Algebraic Geometry II Homework Beauville

A course by prof. Chin-Lung Wang
2020 Spring

Exercise 0 (by Kuan-Wen).
This is an example of proof.
Remark. This is an example for how to write in this format.

V Castelnuovo's theorem and applications

Exercise 1 (by Yi-Tsung Wang).
Since $-K$ is ample, we have $K^{2}>0$. If $h^{0}(2 K)=p_{2} \neq 0$, then $2 K \sim$ effecitve. Moreover, $-m K$ is very ample for sufficiently large m, hence $(-m K) .(2 K) \geq 0$, which gives $k^{2} \leq 0$, contradiction. Therefore $p_{2}=0$. In particular, $p_{g}=0$, and by lemma IV.1, we have $q=0$. By Castelnuovo's rationality criterion, S is rational. Then S is obtained form \mathbb{P}^{2} or $\mathbb{F}_{n}(n \neq 1)$ by blowing up some points. If S is obtained from \mathbb{F}_{n} for some $n \geq 2$ by blowing up some points, since $K_{\mathbb{F}_{n}} \equiv-2 C_{0}-(2+n) f$, we have $\left(-K_{\mathbb{F}_{n}}\right) . C_{0}=-2 n+2+n=2-n \leq 0$, yielding that $-K_{\mathbb{F}_{n}}$ is not ample, nor is $-K_{S}$, which is a contradiction. Therefore S is obtained from \mathbb{P}^{2} or $\mathbb{F}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ by blowing up some points. Note that the blow up of \mathbb{P}^{2} at two points is the same as the blow up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at a point, hence S is $\mathbb{P}^{1} \times \mathbb{P}^{1}$ or obtained from \mathbb{P}^{2} by blowing up r points. In the latter case, $\left(-K_{S}\right)^{2}=9-r>0$, so $r \leq 8$. Conversely, for $S=\mathbb{P}^{1} \times \mathbb{P}^{1}$, we have shown that $-K_{S}$ is ample. For S being obtained from \mathbb{P}^{2} by blowing up r points $(r \leq 8)$, it is a Del Pezzo surface, thus $-K_{S}$ is ample.

Exercise 3 (by Yu-Chi Hou).
For any surface S, we first decompose $\operatorname{Aut}(S)$ into the identity component $\operatorname{Aut}(S)^{\circ}$ of the automorphism group $\operatorname{Aut}(S)$ of S and the component group $\operatorname{Aut}(S) / \operatorname{Aut}(S)^{\circ}$. Then the quotient $\operatorname{Aut}(S) / \operatorname{Aut}(S)^{\circ}$ is a discrete subgroup. By Chevalley's structure theorem on algebraic groups $\mathbb{1}$, which states that any connected algebraic groups G has a unique normal affine algebraic subgroup $G_{\text {Aff }}$ such that $A:=G / G_{\text {Aff }}$ is an abelian variety, we can furthermore decompose $G:=\operatorname{Aut}(S)^{\circ}$ into the exact sequence of groups

$$
1 \rightarrow G_{\mathrm{Aff}} \rightarrow \operatorname{Aut}(S)^{\circ} \rightarrow A \rightarrow 1
$$

[^0]where $G_{\text {Aff }}$ is a normal affine subgroup of $\operatorname{Aut}(S)^{\circ}$ and A is an abelian variety. Now, we claim that H must have zero dimension if S is a non-ruled surface. In this case, since $G_{\text {Aff }}$ is affine variety of dimension 0 , $G_{\text {Aff }}$ must be a finite set.

Suppose $G_{\text {Aff }}$ has positive dimension, then it must contains an one dimensional subgroup H. By classification of one dimensional affine algebraic group H (cf. for instance, Springer, Linear Algebriac Groups, Proposition 3.1.3), $H=\mathbb{G}_{a}$ or \mathbb{G}_{m}. In general, S / G does not exists as geometric quotient. However, a fact due to Rosenlicht which states the following:

Fact 1 (Rosenlicht, 195 σ^{2}). For any affine algebraic group G acting on an irreducible variety X, there exists an non-empty G-stable open subset $U \subset X_{\text {reg }}$ such that U / G exists as a geometric quotient.

Thus, applying this to S acting by H, there exists a non-empty G-stabl open subset U of S such that U / H exists and has one-dimensional. Thus, U is birational to $H \times U / H$. Also, since U / H is one-dimensional, there exists a smooth projective model C such that $K(C)=K(U / H)$. It is clear that $H=\mathbb{G}_{a}$ or \mathbb{G}_{m} is also birational to \mathbb{P}^{1}. This shows that S is birational to $C \times \mathbb{P}^{1}$, contradiction to the assumption that S is non-ruled.

Now, for the abelian variety A, this induces a map from $A \rightarrow \operatorname{Aut}(\operatorname{Alb}(S))$, where $\operatorname{Alb}(S)$ is the Albense variety of S. Since A is connected, A maps into the identity component $\operatorname{Aut}(\operatorname{Alb}(S))^{0}=\operatorname{Alb}(S)$. This shows that A must be a abelian subvariety of $\operatorname{Alb}(S)$ and thus shows that A is an abelian variety of dimension $\leq q$.

Exercise 4 (by Po-Sheng Wu).
An automorphisms on \mathbb{F}_{n} must fixes the unique curve C_{0} with negative self-intersection, and permutes the curves of zero self-intersection, that is, the fibers of $\mathbb{F}_{n} \rightarrow \mathbb{P}^{1}$, hence induces an automorphism on \mathbb{P}^{1}.

The map $\operatorname{Aut}\left(\mathbb{F}_{n}\right) \rightarrow \operatorname{Aut}\left(\mathbb{P}_{1}\right) \cong \operatorname{PSL}(2, \mathbb{C})$ is surjective since $\pi^{*}(\mathcal{O} \oplus \mathcal{O}(n)) \cong \mathcal{O} \oplus \mathcal{O}(n)$ for any $\pi \in \operatorname{Aut}\left(\mathbb{P}_{1}\right)$. The kernel T of this map is determined by an automorphism of $\mathcal{O} \oplus \mathcal{O}(n)$, mod global sections of \mathcal{O}^{*}, that is, \mathbb{C}^{*}, so T has elements of the form $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$ in $\operatorname{End}(\mathcal{O} \oplus \mathcal{O}(n))$, where $a \in \mathbb{C}^{*}, b \in$ $\operatorname{Hom}(\mathcal{O}, \mathcal{O}(n))=H^{0}(\mathcal{O}(n))$. Verify the composition rule and we find that T is a semidirect product of \mathbb{C}^{*} with $H^{0}(\mathcal{O}(n))$.

Exercise 5 (by Shuang-Yen Lee).
Let X be a surface containing infinitely many exceptional rational curves, say C_{1}, C_{2}, \ldots. To show that X is biration to \mathbb{P}^{2}, we need to show that $p_{2}=q=0$. If $p_{2} \neq 0$, then $2 K$ is equivalent to a effective divisor D. Since there are infinitely C_{i} such that C_{i} is not a component of D,

$$
-2=\left(C_{i}+K\right) \cdot C_{i}=C_{i}^{2}+K \cdot C_{i} \geq C_{i}^{2}=-1,
$$

a contradiction, so $p_{2}=0$. If $q \neq 0$, then we have the Albanese map $\alpha: X \rightarrow \operatorname{Alb}(X)$. Since $p_{g}=0$, $\alpha(X)$ is a smooth curve of genus q. Note that $q>0,\left.\alpha\right|_{C_{i}}$ is constant for all i, so C_{i} is contained in a fiber. $C_{i}^{2}=-1$ implies that C_{i} is a component of a singular fiber, which is finite, a contradiction. So $q=0$.

[^1]Construction: Let P_{1}, \ldots, P_{8} be in general position in \mathbb{P}^{2} such that P_{9} is the basepoint of $\left|3 \ell-\sum_{i=1}^{8} P_{i}\right|$, let $S=\mathrm{Bl}_{P_{1} \ldots P_{9}} \mathbb{P}^{2}$. If $D \in \operatorname{Div} S$ such that $D^{2}=-1$ and $K_{S} \cdot D=-1$, then $\left(K_{s}+D\right) . D=-2$, which means $p_{a}(D)=0$. To show that D is linear equivalent to a rational curve, it suffices to show that D is linear equivalent to an irreducible curve. Write $D \sim a L-\sum_{i=1}^{9} b_{i} E_{i}$, then

$$
a^{2}-\sum_{i=1}^{9} b_{i}^{2}=-1, \quad-3 a+\sum_{i=1}^{9} b_{i}=-1
$$

and so for all j,

$$
a^{2}+1=\sum_{i=1}^{9} b_{i}^{2}=\sum_{i \neq j} b_{i}^{2}+\left(b_{j}+1\right)^{2}-2 b_{j}-1 \geq\left(\frac{\sum_{i=1}^{9} b_{i}+1}{3}\right)-2 b_{j}-1=a^{2}-2 b_{j}-1,
$$

or $b_{j} \geq-1$. By R-R, $\ell(D)+\ell(K-D)=1+s(D) \geq 1$. If $\ell(K-D) \neq 0$, then $K-D \sim C$ for some effective $C \sim(-a-3) L+\sum_{i=1}^{9}\left(1+b_{i}\right) E_{i}$. Now,

$$
0 \leq-a-3=-\frac{\sum_{i=1}^{9} b_{i}+1}{3}-3 \leq-\frac{-8}{3}-3<0
$$

a contradiction. So $\ell(D)>0$, so $D \sim \sum n_{i} C_{i}$ for some C_{i} irreducible. Note that $-K$ is effective and $\operatorname{dim}|-K|=1,(-K)^{2}=0$, so $C_{i}(-K) \geq 0$ and " $=$ " iff $C_{i} \sim-K$, which implies $D \sim C_{1}+n(-K)$, for some $n \geq 0$. Then

$$
D^{2}=-1 \Longrightarrow-1=C_{1}^{2}+2 n C_{1}(-K)=C_{1}^{2}+2 n .
$$

By adjunction formula,

$$
-2 \leq 2 p_{a}\left(C_{1}\right)-2=\left(C_{1}+K\right) \cdot C_{1}=-1-2 n-1=-2 n-2,
$$

so $n=0$ and hence $D \sim C_{1}$ is irreducible and rational. Now, consider the map $D \mapsto D+\left(\delta_{i j k}\right.$. $\left.D\right) \delta_{i j k}$ where $\delta_{i j k}=L-E_{i}-E_{j}-E_{k}$. Then, if $D^{2}=D . K=-1$,

$$
\left(D+\left(\delta_{i j k} \cdot D\right) \delta_{i j k}\right)^{2}=\left(D+\left(\delta_{i j k} \cdot D\right) \delta_{i j k}\right) \cdot K=-1
$$

Write $D \sim a L-\sum_{i=1}^{9} b_{\ell} E_{\ell}$, then $D+\left(\delta_{i j k} . D\right) \delta_{i j k} \sim\left(2 a-b_{i}-b_{j}-b_{k}\right) L-\sum_{\ell} b_{\ell}^{\prime} E_{\ell}$. Since $a=\left(\sum b_{i}+1\right) / 3$, we can always find i, j, k such that $b_{i}+b_{j}+b_{k}<a$, or $2 a-b_{i}-b_{j}-b_{k}>a$. So we can always find a D^{\prime} such that $D^{\prime} . L>D$. L, hence S has infinitely many -1 rational curve.

VI Surfaces with $p_{g}=0$ and $q \geq 1$

Exercise 0 (by Yi-Heng Tsai).
[Serre's lemma: Let $M \in G L(N . \mathbb{Z})$ and r be the order of M. Assume $M \equiv i d_{N}(\bmod n)$ for some $n \geq 3$, then $M=i d_{N}$.]
Write $M=i d_{N}+A$ with $A=n\left(a_{i j}\right)$. Let p be a prime dividing n, then we can write $n=p^{\alpha} b$ and $a_{i j}=p^{\alpha_{i j}} b_{i j}$ for some $\alpha \in \mathbb{N}, \alpha_{i j} \in \mathbb{Z}_{\geq 0} \cup\{\infty\}$ and $p \nmid b, b_{i j} .\left(\alpha_{i j}:=\infty\right.$ if $\left.a_{i j}=0\right)$ Assume $A \neq O_{N}$, then let $\alpha_{l k} \in \mathbb{Z}_{\geq 0}$ be a minimal one among all $a_{i j}$'s. Hence,

$$
\begin{equation*}
O_{N}=r A+C_{2}^{r} A^{2}+\cdots+C_{r}^{r}\left(A^{r}\right) \tag{1}
\end{equation*}
$$

Then we get $p^{\alpha+\alpha_{i j}} \mid r b b_{l k}$, so $p^{\alpha+\alpha_{i j}} \mid r$. Now, by induction on r, we may assume r is a prime. Therefore, $\alpha=1, \alpha_{i j}=0$ and $r=n=p$. By (1), $p \mid a_{l k}$, which is a contradiction.

Exercise 1 (by Yu-Ting Huang).
Let H be a hyperplane section, then $H^{2}+H . K_{S}=2 g(H)-2=0$. This implies $H . K_{S}<0$. By Noether-Enrique, S is a ruled surface and $P_{n}=0$ for all n. In particular, $p_{g}=0$.
Assume $q \geq 2$. Consider the Albanese map, $\alpha: S \rightarrow A l b(S)$, where $\alpha(S)$ is a smooth curve of genus q, and the fibers of the map are connected. Note that H is contained in some fiber. Write the fiber $F=\sum_{i} n_{i} C_{i}+m H$, where C_{i} are irreducible (There might be no C_{i}.) Then $m^{2} H^{2}=m H\left(F-\sum_{i} n_{i} C_{i}\right) \leq 0$. This contrdicts that $H^{2}>0$.
Now, for $q=0$, consider the exact sequence

$$
0 \rightarrow H^{0}\left(S, \mathscr{O}_{S}\left(K_{S}\right)\right) \rightarrow H^{0}\left(S, \mathscr{O}_{S}\left(K_{S}+H\right)\right) \rightarrow H^{0}\left(H, \mathscr{O}_{H}\left(K_{H}\right)\right) \rightarrow H^{1}\left(S, \mathscr{O}_{S}\left(K_{S}\right)\right)
$$

where $h^{0}\left(\mathscr{O}_{S}\left(K_{S}\right)\right)=p_{g}=0, h^{0}\left(\mathscr{O}_{H}\left(K_{H}\right)\right)=g(H)=1$ and $h^{1}\left(\mathscr{O}_{S}\left(K_{S}\right)\right)=h^{0}\left(\mathscr{O}_{S}\right)=p_{g}-q=0$. Hence $h^{0}\left(\mathscr{O}_{S}\right)\left(K_{S}+H\right)=1$. i.e. $\operatorname{dim}\left|K_{S}+H\right|=0$. But $H^{2}+H . K_{S}=0$, so $K_{S}+H 0$ i.e. $K_{S}-H$. By Ex. V.21(2), S is S_{d} or S_{8}^{\prime}.

For $q=1$, we have already known that S is a ruled surface. Suppose S is birational to $C \times \mathbb{P}^{1}$. Then by

$$
H^{0}\left(S, \Omega_{S}\right)=H^{0}\left(C, \omega_{C}\right) \oplus H^{0}\left(\mathbb{P}^{1}, \omega_{\mathbb{P}^{1}}\right)
$$

we have $g(C)=q=1$. Then S is an elliptic ruled surface.
Remark (by Pei-Hsuan Chang). Another example for the case $q(S)=1$: Let E be a elliptic curve, $S=E \times \mathbb{P}^{1}$. Let $P \in E, Q \in \mathbb{P}^{1}, D=p_{1}^{*}(3 P)+p_{2}^{*}(Q)$, where p_{1}, p_{2} are the projection of the first and the second position, Since $\operatorname{deg} 3 P \geq 2 g(E)+1,3 P$ is very ample on E. Notice that the map induced by D is a Segre embedding induced by $3 P$ and Q on E and \mathbb{P}^{1} respectively. Thus, D is very ample. Now, using D to embed S into \mathbb{P}^{N}, then $H \in|D|$ is hyperplane section. Notice that $K_{S}=p_{1}^{*}\left(K_{E}\right)+p_{2}^{*}\left(K_{\mathbb{P}^{1}}\right)$, then we have

$$
2 g(H)-2=H \cdot\left(K_{s}+H\right)=\left(p_{1}^{*}(3 P)+p_{2}^{*}(Q)\right) \cdot\left(p_{1}^{*}\left(K_{E}\right)+p_{2}^{*}\left(K_{\mathbb{P}^{1}}\right)+p_{1}^{*}(3 P)+p_{2}^{*}(Q)\right)=-6+3+3=0
$$

Hence, $g(H)=1$.

Remark (by Yu-Chi Hou). Generalizing the previous example by Pei-Hsuan, we consider any elliptic ruled surface with self-intersection number of the distinguished section $C_{0}^{2}=-e$. Hartshorne Exercise V.2.12 shows that any linear system $\left|C_{0}+b F\right|$ is very ample if and only if $b \geq e+3$. Observe that for general element $D \in\left|C_{0}+b F\right|, D$ is non-singular by Bertini's theorem. Also, one can compute the genus of D by adjunctin formula:

$$
2 g(D)-2=\left(C_{0}+b F\right)\left(C_{0}+b F+K_{2}\right)=\left(C_{0}+b F\right)\left(-C_{0}+(b-e) F\right)=e+b-e-b=0
$$

Hence, general element of very ample linear system $\left|C_{0}+b F\right|$ are non-singular elliptic curve.
Exercise 2 (by Shuang-Yen Lee).
(a) Let $C=H \cap S$ be nonsingular, $D=H \cap C \in \operatorname{Pic}(C)$, then $d=\operatorname{deg} D=C^{2}$. Since S is not ruled, $p_{12} \neq 0$, which implies $H . K \geq 0$. By adjunction formula,

$$
C .(C+K)=2 g(C)-2 \Longrightarrow \operatorname{deg} D=2 g(C)-2-H . K \leq 2 g(C-2) .
$$

If D is special, then by Clifford, $\operatorname{dim}|D| \leq d / 2$. Note that $|D|: C \rightarrow \mathbb{P}^{n-1}=H$ is an embedding, $\operatorname{dim}|D|=n-1$, or $d \geq 2 n-2$. If D is nonspecial, then

$$
\operatorname{dim}|D|=d-g(C) \leq d-\left(1+\frac{d}{2}\right)=\frac{d}{2}-1
$$

by R-R. So $n \leq d / 2$, or $d \geq 2 n>2 n-2$. When " $=$ ", since D is very ample, we have $D=K_{C}$, so

$$
\operatorname{deg} D=2 g(C)-2 \Longrightarrow H . K=0 \Longrightarrow K \sim 0
$$

since $12 K$ is equivalent to an effective divisor.
(b) :)

Exercise 3 (by Yi-Heng Tsai).
If S is bielliptic, then $p_{g}=0, q=1$ and S is minimal non-ruled by Thm.VI.13. Also, $12 K \sim 0$ by Prop.VI.15. Hence, $P_{12}=1$. Conversely, assume $p_{g}=0, q=1$ and S is minimal, we want to show S is bielliptic. Again, by Thm.VI.13, $S=B \times F / G$ with B and F are irrational smooth, $g(F / G)=0$ and either $1 . g(B)=1$ or $2 . g(F)=1$. Now, it suffices to show $g(B)=g(F)=1$ in both cases.

1. Assume $g(F)>1$. Let $\mathcal{L}_{12}=K_{\mathbb{P}}^{\otimes 12}\left(\sum\left[12\left(1-1 / e_{P}\right)\right] P\right)$, then $0=\operatorname{deg}\left(\mathcal{L}_{12}\right)=-24+\sum\left[12\left(1-1 / e_{P}\right)\right]$. Note $-2 n+\sum\left[n\left(1-1 / e_{P}\right)\right]=2 g(F)-2 \geq 2$ by Hurwitz's theorem. Thus, $r \geq 3$.
(a) If $r \geq 4$, then $r=4$ and $e_{P}=2 \forall P$. So, $-2 n+\sum\left[n\left(1-1 / e_{P}\right)\right]=0 \rightarrow \leftarrow$
(b) If $r=3$, then assume $e_{1} \leq e_{2} \leq e_{3}$. Thus, $3 / e_{3} \leq \sum 1 / e_{P}<1$.
i. If $e_{1} \geq 3$, then $e_{1}=e_{2}=e_{3}=3 \rightarrow \leftarrow$.
ii. If $e_{1}=2$, then $1 / e_{2}+1 / e_{3}<1 / 2 \Rightarrow e_{2} \geq 3$.

To be more specific, $\left(e_{2}, e_{3}\right)=(4,5),(5,5),(3,7),(3,8), \ldots,(3,11)$, which is impossible since $n \leq 4 g(F)+4$.
2. Assume $g(B)>1$, then there exists at least one ramified point P. Note $P_{k}(S)=h^{0}\left(B / G, K\left(\sum[k(1-\right.\right.$ $\left.\left.\left.1 / e_{P}\right)\right] P\right)=: D_{k}$. Thus, $1=P_{12}(S)=h^{0}\left(D_{12}\right)=\operatorname{deg}\left(D_{12}\right) \geq 6 \rightarrow \leftarrow$.

Remark (by Shuang-Yen Lee). We give another solution for the case 1(b)ii. without using the fact $n \leq 4 g(F)+4$.

Proof. Since G is a subgroup of translations, G is abelian, so $G=\prod \mathbb{Z} / p_{i}^{\alpha_{i}} \mathbb{Z}$. Let $H_{q}=\prod_{p_{i}=q} \mathbb{Z} / p_{i}^{\alpha_{i}} \mathbb{Z}$ and let $H_{p}^{\prime}=\prod_{q \neq p} H_{q}$. Now, we factor $F \rightarrow F / G$ into $\pi_{p}: F \rightarrow F / H_{p}^{\prime}$ and $\pi_{p}^{\prime}: F / H_{p}^{\prime} \rightarrow F / G$. Let P_{1}, P_{2}, P_{3} be the branch points with ramification index e_{1}, e_{2}, e_{3}, respectively. Then P_{i} will be a branch point of π_{p}^{\prime} if $p \mid e_{i}$. Hurwitz formula gives

$$
2 g\left(F / H_{p}^{\prime}\right)-2=\operatorname{deg} \pi_{p}^{\prime} \cdot(2 g(F / G)-2)+\sum_{p \mid e_{i}} \operatorname{deg} \pi_{p}^{\prime}\left(1-\frac{1}{e_{i}}\right)=\operatorname{deg} \pi_{p}^{\prime} \cdot\left(\sum_{p \mid e_{i}}\left(1-\frac{1}{e_{i}}\right)-2\right)<0
$$

when $p \mid e_{i}$ for some i. Thus, $g\left(F / H_{p}^{\prime}\right)=0$ and then $\operatorname{deg} \pi_{p}^{\prime}=(-2) /\left(-2+\sum_{p \mid e_{i}}\left(1-1 / e_{i}\right)\right)$. For each case

$$
\left(e_{1}, e_{2}, e_{3}\right)=(2,4,5),(2,5,5),(2,3,7),(2,3,8),(2,3,9),(2,3,10),(2,3,11)
$$

we take $p=5,2,2,3,2,3,2$, respectively, and we get

$$
\operatorname{deg} \pi_{p}^{\prime}=\frac{5}{3}, \frac{4}{3}, \frac{4}{3}, \frac{3}{2}, \frac{4}{3}, \frac{3}{2}, \frac{4}{3},
$$

respectively, a contradiction.
Exercise 4 (by Yu-Ting Huang).
Suppose we have the surjective fibration $p: S \rightarrow B$. By taking Stein factorization, we may assume B is connected. We first consider $g(B)>0$.
In general, we have the formula

$$
0=\chi_{t o p}(S)=\chi_{t o p}(B) \chi_{t o p}\left(F_{\eta}\right)+\sum_{s \in \Sigma}\left(\chi_{t o p}\left(F_{s}\right)-\chi_{t o p}\left(F_{\eta}\right)\right)
$$

where Σ is the set of points over which p is not smooth. And $2 g\left(F_{\eta}\right)-2=F_{\eta}^{2}+F_{\eta} . K \geq 0$, so $g\left(F_{\eta}\right) \geq 1$ For the case that there is no singular fiber,

$$
0=\chi_{\text {top }}(B) \chi_{\text {top }}\left(F_{\eta}\right)=4(1-g(B))\left(1-g\left(F_{\eta}\right)\right)
$$

Then whether $g\left(F_{\eta}\right)=1$, or $g(B)=1$ and $g\left(F_{\eta}\right) \geq 1$. By proposition VI.8, we can conclude that $S \simeq B \times F_{\eta} / G$, where one of B and F_{η} is elliptic.
For the case that there exists a singular fiber, we have $\chi_{t o p}(B) \chi_{t o p}\left(F_{\eta}\right)=4(1-g(B))\left(1-g\left(F_{\eta}\right)\right) \geq 0$. Then
$\sum_{s \in \Sigma}\left(\chi_{\text {top }}\left(F_{s}\right)-\chi_{\text {top }}\left(F_{\eta}\right)\right) \leq 0$.
For $s \in \sigma$, write $F_{s}=\sum_{i} n_{i} C_{i}$, where C_{i} are irreducible. We will show that $\chi_{\text {top }}\left(F_{s}\right) \geq \chi_{\text {top }}\left(F_{\eta}\right)$.

$$
\begin{aligned}
\chi_{\text {top }}\left(F_{s}\right) & \geq 2 \chi\left(\mathscr{O}_{\cup_{i} C_{i}}\right)=-\left(\left(\sum_{i} C_{i}\right)^{2}+\sum_{i} C_{i} . K\right) \geq-\sum_{i} C_{i} \cdot K \geq-\sum_{i} n_{i} C_{i} \cdot K \\
& =F_{s} . K=F_{\eta} \cdot K=2 \chi\left(\mathscr{O}_{F_{\eta}}\right)=2 \chi_{\text {top }}\left(F_{\eta}\right) .
\end{aligned}
$$

Now, we can conclude that $\chi_{t o p}\left(F_{s}\right)=\chi_{t o p}\left(F_{\eta}\right)$, for we have the inequality of two sides. Then all inequalities above turn into equalities. Hence, $F_{s}=n C$ for some irreducible smooth curve C with $C . K=0$ (Actually, the above process is similar to proposition VI.6). This implies that $g(C)=1+C . K=1$ and $g\left(F_{\eta}\right)=1$. Then also by proposition VI.8, the result follows. (I haven't figured out the case $g(B)=0$ and $g(F)>1$, or this case will not happen??) (In that case, proposition VI. 8 is even unapplicable.)

VII Kodaira dimension

Exercise 1 (by Pei-Hsuan Chang).
For a divisor D on V. Define

$$
\begin{gathered}
L(D)=H^{0}(V, \mathscr{O}(D))=\{f \in K(V) \mid(f)+D \geq 0\} \cup\{0\} \\
Q(D)=\text { subfield of } K(V) \text { generated by } L(D)
\end{gathered}
$$

$$
Q=\text { sufield of } K(V) \text { generated by all } Q(D) \text {, for some } D \in|n K| \text {. }
$$

Notice that $R(V):=\oplus_{n \geq 0} H^{0}\left(V, \mathscr{O}(n K)=\oplus_{n \geq 0} L(n K) t^{n}\right.$, and let n be the smallest number such that $L(n K) \neq 0$. Then notice that for $f \in L(n K), f$ is algebraic over Q, but t^{n} is not algebraic over Q, so $f t^{n}$ is not algebraic over Q. Since $f t^{n} \in \operatorname{Frac} R(V)$, $\operatorname{Frac} R(V)$ is not algebraic over Q. However $\operatorname{Frac} R(V)$ is algebraic over $Q(t)$, so

$$
\operatorname{tr} . \operatorname{deg} \operatorname{Frac} R(V)=\operatorname{tr} \cdot \operatorname{deg} Q+1
$$

Our goal is to show $\operatorname{tr} . \operatorname{deg} Q=\kappa(V)$. For n such that $|n K| \neq \varnothing$, take $D \in|n K|$, then we have

$$
L(D) \subseteq L(2 D) \subseteq L(3 D) \subseteq \cdots \subseteq K(V)
$$

So,

$$
Q(D) \subseteq Q(2 D) \subseteq Q(3 D) \subseteq \cdots \subseteq K(V)
$$

Since $K(V)$ is finitely generated over $k, \cup_{n \geq 0} Q(n D)$ is also finitely generated over k. Thus, $\exists m \in \mathbb{N}$ such that $Q(m D)=Q((m+1) D)=\ldots$. Since this holds for any n such that $|n K| \neq \varnothing$, so $Q=Q(m D)$ for m large enough. Now, notice that for a effective divisor $E, Q(E)=K\left(\operatorname{Im}\left(\varphi_{|E|}\right)\right.$. Hence,

$$
\operatorname{tr} \cdot \operatorname{deg} Q=\operatorname{tr} \cdot \operatorname{deg} Q(m D)=\operatorname{dim}\left(\operatorname{Im}\left(\varphi_{|E|}\right)\right)=\kappa(V)
$$

This complete the proof.
Exercise 2 (by Tzu-Yang Tsai).
We know that $\omega_{V \times W}=K_{X}=p_{1}^{*} \omega_{V}+p_{2}^{*} \omega_{W}$, where $\underbrace{p_{1}}_{V}$ are projection.
Also, $H^{0}\left(V \times W, \mathcal{O}_{V \times W}\left(n K_{V \times W}\right)\right)=H^{0}\left(V, \mathcal{O}_{V}\left(n K_{V}\right)\right) \oplus H^{0}\left(W, \mathcal{O}_{W}\left(n K_{W}\right)\right) \forall n \in \mathbb{N}$.
Thereby the map $\phi_{n} K_{V \times W}: V \times W \rightarrow \mathbb{P}^{N_{V \times W}}$ can be factor as:

$$
\phi_{n K_{V \times W}}: V \times W \xrightarrow[-\rightarrow]{\left(\phi_{n K_{V}}, \phi_{n K_{W}}\right)} \mathbb{P}^{N_{V}} \times \mathbb{P}^{N_{W}} \stackrel{\text { Segre's embedding }}{\longleftrightarrow} \mathbb{P}^{N_{V \times W}}
$$

Thus $\operatorname{dim}\left(\operatorname{Im}\left(\phi_{n K_{V \times W}}\right)\right)=\operatorname{dim}\left(\operatorname{Im}\left(\phi_{n K_{V}}\right)\right)+\operatorname{dim}\left(\operatorname{Im}\left(\phi_{n K_{W}}\right)\right) \forall n \in \mathbb{N}$
Let $a, b \in \mathbb{N}$ s.t. $\operatorname{dim}\left(\operatorname{Im}\left(\phi_{a K_{V}}\right)\right)=\kappa(V), \operatorname{dim}\left(\operatorname{Im}\left(\phi_{b K_{W}}\right)\right)=\kappa(W)$, then

$$
\kappa(V)+\kappa(W) \geq \kappa(V \times W) \geq \operatorname{dim}\left(\operatorname{Im}\left(\phi_{a b K_{V \times W}}\right)\right)=\operatorname{dim}\left(\operatorname{Im}\left(\phi_{a b K_{V}}\right)\right)+\operatorname{dim}\left(\operatorname{Im}\left(\phi_{a b K_{W}}\right)\right)=\kappa(V)+\kappa(W)
$$

Therefore $\kappa(V)+\kappa(W)=\kappa(V \times W)$

Exercise 3 (by Yu-Chi Hou).
Given any surjective morphism $f: X \rightarrow Y$ between varieties, one has $K(Y) \subset K(X)$. Also, the induced map on global section of pluricanonical bundle

$$
f^{*}: H^{0}\left(Y, r K_{Y}\right) \hookrightarrow H^{0}\left(X, r K_{X}\right)
$$

is injective, for any $r \geq 0$. In view of Exercise 1 in this chapter, we see that pluricanonical ring of Y is a subring of pluricanonical ring of X and thus $\kappa(Y) \leq \kappa(X)$.

Now, observe that f is étale if and only if it is flat and $\Omega_{X / Y}=0$. Thus, the exact sequence of Kähler differential gives

$$
f^{*} \omega_{X} \rightarrow \omega_{Y} \rightarrow 0
$$

Since X and Y are smooth varieties, $f^{*} \omega_{X}$ and ω_{Y} are both invertible sheaves, $f^{*} \omega_{X} \cong \omega_{Y}$ and thus

$$
H^{0}\left(X, r K_{X}\right) \cong H^{0}\left(Y, r K_{Y}\right)
$$

This of course shows that $\kappa(X)=\kappa(Y)$.

VIII Surfaces with $\kappa=0$

Exercise 1 (by Yi-Heng Tsai).
Since $K^{2}+\mathcal{X}_{\text {top }}(S)=\mathcal{X}\left(\mathcal{O}_{S}\right)=0$ and $K^{2}, \mathcal{X}_{\text {top }}(S) \geq 0$, we have $K^{2}=\mathcal{X}_{\text {top }}(S)=0$. By Ex.VI.4, $S=B \times F / G$ with $g(B)=1$. Thus, $g(B / G)=0,1$ and $B \times F \rightarrow S$ is étale.

1. $(g(B / G)=0)$ Note $q=h^{0}\left(\Omega_{S}\right)=g(B / G)+g(F / G)$, so $g(F / G)=2$. Also, $P_{2}=h^{0}\left(F / G, \mathcal{L}_{2}\right)$ where $\mathcal{L}_{2}=\omega_{F / G}^{2}\left(\sum_{P}\left[2\left(1-1 / e_{P}\right)\right] P\right)$. Apply Riemann-Roch theorem, we have $P_{2} \geq 3+\sum\left[2\left(1-1 / e_{P}\right)\right]>1$.
2. $(g(B / G)=1)$ Similarly, $g(F / G)=1$. If $g(F)>1, r \geq 3$ by Hurwitz's theorem. In this case, $P_{2} \geq \sum\left[2\left(1-1 / e_{P}\right)\right] \geq 3>1$. On the other hand, if $g(F)=1$, then $P_{n}=1 \forall n \geq 1$. In this case, $\kappa(S)=0$, which implies S is an Abelian surface.

Exercise 10 (by Chi-Kang Chang).
For $g=2 k-1$ case, consider the double cover $f: S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ which is branch on a $(4,4)$ curve, hten we have $K_{S}=f^{*}\left(K_{\mathbb{P}^{1} \times \mathbb{P}^{1}}+R\right.$ with R be the ramified locus with coeffienent 1 . Thus $K_{S}=f^{*}\left(-2 h_{1}-2 h_{2}\right)+R=0$.

Now since $h_{1}+k h_{2}$ is very ample on $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then since f is finite, we have $f^{*}\left|h_{1}+k h_{2}\right|$ is ample and base point free. Thus the general element $C \in f^{*}\left|h_{1}+k h_{2}\right|$ is smooth (and hence reduced). To show the irreducibility, consider the exact sequence $0 \rightarrow \mathscr{O}_{S}(-C) \rightarrow \mathscr{O}_{S} \rightarrow \mathscr{O}_{C} \rightarrow 0$, this induces the cohomology sequence

$$
0 \rightarrow H^{0}(S,-C) \rightarrow H^{0}(S, 0) \rightarrow H^{0}(C, 0) \rightarrow H^{1}(S,-C) \ldots
$$

Since by Kodaira vanishing $H^{1}(S,-C)=0$, by the above sequence we conclude $H^{0}(C, 0)=\mathbb{C}$, thus C is connected, hence irreducible by the smoothness. And then we have $C^{2}=(\operatorname{deg}(f))\left(h_{1}+k h_{2}\right)^{2}=4 k=2 g-2$, thus $g(C)=2 k+1$.

Next we show that S is K3. Now we consider the exact sequence $0 \rightarrow \mathscr{O}_{S} \rightarrow \mathscr{O}_{S}(C) \rightarrow \mathscr{O}_{C} \rightarrow 0(C)$, this induces the cohomology sequence

$$
0 \rightarrow H^{0}(S, 0) \rightarrow H^{0}(S, C) \rightarrow H^{0}\left(C,\left.C\right|_{C}\right) \rightarrow H^{1}(S, 0) \rightarrow H^{1}(S, C) \rightarrow H^{1}\left(C,\left.C\right|_{C}\right) \ldots
$$

Again by Kodaira vanishing, $\chi\left(\mathscr{O}_{S}(C)\right)=h^{0}\left(\mathscr{O}_{S}(C)=g-q+1\right.$ by surfece Riemann-Roch. On the other hand, again by surface Riemann-Roch and Kodaira vanishing

$$
\begin{aligned}
h^{0}\left(\mathscr{O}_{S}(C)\right) & =h^{0}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, h_{1}+k h_{2}\right) \\
& =\chi\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, h_{1}+k h_{2}\right)=v 2 k+2=g+1
\end{aligned}
$$

Thus $q=0$ and hence S is K3. Finally, since $h^{0}\left(\mathscr{O}_{S}(C)\right)=g+1$, we know that $\phi_{|C|}$ is a 2 to 1 map sends S to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in \mathbb{P}^{g}, completes our proof.

For $g=2 k$ case, let \mathbb{F}_{1} be the ruled surface $\mathbb{P}\left(\mathscr{O}_{\mathbb{P}^{1}} \oplus \mathscr{O}_{\mathbb{P}^{1}}(-1)\right)$. Then take the double cover of \mathbb{F}_{1} branch over a curve linearly equivalent to $4 C_{0}+6 f$, then repeat the similar computation of $g=2 k+1$ case again, we get our consequence.

Exercise 12 (by Yi-Tsung Wang).
For S being a K3 surface, consider the exact sequence

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O} \rightarrow \mathcal{O}^{*} \rightarrow 0
$$

It gives the long exact sequence

$$
0 \rightarrow H^{1}(S, \mathcal{O}) \rightarrow \operatorname{Pic}(S)=H^{1}\left(S, \mathcal{O}^{*}\right) \xrightarrow{\alpha} H^{2}(S, \mathbb{Z}) \xrightarrow{\beta} H^{2}(S, \mathcal{O})=H^{0}(S, \mathcal{O})=\mathbb{C}
$$

For $x \in\left(H^{2}(S, \mathbb{Z})\right)_{\text {tor }}, \beta(x) \in \mathbb{C}_{\text {tor }}=\{0\}$, that is, $\beta(x)=0$. Hence there exists $L \in \operatorname{Pic}(S)$ such that $\alpha(L)=x$. Suppose $m x=0$, then $\alpha(m L)=0$. Since α is injective, we have $m L=0$. In particular, $L \equiv 0$. By Riemann-Roch theorem, $h^{0}(L)+h^{0}(-L) \geq 2$, we see that either $h^{0}(L) \geq 1$ or $h^{0}(-L) \geq 1$. No matter which the case holds, we have $L \sim 0$, and then $x=0$, that is, $\left(H^{2}(S, \mathbb{Z})\right)_{\text {tor }}=0$. By mixed variance universally coefficient theorem,

$$
H^{2}(S, \mathbb{Z})=\operatorname{Ext}_{\mathbb{Z}}^{1}\left(H_{1}(S, \mathbb{Z}), \mathbb{Z}\right) \oplus \operatorname{Hom}_{\mathbb{Z}}\left(H_{2}(S, \mathbb{Z}), \mathbb{Z}\right)
$$

Write $H_{1}(S, \mathbb{Z})=\mathbb{Z}^{r} \oplus\left(H_{1}(S, \mathbb{Z})\right)_{\text {tor }}$, then we have

$$
\operatorname{Ext}_{\mathbb{Z}}^{1}\left(H_{1}(S, \mathbb{Z}), \mathbb{Z}\right)=\operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathbb{Z}^{r}, \mathbb{Z}\right) \times \operatorname{Ext}_{\mathbb{Z}}^{1}\left(\left(H_{1}(S, \mathbb{Z})\right)_{\mathrm{tor}}, \mathbb{Z}\right)=\left(H_{1}(S, \mathbb{Z})\right)_{\text {tor }}
$$

Therefore $0=\left(H^{2}(S, \mathbb{Z})\right)_{\text {tor }}=\left(H_{1}(S, \mathbb{Z})\right)_{\text {tor }}$. By Poincaré duality and Hodge decomposition theorem, we have

$$
H_{1}(S, \mathbb{Z}) \otimes \mathbb{C}=H_{1}(S, \mathbb{C})=H^{3}(S, \mathbb{C})^{\vee} \quad \text { and } \quad H^{3}(S, \mathbb{C})=H^{3,0} \oplus H^{2,1} \oplus H^{1,2} \oplus H^{0,3}=0
$$

Thus $H_{1}(S, \mathbb{Z}) \otimes \mathbb{C}=0$, which says $r=0$. Therefore we conclude that $H_{1}(S, \mathbb{Z})=0$.
For X being an Enrique surface, we also have the long exact sequence

$$
0 \rightarrow \operatorname{Pic}(X) \rightarrow H^{2}(X, \mathbb{Z}) \rightarrow H^{2}(X, \mathcal{O})=H^{0}(X, K)=0
$$

Hence $\operatorname{Pic}(X) \cong H^{2}(X, \mathbb{Z})$. For $L \in(\operatorname{Pic}(X))_{\text {tor }}$, let $m L=0$ for some $m \in \mathbb{N}_{n \geq 2}$, we have $h^{0}(L)=$ $h^{0}(-(m-1) L)=0$. By Riemann-Roch theorem, $h^{0}(K-L) \geq 1$, so $K-L \geq 0$, and $-2 L \geq 0$. Since $L \equiv 0$, we get $-2 L \sim 0$. Note that $2 K \sim 0$, then $K-L \sim-K+L$, and then $-(K-L) \geq 0$, thus $K-L \sim 0$, that is, $K \sim L$. Since $p_{g}=0$, we have $K \nsim 0$. Therefore $(\operatorname{Pic}(X))_{\text {tor }}\left(\right.$ and then $\left.\left(H^{2}(X, \mathbb{Z})\right)_{\text {tor }}\right)$ is $\mathbb{Z} / 2 \mathbb{Z}$ generated by $[K]$.

IX Surfaces with $\kappa=1$

Exercise 2 (by Pei-Hsuan Chang).
Recall Let E be an Euclidean space with a positive definite symmetric billnear form (,). Define $\sigma_{\alpha}:=\beta-\frac{2(\beta, \alpha)}{(\alpha, \alpha)}$, and $<\beta, \alpha>:=\frac{2(\beta, \alpha)}{(\alpha, \alpha)}$.

Definition. Φ is called a root system in E if

1. Φ is finite, span E and does not contain 0 .
2. If $\alpha \in \Phi$, then the only multiple of α in Φ are exactly $\pm \alpha$.
3. If $\alpha \in \Phi$, then $\sigma_{\alpha}(\Phi)=\Phi$.
4. If $\alpha, \beta \in \Phi$, then $<\beta, \alpha>\in \mathbb{Z}$.

Definition. We can choose a set of positive roots $\Phi^{+} \subset \Phi$. This is a subset of Φ such that

1. $\forall \alpha \in \Phi$, exactly one of the roots $\alpha,-\alpha$ is contain in Φ^{+}.
2. $\forall \alpha, \beta \in \Phi^{+}$such that if $\alpha+\beta \in \Phi$, then $\alpha+\beta \in \Phi^{+}$.

An element of Φ^{+}is said to be simple root of it cannot be written as sum of two elements in Φ^{+}.
Solution. By adjunction formula,

$$
02 g(F)-2=F \cdot\left(F+K_{S}\right)=F . K_{S}=\left(\sum n_{i} C_{i}\right) \cdot K_{S}=\sum n_{i}\left(2 g\left(C_{i}\right)-2-C_{i}^{2}\right)
$$

Notice that $C_{i}^{2}<0, \forall i$, so " $2 g\left(C_{i}\right)-2-C_{i}^{2}<0 \Rightarrow g\left(C_{i}\right)=0, C_{i}^{2}=-1$ ". Since S is minimal, we get

$$
2 g\left(C_{i}\right)-2-C_{i}^{2} \geq 0
$$

Thus,

$$
0=C_{i} \cdot K_{S}=2 g\left(C_{i}\right)-2-C_{i}^{2}, \forall i
$$

Hence, $g\left(C_{i}\right)=0, C_{i}^{2}=-2, \forall i$. Also, Corollary VIII. 4 says that

$$
0 \geq\left(C_{i}+C_{j}\right)^{2}=-4+2 C_{i} \cdot C_{j}
$$

so we know that $C_{i} . C_{j} \leq 2$ and " $C_{i} . C_{j}=2 \Leftrightarrow F=m\left(C_{i}+C_{j}\right)$ for some $m \in \mathbb{Q}$ ". So there are two cases:

$$
\text { (1) } F=m\left(C_{1}+C_{2}\right) \quad \text { (2) } C_{i} \cdot C_{j}=0 \text { or } 1, \forall i \neq j
$$

For the second case, let M^{\prime} be the \mathbb{Z}-modules generated by $\left\{C_{i}\right\}$ in Pic $S . M^{\prime}$ is free, since if $\sum m_{i} C_{i} \sim 0$, then $\left(\sum m_{i} C_{i}\right)^{2}=0$. By Corollary VIII. 4 again, $\sum m_{i} C_{i}=r F$, for some $r \in \mathbb{Q}$, so $r F \sim 0 \Rightarrow r=0 \Rightarrow m_{i}=0$, $\forall i$. Now, define $M=M^{\prime} / \mathbb{Z}[F]$. The intersection pairing induce a well-defined symmetric billnear form on M, since $C_{i} \cdot F=0$ and $F^{2}=0$. Now, let $(a, b)=-\frac{1}{2} a . b$, so

$$
\left(C_{i}, C_{j}\right)=\left\{\begin{array}{cl}
1 & , \text { if } i=j \\
-\frac{1}{2} \text { or0 } & , \text { if } i \neq j
\end{array}\right.
$$

Again, by Corollary VIII.4, $\forall a \in M,(a, a)=-\frac{1}{2} a^{2}>0$, so (,) is positive definite.
Now, let $\Phi:=\left\{r \in M \left\lvert\,(r, r)=-\frac{1}{2} r^{2}=1\right.\right\}$. It is easy to check Φ is a root system. Also, let $\Phi^{+}:=\left\{r \in \Phi \mid r=\sum m_{i} C_{i}\right.$ with $\left.m_{i} \geq 0, \forall i\right\}$. It is clearly a set of positive roots, and $\left\{C_{i}\right\}$ are all simple roots. Finally, we only need to check that Φ is of type A_{n}, D_{n}, E_{n}. Since

$$
<C_{i}, C_{j}><C_{j}, C_{i}>=\frac{2\left(C_{i}, C_{j}\right)}{\left(C_{j}, C_{j}\right)} \frac{2\left(C_{j}, C_{i}\right)}{\left(C_{i}, C_{i}\right)}=0 \text { or1 }
$$

any two points in the Dynkin diagram are connected by at most one line. By the classification of Lie algebra, Φ cannot of the type B_{n}, C_{n}, G_{2}. Thus, Φ must of type A_{n}, D_{n}, E_{n}.

Exercise 4 (by Shuang-Yen Lee).
S is Enriques implies $p_{g}=q=0,2 K \sim 0$. By R-R,

$$
h^{0}(K+E)-h^{1}(K+E)+h^{2}(K+E)=\frac{1}{2}(K+E) \cdot E+1=1
$$

so $h^{0}(K+E) \geq 1$ since $h^{2}(K+E)=h^{0}(-E)=0$, and hence $|K+E| \neq \varnothing$.
Let $E^{\prime} \in|K+E|$, then $E \cdot E^{\prime}=E(K+E)=0$ and $E \nsim E^{\prime}$ implies $E \cap E^{\prime}=\varnothing$. The exact sequence

$$
0 \longrightarrow \mathcal{O}_{S} \longrightarrow \mathcal{O}_{S}(E) \longrightarrow \mathcal{O}_{E}(E) \longrightarrow 0
$$

implies $h^{0}(E)=1+h^{0}\left(\left.E\right|_{E}\right)$, so $h^{0}(E)=1$ or 2 since $E^{2}=0$.
If $h^{0}(E)=1$, by the exact sequence

$$
0 \longrightarrow \mathcal{O}_{S}\left(-E-E^{\prime}\right) \longrightarrow \mathcal{O}_{S}\left(-E^{\prime}\right) \longrightarrow \mathcal{O}_{E}\left(-E^{\prime}\right) \longrightarrow 0
$$

we get $0 \rightarrow \mathbb{C}=h^{0}\left(-\left.E^{\prime}\right|_{E}\right) \rightarrow h^{1}\left(-E-E^{\prime}\right)$ exact, implies $h^{1}\left(-E-E^{\prime}\right) \geq 1$ and by R-R,

$$
h^{0}\left(-E-E^{\prime}\right)-h^{1}\left(-E-E^{\prime}\right)+h^{2}\left(-E-E^{\prime}\right)=\frac{1}{2}\left(-E-E^{\prime}\right)\left(-E-E^{\prime}-K\right)+1=1
$$

so $h^{0}(2 E) \geq 2$. The exact sequence

$$
0 \longrightarrow \mathcal{O}_{S}(E) \longrightarrow \mathcal{O}_{S}(2 E) \longrightarrow \mathcal{O}_{E}(2 E) \longrightarrow 0
$$

implies that $h^{0}(2 E) \leq h^{0}(E)+h^{0}\left(\left.2 E\right|_{E}\right)=2$ so $h^{0}(2 E)=2$ and hence $\operatorname{dim}|2 E|=1$. Since $2 E \sim 2 E^{\prime}$ and $2 E \cap 2 E^{\prime}=\varnothing,|2 E|: S \rightarrow \mathbb{P}^{1}$ is base-point-free, then $|2 E|=A \cup B$, where $A=\{D \in|2 E| \mid D$ is smooth $\}$ and $B=|2 E| \backslash A$ is finite. For $D \in A$, write $D=\sum C_{i}$, then $D^{2}=0$ implies that $\sum C_{i}^{2}=0$ since $C_{i} \cap C_{j}=\varnothing$ for $i \neq j$. If there's i such that $C_{i}^{2}<0$, then $C_{i} .(2 E)=C_{i} . D=C_{i}<0$ implies $C_{i} . E<0$, but E is numerically effective, a contradiction. So $C_{i}^{2}=0$ for all i, implies $g\left(C_{i}\right)=1$.

By Stein factorization theorem, $|2 E|: S \rightarrow \mathbb{P}^{1}$ can be factored into $\pi: S \rightarrow C$ and a finite morphism $C \rightarrow \mathbb{P}^{1}$. Then $\pi(D)=\left\{P_{1}, \ldots, P_{n}\right\}$ with $C_{i}=\pi^{-1}\left(P_{i}\right)$. Then π is an elliptic fibration, by Ex. IX. 1, we have $0=q(S)=g(C)$ or $g(C)+1$, which means $C \cong \mathbb{P}^{1}$. Then $C_{i} \sim C_{j}$, this gives $D \sim n F$, but general fiber is reduced, and hence $n=1$. So $|2 E|$ is a pencil of elliptic curves.

If $h^{0}(E)=2$, then $h^{0}\left(\left.E\right|_{E}\right)=1$, or $\left.E\right|_{E}=\mathcal{O}_{E}$. Let $D \in|E|$ and suppose that $D \neq E$, then $D \cap E=\varnothing$, which means $|E|$ is base-point-free, by s same arguement as above, we have $|E|$ is a pencil of elliptic curves.

X Surface of General Types

Exercise 1 (by Yi-Tsung Wang).
Since $K^{2}>0$, we may assume that $p_{g} \geq 3$. Write $|K|=|C|+V$, where $|C|$ is the mobile part and V is the fixed part. Then we have $C^{2} \geq 0$ and $C . V \geq 0$, and then $2-2 g_{a}(C)=(K+C) . C \geq 0$. Hence

$$
\begin{aligned}
K^{2} & =\frac{1}{2}(K(C+V)+(C+V) K) \\
& \geq \frac{1}{2}\left(K . C+K^{2}\right) \\
& =p_{a}(C)-1 \\
& =h^{1}\left(C, \mathcal{O}_{C}\right)-1 \\
& =h^{0}\left(C, \Omega_{C}^{1}\right)-1 \\
& =h^{0}\left(C,\left.\mathcal{O}_{X}\left(K_{X}+C\right)\right|_{C}\right)-1 \\
& =h^{0}(C, 2 C+V)-1 \\
& \geq h^{0}(C, 2 C)-1
\end{aligned}
$$

For $1, s_{1}, \ldots, s_{n-1} \in \Gamma\left(C, \mathcal{O}_{C}(C)\right)$, note that $1, s_{1}, \ldots, s_{n-1}, s_{1}^{2}, s_{1} s_{2}, \ldots, s_{1} s_{n-1} \in \Gamma(C, \mathcal{O}(2 C))$ are linearly independent sections, hence $h^{0}(C, 2 C) \geq 2 h^{0}\left(C, \mathcal{O}_{C}(C)\right)-1$. Now consider the exact sequence

$$
\left.0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(C) \rightarrow \mathcal{O}_{X}(C)\right|_{C} \rightarrow 0
$$

It gives that $h^{0}\left(C, \mathcal{O}_{C}(C)\right) \geq h^{0}\left(\mathcal{O}_{X}(C)\right)-1$. Hence we conclude that $K^{2} \geq 2 h^{0}\left(C, \mathcal{O}_{C}(C)\right)-2=2 p_{g}-4$. Exercise 2 (by Ping-Hsun Chuang).
Proof. Since $H_{1}(S, \mathbb{Z})$ is finitely generated with free $\operatorname{rank} q=0$, we have $H_{1}(S, \mathbb{Z})$ is finite. Consider the abelian universal cover of $S, S^{\mathrm{ab}} \xrightarrow{p} S$. Note that p is étale since it is a covering space. Moreover, p is of degree $\left|H_{1}(S, \mathbb{Z})\right|$ since $\pi_{1}\left(S^{\mathrm{ab}} / S\right)=\left[\pi_{1}(S), \pi_{1}(S)\right]$ and $H_{1}(S, \mathbb{Z})=\pi_{1}(S) /\left[\pi_{1}(S), \pi_{1}(S)\right]$. Say $\left|H_{1}(S, \mathbb{Z})\right|=d$. Then, we have $K_{S^{\text {ab }}}^{2}=K_{S}^{2}=d$ and $\chi\left(S^{\text {ab }}\right)=d \chi(S)=d$. By Noether inequality, we have $p_{g} \geq \frac{K^{2}+4}{2}$. Note that $\pi^{*} K_{S}=K_{S^{\text {ab }}}$ implies $K_{S^{\text {ab }}}$ is nef, that is, $S^{\text {ab }}$ is minimal. Then, we have

$$
d=\chi\left(S^{\mathrm{ab}}\right)=1-q\left(S^{\mathrm{ab}}\right)+p_{g}\left(S^{\mathrm{ab}}\right) \leq 1+p_{g}\left(S^{\mathrm{ab}}\right) \leq 1+\frac{K_{S^{\text {ab }}}^{2}+4}{2}=1+\frac{4+d}{2}
$$

Hence, $d \leq 6$.
Now, we need to exclude the case $d=6$. For $d=6$, we have $q\left(S^{\mathrm{ab}}\right)=0, K_{S_{\mathrm{ab}}}^{2}=d=6$, and Noether equality. If the equality holds in Noether inequality, then write $K=C+V$, where C is moving part and V is fixed part. Then, $C . V=0$ and $K . V=0$ (See proof in class.) Moreover, using the fact that the general $C \in|K|$ are hyperelliptic curve, we may find an automorphism on C such that it has fixed point. (Here, we need $g(C) \geq 2$, this holds since now $g(C)=\frac{C(C+K)}{2}+1=K^{2}+1=7$.) However, the automorphism of S^{ab} cannot have fixed point except identity since it is the covering space. This isa contradiction. Hence, we proved $\left|H_{1}(S, \mathbb{Z})\right| \leq 5$.

However, I cannot conclude $\left|H_{1}(S, \mathbb{Z})\right|=5$ implies S is Godeaux.

Exercise 3 (by Yu-Chi Hou).
Consider $G:=(\mathbb{Z} / 2 \mathbb{Z})^{3}$ acting on \mathbb{P}^{6} by

$$
\begin{aligned}
& e_{1}:\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}: x_{6}\right] \rightarrow\left[-x_{0}: x_{1}: x_{2}: x_{3}:-x_{4}:-x_{5}:-x_{6}\right] \\
& e_{2}:\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}: x_{6}\right] \rightarrow\left[x_{0}:-x_{1}: x_{2}:-x_{3}: x_{4}:-x_{5}:-x_{6}\right] \\
& e_{3}:\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}: x_{6}\right] \rightarrow\left[x_{0}: x_{1}:-x_{2}:-x_{3}:-x_{4}: x_{5}:-x_{6}\right]
\end{aligned}
$$

From the construction of the action, one see that any point which is fixed by e_{i} has at least three coordinates vanishing for each $i=1,2,3$. Thus, consider

$$
S^{\prime}=Z\left(\sum_{i=0}^{6} a_{i} x_{i}^{2}, \sum_{i=0}^{6} b_{i} x_{i}^{2}, \sum_{i=0}^{6} c_{i} x_{i}^{2}, \sum_{i=0}^{6} d_{i} x_{i}^{2}\right)
$$

for any $a_{i}, b_{i}, c_{i}, d_{i}$'s such that any maximal minors of the matrix

$$
\Lambda=\left(\begin{array}{ccc}
a_{0} & \cdots & a_{6} \\
b_{0} & \cdots & b_{6} \\
c_{0} & \cdots & c_{6} \\
d_{0} & \ldots & d_{6}
\end{array}\right)
$$

are non-zero. The condition for the minors shows that S^{\prime} is a non-singular complete intersection in \mathbb{P}^{6}. Moreover, it has degree $2^{4}=16$ and $\left.K_{S^{\prime}} \sim(-7 H+8 H)\right|_{S^{\prime}}=\left.H\right|_{S^{\prime}}$. Obviously, S^{\prime} is G-invariant. If e_{i} acts on S^{\prime} trivially, say e_{1} for instance, then $x_{1}=x_{2}=x_{3}=0$. Hence, the equation of S^{\prime} is given by
$a_{0} x_{0}^{2}+a_{4} x_{4}^{2}+a_{5} x_{5}^{2}+a_{6} x_{6}^{2}=b_{0} x_{0}^{2}+b_{4} x_{4}^{2}+b_{5} x_{5}^{2}+b_{6} x_{6}^{2}=c_{0} x_{0}^{2}+c_{4} x_{4}^{2}+c_{5} x_{5}^{2}+c_{6} x_{6}^{2}=d_{0} x_{0}^{2}+d_{4} x_{4}^{2}+d_{5} x_{5}^{2}+d_{6} x_{6}^{2}=0$
In matrix notation, this gives

$$
\left(\begin{array}{cccc}
a_{0} & a_{4} & a_{5} & a_{6} \\
b_{0} & b_{4} & b_{5} & b_{6} \\
c_{0} & c_{4} & c_{5} & c_{6} \\
d_{0} & d_{4} & d_{5} & d_{6}
\end{array}\right)\left(\begin{array}{l}
x_{0}^{2} \\
x_{4}^{2} \\
x_{5}^{2} \\
x_{6}^{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Since the maximal minors of Λ are non-zero, the matrix from the left-hand side is invertible. Hence, it only has trivial solution $x_{0}^{2}=x_{4}^{2}=x_{5}^{2}=x_{6}^{2}=0$ and thus $x_{0}=x_{4}=x_{5}=x_{6}=0$. However, $[0: \cdots: 0] \notin \mathbb{P}^{6}$. Similarly, we can repeat the argument for e_{2} and e_{3}. Thus, G acts on S^{\prime} freely.

Since G acts on S^{\prime} freely and hence $S^{\prime} \rightarrow S=S^{\prime} / G$ is a deg 8 unramified covering. Since S^{\prime} is complete intersection and hence the irregularity $q\left(S^{\prime}\right)=0=q(S)$. Also, $p_{g}\left(S^{\prime}\right)=7$ since $\left.K_{S^{\prime}} \sim H\right|_{S^{\prime}}$, where H is the hyperplane on \mathbb{P}^{6}. Hence, $\chi\left(\mathcal{O}_{S^{\prime}}\right)=1-q\left(S^{\prime}\right)+p_{g}\left(S^{\prime}\right)=8$ and $\chi\left(\mathcal{O}_{S}\right)=\chi\left(\mathcal{O}_{S^{\prime}}\right) / 8=1$. Finally, $K_{S}^{2}=K_{S^{\prime}}^{2} / 8=16 / 8=2$.

In sum, we obtain a surface which $p_{g}=0=q$ and $K^{2}=2$. This is a surface of general type, which again provides an example showing that Castelnuovo's rationality criterion is sharp.

Exercise 4 (by Po-Sheng Wu).

Let $C_{1}=C_{2}=C$ and $S=\left(C_{1} \times C_{2}\right) / G$. We choose $\phi(a, b)=(a-2 b, a-4 b)$. Note that the action of $(a, b) \in G$ on C_{1} has fixed points iff $a=0$ or $b=0$ or $a=b$, while acting on C_{2} has fixed points iff $a-2 b=0$ or $a-4 b=0$ or $2 a-6 b=0$, thus G acts freely on $C_{1} \times C_{2}$. Note that $q=g\left(C_{1} / G\right)+g\left(C_{2} / G\right)=0$ since $2 g(C)-2=n(2 g(C / G)-2)+\operatorname{deg} R$ and $g(C)=6, n=25, R=3 \cdot 20$, and $\chi\left(\mathcal{O}_{S}\right)=\frac{1}{25} \chi\left(\mathcal{O}_{C \times C}\right)=$ $\frac{1}{25} \chi\left(\mathcal{O}_{C}\right)^{2}=\frac{1}{25}(1-g(C))^{2}=1$, so $p_{g}=0 . K_{S}^{2}=\frac{1}{25} K_{C \times C}=\frac{1}{25}\left(p_{1}^{*}\left(\omega_{C_{1}}\right)+p_{2}^{*}\left(\omega_{C_{2}}\right)\right)^{2}=\frac{1}{25} \cdot 2 \cdot 10 \cdot 10=8$.

To give another example, consider C the complete intersection of $x^{3}+y^{3}+z^{3}+w^{3}=0$ and $x y=z w$ in \mathbb{P}^{3}, which by adjunction formula has genus 4 . $(a, b) \in G=(\mathbb{Z} / 3)^{2}$ acts on C by $(a, b)(x, y, z, w)=$ $\left(\omega^{a} x, \omega^{-a} y, \omega^{b} z, \omega^{-b} w\right), \omega^{3}=1, S=(C \times C) / G$ with action $g(x, y)=(g x, \phi(g) y)$ with $\phi(a, b)=(a+b, a-b)$. Similarly we have $q=0, \chi\left(\mathcal{O}_{S}\right)=\frac{1}{9} \cdot(-3)^{2}=1 \Rightarrow p_{g}=0$ and $K_{X}^{2}=\frac{1}{9} \cdot 2 \cdot 6 \cdot 6=8$.

[^0]: ${ }^{1}$ For the proof of Chevalley's theorem in modern language, one can consult Milne's article https://www.jmilne.org/ math/articles/2013c.pdf or Brian Conrad's article http://math.stanford.edu/~conrad/papers/chev.pdf

[^1]: ${ }^{2}$ The proof of Rosenlicht's result can be found in theorem 4.4 in the survey Invariant Theory by Popov and Vinberg appearing in Algebraic Geometry IV https://link.springer.com/book/10.1007/978-3-662-03073-8

