set of open
sets of X.) Let Ω ⊆ P (P (X)) be collection of all T ⊆ P (X) satisfying

(C1) T ⊇ U .

(C2) T is closed under taking finite intersections.

(C3) T is closed under taking complements.

21



Consider the set
F =

⋂
T∈Ω

T

This set lies in Ω and is the smallest element in it. We say a subset of X is
constructible if it belongs to F. This description of F is abstract and unusable, so
we try to give an explicit description. Define an ascending chain of subsets of F by

F1 = U , Fn+1 = {
⋂
k

f
Yk : Yk ∈ Fn} ∪ {X \ Y : Y ∈ Fn}

where the symbol "
⋂f" means finite intersection. Consider

⋃∞
k=1 Fk. This set

satisfies the conditions (C1)-(C3), so by minimality of F, we have
⋃∞
k=1 Fk = F.

Under this description, we see that elements in F are really "constructible" in
the sense that it can be constructed from open sets in finitely many operations
consisting of taking finite intersections or taking complements.

(a) (A set is constructible iff it is a finite disjoint union of locally closed sets)
For brevity, we will denote the set of locally closed sets (resp. finite union of
locally closed / disjoint finite union of locally closed) as A0 (resp. A, A′);
schematically, we may write

A0 := {U ∩ C : U ∈ U , (X \ C) ∈ U}

A′ := {
⊔
k

f
Yk : Yk ∈ A0}

A := {
⋃
k

f
Yk : Yk ∈ A0}

we directly have the following inclusions :

A0 ⊆ A′ ⊆ A

I claim the following :

(i) A is closed under taking finite intersections, taking complements.
(ii) Under the condition that X is Noetherian, A = A′.

Suppose (i) is true, we notice that since F0 = U ⊆ A0, we have F ⊆ A.
(this is by our explicit decomposition of F)
Suppose (ii) is true, we then have F ⊂ A′.
Let us show A′ ⊆ F. Let Uk be open, Ck be closed, we have⊔

k

f(
Uk ∩ Ck

)
= X \

⋂
k

f(
(X \ (Uk ∩ (X \ (X \ Ck)))

)
this clearly lies in F6.
Now we prove the unproved claims (i), (ii) :
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Proof of (i). Notice that(⋃
k

f
Yk

)
∩
(⋃
k′

f
Y ′k′
)

=
⋃
k

f⋃
k′

f
(Yk ∩ Y ′k′)

where Yk, Y ′k′ ∈ A0, but it is easy to check that A0 is closed under finite
intersections, so A is closed under finite intersections.
For complements, notice that

X \
(⋃

k

f
Yk

)
=
⋂
k

f
(X \ Yk) =

⋂
k

f(
(X \ Uk) ∪ (X \ Ck)

)
where Yk = Uk ∩ Ck with Uk open, Ck closed, then we have (X \ Yk) ∈ A.
Since A is closed under finite intersection, we are done.

Proof of (ii). Recall that X is Zariski and hence Noetherian. I claim that
for two elements in A0, their union lies in A′. Consider

Y = (V ∩ A) ∪ (W ∩B)

Notice that Y = (V ∩ A) t (W ∩B \ V ∩ A), and that

W ∩B \ V ∩ A =
(
W ∩ (B \ V )

)
∪
(

(W \ A) ∩B
)

so if we inductively define sets

V i+1 = W i \ Ai, Ai+1 = Bi, W i+1 = W i, Bi+1 = Bi \ V i

with initial condition

V 0 = V, A0 = A, W 0 = W, B0 = B

we have

W i ∩Bi \ V i ∩ Ai =
(

(W i+1 ∩Bi+1) ∪ (V i+1 ∩ Ai+1)
)

(∗)

and so for each m ≥ 1 that

Y =
(m−1⊔

i=0

(V i ∩ Ai)
)
t
(

(Wm ∩Bm) ∪ (V m ∩ Am)
)

(?)

Notice that by our definition of the W i, Bi, we have

W i = W 0, B0 ⊇ B1 ⊇ B2 ⊃ . . .
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so since X is Noetherian, the chain

(W 0 ∩B0) ⊇ (W 1 ∩B1) ⊇ (W 2 ∩B2) ⊇ . . .

stabilizes, say (Wm ∩ Bm) = (Wm+1 ∩ Bm+1), but then by (∗), we would
have (Wm ∩Bm)∩ (V m ∩Bm) = ∅, so by (?), we have decomposed Y into a
finite disjoint union of locally closed sets. This proves our claim.
Now we show that given an element in A′ and another element in A0, their
union lies in A′. Write

Y = (U ∩ C) ∪
( n⊔
i=0

(Vi ∩Di)
)

Notice by above, in each (V ∩ A) ∪ (Wi ∩Bi), we can break (Wi ∩Bi) into
pieces to obtain a disjoint union decomposition of (V ∩ A) ∪ (Wi ∩Bi), and
collecting all the decompositions together, we are done.
We are now ready to show that A′ = A. We do this also by induction. Notice
that A can also be written as union of its subsets An (for n ≥ 1) defined by

An = {Yn−1 ∪ Y0 : Yn ∈ An−1, Y1 ∈ A0}

then since A0 ⊆ A′ and A′ is closed under union with elements in A0, we
have An ⊆ A′ by induction, and hence A ⊂ A′.

(b) (Suppose X is irreducible with generic point η and Y is constructible
then Y is dense iff η ∈ Y .)
Let η be the generic point of X, and let P0 ∈ Y . Appealing to the identity :

cl(P0) ⊆ cl(Y ) ⊆
⋃
P∈Y

cl(P )

and notice that

cl(P ) =

{
⊆ X \ {η}, P 6= η.

= X, P = η.

we immediately have the claim (The proof above shows that we needn’t
assume Y to be constructible nor X to be Zariski).
(If the above happens, it contains an open set)
Notice that for a locally closed set C ∩U , if η ∈ C ∩U , we immediately have
C = X; this shows U = C∩U . Apply the finite disjoint union decomposition
to the constructible set given in (a), we are done.
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(c) (A set is closed iff constructible and stable under specialization)
By definition of constructibility and Exercise II.3.17.(d), one of the impli-
cation is clear. For the converse, let Y be constructible and stable under
specialization. By (a), there exists open sets Uk, closed sets Ck such that

Y =
⊔
k

f
(Uk ∩ Ck)

Define the sets :

C :=
⋃
k

f
Ck, Z0 := C, Zm+1 := clZm(Y ∩ Zm) = clC(Y ∩ Zm)

we get a descending chain of closed subsets

Z0 ⊇ Z1 ⊇ Z2 ⊇ . . .

so there exists some l > 0 such that Y ∩Z l is dense in Z l. Decomposing Z l into
finite union of irreducible components, Y will contain all the generic points
of these components (if not, then Y isn’t dense in some of the component by
(b) and will not be dense in Z l), and since Y is stable under specialization,
we have Y ∩ Z l = Z l. By our definition, we get for each m ≥ 1 that

(Y ∩ Zm) = (Y ∩ (clC(Y ∩ Zm−1)) ⊇ (Y ∩ Zm−1) ⊇ (Y ∩ Zm)

we see that Y ∩ Zm−1 = Y ∩ Zm. By induction, Y ∩ Z0 = Y ∩ Z l = Z l, but
recall that Y ⊆ C = Z0, which gives us Y = Z l, so Y is closed.
(A set is open iff constructible and stable under generization)
Since a set is stable under specialization iff its complement is stable under
generization, we are done. For a proof of this fact, notice that

Y is stable under specialization ⇔ [η ∈ Y ⇔ cl(η) ⊆ Y ]
⇔ [cl(η) ( Y ⇔ η /∈ Y ]
⇔ [cl(η) ∩ (X \ Y ) 6= ∅ ⇔ η ∈ X \ Y ]
⇔ X \ Y is stable under generization

(d) (Inverse image of a constructible set under a continuous map is constructible)
By (a), it suffices to show this for locally closed set, which is by

f−1(U ∩ C) = f−1(U) ∩ f−1(C)
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4 Separated and Proper Morphisms
Exercise 1 (by Zi-Li).

Let f : X −→ Y be a finite morphism between schemes. First, f is finite
type since it is finite. Second, f is separated since it is an affine morphism.
Last, we remain to check that f is universally closed. Let Y −→ Y ′ and X ′ =
X ×Y Y ′, closedness can be checked locally, we may assume thatY = SpecR,X =
SpecA, Y ′ = SpecB,X ′ = SpecA⊗RB, where A is finite R module. Hence,A⊗RB
is finite B module, by exercise 3.5(b), a finite morphism is closed, this completes
the proof.

Exercise 6 (by Pei-Hsuan).

Let X = SpecA, Y = SpecB where A, B are integral domains. Suppose
f : X → Y is proper, Let K = Frac(A), R be any valuation ring of K containing
f(B). Form now on, we abuse of notion with f and the induced map A→ B.Then
we have the commutative diagram:

K A

R B

ϕ

f

f

Notice that ϕ exists since f is proper. Thus, A ⊆ R, for every valuation ring R
which containing f(B). By Theorem 2.4.11A,

f(B) =
⋂

f(B)⊆R,R:valuation ring

R.

Thus, A ⊆ f(B), so f is integral. f is both of finite type and integral, so f is
finite. This complete the proof.
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5 Sheaves of Modules
Exercise 3 (by Zi-Li).

Define α : HomA(M,Γ(X,F ))→ HomX(M̃,F ) by:
Given ϕ : M → Γ(X,F ), define ψ(D(f)) : M̃(D(f)) = M⊗AAf → F (D(f)),m⊗
a 7→ aϕ(m). Glue ψ(D(f)) to get ψ : M̃ → F .
The inverse of α is taking global section, hence,˜and Γ are adjoint pair.

Exercise 6 (by Tzu-Yang Tsai).

(a) (⊆) If p ∈Suppm, i.e. mp 6= 0, if p /∈ V (Annm),
∃r ∈ Annm \ p s.t. rm = 0⇒ m

1
= 0

1
→←

(⊇) If p ∈ V (Annm), that is, p ⊇ Annm ⇒ @r ∈ M \ p s.t. rm = 0 ⇒
mp 6= 0

(b) (⊆) If p ∈SuppF , i.e. Fp = Mp 6= 0, by finitely generated, we may have
M = A < m1, . . . ,mn > for some {mi}ni=1 ⇒ p ⊇ ∩ni=1Annmi ⇒ p ∈
V (AnnM)

(⊇) If p ∈ V (AnnM), then p ∈ Annmi∀i = 1 ∼ n⇒ Mp = Fp 6= 0⇒ p ∈
SuppF

(c) Since F is coherent, F |U = M̃ for some A-module M , where U is an
open affine subset = SpecA. Then SuppF |U = V (AnnM) is closed, thus
SuppF =

⋃
U⊆affineX

is closed.

(d) Recall that 0 → H 0
Z → F → j∗(F |U) → 0 is an exact sequence, where

U = X \ Z, j : U ↪→ X is the inclusion map (Ex 1.20). Since j is open
immersion, j∗ is quasi-compact and separated, and F |U is quasi-coherent,
these imply j∗(F |U) is quasi-coherent. Combining that F is also quasi-
coherent, H 0

Z is quasi-coherent. By definition ΓZ(F ) = {p ∈ X|Suppp ⊆ Z}
= {p ∈ X|p ∈ V (Anna)}, since A is Noetherian ⇒ a is finitely generated.
Therefore ΓZ(F ) = {m ∈M |anmfor somen ∈ N} ∼= Γa(M)

⇒ ˜Γa(M) ∼= ˜ΓZ(F ) = H 0
Z

(e) The quasi-coherent case has been proved in (d).
For the coherent case, ΓZ(F ) is finitely generated, thus = H 0

Z = ˜ΓZ(F ) is
coherent.

Exercise 15 (by Shi-Xin).
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(a) Let X = SpecA be an affine scheme where A is noetherian ring and F be
a quasi-coherent sheaf on X. Then F = M̃ for some A-module M . Since
M = limα∈AMα where Mα|α ∈ A are all finitely generated A-submodule
of M , for any f ∈ A, we must have Mf = limα(Mα)f . It follows that
F(D(f)) = limα M̃(D(f)). Moreover, because D(f) form a basis, F(U) =
limα M̃(U) for any open set U . Thus F = limαFα where each Fα := M̃α is
a coherent sheaf.

(b) Let i : U → X be the inclusion map. Since X is noetherian, U is also
noetherian, and hence by Proposition 2.5.8, i∗(F) is quasi-coherent. Then by
(a), we can write i∗(F) = limαFα. Therefore for any affine open subset V ⊂
U , we must have F|V = limα(Fα)|V .We might assume F|V ∼= M̃,Fα|V ∼= M̃α

where M,Mα are finitely generated. Then we have M =∼= Mα. Since M is
finitely generated, there must be some Mα containing all generators of M .
Moreover, U can be covered by finitely many affine open subsets, so we can
choose F ′ := Fα for some α such that F ′|U ∼= F .

(c) Let ρ be the natural map G → i∗(G|U). Since ρ−1(i∗F)|U ∼= F and it is
quasi-coherent, there is a coherent subsheaf F ′ of ρ−1(i∗F) such that F ′U ∼= F .
Moreover, F ′ ⊂ ρ−1(i∗F) ⊂ ρ−1(i∗G|U) ⊂ G

(d) Let X be a noetherian scheme covered by affine open subsets
⋃n
i=1 Ui. We

have proved the desired result when n = 1. It suffices to show that we can
extend over one of them at a time. We might assume n ≥ 2 and suppose that
we have a coherent subsheaf F ′1 ⊂ G|U1 on U1 such that F ′1|U∩U1

∼= F|U∩U1 .
Then we might apply (c) to F ′1 on U1, so we obtain a coherent sheaf F ′2 ⊂ G|U1

on U1∪U2 such that F ′2|U∩(U1∪U2)
∼= F|U∩(U1∪U2). Thus by induction we prove

desired result. Moreover, taking G = i∗F shows that we can extend a coherent
sheaf from an open subset U to X.

(e) Clearly, F ⊇
⋃
Fα for all coherent subsheaves Fα of F . Conversely, if s is a

section in F(U) where U is an open set of X, let G be the subsheaf of FU
generated by s. Then by (d) we can extend G to a coherent subsheaf G ′ of
F such that s ∈ G ′(U). Thus F ⊂

⋃
Fα.
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6 Divisors
Exercise 1 (by Wei-Ping).

X ×Pn is regular and codimension one since locally it is X ×An. Irreducible
since it is union of two affine pieces with nonempty intersection, and reduced
is again local condition, hence X × Pn is integral. Also it is separated since
X ×Pn → X is projective and X is separated.
Now we have Z→ Cl(X×Pn)→ Cl(X×An)→ 0, where first map is 1 7→ X×H,
H = {x0 = 0}. Since Cl(X×An) ' Cl(X), it suffices to show the sequence is exact,
then taking closure results a converse map of second map so sequence splits. Let
f be element in function field, if (f) = m · (X ×H), then vX×H(f) = m, f = h

g
xm0 .

If m 6= 0 then h or g involves other divisors, a contradiction. Hence m = 0 and
first map is injective, done.

Exercise 2 (by Wei-Ping).

(a) To prove well-defined, let η be generic point of divisor Yi, then consider two
choices of covering, say {(Ui, fi)}, {(Vj, gj)}. Now choose η ∈ Ui, η ∈ Vj , then
fi
fj

has same valuation on open set Ui ∩ Vj , so fi
fj
∈ Γ(Ui ∩ Vj, O∗). Therefore

vYi(fi) = vYi(gj).

(b) We claim that (f) ·X = (f).
(f) ·X =

∑
i vYi(f)(Yi ·X) =

∑
i vYi(f)(

∑
j vYij(fij)Yij). Given any generic

point of a divisor Z on X, say η, we consider an open neighborhood W of η
disjoint with all divisors Yi occurring in (f) such that η /∈ Yi ∩X. For every
covering from Yi, choose one open set such that η is in it, say (Uiki , fiki),
then consider product h =

∏
i f

vYi (f)

iki
on their intersection. Then h

f
is unit on

(
⋂
i Uiki) ∩W since valuation is the same on this open set and note that the

coefficient is same as those in the previous sum. Therefore vYij(f) is same as
coefficient of divisor Yij in (f) ·X, as we desired.
Combining (a) and the fact that any divisor on Pn can be change to some
multiple of any hyperplane, in particular, not containing X, we get a homo-
morphism ClPn → X.

(c) By linearity reduce to the case whereH = V (f) is a hypersurface. i(X,H;Yi) =
µpi(S/Ix + (f)) where pi is the prime ideal correspond to Yi. The valua-
tion ring of Yi is (S/Ix)(pi) and µpi(S/Ix + (f)) can be viewed as length of
(S/Ix + (f))(pi) over (S/Ix)(pi). Write f = uani in the valuation ring, then
we have filtration

(S/Ix + (f))(pi) = (ani) ) (ani−1) ⊇ · · · ) 0
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where ani is image under quotient and localization. Therefore ni = i(X,H, Yi),
and by Bezout thm we get

deg(D ·X) = (degD) · (degX)

(d) K(X) = S(X)((0)) so we can find some f ∈ K∗ such that f restricting on X
is f , so by (b) get (f) · X = (f) Hence for any principal divisor D on X,
deg(D ·X) = deg((f) ·X) = (deg(f)) · (degX) = 0. The degree function
defines a homomorphism to Z and we get commutative diagram

ClPn ClX

Z Z

deg ' deg

·(degX)

Exercise 4 (by Shuang-Yen).

Since Quot(A) = k(x1, . . . , xn)[z]/(z2 − f), [Quot(A) : k(x1, . . . , xn)] = 2. For
α = g + hz ∈ Quot(K), where g, h ∈ k(x1, . . . , xn), the minimal polynomial of α
over k(x1, . . . , xn) is {

X2 − 2gX + (g2 − h2f), if h 6= 0

X − g, if h = 0

When h = 0, α is integral over k[x1, . . . , xn] if and only if α = g ∈ k[x1, . . . , xn]
since k[x1, . . . , xn] is a UFD.
When h 6= 0, α is integral over k[x1, . . . , xn] if and only if −2g, g2 − h2f ∈
k[x1, . . . , xn]. Since the characteristic of k is not 2, it’s equivalent ti g, h2f ∈
k[x1, . . . , xn]. Write h = a/b with a, b ∈ k[x1, . . . , xn] and a, b are coprime to each
other, then h2f = a2f/b2, but f is square-free, so h2f ∈ k[x1, . . . , xn] if and only
if b ∈ k× if and only if h ∈ k[x1, . . . , xn]. Hence, α is integral over k[x1, . . . , xn] if
and only if g, h ∈ k[x1, . . . , xn] if and only if α ∈ A, so A is integrally closed since
z is also integral over k[x1, . . . , xn].

Exercise 6 (by Chun-Yi).

(a) (⇒) If P,Q,R are collinear. Let L be the line attaching P,Q,R. Since degX
= 3, L∩X has only three points P,Q,R. Since L ∼ [z = 0], P +Q+R ∼ 3P0

⇒ P −P0 +Q−Q0 +R−R0 ∼ 0 ⇒ P +Q+R = 0 in the group law of X.
(⇐) If P,Q,R = 0. Let L be the line passing through P,Q. By Bezout’s
thm, L∩X has three points, say P,Q, S, then P +Q+T = 0. By (⇒), since
the inverse of P +Q is unique, T = R ⇒ R ∈ L ⇒ P,Q,R are collinear.
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(b) (⇒) Let L be the tangent line passing through P . By Bezout’s thm, L ∩X
has three points, say P, P, S, then by (a), P + P + T = 0. Since the inverse
is unique and P + P = 0 ⇒ T = P0.
(⇐) Let L be the tangent line at P , passing through P0, then by Bezout’s
thm, L intersect X at P with multiplicity 2. By (a), P + P + P0 = 0 ⇒
P + P = 0 ⇒ P has order 2.

(c) (⇒) Let L be the tangent line at P , then L∩X = {P, PS} for some S ∈ X,
and P + P + S = 0. Since 3P = 0, S = P ⇒ L intersects X at P with
multiplicity 3.
(⇐) If P is an inflection point, since L ∩X has only three points, L ∩X =
{P, P, P}, thus P + P + P = 0, again by (a).

(d) By Mordell-Weil theorem, the points of X with coordinates in Q form a
subgroup of X. If z = 0, the only rational point in (0,1,0). If z 6= 0, it
suffices to find rational points of y2 = x3 − x, which is only (1,0),(0,0),(-1,0)
⇒ the subgroup is Z/2Z× Z/2Z.

Exercise 7 (by Yi-Tsung).

In example 6.11.4, we have seen that there is 1-1 correspondence between the
set of nonsingular closed points of X and the kernel CaCl0X of the degree map.
It suffices to show that the set of nonsingular closed points of X endowed the
group structure is isomorphic to Gm. The set of nonsingular closed points of X
is just X\ {(0, 0, 1)}, say Z = {(0, 0, 1)}. Consider φ : X\Z → Gm, (x, y, z) 7→
y − x
y + x

. Consider the coordinates change: (x, y, z) = (4x′ − 4y′,−4x′ − 4y′, z′),

then X\Z = {x′y′z′ = (x′ − y′)3} \ {(0, 0, 1)}, and φ(x′, y′, z′) =
x′

y′
. Now setting

y′ = 1, then X\Z = {x′z′ = (x′ − 1)3} in A2
k and φ′(x′, z′) := φ(x′, 1, z′) = x′,

and clearly its inverse map Gm → X\Z is defined by t 7→
(
t,

(t− 1)3

t

)
. Thus

φ is bijective as sets. To show that φ is a group homomorphism, since for
p ∈ X\Z, we have φ(−P ) = φ(P )−1, hence it suffices to show that for P,Q,R ∈
X\Z collinear, we have φ(P )φ(Q)φ(R) = 1, and it is enough to prove the same
thing for φ′, i.e. to prove φ′(P )φ′(Q)φ′(R) = 1. Let L : z′ = ax′ + b be the
line passing through P,Q,R, then φ′(P ), φ′(Q), φ′(R) are roots of x′(ax′ + b) =
(x′ − 1)3, thus we see that φ′(P )φ′(Q)φ′(R) = 1, yielding that φ is a group
homomophism, and hence an isomorphism. Therefore we see that CaCl0X ∼=
{nonsingular closed points of X} ∼= Gm as groups.

Exercise 8 (by Chi-Kang).
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(a) We need to show that f ∗(L ⊗OY M ) ∼= (f ∗L )⊗OX (f ∗M ). Note that

f ∗(L ⊗OY M )(U) = f−1(L ⊗OY M )⊗f−1OY OX(U)

= lim
V⊃f(U)

(L (V )⊗OY (V ) M (V ))⊗OY (V ) OX(U)

= lim
V⊃f(U)

(L (V )⊗OY (V ) OY (V ))⊗OY (V ) (M (V )⊗OY (V ) OY (V ))⊗OY (V ) OX(U)

= lim
V⊃f(U)

(L (V )⊗OY (V ) OX(U))⊗OY (V ) (M (V )⊗OY (V ) OX(U))

= (f ∗L (U))⊗OX(U) (f ∗M (U))

so we are done.
(f ∗(L ⊗M ) ∼= (f ∗L )⊗ (f ∗M ) holds for any sheaves, not need invertible).

(b) We need to show that f ∗L (D) ∼= L (f ∗(D)). Since f is finite and sheaf
isomorphism can be check locally, we may assume X = SpecB, Y = SpecA with
B is a finite A module, f is induced by the map φ : A → B, and both A,B are
integral domain of dimension 1.
Note that L (D)(U) := {s ∈ K(X) = K(U)|(div(s) +D)|U ≥ 0} by construction.
Now since X, Y are non-singular affine, every divisor is principal, so there is
s ∈ K(Y ) ∼= Q(A) s,t, div(s) = D, hence L (D) = Ãs, and so L (f ∗D) = B̃φ(s).
Hence we have

f ∗L (D)P ∼= L (D)f(P ) ⊗OY,f(P )
OX,P

∼= Asφ−1P ⊗Aφ−1P
BP
∼= B(φ(s))P ∼= L (f ∗D)P .

(c) We need to show f ∗L (D) = L (D.X) for D ∈ Div(Pn) and D.X defined in
6.2. Since for U ⊂ Pn we have L (D)(U) := {s ∈ K(X) = K(U)|(div(s) +D)|U ≥
0}, we have

f ∗L (D)(V ) = (f−1L (D)⊗f−1OPn OX)(V )

= lim
U⊃V

L (D)(U)⊗OPn (U) OX(V )

= {s ∈ K(X) = K(U)|(div(s) +D)|V ≥ 0} ⊗OPn |V OX(V )

= {s ∈ K(X) = K(U)|(div(s) +D.X)|V ≥ 0} ⊗OX(V ) OX(V )
∼= L (D.X)(V ).

So we are done.

Exercise 10 (by Tzu-Yang Chou).

(a) A1
k = Spec k[x], so given any F ∈ Proj(A1

k), we have F ' M̃ for some finite
k[x] module M . Since k[x] is a PID, M is finitely presented. Taking tilde
functor we have 0 −→ Om

X −→ On
X −→ F −→ 0.
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Define φ : K(X) −→ Z by F 7−→ n−m. Note that this is in fact mapping
F ti the rank of the free part of M . Also, φ is epic since On

x 7−→ n. φ is
mono, since F 7−→ 0⇔ n = m⇔ ∃0 −→ Om

X −→ On
X −→ F −→ 0, that is

[F ] = 0 in K(X). Hence φ is the desired isomorphism.

(b) The rank function define a map K(X) −→ Z since any short exact sequence
of sheaf gives the stalk sequence at the generic point. Surjectivity is similar
as in (a).

(c) The exactness at K(X) −→ K(X \Y ) −→ 0 follows from Ex(II.5.15) For the
exactness at K(Y ) −→ K(X) −→ K(X \ Y ), it’s clear that the composition
is zero, so it remains to show that if F |X\Y = 0, then ∃OY module G such
that [i∗G ] = [F ] where i is the inclusion Y ↪→ X.
Let F be a coherent sheaf on X only supported on Y , we’ll elaborate a finite
filtration 0 = Fn ⊆ · · · ⊆ F0 = F such that Fi/Fi+1 is an OY module. We
claim that Fi := ker(Fi−1 −→ i∗i

∗Fi−1 will satisfy the condition, where the
map is given by adjunction.
First, ∀U = SpecA ⊆ X, Y ∩ U is a closed subset of U and hence Y ∩ U =
Spec(A/I) for some ideal I ⊆ A. So if F |U ' M̃ , them i∗i

∗F |U ' ˜M/IM .
Similarly, we see that Fi|U ' ˜I iM .
Now note that (X \ Y ) ∩ U =

⋃
i Spec(Axi) where xi are the generators of

I. Since F is supported on Y , we have Mxi = 0 ⇒ xnii annihilate M for
some ni. There are finitely many i, so ∃ a uniform N , that is, INM = 0,
amd thus the filtration is locally finite. X is a Noetherian scheme and
in particular quasi-compact, again there exists a uniform n such that the
filtration terminates at Fn.

Exercise 11 (by Tzu-Yang Chou).

(a) Consider the exact sequence 0 −→ ID −→ OX −→ OD −→ 0, then we
see that OD is isomorphic to the direct sum of the skyscraper sheaf of
coker(ID,P −→ OX,P ) at P , where P is a point whose coefficient in D is
nonzero. More precisely, at P , OD is OX,P/m

nP
X,P if we write D =

∑
P

nPP .

In particular, in K(X), [OD] =
∑
P

[FP ]. Now since X is a nonsingular curve,

we have OX,P/mX,P ' mX,P/m
2
X,P ' mi

X,P/m
i+1
X,P ,∀i. This together with

0 −→ mi
X,P/m

i+1
X,P −→ OX,P/m

i
X,POX,P/m

i+1
X,P −→ 0 gives [FP ] = nP [k(P )],

where k(P ) is the skyscraper sheaf of residue field at P . Hence, [OD] =∑
P

nP [k(P )] = ψ(D).

For D,D′ : divisors with D ∼ D′, we need to show ψ(D) = ψ(D′). We
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may write both of them as differences of effective divisors, so we can assume
they are effective. Now, ψ(D) = [OD] = [OX ]− [ID] = [OX ]− [L (−D)] =
[OX ]− [L (−D′)] = [OX ]− [ID′ ] = [OD′ ] = ψ(D′).

(b) Find a locally free sheaf E ′0 with epimorphism E ′0 −→ F ′, where F ′ is the
extension of F to X̄. Restricting on X and taking the kernel, we obtain
0 −→ K −→ E ′0|X −→ F −→ 0. We claim that K is locally free of finite
rank. At P , KP ⊆ (E ′0|X)P = Om

X,P for some m. Since X is nonsingular,
OX,P is PID ⇒ KP is free of finite rank. This proves the existence of the
resolution.
Independence of the choice: Conised two locally free resolutions of F ,
0 −→ E1 −→ E0 −→ F −→ 0 and 0 −→ E ′1 −→ E ′0 −→ F −→ 0 with the
maps named after f1, f0, f

′
1, f

′
0 respectively. We construct a third locally free

resolution which maps surjectively to both of them. Let G0 := {(u.u′) ∈
E0⊕E ′0|f0(u) = f ′0(u′)} and let E ”0 be a locally free sheaf with a epimorphism
E ”0 −→ G0. Let f”0 : E ”0 −→ G0 −→ F . Then we have two surjections
E ”0 −→ E0 and E ”0 −→ E ′0 by natural projections. Next, let H0,H ′

0 ,H ”0

be kernels of f0, f
′
0, f”0 respectively. Let G1 := {(u, u′) ∈ E1⊕E ′1|∃u” ∈H ”0

such that f1(u) = p(u”), f ′1(u”) = p′(u”)} where p, p′ are the epimorphisms
from H ”0 to H0 and H ′

0 respectively. We also let E ”1 be a locally free
sheaf with an epimorphism E ”1 −→ G . Then as above, we obtain that E ”1

surjects to all E1,E ′1 and E ”0. In fact, this works for locally free resolutions
of any length inductively.
Now consider two resolutions with an epic chain map from one to another.
Taking kernels in each part and computing determinant we obtain the trivial
sheaf, that is these two resolutions have the same determinant (and hecne
by symmetry, any two resolutions have the same determinant.) Also, for
a short exact sequence 0 → F ′ −→ F −→ F” −→ 0, we have det F =
det F ′ ⊗ det F”. This gives a map from K(X) to PicX.
To show that det(ψ(D)) = L (D), first consider the effective case. Since
0 −→ ID −→ OX −→ OD −→ 0 is a locally free resolution, we have
det(ψ(D)) = OX ⊗I −1

D = I −1
D = L (−D)−1 = L (D). For general D, write

D = A−B with A,B effective and the same argument works.

(c) Given a coherent sheaf F on X, let L ∈ Pic(X) be an ample invertible
sheaf, ∃n ∈ N such that F ⊗L ⊗n is globally generated, say by s1, ..., sm.
Hence ∃ an epimorphism Om

X −→ F ⊗L ⊗n. At generic point ξ, this gives
an epimorphism K(X)m −→ Fξ, so ∃0 ≤ r ≤ m such that K(X)r −→ Fξ.
Call this isomorphism φ, and then there’s a dense open set U ⊆ X such
that φ : Or

U −→ F ⊗ L ⊗n|U is an isomorphism. Now consider 0 −→
kerφ −→ Or

X −→ F ⊗ L ⊗n −→ cok φ −→ 0. Note that (kerφ)P is
a submodule of Or

X,P and hence is free. Also, (kerφ)P = 0 on U and
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hence kerφ = 0 on X by Ex(II.5.7)(a). Tensoring (L ∗)⊗n, we obtain that
0 −→ (L ∗)⊗n −→ F −→ T −→ 0. It remains to check that T is a torsion
sheaf: looking at the stalk sequence at ξ and we have a exact sequence of
vector spaces, so Tξ = 0.
Now [F ] − r[OX ] ∈ Imψ: [F ] = r[L (D)] + [T ] by above. Hence [F ] −
r[OX ] = [T ] + r([L (D)]− [OX ]). The latter term lies in Imψ by part (a),
so it suffices to check that the class of a torsion sheaf lies in the image of ψ.
But since Tξ = 0, SuppT ( X is closed and hence is finitely many points;
thus T is a direct sum of skyscraper sheaves at each P ∈ SuppT , which in
K(X) is equal to a multiple of [k(P )], which lies in the image of ψ.

(d) Combining all above, we obtain a split exact sequence 0 −→ Pic(X) −→
K(X) −→ Z −→ 0.

Exercise 12 (by Tzu-Yang Chou).

Define degree of F by the degree of the determinant of F , then all properties
hold by Ex(II.6.11). For the uniqueness, we induct on n := rkF . When n = 0
we use (2); when n = 1 we use (1); when n > 1 we use (3) and the induction
hypothesis applies.
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7 Projective Morphisms
Exercise 1 (by Yi-Heng).

It suffices to show that f#
P is injective for each P ∈ X. Since f#

P : LP (= OP ) �
MP (= OP ) as a homomorphism of OP -modules, we have f#

P (a) = af#
P (1) = 1 for

some a ∈ OP . Thus, f#
P (1) is a unit, which implies f#

P is injective.

Exercise 3 (by Chi-Kang).

(a) Let ϕ : Pn → Pm be a morphism send x to [s0(x), ..., sm(x)], then it
is induced by a graded ring homo ϕ̄ : k[x0, ..., xm] → k[x0, ..., xn] sends xi to
si(x0, ..., xn) with each si homogeneous of degree d for some d ≥ 0.

Now if ϕ is non-constant, then at least one of si (and hence all si) are non-
constant, so d > 0. And since ϕ is a morphism, these si cannot have common zero
other than [0,...,0], so there is at least n+ 1 equations, hence m ≥ n.

Now we have dim(imϕ) = dim(imϕ̄)-1 = dimk[so, ..., sm]− 1 ≤ n since ϕ is a
morphism. To show dim(imϕ) ≥ n. By the above inequality, it is equivalent to
find n+ 1 algebraically independent element in k[s0, ..., sm].

Taking n + 1 of these si’s which have no common zero other than zero in
the before paragraph. Say s0, ..., sn. to show they are algebraically independent,
we prove by contradiction. Suppose that there is a non zero polynomial F s,t,
F (s0, ..., sn) = 0. Then F defines a hypersurface H ⊂ An+1. Note that F must
has no constant term, so 0 ∈ H, and F (s0(a), ..., sn(a)) = 0 for all a ∈ kn+1, so we
get a morphism ψ : An+1 → H by ψ(x) = (s0(x), ..., sn(x)). Since these si have no
common zero other than 0, therefore ψ−1((0, ..., 0)) = 0 is a single point, so ψ is a
finite morphism, but dimAn+1 > dimH, which is a contradiction. Hence these si
must be algebraically independent.

(b) by the condition (3), we may assume imϕ is not contained in any linear
subspace. So by (a), we have each si is homogeneous with degree d > 0. Now let
M0, ...,MN be the all degree d monic monomials, we have the d-uple embedding
ρd : Pnx0,...,xn → PNz0,...,zN by sending x to [M0(X), ...,MN(x)]. Now for each si we
have si =

∑
aijMj for some aij ∈ k, consider the subspace L := V ({si}), we get a

linear projection p : PN−L→ Pm by p([z0, ..., zn]) = [
∑
a0jzj, ...,

∑
amjzj ]. Hence

p ◦ ρd(x) = [
∑
a0jMj, ...,

∑
amjMj] = [s0(x), ..., sm(x)] = ϕ(x).

Exercise 4 (by Shuang-Yen).

(a) Let L be an ample sheaf on X over A, then there exists m > 0 such that
L ⊗m is very ample on X over A. So there’s an immersion X → PrA for some
r, since PrA is separated over A, hence over Z, X is separated.
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(b) Let X = U1 ∪ U2 where Ui ∼= Spec k[x]. Let L ∈ PicX, then L |Ui ∼=
f−1
i OX(Ui) = f−1

i k[x] for some fi ∈ k[x] such that

f1/f2 ∈ O(U1 ∩ U2)× = (k[x]x)
× = {xn | n ∈ Z}.

So there are m,n ∈ Z such that L |U1
∼= xmk[x],L |U2

∼= xnk[x]. Since
L ∼= x−mL , we may assume m = 0. So PicX ∼= Z. When n = 0, L
is trivial, hence generated by global sections. When n 6= 0, WLOG let
n > 0, then at the point P ∈ U1 that corresponds to (x) ∈ Spec k[x], we
have OX,P = k[x](x) and LP = k[x](x). Note that Γ(X,L ) = xnk[x], so
Lp is not generated by global sections. It’s clear that OX is coherent, but
OX ⊗ (L ⊗d)⊗m ∼= L ⊗md is not generated by global sections, so L ⊗d is not
ample, also, O⊗mX ⊗ L is not generated by global sections, so OX is not
ample. So X has no ample sheaf on it.

Exercise 5 (by Tzu-Yang Tsai).

(a) Because L is ample, ∀F is coherent, ∃n ∈ Ns.t.F⊗L n∀n ≥ n0 is generated
by global sections. Since F ⊗L n,M are coherent, ∀F is coherent, and
tensor of sheaves that are generated by global sections is still generated by
global sections, F ⊗ (L ⊗M )n = (F ⊗L n)⊗M n is generated by global
sections ∀n ≥ n0.

(b) Since M is coherent, L is ample, ∃m0 ∈ Ns.t.M⊗L m∀m ≥ m0 is generated
by global sections. Similarly, F is coherent, ∃m1 ∈ Ns.t.F ⊗L m∀m ≥ m0

is generated by global sections.
Then form ≥ m0+m1,F⊗(M⊗L m)i = F⊗L m0⊗(M⊗L m1)i⊗L m0(i−1)

is generated by global sections ∀i large enough, thereby M ⊗L m is ample.

(c) Since L ,M are ample, ∀F is coherent, ∃m1,m2 ∈ N s.t.
F ⊗L m, (F ⊗L m) ⊗Mm′ are generated by global sections, then take
m = max{m1,m2},F ⊗ (L ⊗M )n is generated by global sections ∀n ≥ m.

(d) Since L is very ample, ∃i : X
closedimm.−−−−−−→ P r

A s.t. i∗(O(1)) ∼= L .
On the other hand, due to M is generated by global sections and finite (by
X is of finite type over A), ∃i : X → P s

A s.t. φ∗(O(1)) ∼= M .
Then by Segre embedding, ∃ψ : X → P r+s+rs

A s.t. ψ∗(O(1)) ∼= M ⊗L . It’s
left to show ψ is a closed immersion, then as a consequence, M ⊗L is very
ample. Observe that ψ can be factor into

X
id×φ−−−→ X × P s

A
i×id−−→ P r

A × P s
A

Segre′s−−−−→ X × P r+s+rs
A

Notice i× id, Segre’s embedding are closed embedding, and id× φ is
P r
A × P s

A

Segre′s−−−−→ X × P r+s+rs
A under base change, it’s a closed embedding

since P r
A is separated. Thus ψ is closed embedding.
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(e) Because L is ample, ∃n0 s.t. L n0 is very ample.
Besides, ∃n1 s.t. L n is generated by global sections ∀n ≥ n1, thus by (d),
L i is very ample ∀i ≥ n′ = n0 + n1.

Exercise 6 (by Pei-Hsuan).

(a) i : X ↪→ Pnk is closed immersion, sayX = ProjSmwhere S = k[x0, . . . , xn]/I(X).
L is very ample, so L = i∗OPnk = S(1)∼.
Also, we have Γ(X,L n) = Γ(X,S(n)∼) ∼= S(n) Thus, for n large enough,
dim |nD| = dim Γ(X,L n)− 1 = dimSn − 1 = PX(n)− 1.

(b) If r|n, then |nD| = {0}. Thus, dim |nD| = 0.
If r - n. Suppose E ∼ nD with E is effective, then deg rE > 0. But deg rE =
degrnD = 0 leads a contradiction. Thus, |nD| = ∅, so dim |nD| = −1.

Exercise 8 (by Jung-Tao).

Given a morphism f : X → P (E), take L = f ∗(O(1)), the map E → L is
surjective since there is a natural surjective map from π∗E to O(1).

Conversely, for any local, which is free, to give a surjective morphism E =
Onx → L is equivalent to give n sections generate L, and there is an unique such f
s.t. f ∗π∗E → L = f ∗(O(1)) is consistent with the map π∗E → O(1).

Remark. It’s exactly the case X = Y, g = id in proposition 7.12

Exercise 9 (by Shi-Xin).

1. Denote OP(E)(n) simply by O(n). Consider φ : PicX × Z → PicP(E) by
φ(L, n) = π∗L ⊗O(n) where π : P(E)→ X.

First, we show that this map is injective. If φ(L, n) = OP(E), we have
OX = π∗OP(E) = π∗(π

∗L⊗O(n)) = L⊗ π∗O(n) where the last isomorphism
follows from projection formula. Then by proposition 7.11., we know that
π∗O(n) = Sn(E) and hence n should be 0 since π∗O(n) need to be an
invertible sheaf. Therefore L = OX .
For surjectivity, let M ∈ PicP(E) and X =

⋃
Ui =

⋃
SpecAi be covered by

finitely many affine open subsets such that E|Ui ∼= OX . Then Vi := Pr−1
Ai

=
Ui×Pr−1 cover PicP(E) where r = rank(E), and we have PicVi ∼= PicUi×Z.
Therefore Mi := M |Vi ∼= π∗iLi ⊗ Ovi(ni) for some Li ∈ PicUi, ni ∈ Z.
Moreover, sinceMi|Vi∩Vj ∼=Mj|Vi∩Vj , it forces that ni = nj = n for some n.
Thus OVi |Vi∩Vj ∼= OVj |Vi∩Vj implies Li|Vi∩Vj ∼= Lj|Vi∩Vj . Finally, let L be the
sheaf glued from Li, we have φ(L, n) =M.
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2. (⇒) Let φ be the isomorphism from P(E) to P(E ′). Since PicP(E) ∼= PicP(E ′),
by using the result in (a), there is an invertible sheaf L ∈ Pic(X) such that

φ∗OP(E ′) = OP(E) ⊗ π∗L

Thus using projection formula, we have

E ′ ∼= π′∗OP(E ′) ∼= π∗(OP(E) ⊗ π∗L) ∼= E ⊗ L

(⇐) Remind that P(E) is defined by ProjI where I =
⊕

d>0 I d and
I d = Sd(E). Since E ′ ∼= E ⊗ L, we must have

I ′d = Sd(E ′) ∼= Sd(E)⊗ Ld = I d ⊗ Ld

Then by proposition 7.9., P(E) ∼= P(E ′)

Exercise 12 (by Shuang-Yen).

Since X̃ = Proj(S (IY + IZ)) is glued by Proj(S (IY (U) + IZ(U))), where
U is an open affine subset of X, so we may assume that X = SpecA is affine.
Let IY = ĨY ,IZ = ĨZ where IY , IZ � A. Then X̃ = Proj(S (IY + IZ)), Ỹ ∼=
Proj(S (IY + IZ/IY )), Z̃ ∼= Proj(S (IY + IZ/IZ)). Suppose that p ∈ Ỹ ∩ Z̃, then
since

S
(
IY + IZ

/
IY
)

=
⊕
d≥0

(
IY + IZ

/
IY
)d

=
⊕
d≥0

(
IY + IdZ

/
IY

)
,

pd ⊇ IdY and pd ⊇ IdZ . In particular, p1 ⊇ IY , p1 ⊇ IZ , which implies that
p1 = IY + IZ , so p ⊇

⊕
d>0(IY + IZ)d, hence p /∈ Proj(S (IY + IZ)) = X̃. So

Ỹ ∩ Z̃ = ∅.
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8 Differentials
Exercise 1 (by Yi-Tsung).

(a) (Denote [M] as "Matsumura, Commutative Ring Theory") By [M] theorem
26.1, since k(B) separably generated extension field, it is separable (a k-
algebra A is separable if for any extension field k′ of k, A⊗k k′ is reduced.)
By [M] theorem 26.9, k(B) is also 0-smooth (a k-algebra A is 0-smooth
if for any k-algebra C and any ideal N � C satisfying N2 = 0, and any
k-homomorphism u : A → A /C , there exists a lifting k-homomorphism
v : A→ C of u to C.) Finally by [M] theorem 25.2, we see that

0→ m /m2 → ΩB/k ⊗ k(B)→ Ωk(B)/k → 0

is split, and in particular exact.

Alternative solution (by Shuang-Yen): To show that δ is injective, it suf-
fices to show that δ∗ : Homk(B)(ΩB/k⊗k(B), k(B))→ Homk(B)(m/m

2, k(B))
is surjective. Note that

Homk(B)(ΩB/k ⊗ k(B), k(B)) ∼= HomB(ΩB/k, k(B)) ∼= Derk(B, k(B))

Given a map h ∈ Homk(B)(m/m
2, k(B)), we define d ∈ Derk(B, k(B)) as

follows: for b ∈ B, b ∈ B/m2. Since B/m2 is a complete local ring and
k(B/m2) = (B/m2)/(m/m2) ∼= B/m = k(B) is a separably generated
extension of k, there’s k ⊆ K ⊆ B/m2 such that K ∼= k(B/m2) ∼= k(B).
Hence there is a unique way to write b = λ + c where λ ∈ K, c ∈ m/m2.
Define d(b) = h(c), then d is a k-derivation and δ∗(d) = h. So δ is injective.

(b) Say B = Ap, where A is finitely generated k-algebra and p ∈ SpecA.
(⇒) If B is a regular local ring, since k(B) is separably generated over k, we
have dim ΩB/k ⊗ k(B) = dim Ωk(B)/k + dimm /m2 = tr.deg k(B)/k + dimB.
Let Q be the quotient field of B, then we have ΩB/k⊗BQ = ΩQ/k. Now since
k is perfect, Q is separably generated extension field of k, and so dimQ ΩQ/k =
tr.deg Q/k = dimA. Note that ΩB/k is finitely generated B-module and
dim ΩB/k ⊗B Q = dimA = htp + dimA

/
p = dimB + tr.deg k(B)/k. By

lemma 8.9, ΩB/k is free of rank dimB + tr.deg k(B)/k.
(⇐) By (a), dimB = dim ΩB/k ⊗ k(B) − tr.deg k(B)/k = dimm /m2 +
dim Ωk(B)/k − dim Ωk(B)/k = dimm /m2 . Thus B is regular.

(c) Take an affine neghborhood U = SpecA ⊆ X of x, then OX,x = Ax. By (b),
OX,x is regular iff

(
ΩX/k

)
x
∼= ΩOX,x/k is free of rank dimAx+tr.deg k(A)/k =

dimA. Since now X is irreducible of finite type over k, we have dimA =
dimX. Thus OX,x is regular iff (ΩX,x)x is free of rank n = dimX.
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(d) By theorem 8.16, there is a dense open subset V ⊆ X which is nonsingular
on V , i.e., V ⊆ U . Thus U is dense, and now it suffices to show that U
is an open subset. For x ∈ U ,

(
ΩX/k

)
x
is free of rank n, then there exists

x ∈ U ′ ⊆
open

X such that
(
ΩX/k

)
|U ′ is free of rank n. Now for any x′ ∈ U ′,(

ΩX/k

)
x′

is free of rank n, hence x′ ∈ U , and we see that U is open.

Exercise 2 (by Pei-Hsuan).

Consider B = {(x, s) ∈ X × V |sx ∈ mxEx}, and
π1 : B → X

(x, s) 7→ x
For x0 ∈ X,

π−1
1 (x0) = {(x0, s) ∈ {x0} × V |sx0 ∈ mx0Ex0} ←→ global sections that vanish at

x0. Thus, pi1 is surjective. Also, consider ϕ : V → Ex0
s 7→ sx0

. Since E is generated

by V , we get

dimV = rank E + dim π−1
1 (x0) = dimX + dimV − rank E < dimV.

Let π2 : B → V
(x, s) 7→ s

, then dimπ2(B) ≤ dimB < dimV . Hence, ∃s ∈ V \ B

is what we want.
Now, fix this s, consider f : OX → E

g 7→ g · s . Notice that X is a variety, so

X is integral. Thus, for all p ∈ X, fp : OX,p → Ep
gp 7→ gp · sp

is injective. Also,

Ep/OX,p
∼= O⊕(rank E−1)

X,p is locally free, so coker f is locally free.
Hence, 0→ OX → E → E ′ = cokeer f → 0 is exact.

Exercise 3 (by Tzu-Yang Chou).

(a) Use the first exact sequence twice and the fact that ΩX×SY/X ' p∗Y ΩY/S,ΩX×SY/Y '
p∗XΩX/S.

(b) ωX×Y '
∧n+m ΩX×Y/k '

∧n+m(p∗1ΩX/k⊕p∗2ΩY/k) '
∧n(p∗1ΩX/k)⊗

∧m(p∗2ΩY/k) '
p∗1(
∧

ΩX/k)⊗ p∗2(
∧m ΩY/k) ' p∗1ωX ⊗ p∗2ωY .

(c) For the arithmetic genus, we first note that pa(Y ) = 1 since Y has degree 3.
So by Ex(I.7.2) we see that pa(X) = pa(Y × Y ) = −1.
For the geometric genus, we know that ωY ' OY and hence by (b) ωY×Y '
OY×Y ⇒ pg(X) = dim Γ(X,ωX) = dim Γ(X,OX) = 1 since X is proper over
k. (Here we use Ex(II.4.5)(d).)

Exercise 5 (by Shi-Xin).
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1. SinceX is nonsingular, we have Pic(X) = CaCl(X) = Cl(X). By proposition
6.5.(c), we have an exact sequence

Z α−→ Pic(X̃)→ Pic(X̃ − Y ′)→ 0

where α is defined by α(n) = nY ′. In fact, if α(n) = 0 for some n 6= 0, then
nY ′ must be a principal divisor, says (f) for some f ∈ K(X̃)∗. Note that
K(X̃)∗ = K(X)∗. Hence by pulling back, it follows that Y is given by f ,
which leads to a contradiction since codimX(Y ) ≥ 2. Therefore α is injective.

Moreover, because X̃ − Y ′ ∼= X − Y and codimX(Y ) ≥ 2, we must have

Pic(X̃ − Y ′) ∼= Pic(X − Y ) ∼= Pic(X)

We conclude that

0→ Z→ Pic(X̃)→ Pic(X)→ 0

On the other hand, the pulling back π∗ Pic(X) → Pic(X̃) gives the right
exactness. Thus Pic(X̃) ∼= Pic(X)⊕ Z

2. By (a), we can write ωX̃ ∼= π∗M ⊗ L(qY ′) for some invertible sheaf M on
X and q ∈ Z. Note that we have Pic(X̃ − Y ′) ∼= Pic(X − Y ) ∼= Pic(X). It
follows that

ωX ∼= ωX |X−Y ∼= ωX̃ |X̃−Y ′ ∼= (π∗M ⊗ L(qY ′))|X−Y ∼= M |X−Y ∼= M

Now, we may write ωX̃ ∼= π∗ωX ⊗ L(qY ′). We are going to show that
ωX̃
∼= π∗ωX ⊗OY ′(−q − 1). In fact, by adjunction formula, we deduce that

ωY ′ ∼= ωX̃ ⊗ L(Y ′)⊗OY ′
∼= π∗ωX ⊗ L((q + 1)Y ′)⊗OY ′
∼= π∗ωX ⊗OY ′(−q − 1)

Then take a closed point y ∈ Y and let Z = π−1(y) = {y}×Y Y ′ be the fiber
of Y ′ over y. Hence by Exercise 2.8.3(b), we have ωZ ∼= π∗1ωy ⊗ π∗2ωY ′ ∼=
OZ(−q − 1) Since Z ∼= Pr−1, it is clear that ωZ ∼= OZ(−r). Thus q = r − 1,
and hence we show that ωX̃ ∼= π∗ωX ⊗ L((r − 1)Y ′).

Exercise 6 (by Shuang-Yen).
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(a) (⇒) We have

θ(aa′)− aθ(a′)− a′θ(a)

= g(a)g(a′)− g′(a)g′(a′)− f(a)(g(a′)− g′(a′))− f(a′)(g(a)− g′(a))

= [(g(a)− f(a))θ(a′) + g(a)g′(a′)] + [(g′(a)− f(a′))θ(a)− g(a)g′(a′)]

= (g(a)− f(a))θ(a′) + (g′(a′)− f(a′))θ(a) ∈ I2 = 0.

So θ ∈ Derk(A, I).

(⇐) For any θ ∈ HomA(ΩA/k, I) ∼= Derk(A, I),

g′(aa′) = g(aa′) + θ(aa′)

= g(a)g(a′) + f(a)θ(a′) + f(a′)θ(a)

= (g + θ)(a)(g + θ)(a′) + (f(a)− g(a))θ(a′)

+ (f(a′)− g(a′))θ(a)− θ(a)θ(a′)

= g′(a)g′(a′).

So g′ is a homomorphism.

(b) For any i, pick b ∈ B′ such that b = f(xi), define h(xi) = b, then we may
extend it to h : k[x1, . . . , xn]→ B′. It commutes by the construction. Note
that h(α) = f(α) = f(0) = 0 and h(αβ) = h(α)h(β) ∈ I2 = 0, so h is well-
defined. For any β ∈ A,α ∈ J/J2, h(βα) = h(βα) = f(β)h(α) = f(β)h(α),
which is A-linear.

(c) Since SpecA is nonsingular in SpecP = An
k , which is also nonsingular, so we

have the exact sequence

0 −→ I /I 2 −→ ΩAnk/k ⊗OSpecA −→ ΩSpecA/k −→ 0,

where I = J̃ . Taking global sections, we have

0 −→ J/J2 −→ ΩP/k ⊗ A −→ ΩA/k −→ 0

is exact since they’re quasi-coherent. Then

0→ HomA(ΩA/k, I)→ HomP (ΩP/k, I)→ HomA(J/J2, I)→ Ext1
A(ΩA/k, I).

Note that ΩA/k is locally free, which means ΩA/k is projective, so Ext1
A(ΩA/k, I) =

0. Let θ ∈ HomP (ΩP/k, I) ∼= Derk(P, I) that maps to h : J/J2 → I. Let
h′ = h− θ, then h′ is a homomorphism by letting A = P and f = f ◦ π in
(a) where π : P → A is the projection. Note that ∀α ∈ J ,

h′(α) = h(α)− θ(α) = h(α)− θ(dα) = h(α)− h(α) = 0.

So h′(J) = 0, hence g = h′ : A→ B′ lifts f .
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Exercise 7 (by Jung-Tao).

We can translate the statement, F is coherent, and X is affine, so we ma
assume F = M̃ , and P = I the sheaf of ideal is isomorphic to F with I2 = 0.

According to exercise 2.8.6, we can lift the exact sequence

0→ I → OX′ → OX → 0

so the exact sequence split and the extension is the trivial one.

Exercise 8 (by Chun-Yi).

Consider the rational map X → X ′. Let V ⊂ X be the largest open set such
that f : V → X ′ represents the rational map. By first fundamental sequence, we
have a map f ∗ΩX′/k → ΩV/k. Taking qth exteior power, we get f∗ :
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9 Formal Schemes
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