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Exercise 0 (by Kuan-Wen).

This is an example of proof.

Remark. This is an example for how to write in this format.

V Castelnuovo’s theorem and applications

Exercise 1 (by Yi-Tsung Wang).

Since —K is ample, we have K2 > 0. If h° (2K) = py # 0, then 2K ~ effecitve. Moreover, —mK is very
ample for sufficiently large m, hence (—mK) . (2K) > 0, which gives k* < 0, contradiction. Therefore py = 0.
In particular, p, = 0, and by lemma IV.1, we have ¢ = 0. By Castelnuovo’s rationality criterion, S is rational.
Then S is obtained form P? or FF,,(n # 1) by blowing up some points. If S is obtained from F,, for some n > 2
by blowing up some points, since Kp, = —2C) — (2 +n) f, we have (—=Kp,).Co = —2n+2+n=2—-n <0,
yielding that — Ky, is not ample, nor is —Kg, which is a contradiction. Therefore S is obtained from P? or
Fq = P! x P! by blowing up some points. Note that the blow up of P? at two points is the same as the
blow up of P! x P! at a point, hence S is P! x P! or obtained from P? by blowing up 7 points. In the latter
case, (—Kg)> =9 —7r >0, so r <8. Conversely, for S = P! x P!, we have shown that —Kg is ample. For
S being obtained from P? by blowing up 7 points (r < 8), it is a Del Pezzo surface, thus — Ky is ample.

Exercise 3 (by Yu-Chi Hou).

For any surface S, we first decompose Aut(.S) into the identity component Aut(S)° of the automorphism
group Aut(S) of S and the component group Aut(S)/Aut(S5)°. Then the quotient Aut(S)/Aut(S)° is a
discrete subgroup. By Chevalley’s structure theorem on algebraic groupsE], which states that any connected
algebraic groups G has a unique normal affine algebraic subgroup Gag such that A := G/Gag is an abelian
variety, we can furthermore decompose G := Aut(S)° into the exact sequence of groups

1 — Gag — Aut(S)° — A — 1,

'For the proof of Chevalley’s theorem in modern language, one can consult Milne’s article https://www.jmilne.org/
math/articles/2013c.pdf|or Brian Conrad’s article http://math.stanford.edu/ conrad/papers/chev.pdf
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where Gag is a normal affine subgroup of Aut(S)° and A is an abelian variety. Now, we claim that H must
have zero dimension if S is a non—ruled surface. In this case, since G g is affine variety of dimension 0,
G ag must be a finite set.

Suppose Gag has positive dimension, then it must contains an one dimensional subgroup H. By
classification of one dimensional affine algebraic group H (cf. for instance, Springer, Linear Algebriac
Groups, Proposition 3.1.3), H = G, or G,,. In general, S/G does not exists as geometric quotient. However,
a fact due to Rosenlicht which states the following:

Fact 1 (Rosenlicht, 195@. For any affine algebraic group G acting on an irreducible variety X, there
exists an non-empty G-stable open subset U C X,eq such that U/G exists as a geometric quotient.

Thus, applying this to S acting by H, there exists a non-empty G—stabl open subset U of S such that
U/H exists and has one-dimensional. Thus, U is birational to H x U/H. Also, since U/H is one-dimensional,
there exists a smooth projective model C' such that K(C) = K(U/H). It is clear that H = G, or G, is
also birational to P*. This shows that S is birational to C' x P!, contradiction to the assumption that S is
non-ruled.

Now, for the abelian variety A, this induces a map from A — Aut(Alb(S)), where Alb(S) is the Albense
variety of S. Since A is connected, A maps into the identity component Aut(Alb(S))? = Alb(S). This shows
that A must be a abelian subvariety of Alb(S) and thus shows that A is an abelian variety of dimension< q.

Exercise 4 (by Po-Sheng Wu).

An automorphisms on F,, must fixes the unique curve Cy with negative self-intersection, and permutes
the curves of zero self-intersection, that is, the fibers of F,, — P!, hence induces an automorphism on P!.

The map Aut(F,) — Aut(P;) = PSL(2,C) is surjective since 7%(0O @ O(n)) = O & O(n) for any
7w € Aut(Py). The kernel T' of this map is determined by an automorphism of O @& O(n), mod global
3 l;) in End(O @ O(n)), where a € C*,b €
Hom(O, O(n)) = H°(O(n)). Verify the composition rule and we find that T is a semidirect product of C*
with H%(O(n)).

sections of O*, that is, C*, so T" has elements of the form (

Exercise 5 (by Shuang-Yen Lee).

Let X be a surface containing infinitely many exceptional rational curves, say C7, Cs, . ... To show that
X is biration to P, we need to show that p, = ¢ = 0. If py # 0, then 2K is equivalent to a effective divisor
D. Since there are infinitely C; such that C; is not a component of D,

2= (Ci+ K).C;=C?+ K.C; > C? = —1,

a contradiction, so p; = 0. If ¢ # 0, then we have the Albanese map a : X — Alb(X). Since p, = 0,
a(X) is a smooth curve of genus g. Note that ¢ > 0, ¢, is constant for all ¢, so C; is contained in a fiber.

C? = —1 implies that C; is a component of a singular fiber, which is finite, a contradiction. So g = 0.

2The proof of Rosenlicht’s result can be found in theorem 4.4 in the survey Invariant Theory by Popov and Vinberg
appearing in Algebraic Geometry IV https://link.springer.com/book/10.1007/978-3-662-03073-8
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Construction: Let Py, ..., Ps be in general position in P? such that Py is the basepoint of [3¢ — Zle P,
let S = Blp,..p, P2. If D € Div S such that D> = —1 and Kg.D = —1, then (K, + D).D = —2, which
means p,(D) = 0. To show that D is linear equivalent to a rational curve, it suffices to show that D is
linear equivalent to an irreducible curve. Write D ~ al — Z?:l b;E;, then

9 9
—> B =-1, —3a+) b=
=1 =1

and so for all j,

9 9

b+l

A®+ 1= b= b+ (b+1) 2@-—12(%)-2@-1:&-2@-1,
i=1 i#£j

orb; > —1. By R-R, (D) + (K — D) =1+s(D) > 1. If /(K — D) # 0, then K — D ~ C for some
effective C' ~ (—a — 3)L + 3°7_ (1 + b;) E;. Now,

S bi+1 -8

0< —aq—3=— 3<__°_3.0
=4 3 =773 ’

a contradiction. So (D) > 0, so D ~ > n;C; for some C; irreducible. Note that —K is effective and
dim| - K| =1, (-K)* =0, so C;(—K) > 0 and “=" iff C; ~ —K, which implies D ~ C} + n(—K), for
some n > 0. Then

D*=—-1 = —1=C}+2nC,(-K) = C} + 2n.

By adjunction formula,
—2<2p,(C)—2=(C1+ K).Cy=-1-2n—1=—2n—2,

so n = 0 and hence D ~ (] is irreducible and rational. Now, consider the map D — D + (0;j5.D)0;; where
5ljk =L - E E Ek Then if D2 DK = —1

(D + ((5ka>5z]k>2 = (D + ((ijD)(ka)K =—1.
Write D ~ alL — Z?:l ngg, then D + (6z]kD>6z]k ~ <2CL - bZ - bj - bk)L - ZZ bZEg Since a = (Z bl + 1)/3,

we can always find ¢, j, k such that b; + b; + by < a, or 2a — b; — b; — by > a. So we can always find a D’
such that D'.L > D.L, hence S has infinitely many —1 rational curve.



VI Surfaces with p, =0 and ¢ > 1
Exercise 0 (by Yi-Heng Tsai).

[Serre’s lemma: Let M € GL(N.Z) and r be the order of M. Assume M = idy (modn) for some n > 3,
then M = idy.]|
Write M = idy + A with A = n(a;;). Let p be a prime dividing n, then we can write n = p*b and
a;; = p*b;; for some a € N, a; € Z>o U {00} and p1 b, b;;.(ev; == oo if a;; = 0) Assume A # Oy, then let
oy, € Z>o be a minimal one among all a;;’s. Hence,

On = 1A+ CA + - + CT(A) (1)

Then we get p®*®i|rbby, so p* i|r. Now, by induction on r, we may assume 7 is a prime. Therefore,
a=1,0;; =0and r =n = p. By (1), p|laj, which is a contradiction.

Exercise 1 (by Yu-Ting Huang).

Let H be a hyperplane section, then H*> + H.Kg = 2g(H) — 2 = 0. This implies H. K5 < 0. By
Noether-Enrique, S is a ruled surface and P, = 0 for all n. In particular, p, = 0.
Assume ¢ > 2. Consider the Albanese map, o : S — Alb(S), where a(S) is a smooth curve of genus
¢, and the fibers of the map are connected. Note that H is contained in some fiber. Write the fiber
F =3%".n,Ci+mH, where C; are irreducible (There might be no C;.) Then m?*H?* = mH(F -3, n;C;) < 0.
This contrdicts that H? > 0.
Now, for ¢ = 0, consider the exact sequence

0— HY(S, O0s(Ks)) — H°(S,Os(Ks + H)) — H(H, Oy (Ky)) — HY(S, Os(K5s)),

where h?(Os(Ks)) = p, = 0, h°(Oy(Ky)) = g(H) = 1 and W' (Os(Ks)) = h°(Os) = p, — q = 0. Hence
h'(0s)(Ks + H) = 1. i.e. dim|Kg+ H| =0. But H*+ H.Kg = 0,50 K5+ H 0 i.e. Ks — H. By Ex.
V.21(2), S is Sy or S§.

For ¢ = 1, we have already known that S is a ruled surface. Suppose S is birational to C' x P!. Then by

H°(S,05) = H(C,we) © H*(P', wpr ),

we have g(C) = ¢ = 1. Then S is an elliptic ruled surface.

Remark (by Pei-Hsuan Chang). Another example for the case ¢(S) = 1: Let F be a elliptic curve, S = Ex P
Let P € B, Q € P!, D = p{(3P)+p3(Q), where py, ps are the projection of the first and the second position,
Since deg3P > 2¢g(FE)+ 1, 3P is very ample on E. Notice that the map induced by D is a Segre embedding
induced by 3P and Q on E and P! respectively. Thus, D is very ample. Now, using D to embed S into P,
then H € |D| is hyperplane section. Notice that Kg = pi(Kg) + p5(Kp1), then we have

29(H) = 2= H.(K; + H) = (013P) + p3(Q))-(p1(Kp) + po(Kp1) +p1(3P) +p5(Q)) = =6+ 3+ 3 = 0.

Hence, g(H) = 1.



Remark (by Yu—Chi Hou). Generalizing the previous example by Pei-Hsuan, we consider any elliptic ruled
surface with self-intersection number of the distinguished section CZ = —e. Hartshorne Exercise V.2.12
shows that any linear system |Cy + bF'| is very ample if and only if b > e + 3. Observe that for general
element D € |Cy + bF|, D is non-singular by Bertini’s theorem. Also, one can compute the genus of D by
adjunctin formula:

2g(D) —2 = (Co+bF)(Cy+bF + Ky) = (Co+ bF)(—Co+ (b—e)F)=e+b—e—b=0.
Hence, general element of very ample linear system |Cy + bF| are non-singular elliptic curve.

Exercise 2 (by Shuang-Yen Lee).

(a) Let C = HN S be nonsingular, D = H N C € Pic(C), then d = deg D = C?. Since S is not ruled,
p12 # 0, which implies H. K > 0. By adjunction formula,

C(C+K)=29(C)—2 = degD =2¢(C) —2—- H.K <2¢(C —2).
If D is special, then by Clifford, dim|D| < d/2. Note that |D|: C' — P"! = H is an embedding,

dim |D| =n—1, or d > 2n — 2. If D is nonspecial, then

dim|D|:d—g(C)§d—(1+g) 25—1

by R-R. Son < d/2, or d > 2n > 2n — 2. When “=", since D is very ample, we have D = K¢, so
degD=29(C)—2 = HK=0 = K~0
since 12K is equivalent to an effective divisor.
(b) 2)
Exercise 3 (by Yi-Heng Tsai).

If S is bielliptic, then p, = 0,¢ = 1 and S is minimal non-ruled by Thm.VI.13. Also, 12K ~ 0 by
Prop.VI.15. Hence, P = 1. Conversely, assume p, = 0,¢ = 1 and S is minimal, we want to show S is
bielliptic. Again, by Thm.VI.13, S = BxF/q with B and F' are irrational smooth, ¢(¥/c) = 0 and either
1.g(B) =1 or 2.¢g(F) = 1. Now, it suffices to show g(B) = g(F) = 1 in both cases.

1. Assume g(F) > 1. Let Lo = K5*(3[12(1 — 1/ep)|P), then 0 = deg(L12) = —24 + Y [12(1 — 1/ep)].
Note —2n + > [n(1 — 1/ep)] = 2g(F) — 2 > 2 by Hurwitz’s theorem. Thus, r > 3.
(a) If r > 4, then r = 4 and ep = 2VP. So, —2n + > [n(1 — 1/ep)] = 0 =<«
(b) If » = 3, then assume e; < ey < e3. Thus, 3/e3 <> 1/ep < 1.

i. If e; > 3, then e; = ey =e3 =3 =«



ii. If e, =2, then 1/es+1/e3 < 1/2 = ey > 3.
To be more specific, (es,e3) = (4,5),(5,5),(3,7),(3,8),...,(3,11), which is impossible since
n < 4g(F)+4.

2. Assume g(B) > 1, then there exists at least one ramified point P. Note Py(S) = h°(B/a, K(>_[k(1 —
1/€p)]P) =: Dk> ThIlS, 1= P12(5> = hO<D12) = d€g(D12) Z 6 —<«.

Remark (by Shuang-Yen Lee). We give another solution for the case 1(b)ii. without using the fact
n <d4g(F) + 4.

Proof. Since G is a subgroup of translations, G is abelian, so G = [[Z/p{"Z. Let H, =[], _, Z/p;"Z and
let H), = [],,, Hy- Now, we factor F' — F//G into m, : F' = F//H, and 7, : F/H,, — F/G. Let Pi, P, P
be the branch points with ramification index e;, ey, e3, respectively. Then P; will be a branch point of , if
p | ;. Hurwitz formula gives

29(F/H)) — 2 = degm, - (2g(F/G) —2) + ) _deg, (1 - el) =degm,- [ Y (1 — l) -2] <o

i
ples plei
when p | e; for some i. Thus, g(F/H}) = 0 and then degm, = (=2)/(=2+ >_ ..(1 — 1/e;)). For each case
(e1,ea,e3) = (2,4,5),(2,5,5),(2,3,7),(2,3,8),(2,3,9), (2, 3,10), (2,3, 11),

we take p = 5,2,2, 3,2, 3,2, respectively, and we get

respectively, a contradiction. O
Exercise 4 (by Yu-Ting Huang).

Suppose we have the surjective fibration p : S — B. By taking Stein factorization, we may assume B is
connected. We first consider g(B) > 0.
In general, we have the formula

0 = Xtop(S) = Xtop(B) Xtop(Fy) + Z(XtOP(FS) — Xtop(£7)),

sEX

where ¥ is the set of points over which p is not smooth. And 2¢(F,) — 2 = F772 + F,. K >0,s0g(F,)>1
For the case that there is no singular fiber,

0 = Xtop(B)Xtop(Fy) = 4(1 — g(B))(1 — g(F})).

Then whether ¢g(F,) = 1, or g(B) = 1 and ¢(F,) > 1. By proposition VL8, we can conclude that
S ~ B x F, /G, where one of B and F, is elliptic.
For the case that there exists a singular fiber, we have X0, (B)Xtop(F)) = 4(1 — g(B))(1 — g(F,))) > 0. Then
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Zsez(me(FS) - Xtoz)(Fn)) <0.
For s € o, write Fy = >, n;C;, where C; are irreducible. We will show that xop(Fs) > Xtop(EFh)-

Xeop(Fs) = 2x(OLc,) = ZC +ZCK ) > — ZC K> anCK
=F,K=F, K= 2)((@’,%) = 2Xt0p(Fn).

Now, we can conclude that Xop(Fs) = Xtop(F7), for we have the inequality of two sides. Then all inequalities
above turn into equalities. Hence, F; = nC for some irreducible smooth curve C' with C.K = 0 (Actually,
the above process is similar to proposition VI.6). This implies that ¢(C) =1+ C.K =1 and g(F,) = 1.
Then also by proposition VI.8, the result follows.

(I haven’t figured out the case g(B) = 0 and ¢g(F') > 1, or this case will not happen??) (In that case,
proposition VI.8 is even unapplicable.)



VII Kodaira dimension

Exercise 1 (by Pei-Hsuan Chang).
For a divisor D on V. Define

L(D) = H(V,0(D)) ={f € K(V) | (f) + D = 0} U {0}
Q(D) = subfield of K (V') generated by L(D),
@ = sufield of K (V') generated by all Q(D), for some D € |nK].

Notice that R(V) := ®,50H°(V, 0(nK) = @®,>0L(nK)t", and let n be the smallest number such that
L(nK) # 0. Then notice that for f € L(nK), f is algebraic over @), but ¢" is not algebraic over @), so ft"
is not algebraic over Q). Since ft" € Frac R(V'), Frac R(V') is not algebraic over (). However Frac R(V) is

algebraic over Q(t), so
tr. deg Frac R(V') = tr.deg @ + 1.

Our goal is to show tr.deg @ = (V). For n such that [nK| # @, take D € |[nK]|, then we have
L(D) € L(2D) C L(3D) C - C K(V)

So,
Q(D) € Q(2D) C Q(3D) C - C K(V).

Since K (V') is finitely generated over k, U,>oQ(nD) is also finitely generated over k. Thus, 3m € N such
that Q(mD) = Q((m + 1)D) = .... Since this holds for any n such that |[nK| # @, so Q = Q(mD) for m
large enough. Now, notice that for a effective divisor £, Q(£) = K(Im(y ). Hence,

tr.deg Q = tr.deg Q(mD) = dim(Im(pg|)) = (V).
This complete the proof.
Exercise 2 (by Tzu-Yang Tsai).

X=VxW D
We know that wy.w = Kx = pjwy + piww, where p1 P2 are projection.
v Ty

AISO, HO(V x W, OVXW(nKVXW>> = HO(M Ov(TLKv)) D HO<W, Ow(an))vn e N.
Thereby the map ¢, Ky xw : V. x W —=» PYvxW can be factor as:

(d)nKv ’¢an)

Onkcyw -V X W  Ses TPV PAW

Segre’s gbeddmg PNV W

Thus dim(Im(¢nr, . )) = dim(Im(¢nk, ) + dim(Im(p,k,,)) ¥n € N
Let a,b € N s.t. dim(Im(¢ar,)) = &(V), dim(Im(¢pr,, ) = £(W), then

(V) 4+ k(W) > k(V x W) > dim(Im(Paprcy, ) = Aim(Im(dapre, ) + dim(Im(dapre,, ) = k(V) + £(W)
Therefore k(V') + k(W) = k(V x W)



Exercise 3 (by Yu-Chi Hou).

Given any surjective morphism f : X — Y between varieties, one has K(Y) C K(X). Also, the induced
map on global section of pluricanonical bundle

fHO(Y, rKy) < HY(X, rKy)

is injective, for any r > 0. In view of Exercise 1 in this chapter, we see that pluricanonical ring of Y is a
subring of pluricanonical ring of X and thus (Y') < (X).

Now, observe that f is étale if and only if it is flat and €y, = 0. Thus, the exact sequence of Kéhler
differential gives

f*wX — wy — 0.

Since X and Y are smooth varieties, f*wy and wy are both invertible sheaves, f*wx = wy and thus
HY(X,rKx) = H(Y,rKy).

This of course shows that x(X) = k(Y).



VIII Surfaces with kK =0
Exercise 1 (by Yi-Heng Tsai).

Since K? + X;,,(S) = X(Os) = 0 and K?, X,,,(S) > 0, we have K? = X,,,(S) = 0. By Ex.VI.4,
S = BxF/q with g(B) = 1. Thus, g(B/c) = 0,1 and B x F' — S is étale.

1. (9(B/a) = 0) Note ¢ = h%(Q2s) = g(B/c) + g(F/c), so g(Fjc) = 2. Also, P, = h°(F/a, Ly) where
Ly = w%/G(ZP[Q(l —1/ep)]P). Apply Riemann-Roch theorem, we have P, > 3+ > [2(1 —1/ep)] > 1.

2. (g(B/g) = 1) Similarly, g(¥/c) = 1. If g(F) > 1, r > 3 by Hurwitz’s theorem. In this case,
P, >3 [2(1 —1/ep)] > 3 > 1. On the other hand, if g(F) = 1, then P, = 1¥n > 1. In this case,
k(S) = 0, which implies S is an Abelian surface.

Exercise 10 (by Chi-Kang Chang).

For g = 2k — 1 case, consider the double cover f : S — P! x P! which is branch on a (4,4) curve, hten we
have Kg = f*(Kp1yp1+ R with R be the ramified locus with coeffienent 1. Thus K¢ = f*(—2h;—2hs)+R = 0.

Now since hy + khy is very ample on P! x P! then since f is finite, we have f*|hy + khy| is ample and
base point free. Thus the general element C' € f*|hy + khs| is smooth (and hence reduced). To show the
irreducibility, consider the exact sequence 0 — Os(—C) — Og — Oc — 0, this induces the cohomology
sequence

0— H°(S,—C) — H°(S,0) = H(C,0) — H'(S,—-C)...

Since by Kodaira vanishing H'(S, —C') = 0, by the above sequence we conclude H°(C,0) = C, thus C'is
connected, hence irreducible by the smoothness. And then we have C? = (deg(f))(hy +kho)? = 4k = 2g — 2,
thus g(C) = 2k + 1.

Next we show that S is K3. Now we consider the exact sequence 0 — Og — Og(C') — O — 0(C), this
induces the cohomology sequence

0 — H°(S,0) = H(S,C) — H°(C,C|¢) — H'(S,0) = H*(S,C) = H(C,C|c)...

Again by Kodaira vanishing, x(0s(C)) = h°(0s(C) = g — ¢ + 1 by surfece Riemann-Roch. On the other
hand, again by surface Riemann-Roch and Kodaira vanishing
ho(Os(C)) = h°(P* x P', hy + khy)
= x(P' x P', hy + khy) =02k +2 =g+ 1.

Thus ¢ = 0 and hence S is K3. Finally, since h°(0s(C')) = g + 1, we know that ¢|c| is a 2 to 1 map sends S
to P! x P! in P9, completes our proof.

For g = 2k case, let F; be the ruled surface P(Op1 & Op1(—1)). Then take the double cover of F; branch
over a curve linearly equivalent to 4Cy + 6f, then repeat the similar computation of g = 2k + 1 case again,
we get our consequence.
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Exercise 12 (by Yi-Tsung Wang).
For S being a K3 surface, consider the exact sequence
0->Z—->0—-0"=0

It gives the long exact sequence
0 — H'(S,0) — Pic(S) = H' (S,0%) % H*(S,2) & H?(S,0) = H°(S,0) = C

For x € (H*(S,Z)),,,, B (x) € Cir = {0}, that is, 8 (z) = 0. Hence there exists L € Pic(S) such that
a (L) = z. Suppose mz = 0, then a (mL) = 0. Since « is injective, we have mL = 0. In particular, L = 0.
By Riemann-Roch theorem, h° (L) + h% (—L) > 2, we see that either h° (L) > 1 or h° (—L) > 1. No matter
which the case holds, we have L ~ 0, and then z = 0, that is, (H?(S,Z))
universally coefficient theorem,

tor = 0. By mixed variance

H?*(S,7Z) = Exty, (H, (S,7),7Z) ® Homy, (Hy (S,Z) ,7)

Write H, (S,Z) = Z" @ (H, (S, Z))

then we have

tor?

Exty, (H, (S,Z),7Z) = Exty (Z",Z) x Exty, ((H, (S,7Z)),..,Z) = (H, (S,Z))

tor ? tor

Therefore 0 = (H? (S, Z))
have

= (H,(S,2)),,,.- By Poincaré duality and Hodge decomposition theorem, we

tor tor’

H,(S,Z)®C=H,(S,C)=H?*(S,C)" and H*(S,C)=H* g H*' @ HY? @ H*® =0

Thus H; (S,7Z) ® C = 0, which says r = 0. Therefore we conclude that H; (S,Z) = 0.
For X being an Enrique surface, we also have the long exact sequence

0 — Pic (X) = H?(X,Z) — H*(X,0) = H*(X,K) =0

Hence Pic(X) & H?(X,Z). For L € (Pic(X)),,,, let mL = 0 for some m € N>, we have h® (L) =
hY (= (m —1) L) = 0. By Riemann-Roch theorem, h° (K — L) > 1,s0 K — L > 0, and —2L > 0. Since
L =0, we get —2L ~ 0. Note that 2K ~ 0, then K — L ~ —K + L, and then — (K — L) > 0, thus
K — L ~ 0, that is, K ~ L. Since p, = 0, we have K + 0. Therefore (Pic (X)),,, (and then (H* (X, Z)),,,)
is Z /97, generated by [K].
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IX Surfaces with x =1

Exercise 2 (by Pei-Hsuan Chang).

Let E be an Euclidean space with a positive definite symmetric billnear form ( , ). Define
2(8,0) _2(8,0)

aa:zﬁ—m,and<ﬁ,oz>: (o)

Definition. @ is called a root system in E if
1. ® is finite, span E and does not contain 0.
2. If a € ®, then the only multiple of o in ® are exactly +a.
3. If « € @, then 0,(P) = O.
4. If a, 8 € ®, then < f,a >€ Z.
Definition. We can choose a set of positive roots ®* C ®. This is a subset of ® such that
1. Va € @, exactly one of the roots a;, —« is contain in ®7.
2. Ya, 8 € ®* such that if @ + 3 € @, then a + 5 € OF.
An element of @ is said to be simple root of it cannot be written as sum of two elements in ®.

Solution. By adjunction formula,
02g(F) =2 = F.(F+ Ks) = F.EKs = ()_niCy).Ks =Y n;(29(C;) —2—C7).
Notice that C? < 0, Vi, so "2¢g(C;) —2 — C? < 0 = ¢(C;) = 0,C? = —1". Since S is minimal, we get
29(C;) =2 —C? >0,

Thus,
0=Ci.Kg=29(C;) —2—C?, Vi.

Hence, g(C;) = 0,02 = —2, Vi. Also, Corollary VIIL.4 says that
0> (Ci +C))? = -4+ 20,.C;,
so we know that C;.C; <2 and "C;.C; =2 & F = m(C; + C;) for some m € Q". So there are two cases:

12



For the second case, let M’ be the Z-modules generated by {C;} in Pic S. M’ is free, since if > m;C; ~ 0, then
(3= m;C;)* = 0. By Corollary VIIL.4 again, Y m;C; = rF, for some r € Q, so rF ~0=r=0=m; =0,
Vi. Now, define M = M’'/Z[F]. The intersection pairing induce a well-defined symmetric billnear form on

1
M, since C;.F = 0 and F? = 0. Now, let (a,b) = —§a.b, SO

N 1 Lifi=j
(CZ"CJ')_{ —lor0 ,ifi#j

1
Again, by Corollary VIIL.4, Va € M, (a,a) = —§a2 >0, so (, ) is positive definite.

1
Now, let ® = {r € M|(r,r) = —57"2 = 1}. It is easy to check @ is a root system. Also, let

Ot = {r € ®|r = > m;C; with m; > 0, Vi}. It is clearly a set of positive roots, and {C;} are all simple
roots. Finally, we only need to check that ® is of type A,, D,, E,. Since

2(Cy, Cy) 2(Cy, C)

<C;,C: >< C;,C; >=
’ ’ (C;,Cy) (Cy,Cy)

= Qorl,

any two points in the Dynkin diagram are connected by at most one line. By the classification of Lie
algebra, ® cannot of the type B, C,, G5. Thus, ® must of type A,, D,, E,.

Exercise 4 (by Shuang-Yen Lee).
S is Enriques implies p, = ¢ = 0, 2K ~ 0. By R-R,
1
R (K +E)—h(K+E)+h(K+E)= 5(K+ E)E+1=1,

so h’(K 4+ E) > 1 since h*(K 4+ E) = h°(—E) = 0, and hence |K + E| # @.
Let E' € |K + E|, then E.E' = E(K + E) =0 and E o E' implies EN E' = @. The exact sequence

implies h°(F) = 1+ h°(E|g), so h°(E) = 1 or 2 since E? = 0.
If h°(E) = 1, by the exact sequence

0— Og(—E — FE') — Og(—FE') — Og(—FE') — 0,
we get 0 — C = h%(—FE'|g) — h!(—F — E’) exact, implies h'(—F — E’) > 1 and by R-R,
R (—E - E)—h'(—E - E)+h(-E—-FE)= %(—E ~EY-E-FE ~-K)+1=1,
so h%(2E) > 2. The exact sequence
0 — Og(F) — Os(2E) — Op(2E) — 0

13



implies that h°(2F) < h°(E) + h°(2E|g) = 2 so h°(2E) = 2 and hence dim |2E| = 1. Since 2F ~ 2FE’ and
2EN2E = @, |2E| : S — P! is base-point-free, then |2E| = AU B, where A = {D € |2E| | D is smooth }
and B = |2E| \ A is finite. For D € A, write D = Y C;, then D? = 0 implies that > C? = 0 since
CiNC; =@ for i # j. If there’s i such that C? < 0, then C;.(2E) = C;.D = C; < 0 implies C;.E < 0, but
E is numerically effective, a contradiction. So C? = 0 for all 7, implies g(C;) = 1.

By Stein factorization theorem, |2FE| : S — P! can be factored into 7 : S — C and a finite morphism
C — P'. Then n(D) = {P,,...,P,} with C; = 77'(P;). Then 7 is an elliptic fibration, by Ex. IX. 1, we
have 0 = ¢(S) = g(C) or g(C) + 1, which means C = P!, Then C; ~ Cj, this gives D ~ nF', but general
fiber is reduced, and hence n = 1. So |2E]| is a pencil of elliptic curves.

If h°(E) =2, then h°(E|g) =1, or E|gp = Op. Let D € |E| and suppose that D # E, then DN E = &,
which means |F| is base-point-free, by s same arguement as above, we have |E| is a pencil of elliptic curves.
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X Surface of General Types

Exercise 1 (by Yi-Tsung Wang).
Since K% > 0, we may assume that p, > 3. Write |K| = |C| + V, where |C| is the mobile part and V is
the fixed part. Then we have C? > 0 and C.V > 0, and then 2 — 2g, (C) = (K + C).C > 0. Hence

K? = 1(K(C’+V)+(C+V)K)

2
1

v

2(K.C+K2)
pa (C) —

K (C, (90)—1
W (C, QL) —1
R (
R (
BO

2(C,0x (Kx+C) |c) — 1
2(C,2C+V) -1

(C,20) -1
For 1,s1,...,8,.1 € ['(C,0¢ (C)), note that 1,s1,...,8, 1,5%,5189,...,818,.1 € ['(C,0(2C)) are linearly
independent sections, hence h° (C,2C) > 2h° (C,O¢ (C)) — 1. Now consider the exact sequence

O%OX%OX(O) —>Ox<0) |C—>O

It gives that h° (C, O¢ (C)) > h° (Ox (C)) — 1. Hence we conclude that K2 > 2h° (C, O¢ (C)) —2 = 2p, — 4.
Exercise 2 (by Ping-Hsun Chuang).

Proof. Since Hy (S,Z) is finitely generated with free rank ¢ = 0, we have H; (S,Z) is finite. Consider

the abelian universal cover of S, S* £ S. Note that p is étale since it is a covering space. Moreover,

Vv

p is of degree |Hy (S,Z)] since m (S%°/S) = [m1 (S), 71 (S)] and Hy (S,Z) = 71 (S) / [m1 (S) .1 (S)]. Say

|H (S,Z)| = d. Then, we have K2,, = K2 = d and y (5**) = dx (S) = d. By Noether inequality, we have
K2

Dg = + . Note that 7*Kg = Kga» implies K g is nef, that is, S*" is minimal. Then, we have

K2, +4
F= () = -0 (%) 42, (%) < 14y (5) <14 Kl g 40

Hence, d < 6.

Now, we need to exclude the case d = 6. For d = 6, we have ¢ (Sab) =0, Kgab = d = 6, and Noether
equality. If the equality holds in Noether inequality, then write K = C' + V', where C' is moving part and V'
is fixed part. Then, C.V =0 and K.V = 0 (See proof in class.) Moreover, using the fact that the general
C € |K]| are hyperelliptic curve, we may find an automorphism on C' such that it has fixed point. (Here, we

K
need g (C') > 2, this holds since now g (C') = %

of S?" cannot have fixed point except identity since it is the covering space. This isa contradiction. Hence,
we proved |H; (S,7Z)| < 5.
However, I cannot conclude |H; (S,Z)| = 5 implies S is Godeaux. O

+1=K?+1=17.) However, the automorphism
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Exercise 3 (by Yu-Chi Hou).
Consider G := (Z/27)? acting on P° by

er:|xomy i wo i3ty s x| = [T Xy o T3 —Tg D —T5 1 —Tg)
ey :[mo:xy i wy iy xy 5 wg] = [T~y P X9 —T3 1Ty —T5 0 —Tg)

es:mwo:xy i wy i wy Xy T L] = [To W T —Xe —T3 T —Ty : Ty —Tg)

From the construction of the action, one see that any point which is fixed by e; has at least three coordinates
vanishing for each ¢ = 1,2, 3. Thus, consider

ao ... a6
A~ bO c. b6
Co ... Cg
dy dg

are non-zero. The condition for the minors shows that S’ is a non-singular complete intersection in P,
Moreover, it has degree 2* = 16 and Kg ~ (—7H + 8H)|s» = H|g. Obviously, S’ is G—invariant. If e; acts
on S’ trivially, say e; for instance, then x; = x5 = 3 = 0. Hence, the equation of S’ is given by

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
apry+asxy+asr;+agrg = boxg+byxs+bsx: +bexg = coxf+caxi+csrs+cery = dory+dar;+dsrs+dsrg =0

In matrix notation, this gives

ag Q4 G5 Gg x% 0

bo b4 b5 bG l‘i o 0

Co C4 C5 Cg 22 |0

do d4 d5 d@ SL’% 0
Since the maximal minors of A are non—zero, the matrix from the left—hand side is invertible. Hence, it
only has trivial solution 22 = 22 = 22 = 22 = 0 and thus 7y = x4 = 75 = ¢ = 0. However, [0:---: 0] ¢ P°.

Similarly, we can repeat the argument for e; and es. Thus, G acts on S’ freely.

Since G acts on S’ freely and hence S” — S = S'/G is a deg 8 unramified covering. Since S’ is complete
intersection and hence the irregularity ¢(5’) = 0 = ¢(S5). Also, p,(S’) = 7 since Kg ~ H|g, where H
is the hyperplane on P°. Hence, x(Og) = 1 — ¢(S’) 4+ p,(5") = 8 and x(Os) = x(Og)/8 = 1. Finally,
K% =K2/8=16/8 =2.

In sum, we obtain a surface which p, = 0 = ¢ and K? = 2. This is a surface of general type, which
again provides an example showing that Castelnuovo’s rationality criterion is sharp.

Exercise 4 (by Po-Sheng Wu).
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Let Cy = Cy = C and S = (C} x Cy)/G. We choose ¢(a,b) = (a — 2b,a — 4b). Note that the action of
(a,b) € G on C has fixed points iff a = 0 or b = 0 or a = b, while acting on C5 has fixed points iff a —2b =0
or a—4b = 0 or 2a — 6b = 0, thus G acts freely on C; x Cy. Note that ¢ = ¢(C1/G) + g(Cy/G) = 0
since 2¢(C) — 2 =n(29(C/G) — 2) + degR and ¢(C) = 6,n =25, R = 3- 20, and x(Os) = 3x(Ocxc) =
2=X(0c)? = (1 —g(C))? =1,50 py =0. K& = 5-Kcxe = 52 (0} (wey) + pi(we,))? = 5 -2-10- 10 = 8.

To give another example, consider C' the complete intersection of 23 4 y® + 23 4+ w? = 0 and zy = 2w
in P3, which by adjunction formula has genus 4. (a,b) € G = (Z/3)? acts on C by (a,b)(z,y,2,w) =
(W, w %, w2, wtw), w? =1, S = (C x C)/G with action g(z,y) = (g, ¢(g)y) with ¢(a,b) = (a+b,a—0).
Similarly we have ¢ =0, x(Og) =5 (-3)>*=1=p,=0and K3 =35-2-6-6=38.
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