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Exercise 0 (by Kuan-Wen).

This is an example of proof.
Remark. This is an example for how to write in this format.

V Castelnuovo’s theorem and applications
Exercise 1 (by Yi-Tsung Wang).

Since −K is ample, we have K2 > 0. If h0 (2K) = p2 6= 0, then 2K ∼ effecitve. Moreover, −mK is very
ample for sufficiently large m, hence (−mK) . (2K) ≥ 0, which gives k2 ≤ 0, contradiction. Therefore p2 = 0.
In particular, pg = 0, and by lemma IV.1, we have q = 0. By Castelnuovo’s rationality criterion, S is rational.
Then S is obtained form P2 or Fn(n 6= 1) by blowing up some points. If S is obtained from Fn for some n ≥ 2
by blowing up some points, since KFn ≡ −2C0− (2 + n) f , we have (−KFn) .C0 = −2n+ 2 +n = 2−n ≤ 0,
yielding that −KFn is not ample, nor is −KS, which is a contradiction. Therefore S is obtained from P2 or
F0 = P1 × P1 by blowing up some points. Note that the blow up of P2 at two points is the same as the
blow up of P1 × P1 at a point, hence S is P1 × P1 or obtained from P2 by blowing up r points. In the latter
case, (−KS)2 = 9− r > 0, so r ≤ 8. Conversely, for S = P1 × P1, we have shown that −KS is ample. For
S being obtained from P2 by blowing up r points (r ≤ 8), it is a Del Pezzo surface, thus −KS is ample.

Exercise 3 (by Yu-Chi Hou).

For any surface S, we first decompose Aut(S) into the identity component Aut(S)◦ of the automorphism
group Aut(S) of S and the component group Aut(S)/Aut(S)◦. Then the quotient Aut(S)/Aut(S)◦ is a
discrete subgroup. By Chevalley’s structure theorem on algebraic groups1, which states that any connected
algebraic groups G has a unique normal affine algebraic subgroup GAff such that A := G/GAff is an abelian
variety, we can furthermore decompose G := Aut(S)◦ into the exact sequence of groups

1→ GAff → Aut(S)◦ → A→ 1,

1For the proof of Chevalley’s theorem in modern language, one can consult Milne’s article https://www.jmilne.org/
math/articles/2013c.pdf or Brian Conrad’s article http://math.stanford.edu/~conrad/papers/chev.pdf
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where GAff is a normal affine subgroup of Aut(S)◦ and A is an abelian variety. Now, we claim that H must
have zero dimension if S is a non–ruled surface. In this case, since GAff is affine variety of dimension 0,
GAff must be a finite set.

Suppose GAff has positive dimension, then it must contains an one dimensional subgroup H. By
classification of one dimensional affine algebraic group H (cf. for instance, Springer, Linear Algebriac
Groups, Proposition 3.1.3), H = Ga or Gm. In general, S/G does not exists as geometric quotient. However,
a fact due to Rosenlicht which states the following:

Fact 1 (Rosenlicht, 19562). For any affine algebraic group G acting on an irreducible variety X, there
exists an non–empty G-stable open subset U ⊂ Xreg such that U/G exists as a geometric quotient.

Thus, applying this to S acting by H, there exists a non-empty G−stabl open subset U of S such that
U/H exists and has one–dimensional. Thus, U is birational to H×U/H. Also, since U/H is one-dimensional,
there exists a smooth projective model C such that K(C) = K(U/H). It is clear that H = Ga or Gm is
also birational to P1. This shows that S is birational to C × P1, contradiction to the assumption that S is
non–ruled.

Now, for the abelian variety A, this induces a map from A→ Aut(Alb(S)), where Alb(S) is the Albense
variety of S. Since A is connected, A maps into the identity component Aut(Alb(S))0 = Alb(S). This shows
that A must be a abelian subvariety of Alb(S) and thus shows that A is an abelian variety of dimension≤ q.

Exercise 4 (by Po-Sheng Wu).

An automorphisms on Fn must fixes the unique curve C0 with negative self-intersection, and permutes
the curves of zero self-intersection, that is, the fibers of Fn → P1, hence induces an automorphism on P1.

The map Aut(Fn) → Aut(P1) ∼= PSL(2,C) is surjective since π∗(O ⊕ O(n)) ∼= O ⊕ O(n) for any
π ∈ Aut(P1). The kernel T of this map is determined by an automorphism of O ⊕ O(n), mod global

sections of O∗, that is, C∗, so T has elements of the form
(
a b
0 1

)
in End(O ⊕O(n)), where a ∈ C∗, b ∈

Hom(O,O(n)) = H0(O(n)). Verify the composition rule and we find that T is a semidirect product of C∗
with H0(O(n)).

Exercise 5 (by Shuang-Yen Lee).

Let X be a surface containing infinitely many exceptional rational curves, say C1, C2, . . .. To show that
X is biration to P2, we need to show that p2 = q = 0. If p2 6= 0, then 2K is equivalent to a effective divisor
D. Since there are infinitely Ci such that Ci is not a component of D,

−2 = (Ci +K).Ci = C2
i +K.Ci ≥ C2

i = −1,

a contradiction, so p2 = 0. If q 6= 0, then we have the Albanese map α : X → Alb(X). Since pg = 0,
α(X) is a smooth curve of genus q. Note that q > 0, α|Ci is constant for all i, so Ci is contained in a fiber.
C2
i = −1 implies that Ci is a component of a singular fiber, which is finite, a contradiction. So q = 0.
2The proof of Rosenlicht’s result can be found in theorem 4.4 in the survey Invariant Theory by Popov and Vinberg

appearing in Algebraic Geometry IV https://link.springer.com/book/10.1007/978-3-662-03073-8
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Construction: Let P1, . . . , P8 be in general position in P2 such that P9 is the basepoint of |3`−
∑8

i=1 Pi|,
let S = BlP1···P9 P2. If D ∈ DivS such that D2 = −1 and KS.D = −1, then (Ks + D).D = −2, which
means pa(D) = 0. To show that D is linear equivalent to a rational curve, it suffices to show that D is
linear equivalent to an irreducible curve. Write D ∼ aL−

∑9
i=1 biEi, then

a2 −
9∑
i=1

b2
i = −1, −3a+

9∑
i=1

bi = −1

and so for all j,

a2 + 1 =
9∑
i=1

b2
i =

∑
i 6=j

b2
i + (bj + 1)2 − 2bj − 1 ≥

(∑9
i=1 bi + 1

3

)
− 2bj − 1 = a2 − 2bj − 1,

or bj ≥ −1. By R-R, `(D) + `(K − D) = 1 + s(D) ≥ 1. If `(K − D) 6= 0, then K − D ∼ C for some
effective C ∼ (−a− 3)L+

∑9
i=1(1 + bi)Ei. Now,

0 ≤ −a− 3 = −
∑9

i=1 bi + 1

3
− 3 ≤ −−8

3
− 3 < 0,

a contradiction. So `(D) > 0, so D ∼
∑
niCi for some Ci irreducible. Note that −K is effective and

dim | −K| = 1, (−K)2 = 0, so Ci(−K) ≥ 0 and “=” iff Ci ∼ −K, which implies D ∼ C1 + n(−K), for
some n ≥ 0. Then

D2 = −1 =⇒ −1 = C2
1 + 2nC1(−K) = C2

1 + 2n.

By adjunction formula,

−2 ≤ 2pa(C1)− 2 = (C1 +K).C1 = −1− 2n− 1 = −2n− 2,

so n = 0 and hence D ∼ C1 is irreducible and rational. Now, consider the map D 7→ D+ (δijk.D)δijk where
δijk = L− Ei − Ej − Ek. Then, if D2 = D.K = −1,

(D + (δijk.D)δijk)
2 = (D + (δijk.D)δijk).K = −1.

Write D ∼ aL−
∑9

i=1 b`E`, then D+ (δijk.D)δijk ∼ (2a− bi− bj − bk)L−
∑

` b
′
`E`. Since a = (

∑
bi + 1)/3,

we can always find i, j, k such that bi + bj + bk < a, or 2a− bi − bj − bk > a. So we can always find a D′
such that D′.L > D.L, hence S has infinitely many −1 rational curve.
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VI Surfaces with pg = 0 and q ≥ 1

Exercise 0 (by Yi-Heng Tsai).

[Serre’s lemma: Let M ∈ GL(N.Z) and r be the order of M . Assume M ≡ idN (modn) for some n ≥ 3,
then M = idN .]
Write M = idN + A with A = n(aij). Let p be a prime dividing n, then we can write n = pαb and
aij = pαijbij for some α ∈ N, αij ∈ Z≥0 ∪ {∞} and p - b, bij.(αij :=∞ if aij = 0) Assume A 6= ON , then let
αlk ∈ Z≥0 be a minimal one among all aij’s. Hence,

ON = rA+ Cr
2A

2 + · · ·+ Cr
r (A

r) (1)

Then we get pα+αij |rbblk, so pα+αij |r. Now, by induction on r, we may assume r is a prime. Therefore,
α = 1, αij = 0 and r = n = p. By (1), p|alk, which is a contradiction.

Exercise 1 (by Yu-Ting Huang).

Let H be a hyperplane section, then H2 + H.KS = 2g(H) − 2 = 0. This implies H.KS < 0. By
Noether-Enrique, S is a ruled surface and Pn = 0 for all n. In particular, pg = 0.
Assume q ≥ 2. Consider the Albanese map, α : S → Alb(S), where α(S) is a smooth curve of genus
q, and the fibers of the map are connected. Note that H is contained in some fiber. Write the fiber
F =

∑
i niCi+mH, where Ci are irreducible (There might be no Ci.) Then m2H2 = mH(F −

∑
i niCi) ≤ 0.

This contrdicts that H2 > 0.
Now, for q = 0, consider the exact sequence

0→ H0(S,OS(KS))→ H0(S,OS(KS +H))→ H0(H,OH(KH))→ H1(S,OS(KS)),

where h0(OS(KS)) = pg = 0, h0(OH(KH)) = g(H) = 1 and h1(OS(KS)) = h0(OS) = pg − q = 0. Hence
h0(OS)(KS + H) = 1. i.e. dim |KS + H| = 0. But H2 + H.KS = 0, so KS + H 0 i.e. KS −H. By Ex.
V.21(2), S is Sd or S ′8.
For q = 1, we have already known that S is a ruled surface. Suppose S is birational to C × P1. Then by

H0(S,ΩS) = H0(C, ωC)⊕H0(P1, ωP1),

we have g(C) = q = 1. Then S is an elliptic ruled surface.

Remark (by Pei-Hsuan Chang). Another example for the case q(S) = 1: Let E be a elliptic curve, S = E×P1.
Let P ∈ E, Q ∈ P1, D = p∗1(3P )+p∗2(Q), where p1, p2 are the projection of the first and the second position,
Since deg 3P ≥ 2g(E) + 1, 3P is very ample on E. Notice that the map induced by D is a Segre embedding
induced by 3P and Q on E and P1 respectively. Thus, D is very ample. Now, using D to embed S into PN ,
then H ∈ |D| is hyperplane section. Notice that KS = p∗1(KE) + p∗2(KP1), then we have

2g(H)− 2 = H.(Ks +H) = (p∗1(3P ) + p∗2(Q)).(p∗1(KE) + p∗2(KP1) + p∗1(3P ) + p∗2(Q)) = −6 + 3 + 3 = 0.

Hence, g(H) = 1.
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Remark (by Yu–Chi Hou). Generalizing the previous example by Pei-Hsuan, we consider any elliptic ruled
surface with self–intersection number of the distinguished section C2

0 = −e. Hartshorne Exercise V.2.12
shows that any linear system |C0 + bF | is very ample if and only if b ≥ e + 3. Observe that for general
element D ∈ |C0 + bF |, D is non–singular by Bertini’s theorem. Also, one can compute the genus of D by
adjunctin formula:

2g(D)− 2 = (C0 + bF )(C0 + bF +K2) = (C0 + bF )(−C0 + (b− e)F ) = e+ b− e− b = 0.

Hence, general element of very ample linear system |C0 + bF | are non–singular elliptic curve.

Exercise 2 (by Shuang-Yen Lee).

(a) Let C = H ∩ S be nonsingular, D = H ∩ C ∈ Pic(C), then d = degD = C2. Since S is not ruled,
p12 6= 0, which implies H.K ≥ 0. By adjunction formula,

C.(C +K) = 2g(C)− 2 =⇒ degD = 2g(C)− 2−H.K ≤ 2g(C − 2).

If D is special, then by Clifford, dim |D| ≤ d/2. Note that |D| : C → Pn−1 = H is an embedding,
dim |D| = n− 1, or d ≥ 2n− 2. If D is nonspecial, then

dim |D| = d− g(C) ≤ d−
(

1 +
d

2

)
=
d

2
− 1

by R-R. So n ≤ d/2, or d ≥ 2n > 2n− 2. When “=”, since D is very ample, we have D = KC , so

degD = 2g(C)− 2 =⇒ H.K = 0 =⇒ K ∼ 0

since 12K is equivalent to an effective divisor.

(b) :)

Exercise 3 (by Yi-Heng Tsai).

If S is bielliptic, then pg = 0, q = 1 and S is minimal non-ruled by Thm.VI.13. Also, 12K ∼ 0 by
Prop.VI.15. Hence, P12 = 1. Conversely, assume pg = 0, q = 1 and S is minimal, we want to show S is
bielliptic. Again, by Thm.VI.13, S = B × F/G with B and F are irrational smooth, g(F/G) = 0 and either
1.g(B) = 1 or 2.g(F ) = 1. Now, it suffices to show g(B) = g(F ) = 1 in both cases.

1. Assume g(F ) > 1. Let L12 = K⊗12
P1 (

∑
[12(1− 1/eP )]P ), then 0 = deg(L12) = −24 +

∑
[12(1− 1/eP )].

Note −2n+
∑

[n(1− 1/eP )] = 2g(F )− 2 ≥ 2 by Hurwitz’s theorem. Thus, r ≥ 3.

(a) If r ≥ 4, then r = 4 and eP = 2∀P . So, −2n+
∑

[n(1− 1/eP )] = 0→←
(b) If r = 3, then assume e1 ≤ e2 ≤ e3. Thus, 3/e3 ≤

∑
1/eP < 1.

i. If e1 ≥ 3, then e1 = e2 = e3 = 3→←.
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ii. If e1 = 2, then 1/e2 + 1/e3 < 1/2⇒ e2 ≥ 3.
To be more specific, (e2, e3) = (4, 5), (5, 5), (3, 7), (3, 8), ..., (3, 11), which is impossible since
n ≤ 4g(F ) + 4.

2. Assume g(B) > 1, then there exists at least one ramified point P . Note Pk(S) = h0(B/G, K(
∑

[k(1−
1/eP )]P ) =: Dk). Thus, 1 = P12(S) = h0(D12) = deg(D12) ≥ 6→←.

Remark (by Shuang-Yen Lee). We give another solution for the case 1(b)ii. without using the fact
n ≤ 4g(F ) + 4.

Proof. Since G is a subgroup of translations, G is abelian, so G =
∏

Z/pαii Z. Let Hq =
∏

pi=q
Z/pαii Z and

let H ′p =
∏

q 6=pHq. Now, we factor F → F/G into πp : F → F/H ′p and π′p : F/H ′p → F/G. Let P1, P2, P3

be the branch points with ramification index e1, e2, e3, respectively. Then Pi will be a branch point of π′p if
p | ei. Hurwitz formula gives

2g(F/H ′p)− 2 = deg π′p · (2g(F/G)− 2) +
∑
p|ei

deg π′p

(
1− 1

ei

)
= deg π′p ·

∑
p|ei

(
1− 1

ei

)
− 2

 < 0

when p | ei for some i. Thus, g(F/H ′p) = 0 and then deg π′p = (−2)/(−2 +
∑

p|ei(1− 1/ei)). For each case

(e1, e2, e3) = (2, 4, 5), (2, 5, 5), (2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 3, 10), (2, 3, 11),

we take p = 5, 2, 2, 3, 2, 3, 2, respectively, and we get

deg π′p =
5

3
,
4

3
,
4

3
,
3

2
,
4

3
,
3

2
,
4

3
,

respectively, a contradiction.

Exercise 4 (by Yu-Ting Huang).

Suppose we have the surjective fibration p : S → B. By taking Stein factorization, we may assume B is
connected. We first consider g(B) > 0.
In general, we have the formula

0 = χtop(S) = χtop(B)χtop(Fη) +
∑
s∈Σ

(χtop(Fs)− χtop(Fη)),

where Σ is the set of points over which p is not smooth. And 2g(Fη)− 2 = F 2
η + Fη.K ≥ 0, so g(Fη) ≥ 1

For the case that there is no singular fiber,

0 = χtop(B)χtop(Fη) = 4(1− g(B))(1− g(Fη)).

Then whether g(Fη) = 1, or g(B) = 1 and g(Fη) ≥ 1. By proposition VI.8, we can conclude that
S ' B × Fη/G, where one of B and Fη is elliptic.
For the case that there exists a singular fiber, we have χtop(B)χtop(Fη) = 4(1− g(B))(1− g(Fη)) ≥ 0. Then
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∑
s∈Σ(χtop(Fs)− χtop(Fη)) ≤ 0.

For s ∈ σ, write Fs =
∑

i niCi, where Ci are irreducible. We will show that χtop(Fs) ≥ χtop(Fη).

χtop(Fs) ≥ 2χ(O∪iCi) = −((
∑
i

Ci)
2 +

∑
i

Ci.K) ≥ −
∑
i

Ci.K ≥ −
∑
i

niCi.K

= Fs.K = Fη.K = 2χ(OFη) = 2χtop(Fη).

Now, we can conclude that χtop(Fs) = χtop(Fη), for we have the inequality of two sides. Then all inequalities
above turn into equalities. Hence, Fs = nC for some irreducible smooth curve C with C.K = 0 (Actually,
the above process is similar to proposition VI.6). This implies that g(C) = 1 + C.K = 1 and g(Fη) = 1.
Then also by proposition VI.8, the result follows.
(I haven’t figured out the case g(B) = 0 and g(F ) > 1, or this case will not happen??) (In that case,
proposition VI.8 is even unapplicable.)
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VII Kodaira dimension
Exercise 1 (by Pei-Hsuan Chang).

For a divisor D on V . Define

L(D) = H0(V,O(D)) = {f ∈ K(V ) | (f) +D ≥ 0} ∪ {0}

Q(D) = subfield of K(V ) generated by L(D),

Q = sufield of K(V ) generated by all Q(D), for some D ∈ |nK|.

Notice that R(V ) := ⊕n≥0H
0(V,O(nK) = ⊕n≥0L(nK)tn, and let n be the smallest number such that

L(nK) 6= 0. Then notice that for f ∈ L(nK), f is algebraic over Q, but tn is not algebraic over Q, so ftn
is not algebraic over Q. Since ftn ∈ FracR(V ), FracR(V ) is not algebraic over Q. However FracR(V ) is
algebraic over Q(t), so

tr. deg FracR(V ) = tr. degQ+ 1.

Our goal is to show tr. degQ = κ(V ). For n such that |nK| 6= ∅, take D ∈ |nK|, then we have

L(D) ⊆ L(2D) ⊆ L(3D) ⊆ · · · ⊆ K(V ).

So,
Q(D) ⊆ Q(2D) ⊆ Q(3D) ⊆ · · · ⊆ K(V ).

Since K(V ) is finitely generated over k, ∪n≥0Q(nD) is also finitely generated over k. Thus, ∃m ∈ N such
that Q(mD) = Q((m+ 1)D) = . . . . Since this holds for any n such that |nK| 6= ∅, so Q = Q(mD) for m
large enough. Now, notice that for a effective divisor E, Q(E) = K(Im(ϕ|E|). Hence,

tr. degQ = tr. degQ(mD) = dim(Im(ϕ|E|)) = κ(V ).

This complete the proof.

Exercise 2 (by Tzu-Yang Tsai).

We know that ωV×W = KX = p∗1ωV + p∗2ωW , where X = V ×W

V W

p1 p2 are projection.

Also, H0(V ×W,OV×W (nKV×W )) = H0(V,OV (nKV ))⊕H0(W,OW (nKW ))∀n ∈ N.
Thereby the map φnKV×W : V ×W 99K PNV×W can be factor as:

φnKV×W : V ×W
(φnKV ,φnKW )

99K PNV × PNW
Segre’s embedding

↪→ PNV×W

Thus dim(Im(φnKV×W )) = dim(Im(φnKV )) + dim(Im(φnKW ))∀n ∈ N
Let a, b ∈ N s.t. dim(Im(φaKV )) = κ(V ), dim(Im(φbKW )) = κ(W ), then

κ(V ) + κ(W ) ≥ κ(V ×W ) ≥ dim(Im(φabKV×W )) = dim(Im(φabKV )) + dim(Im(φabKW )) = κ(V ) + κ(W )

Therefore κ(V ) + κ(W ) = κ(V ×W )
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Exercise 3 (by Yu–Chi Hou).

Given any surjective morphism f : X → Y between varieties, one has K(Y ) ⊂ K(X). Also, the induced
map on global section of pluricanonical bundle

f ∗ : H0(Y, rKY ) ↪→ H0(X, rKX)

is injective, for any r ≥ 0. In view of Exercise 1 in this chapter, we see that pluricanonical ring of Y is a
subring of pluricanonical ring of X and thus κ(Y ) ≤ κ(X).

Now, observe that f is étale if and only if it is flat and ΩX/Y = 0. Thus, the exact sequence of Kähler
differential gives

f ∗ωX → ωY → 0.

Since X and Y are smooth varieties, f ∗ωX and ωY are both invertible sheaves, f ∗ωX ∼= ωY and thus

H0(X, rKX) ∼= H0(Y, rKY ).

This of course shows that κ(X) = κ(Y ).
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VIII Surfaces with κ = 0

Exercise 1 (by Yi-Heng Tsai).

Since K2 + Xtop(S) = X (OS) = 0 and K2,Xtop(S) ≥ 0, we have K2 = Xtop(S) = 0. By Ex.VI.4,
S = B × F/G with g(B) = 1. Thus, g(B/G) = 0, 1 and B × F → S is étale.

1. (g(B/G) = 0) Note q = h0(ΩS) = g(B/G) + g(F/G), so g(F/G) = 2. Also, P2 = h0(F/G,L2) where
L2 = ω2

F/G(
∑

P [2(1− 1/eP )]P ). Apply Riemann-Roch theorem, we have P2 ≥ 3 +
∑

[2(1− 1/eP )] > 1.

2. (g(B/G) = 1) Similarly, g(F/G) = 1. If g(F ) > 1, r ≥ 3 by Hurwitz’s theorem. In this case,
P2 ≥

∑
[2(1 − 1/eP )] ≥ 3 > 1. On the other hand, if g(F ) = 1, then Pn = 1∀n ≥ 1. In this case,

κ(S) = 0, which implies S is an Abelian surface.

Exercise 10 (by Chi-Kang Chang).

For g = 2k− 1 case, consider the double cover f : S → P1×P1 which is branch on a (4,4) curve, hten we
haveKS = f ∗(KP1×P1+R withR be the ramified locus with coeffienent 1. ThusKS = f ∗(−2h1−2h2)+R = 0.

Now since h1 + kh2 is very ample on P1 × P1, then since f is finite, we have f ∗|h1 + kh2| is ample and
base point free. Thus the general element C ∈ f ∗|h1 + kh2| is smooth (and hence reduced). To show the
irreducibility, consider the exact sequence 0 → OS(−C) → OS → OC → 0, this induces the cohomology
sequence

0→ H0(S,−C)→ H0(S, 0)→ H0(C, 0)→ H1(S,−C)...

Since by Kodaira vanishing H1(S,−C) = 0, by the above sequence we conclude H0(C, 0) = C, thus C is
connected, hence irreducible by the smoothness. And then we have C2 = (deg(f))(h1 +kh2)2 = 4k = 2g−2,
thus g(C) = 2k + 1.

Next we show that S is K3. Now we consider the exact sequence 0→ OS → OS(C)→ OC → 0(C), this
induces the cohomology sequence

0→ H0(S, 0)→ H0(S,C)→ H0(C,C|C)→ H1(S, 0)→ H1(S,C)→ H1(C,C|C)...

Again by Kodaira vanishing, χ(OS(C)) = h0(OS(C) = g − q + 1 by surfece Riemann-Roch. On the other
hand, again by surface Riemann-Roch and Kodaira vanishing

h0(OS(C)) = h0(P1 × P1, h1 + kh2)

= χ(P1 × P1, h1 + kh2) = v2k + 2 = g + 1.

Thus q = 0 and hence S is K3. Finally, since h0(OS(C)) = g+ 1, we know that φ|C| is a 2 to 1 map sends S
to P1 × P1 in Pg, completes our proof.

For g = 2k case, let F1 be the ruled surface P(OP1 ⊕OP1(−1)). Then take the double cover of F1 branch
over a curve linearly equivalent to 4C0 + 6f , then repeat the similar computation of g = 2k + 1 case again,
we get our consequence.
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Exercise 12 (by Yi-Tsung Wang).

For S being a K3 surface, consider the exact sequence

0→ Z→ O → O∗ → 0

It gives the long exact sequence

0→ H1 (S,O)→ Pic (S) = H1 (S,O∗) α−→ H2 (S,Z)
β−→ H2 (S,O) = H0 (S,O) = C

For x ∈ (H2 (S,Z))tor, β (x) ∈ Ctor = {0}, that is, β (x) = 0. Hence there exists L ∈ Pic (S) such that
α (L) = x. Suppose mx = 0, then α (mL) = 0. Since α is injective, we have mL = 0. In particular, L ≡ 0.
By Riemann-Roch theorem, h0 (L) + h0 (−L) ≥ 2, we see that either h0 (L) ≥ 1 or h0 (−L) ≥ 1. No matter
which the case holds, we have L ∼ 0, and then x = 0, that is, (H2 (S,Z))tor = 0. By mixed variance
universally coefficient theorem,

H2 (S,Z) = Ext1
Z (H1 (S,Z) ,Z)⊕ HomZ (H2 (S,Z) ,Z)

Write H1 (S,Z) = Zr ⊕ (H1 (S,Z))tor, then we have

Ext1
Z (H1 (S,Z) ,Z) = Ext1

Z (Zr,Z)× Ext1
Z ((H1 (S,Z))tor ,Z) = (H1 (S,Z))tor

Therefore 0 = (H2 (S,Z))tor = (H1 (S,Z))tor. By Poincaré duality and Hodge decomposition theorem, we
have

H1 (S,Z)⊗ C = H1 (S,C) = H3 (S,C)∨ and H3 (S,C) = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 = 0

Thus H1 (S,Z)⊗ C = 0, which says r = 0. Therefore we conclude that H1 (S,Z) = 0.
For X being an Enrique surface, we also have the long exact sequence

0→ Pic (X)→ H2 (X,Z)→ H2 (X,O) = H0 (X,K) = 0

Hence Pic (X) ∼= H2 (X,Z). For L ∈ (Pic (X))tor, let mL = 0 for some m ∈ Nn≥2, we have h0 (L) =
h0 (− (m− 1)L) = 0. By Riemann-Roch theorem, h0 (K − L) ≥ 1, so K − L ≥ 0, and −2L ≥ 0. Since
L ≡ 0, we get −2L ∼ 0. Note that 2K ∼ 0, then K − L ∼ −K + L, and then − (K − L) ≥ 0, thus
K − L ∼ 0, that is, K ∼ L. Since pg = 0, we have K 6∼ 0. Therefore (Pic (X))tor (and then (H2 (X,Z))tor)
is Z /2Z generated by [K].
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IX Surfaces with κ = 1

Exercise 2 (by Pei-Hsuan Chang).

Recall Let E be an Euclidean space with a positive definite symmetric billnear form ( , ). Define

σα := β − 2(β, α)

(α, α)
, and < β, α >:=

2(β, α)

(α, α)
.

Definition. Φ is called a root system in E if

1. Φ is finite, span E and does not contain 0.

2. If α ∈ Φ, then the only multiple of α in Φ are exactly ±α.

3. If α ∈ Φ, then σα(Φ) = Φ.

4. If α, β ∈ Φ, then < β, α >∈ Z.

Definition. We can choose a set of positive roots Φ+ ⊂ Φ. This is a subset of Φ such that

1. ∀α ∈ Φ, exactly one of the roots α,−α is contain in Φ+.

2. ∀α, β ∈ Φ+ such that if α + β ∈ Φ, then α + β ∈ Φ+.

An element of Φ+ is said to be simple root of it cannot be written as sum of two elements in Φ+.

Solution. By adjunction formula,

02g(F )− 2 = F.(F +KS) = F.KS = (
∑

niCi).KS =
∑

ni(2g(Ci)− 2− C2
i ).

Notice that C2
i < 0, ∀i, so "2g(Ci)− 2− C2

i < 0⇒ g(Ci) = 0, C2
i = −1". Since S is minimal, we get

2g(Ci)− 2− C2
i ≥ 0.

Thus,
0 = Ci.KS = 2g(Ci)− 2− C2

i , ∀i.

Hence, g(Ci) = 0, C2
i = −2, ∀i. Also, Corollary VIII.4 says that

0 ≥ (Ci + Cj)
2 = −4 + 2Ci.Cj,

so we know that Ci.Cj ≤ 2 and "Ci.Cj = 2⇔ F = m(Ci + Cj) for some m ∈ Q". So there are two cases:

(1) F = m(C1 + C2) (2) Ci.Cj = 0 or 1, ∀i 6= j.

12



For the second case, letM ′ be the Z-modules generated by {Ci} in PicS. M ′ is free, since if
∑
miCi ∼ 0, then

(
∑
miCi)

2 = 0. By Corollary VIII.4 again,
∑
miCi = rF , for some r ∈ Q, so rF ∼ 0⇒ r = 0⇒ mi = 0,

∀i. Now, define M = M ′/Z[F ]. The intersection pairing induce a well-defined symmetric billnear form on

M , since Ci.F = 0 and F 2 = 0. Now, let (a, b) = −1

2
a.b, so

(Ci, Cj) =

{
1 , if i = j

−1
2
or0 , if i 6= j

Again, by Corollary VIII.4, ∀a ∈M , (a, a) = −1

2
a2 > 0, so ( , ) is positive definite.

Now, let Φ := {r ∈ M |(r, r) = −1

2
r2 = 1}. It is easy to check Φ is a root system. Also, let

Φ+ := {r ∈ Φ|r =
∑
miCi with mi ≥ 0, ∀i}. It is clearly a set of positive roots, and {Ci} are all simple

roots. Finally, we only need to check that Φ is of type An, Dn, En. Since

< Ci, Cj >< Cj, Ci >=
2(Ci, Cj)

(Cj, Cj)

2(Cj, Ci)

(Ci, Ci)
= 0or1,

any two points in the Dynkin diagram are connected by at most one line. By the classification of Lie
algebra, Φ cannot of the type Bn, Cn, G2. Thus, Φ must of type An, Dn, En.

Exercise 4 (by Shuang-Yen Lee).

S is Enriques implies pg = q = 0, 2K ∼ 0. By R-R,

h0(K + E)− h1(K + E) + h2(K + E) =
1

2
(K + E).E + 1 = 1,

so h0(K + E) ≥ 1 since h2(K + E) = h0(−E) = 0, and hence |K + E| 6= ∅.
Let E ′ ∈ |K + E|, then E.E ′ = E(K + E) = 0 and E 6∼ E ′ implies E ∩ E ′ = ∅. The exact sequence

0 −→ OS −→ OS(E) −→ OE(E) −→ 0

implies h0(E) = 1 + h0(E|E), so h0(E) = 1 or 2 since E2 = 0.
If h0(E) = 1, by the exact sequence

0 −→ OS(−E − E ′) −→ OS(−E ′) −→ OE(−E ′) −→ 0,

we get 0→ C = h0(−E ′|E)→ h1(−E − E ′) exact, implies h1(−E − E ′) ≥ 1 and by R-R,

h0(−E − E ′)− h1(−E − E ′) + h2(−E − E ′) =
1

2
(−E − E ′)(−E − E ′ −K) + 1 = 1,

so h0(2E) ≥ 2. The exact sequence

0 −→ OS(E) −→ OS(2E) −→ OE(2E) −→ 0

13



implies that h0(2E) ≤ h0(E) + h0(2E|E) = 2 so h0(2E) = 2 and hence dim |2E| = 1. Since 2E ∼ 2E ′ and
2E ∩ 2E ′ = ∅, |2E| : S → P1 is base-point-free, then |2E| = A ∪B, where A = {D ∈ |2E| | D is smooth }
and B = |2E| \ A is finite. For D ∈ A, write D =

∑
Ci, then D2 = 0 implies that

∑
C2
i = 0 since

Ci ∩ Cj = ∅ for i 6= j. If there’s i such that C2
i < 0, then Ci.(2E) = Ci.D = Ci < 0 implies Ci.E < 0, but

E is numerically effective, a contradiction. So C2
i = 0 for all i, implies g(Ci) = 1.

By Stein factorization theorem, |2E| : S → P1 can be factored into π : S → C and a finite morphism
C → P1. Then π(D) = {P1, . . . , Pn} with Ci = π−1(Pi). Then π is an elliptic fibration, by Ex. IX. 1, we
have 0 = q(S) = g(C) or g(C) + 1, which means C ∼= P1. Then Ci ∼ Cj, this gives D ∼ nF , but general
fiber is reduced, and hence n = 1. So |2E| is a pencil of elliptic curves.

If h0(E) = 2, then h0(E|E) = 1, or E|E = OE. Let D ∈ |E| and suppose that D 6= E, then D ∩ E = ∅,
which means |E| is base-point-free, by s same arguement as above, we have |E| is a pencil of elliptic curves.
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X Surface of General Types
Exercise 1 (by Yi-Tsung Wang).

Since K2 > 0, we may assume that pg ≥ 3. Write |K| = |C|+ V , where |C| is the mobile part and V is
the fixed part. Then we have C2 ≥ 0 and C.V ≥ 0, and then 2− 2ga (C) = (K + C) .C ≥ 0. Hence

K2 =
1

2
(K (C + V ) + (C + V )K)

≥ 1

2

(
K.C +K2

)
= pa (C)− 1

= h1 (C,OC)− 1

= h0
(
C,Ω1

C

)
− 1

= h0 (C,OX (KX + C) |C)− 1

= h0 (C, 2C + V )− 1

≥ h0 (C, 2C)− 1

For 1, s1, . . . , sn−1 ∈ Γ (C,OC (C)), note that 1, s1, . . . , sn−1, s
2
1, s1s2, . . . , s1sn−1 ∈ Γ (C,O (2C)) are linearly

independent sections, hence h0 (C, 2C) ≥ 2h0 (C,OC (C))− 1. Now consider the exact sequence

0→ OX → OX (C)→ OX (C) |C→ 0

It gives that h0 (C,OC (C)) ≥ h0 (OX (C))−1. Hence we conclude that K2 ≥ 2h0 (C,OC (C))−2 = 2pg−4.

Exercise 2 (by Ping-Hsun Chuang).

Proof. Since H1 (S,Z) is finitely generated with free rank q = 0, we have H1 (S,Z) is finite. Consider
the abelian universal cover of S, Sab p−→ S. Note that p is étale since it is a covering space. Moreover,
p is of degree |H1 (S,Z)| since π1

(
Sab/S

)
= [π1 (S) , π1 (S)] and H1 (S,Z) = π1 (S) / [π1 (S) , π1 (S)]. Say

|H1 (S,Z)| = d. Then, we have K2
Sab = K2

S = d and χ
(
Sab
)

= dχ (S) = d. By Noether inequality, we have

pg ≥
K2 + 4

2
. Note that π∗KS = KSab implies KSab is nef, that is, Sab is minimal. Then, we have

d = χ
(
Sab) = 1− q

(
Sab)+ pg

(
Sab) ≤ 1 + pg

(
Sab) ≤ 1 +

K2
Sab + 4

2
= 1 +

4 + d

2
.

Hence, d ≤ 6.
Now, we need to exclude the case d = 6. For d = 6, we have q

(
Sab
)

= 0, K2
Sab = d = 6, and Noether

equality. If the equality holds in Noether inequality, then write K = C + V , where C is moving part and V
is fixed part. Then, C.V = 0 and K.V = 0 (See proof in class.) Moreover, using the fact that the general
C ∈ |K| are hyperelliptic curve, we may find an automorphism on C such that it has fixed point. (Here, we

need g (C) ≥ 2, this holds since now g (C) =
C (C +K)

2
+ 1 = K2 + 1 = 7.) However, the automorphism

of Sab cannot have fixed point except identity since it is the covering space. This isa contradiction. Hence,
we proved |H1 (S,Z)| ≤ 5.

However, I cannot conclude |H1 (S,Z)| = 5 implies S is Godeaux.
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Exercise 3 (by Yu-Chi Hou).

Consider G := (Z/2Z)3 acting on P6 by

e1 : [x0 : x1 : x2 : x3 : x4 : x5 : x6]→ [−x0 : x1 : x2 : x3 : −x4 : −x5 : −x6]

e2 : [x0 : x1 : x2 : x3 : x4 : x5 : x6]→ [x0 : −x1 : x2 : −x3 : x4 : −x5 : −x6]

e3 : [x0 : x1 : x2 : x3 : x4 : x5 : x6]→ [x0 : x1 : −x2 : −x3 : −x4 : x5 : −x6]

From the construction of the action, one see that any point which is fixed by ei has at least three coordinates
vanishing for each i = 1, 2, 3. Thus, consider

S ′ = Z(
6∑
i=0

aix
2
i ,

6∑
i=0

bix
2
i ,

6∑
i=0

cix
2
i ,

6∑
i=0

dix
2
i ),

for any ai, bi, ci, di’s such that any maximal minors of the matrix

Λ =


a0 · · · a6

b0 · · · b6

c0 . . . c6

d0 . . . d6


are non–zero. The condition for the minors shows that S ′ is a non–singular complete intersection in P6.
Moreover, it has degree 24 = 16 and KS′ ∼ (−7H + 8H)|S′ = H|S′ . Obviously, S ′ is G−invariant. If ei acts
on S ′ trivially, say e1 for instance, then x1 = x2 = x3 = 0. Hence, the equation of S ′ is given by

a0x
2
0+a4x

2
4+a5x

2
5+a6x

2
6 = b0x

2
0+b4x

2
4+b5x

2
5+b6x

2
6 = c0x

2
0+c4x

2
4+c5x

2
5+c6x

2
6 = d0x

2
0+d4x

2
4+d5x

2
5+d6x

2
6 = 0

In matrix notation, this gives 
a0 a4 a5 a6

b0 b4 b5 b6

c0 c4 c5 c6

d0 d4 d5 d6



x2

0

x2
4

x2
5

x2
6

 =


0
0
0
0

 .

Since the maximal minors of Λ are non–zero, the matrix from the left–hand side is invertible. Hence, it
only has trivial solution x2

0 = x2
4 = x2

5 = x2
6 = 0 and thus x0 = x4 = x5 = x6 = 0. However, [0 : · · · : 0] /∈ P6.

Similarly, we can repeat the argument for e2 and e3. Thus, G acts on S ′ freely.
Since G acts on S ′ freely and hence S ′ → S = S ′/G is a deg 8 unramified covering. Since S ′ is complete

intersection and hence the irregularity q(S ′) = 0 = q(S). Also, pg(S ′) = 7 since KS′ ∼ H|S′ , where H
is the hyperplane on P6. Hence, χ(OS′) = 1 − q(S ′) + pg(S

′) = 8 and χ(OS) = χ(OS′)/8 = 1. Finally,
K2
S = K2

S′/8 = 16/8 = 2.
In sum, we obtain a surface which pg = 0 = q and K2 = 2. This is a surface of general type, which

again provides an example showing that Castelnuovo’s rationality criterion is sharp.

Exercise 4 (by Po-Sheng Wu).
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Let C1 = C2 = C and S = (C1 × C2)/G. We choose φ(a, b) = (a− 2b, a− 4b). Note that the action of
(a, b) ∈ G on C1 has fixed points iff a = 0 or b = 0 or a = b, while acting on C2 has fixed points iff a−2b = 0
or a − 4b = 0 or 2a − 6b = 0, thus G acts freely on C1 × C2. Note that q = g(C1/G) + g(C2/G) = 0
since 2g(C)− 2 = n(2g(C/G)− 2) + degR and g(C) = 6, n = 25, R = 3 · 20, and χ(OS) = 1

25
χ(OC×C) =

1
25
χ(OC)2 = 1

25
(1− g(C))2 = 1, so pg = 0. K2

S = 1
25
KC×C = 1

25
(p∗1(ωC1) + p∗2(ωC2))

2 = 1
25
· 2 · 10 · 10 = 8.

To give another example, consider C the complete intersection of x3 + y3 + z3 + w3 = 0 and xy = zw
in P3, which by adjunction formula has genus 4. (a, b) ∈ G = (Z/3)2 acts on C by (a, b)(x, y, z, w) =
(ωax, ω−ay, ωbz, ω−bw), ω3 = 1, S = (C×C)/G with action g(x, y) = (gx, φ(g)y) with φ(a, b) = (a+b, a−b).
Similarly we have q = 0, χ(OS) = 1

9
· (−3)2 = 1⇒ pg = 0 and K2

X = 1
9
· 2 · 6 · 6 = 8.
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