Algebraic Geometry II Homework Beauville

A course by prof. Chin-Lung Wang

2020 Spring

Exercise 0 (by Kuan-Wen).

This is an example of proof.

Remark. This is an example for how to write in this format.

V Castelnuovo's theorem and applications

Exercise 1 (by Yi-Tsung Wang).

Since -K is ample, we have $K^2 > 0$. If $h^0(2K) = p_2 \neq 0$, then $2K \sim$ effective. Moreover, -mK is very ample for sufficiently large m, hence $(-mK) \cdot (2K) \geq 0$, which gives $k^2 \leq 0$, contradiction. Therefore $p_2 = 0$. In particular, $p_g = 0$, and by lemma IV.1, we have q = 0. By Castelnuovo's rationality criterion, S is rational. Then S is obtained form \mathbb{P}^2 or $\mathbb{F}_n(n \neq 1)$ by blowing up some points. If S is obtained from \mathbb{F}_n for some $n \geq 2$ by blowing up some points, since $K_{\mathbb{F}_n} \equiv -2C_0 - (2+n) f$, we have $(-K_{\mathbb{F}_n}) \cdot C_0 = -2n + 2 + n = 2 - n \leq 0$, yielding that $-K_{\mathbb{F}_n}$ is not ample, nor is $-K_S$, which is a contradiction. Therefore S is obtained from \mathbb{P}^2 or $\mathbb{F}_0 = \mathbb{P}^1 \times \mathbb{P}^1$ by blowing up some points. Note that the blow up of \mathbb{P}^2 at two points is the same as the blow up of $\mathbb{P}^1 \times \mathbb{P}^1$ at a point, hence S is $\mathbb{P}^1 \times \mathbb{P}^1$ or obtained from \mathbb{P}^2 by blowing up r points. In the latter case, $(-K_S)^2 = 9 - r > 0$, so $r \leq 8$. Conversely, for $S = \mathbb{P}^1 \times \mathbb{P}^1$, we have shown that $-K_S$ is ample. For S being obtained from \mathbb{P}^2 by blowing up r points $(r \leq 8)$, it is a Del Pezzo surface, thus $-K_S$ is ample.

Exercise 3 (by Yu-Chi Hou).

For any surface S, we first decompose $\operatorname{Aut}(S)$ into the identity component $\operatorname{Aut}(S)^{\circ}$ of the automorphism group $\operatorname{Aut}(S)$ of S and the component group $\operatorname{Aut}(S)/\operatorname{Aut}(S)^{\circ}$. Then the quotient $\operatorname{Aut}(S)/\operatorname{Aut}(S)^{\circ}$ is a discrete subgroup. By Chevalley's structure theorem on algebraic groups¹, which states that any connected algebraic groups G has a unique normal affine algebraic subgroup G_{Aff} such that $A := G/G_{\operatorname{Aff}}$ is an abelian variety, we can furthermore decompose $G := \operatorname{Aut}(S)^{\circ}$ into the exact sequence of groups

$$1 \to G_{\text{Aff}} \to \text{Aut}(S)^{\circ} \to A \to 1,$$

¹For the proof of Chevalley's theorem in modern language, one can consult Milne's article https://www.jmilne.org/ math/articles/2013c.pdf or Brian Conrad's article http://math.stanford.edu/~conrad/papers/chev.pdf

where G_{Aff} is a normal affine subgroup of $\text{Aut}(S)^{\circ}$ and A is an abelian variety. Now, we claim that H must have zero dimension if S is a non-ruled surface. In this case, since G_{Aff} is affine variety of dimension 0, G_{Aff} must be a finite set.

Suppose G_{Aff} has positive dimension, then it must contains an one dimensional subgroup H. By classification of one dimensional affine algebraic group H (cf. for instance, Springer, *Linear Algebraic Groups*, Proposition 3.1.3), $H = \mathbb{G}_a$ or \mathbb{G}_m . In general, S/G does not exists as geometric quotient. However, a fact due to Rosenlicht which states the following:

Fact 1 (Rosenlicht, 1956²). For any affine algebraic group G acting on an irreducible variety X, there exists an non-empty G-stable open subset $U \subset X_{\text{reg}}$ such that U/G exists as a geometric quotient.

Thus, applying this to S acting by H, there exists a non-empty G-stabl open subset U of S such that U/H exists and has one-dimensional. Thus, U is birational to $H \times U/H$. Also, since U/H is one-dimensional, there exists a smooth projective model C such that K(C) = K(U/H). It is clear that $H = \mathbb{G}_a$ or \mathbb{G}_m is also birational to \mathbb{P}^1 . This shows that S is birational to $C \times \mathbb{P}^1$, contradiction to the assumption that S is non-ruled.

Now, for the abelian variety A, this induces a map from $A \to \operatorname{Aut}(\operatorname{Alb}(S))$, where $\operatorname{Alb}(S)$ is the Albense variety of S. Since A is connected, A maps into the identity component $\operatorname{Aut}(\operatorname{Alb}(S))^0 = \operatorname{Alb}(S)$. This shows that A must be a abelian subvariety of $\operatorname{Alb}(S)$ and thus shows that A is an abelian variety of dimension $\leq q$.

Exercise 4 (by Po-Sheng Wu).

An automorphisms on \mathbb{F}_n must fixes the unique curve C_0 with negative self-intersection, and permutes the curves of zero self-intersection, that is, the fibers of $\mathbb{F}_n \to \mathbb{P}^1$, hence induces an automorphism on \mathbb{P}^1 .

The map $\operatorname{Aut}(\mathbb{F}_n) \to \operatorname{Aut}(\mathbb{P}_1) \cong \operatorname{PSL}(2, \mathbb{C})$ is surjective since $\pi^*(\mathcal{O} \oplus \mathcal{O}(n)) \cong \mathcal{O} \oplus \mathcal{O}(n)$ for any $\pi \in \operatorname{Aut}(\mathbb{P}_1)$. The kernel T of this map is determined by an automorphism of $\mathcal{O} \oplus \mathcal{O}(n)$, mod global sections of \mathcal{O}^* , that is, \mathbb{C}^* , so T has elements of the form $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ in $\operatorname{End}(\mathcal{O} \oplus \mathcal{O}(n))$, where $a \in \mathbb{C}^*, b \in \operatorname{Hom}(\mathcal{O}, \mathcal{O}(n)) = H^0(\mathcal{O}(n))$. Verify the composition rule and we find that T is a semidirect product of \mathbb{C}^* with $H^0(\mathcal{O}(n))$.

Exercise 5 (by Shuang-Yen Lee).

Let X be a surface containing infinitely many exceptional rational curves, say C_1, C_2, \ldots . To show that X is biration to \mathbb{P}^2 , we need to show that $p_2 = q = 0$. If $p_2 \neq 0$, then 2K is equivalent to a effective divisor D. Since there are infinitely C_i such that C_i is not a component of D,

$$-2 = (C_i + K) \cdot C_i = C_i^2 + K \cdot C_i \ge C_i^2 = -1,$$

a contradiction, so $p_2 = 0$. If $q \neq 0$, then we have the Albanese map $\alpha : X \to Alb(X)$. Since $p_g = 0$, $\alpha(X)$ is a smooth curve of genus q. Note that q > 0, $\alpha|_{C_i}$ is constant for all i, so C_i is contained in a fiber. $C_i^2 = -1$ implies that C_i is a component of a singular fiber, which is finite, a contradiction. So q = 0.

²The proof of Rosenlicht's result can be found in theorem 4.4 in the survey *Invariant Theory* by Popov and Vinberg appearing in *Algebraic Geometry IV* https://link.springer.com/book/10.1007/978-3-662-03073-8

Construction: Let P_1, \ldots, P_8 be in general position in \mathbb{P}^2 such that P_9 is the basepoint of $|3\ell - \sum_{i=1}^8 P_i|$, let $S = \operatorname{Bl}_{P_1 \cdots P_9} \mathbb{P}^2$. If $D \in \operatorname{Div} S$ such that $D^2 = -1$ and $K_S \cdot D = -1$, then $(K_s + D) \cdot D = -2$, which means $p_a(D) = 0$. To show that D is linear equivalent to a rational curve, it suffices to show that D is linear equivalent to an irreducible curve. Write $D \sim aL - \sum_{i=1}^9 b_i E_i$, then

$$a^{2} - \sum_{i=1}^{9} b_{i}^{2} = -1, \quad -3a + \sum_{i=1}^{9} b_{i} = -1$$

and so for all j,

$$a^{2} + 1 = \sum_{i=1}^{9} b_{i}^{2} = \sum_{i \neq j} b_{i}^{2} + (b_{j} + 1)^{2} - 2b_{j} - 1 \ge \left(\frac{\sum_{i=1}^{9} b_{i} + 1}{3}\right) - 2b_{j} - 1 = a^{2} - 2b_{j} - 1,$$

or $b_j \ge -1$. By R-R, $\ell(D) + \ell(K - D) = 1 + s(D) \ge 1$. If $\ell(K - D) \ne 0$, then $K - D \sim C$ for some effective $C \sim (-a - 3)L + \sum_{i=1}^{9} (1 + b_i)E_i$. Now,

$$0 \le -a - 3 = -\frac{\sum_{i=1}^{9} b_i + 1}{3} - 3 \le -\frac{-8}{3} - 3 < 0,$$

a contradiction. So $\ell(D) > 0$, so $D \sim \sum n_i C_i$ for some C_i irreducible. Note that -K is effective and $\dim |-K| = 1$, $(-K)^2 = 0$, so $C_i(-K) \ge 0$ and "=" iff $C_i \sim -K$, which implies $D \sim C_1 + n(-K)$, for some $n \ge 0$. Then

$$D^2 = -1 \implies -1 = C_1^2 + 2nC_1(-K) = C_1^2 + 2n.$$

By adjunction formula,

$$-2 \le 2p_a(C_1) - 2 = (C_1 + K).C_1 = -1 - 2n - 1 = -2n - 2,$$

so n = 0 and hence $D \sim C_1$ is irreducible and rational. Now, consider the map $D \mapsto D + (\delta_{ijk}.D)\delta_{ijk}$ where $\delta_{ijk} = L - E_i - E_j - E_k$. Then, if $D^2 = D.K = -1$,

$$(D + (\delta_{ijk}.D)\delta_{ijk})^2 = (D + (\delta_{ijk}.D)\delta_{ijk}).K = -1.$$

Write $D \sim aL - \sum_{i=1}^{9} b_{\ell}E_{\ell}$, then $D + (\delta_{ijk}.D)\delta_{ijk} \sim (2a - b_i - b_j - b_k)L - \sum_{\ell} b'_{\ell}E_{\ell}$. Since $a = (\sum b_i + 1)/3$, we can always find i, j, k such that $b_i + b_j + b_k < a$, or $2a - b_i - b_j - b_k > a$. So we can always find a D' such that D'.L > D.L, hence S has infinitely many -1 rational curve.

VI Surfaces with $p_q = 0$ and $q \ge 1$

Exercise 0 (by Yi-Heng Tsai).

[Serre's lemma: Let $M \in GL(N,\mathbb{Z})$ and r be the order of M. Assume $M \equiv id_N \pmod{n}$ for some $n \geq 3$, then $M = id_N$.]

Write $M = id_N + A$ with $A = n(a_{ij})$. Let p be a prime dividing n, then we can write $n = p^{\alpha}b$ and $a_{ij} = p^{\alpha_{ij}}b_{ij}$ for some $\alpha \in \mathbb{N}, \alpha_{ij} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$ and $p \nmid b, b_{ij}.(\alpha_{ij} := \infty \text{ if } a_{ij} = 0)$ Assume $A \neq O_N$, then let $\alpha_{lk} \in \mathbb{Z}_{>0}$ be a minimal one among all a_{ij} 's. Hence,

$$O_N = rA + C_2^r A^2 + \dots + C_r^r (A^r)$$
(1)

Then we get $p^{\alpha+\alpha_{ij}}|rbb_{lk}$, so $p^{\alpha+\alpha_{ij}}|r$. Now, by induction on r, we may assume r is a prime. Therefore, $\alpha = 1, \alpha_{ij} = 0$ and r = n = p. By (1), $p|a_{lk}$, which is a contradiction.

Exercise 1 (by Yu-Ting Huang).

Let H be a hyperplane section, then $H^2 + H K_S = 2g(H) - 2 = 0$. This implies $H K_S < 0$. By Noether-Enrique, S is a ruled surface and $P_n = 0$ for all n. In particular, $p_g = 0$.

Assume $q \ge 2$. Consider the Albanese map, $\alpha : S \to Alb(S)$, where $\alpha(S)$ is a smooth curve of genus q, and the fibers of the map are connected. Note that H is contained in some fiber. Write the fiber $F = \sum_i n_i C_i + mH$, where C_i are irreducible (There might be no C_i .) Then $m^2 H^2 = mH(F - \sum_i n_i C_i) \le 0$. This contrdicts that $H^2 > 0$.

Now, for q = 0, consider the exact sequence

$$0 \to H^0(S, \mathscr{O}_S(K_S)) \to H^0(S, \mathscr{O}_S(K_S + H)) \to H^0(H, \mathscr{O}_H(K_H)) \to H^1(S, \mathscr{O}_S(K_S))$$

where $h^0(\mathscr{O}_S(K_S)) = p_g = 0$, $h^0(\mathscr{O}_H(K_H)) = g(H) = 1$ and $h^1(\mathscr{O}_S(K_S)) = h^0(\mathscr{O}_S) = p_g - q = 0$. Hence $h^0(\mathscr{O}_S)(K_S + H) = 1$. i.e. dim $|K_S + H| = 0$. But $H^2 + H.K_S = 0$, so $K_S + H = 0$ i.e. $K_S - H$. By Ex. V.21(2), S is S_d or S'_8 .

For q = 1, we have already known that S is a ruled surface. Suppose S is birational to $C \times \mathbb{P}^1$. Then by

$$H^0(S,\Omega_S) = H^0(C,\omega_C) \oplus H^0(\mathbb{P}^1,\omega_{\mathbb{P}^1}),$$

we have g(C) = q = 1. Then S is an elliptic ruled surface.

Remark (by Pei-Hsuan Chang). Another example for the case q(S) = 1: Let E be a elliptic curve, $S = E \times \mathbb{P}^1$. Let $P \in E$, $Q \in \mathbb{P}^1$, $D = p_1^*(3P) + p_2^*(Q)$, where p_1 , p_2 are the projection of the first and the second position, Since deg $3P \ge 2g(E) + 1$, 3P is very ample on E. Notice that the map induced by D is a Segre embedding induced by 3P and Q on E and \mathbb{P}^1 respectively. Thus, D is very ample. Now, using D to embed S into \mathbb{P}^N , then $H \in |D|$ is hyperplane section. Notice that $K_S = p_1^*(K_E) + p_2^*(K_{\mathbb{P}^1})$, then we have

$$2g(H) - 2 = H(K_s + H) = (p_1^*(3P) + p_2^*(Q)) \cdot (p_1^*(K_E) + p_2^*(K_{\mathbb{P}^1}) + p_1^*(3P) + p_2^*(Q)) = -6 + 3 + 3 = 0.$$

Hence, g(H) = 1.

Remark (by Yu–Chi Hou). Generalizing the previous example by Pei-Hsuan, we consider any elliptic ruled surface with self–intersection number of the distinguished section $C_0^2 = -e$. Hartshorne Exercise V.2.12 shows that any linear system $|C_0 + bF|$ is very ample if and only if $b \ge e + 3$. Observe that for general element $D \in |C_0 + bF|$, D is non–singular by Bertini's theorem. Also, one can compute the genus of D by adjunctin formula:

$$2g(D) - 2 = (C_0 + bF)(C_0 + bF + K_2) = (C_0 + bF)(-C_0 + (b - e)F) = e + b - e - b = 0.$$

Hence, general element of very ample linear system $|C_0 + bF|$ are non-singular elliptic curve.

Exercise 2 (by Shuang-Yen Lee).

(a) Let $C = H \cap S$ be nonsingular, $D = H \cap C \in Pic(C)$, then $d = \deg D = C^2$. Since S is not ruled, $p_{12} \neq 0$, which implies $H.K \ge 0$. By adjunction formula,

$$C.(C+K) = 2g(C) - 2 \implies \deg D = 2g(C) - 2 - H.K \le 2g(C-2).$$

If D is special, then by Clifford, dim $|D| \leq d/2$. Note that $|D| : C \to \mathbb{P}^{n-1} = H$ is an embedding, dim |D| = n - 1, or $d \geq 2n - 2$. If D is nonspecial, then

$$\dim |D| = d - g(C) \le d - \left(1 + \frac{d}{2}\right) = \frac{d}{2} - 1$$

by R-R. So $n \leq d/2$, or $d \geq 2n > 2n - 2$. When "=", since D is very ample, we have $D = K_C$, so

$$\deg D = 2g(C) - 2 \implies H.K = 0 \implies K \sim 0$$

since 12K is equivalent to an effective divisor.

(b) :)

Exercise 3 (by Yi-Heng Tsai).

If S is bielliptic, then $p_g = 0, q = 1$ and S is minimal non-ruled by Thm.VI.13. Also, $12K \sim 0$ by Prop.VI.15. Hence, $P_{12} = 1$. Conversely, assume $p_g = 0, q = 1$ and S is minimal, we want to show S is bielliptic. Again, by Thm.VI.13, $S = {}^{B \times F}/G$ with B and F are irrational smooth, g(F/G) = 0 and either 1.g(B) = 1 or 2.g(F) = 1. Now, it suffices to show g(B) = g(F) = 1 in both cases.

- 1. Assume g(F) > 1. Let $\mathcal{L}_{12} = K_{\mathbb{P}^{\mathbb{H}}}^{\otimes 12} (\sum [12(1-1/e_P)]P)$, then $0 = deg(\mathcal{L}_{12}) = -24 + \sum [12(1-1/e_P)]$. Note $-2n + \sum [n(1-1/e_P)] = 2g(F) - 2 \ge 2$ by Hurwitz's theorem. Thus, $r \ge 3$.
 - (a) If $r \ge 4$, then r = 4 and $e_P = 2 \forall P$. So, $-2n + \sum [n(1-1/e_P)] = 0 \rightarrow \leftarrow$
 - (b) If r = 3, then assume $e_1 \le e_2 \le e_3$. Thus, $3/e_3 \le \sum 1/e_P < 1$.
 - i. If $e_1 \geq 3$, then $e_1 = e_2 = e_3 = 3 \rightarrow \leftarrow$.

- ii. If $e_1 = 2$, then $1/e_2 + 1/e_3 < 1/2 \Rightarrow e_2 \ge 3$. To be more specific, $(e_2, e_3) = (4, 5), (5, 5), (3, 7), (3, 8), ..., (3, 11)$, which is impossible since $n \le 4g(F) + 4$.
- 2. Assume g(B) > 1, then there exists at least one ramified point P. Note $P_k(S) = h^0(B/G, K(\sum [k(1 1/e_P)]P) =: D_k)$. Thus, $1 = P_{12}(S) = h^0(D_{12}) = deg(D_{12}) \ge 6 \rightarrow \leftarrow$.

Remark (by Shuang-Yen Lee). We give another solution for the case 1(b)ii. without using the fact $n \leq 4g(F) + 4$.

Proof. Since G is a subgroup of translations, G is abelian, so $G = \prod \mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}$. Let $H_q = \prod_{p_i=q} \mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}$ and let $H'_p = \prod_{q \neq p} H_q$. Now, we factor $F \to F/G$ into $\pi_p : F \to F/H'_p$ and $\pi'_p : F/H'_p \to F/G$. Let P_1, P_2, P_3 be the branch points with ramification index e_1, e_2, e_3 , respectively. Then P_i will be a branch point of π'_p if $p \mid e_i$. Hurwitz formula gives

$$2g(F/H'_p) - 2 = \deg \pi'_p \cdot \left(2g(F/G) - 2\right) + \sum_{p|e_i} \deg \pi'_p \left(1 - \frac{1}{e_i}\right) = \deg \pi'_p \cdot \left(\sum_{p|e_i} \left(1 - \frac{1}{e_i}\right) - 2\right) < 0$$

when $p \mid e_i$ for some *i*. Thus, $g(F/H'_p) = 0$ and then $\deg \pi'_p = (-2)/(-2 + \sum_{p \mid e_i} (1 - 1/e_i))$. For each case

 $(e_1, e_2, e_3) = (2, 4, 5), (2, 5, 5), (2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 3, 10), (2, 3, 11),$

we take p = 5, 2, 2, 3, 2, 3, 2, respectively, and we get

$$\deg \pi'_p = \frac{5}{3}, \frac{4}{3}, \frac{4}{3}, \frac{3}{2}, \frac{4}{3}, \frac{3}{2}, \frac{4}{3}$$

respectively, a contradiction.

Exercise 4 (by Yu-Ting Huang).

Suppose we have the surjective fibration $p: S \to B$. By taking Stein factorization, we may assume B is connected. We first consider g(B) > 0.

In general, we have the formula

$$0 = \chi_{top}(S) = \chi_{top}(B)\chi_{top}(F_{\eta}) + \sum_{s\in\Sigma}(\chi_{top}(F_s) - \chi_{top}(F_{\eta})),$$

where Σ is the set of points over which p is not smooth. And $2g(F_{\eta}) - 2 = F_{\eta}^2 + F_{\eta} \cdot K \ge 0$, so $g(F_{\eta}) \ge 1$ For the case that there is no singular fiber,

$$0 = \chi_{top}(B)\chi_{top}(F_{\eta}) = 4(1 - g(B))(1 - g(F_{\eta})).$$

Then whether $g(F_{\eta}) = 1$, or g(B) = 1 and $g(F_{\eta}) \ge 1$. By proposition VI.8, we can conclude that $S \simeq B \times F_{\eta}/G$, where one of B and F_{η} is elliptic.

For the case that there exists a singular fiber, we have $\chi_{top}(B)\chi_{top}(F_{\eta}) = 4(1-g(B))(1-g(F_{\eta})) \geq 0$. Then

 $\sum_{s \in \Sigma} (\chi_{top}(F_s) - \chi_{top}(F_\eta)) \leq 0.$ For $s \in \sigma$, write $F_s = \sum_i n_i C_i$, where C_i are irreducible. We will show that $\chi_{top}(F_s) \geq \chi_{top}(F_\eta).$

$$\begin{split} \chi_{top}(F_s) &\geq 2\chi(\mathscr{O}_{\cup_i C_i}) = -((\sum_i C_i)^2 + \sum_i C_i K) \geq -\sum_i C_i K \geq -\sum_i n_i C_i K \\ &= F_s K = F_\eta K = 2\chi(\mathscr{O}_{F_\eta}) = 2\chi_{top}(F_\eta). \end{split}$$

Now, we can conclude that $\chi_{top}(F_s) = \chi_{top}(F_\eta)$, for we have the inequality of two sides. Then all inequalities above turn into equalities. Hence, $F_s = nC$ for some irreducible smooth curve C with C.K = 0 (Actually, the above process is similar to proposition VI.6). This implies that g(C) = 1 + C.K = 1 and $g(F_\eta) = 1$. Then also by proposition VI.8, the result follows.

(I haven't figured out the case g(B) = 0 and g(F) > 1, or this case will not happen??) (In that case, proposition VI.8 is even unapplicable.)

VII Kodaira dimension

Exercise 1 (by Pei-Hsuan Chang).

For a divisor D on V. Define

 $L(D) = H^{0}(V, \mathscr{O}(D)) = \{ f \in K(V) \mid (f) + D \ge 0 \} \cup \{ 0 \}$

Q(D) = subfield of K(V) generated by L(D),

Q = sufield of K(V) generated by all Q(D), for some $D \in |nK|$.

Notice that $R(V) := \bigoplus_{n\geq 0} H^0(V, \mathscr{O}(nK) = \bigoplus_{n\geq 0} L(nK)t^n$, and let *n* be the smallest number such that $L(nK) \neq 0$. Then notice that for $f \in L(nK)$, *f* is algebraic over *Q*, but t^n is not algebraic over *Q*, so ft^n is not algebraic over *Q*. Since $ft^n \in \operatorname{Frac} R(V)$, $\operatorname{Frac} R(V)$ is not algebraic over *Q*. However $\operatorname{Frac} R(V)$ is algebraic over *Q*(*t*), so

tr. deg Frac R(V) = tr. deg Q + 1.

Our goal is to show tr. deg $Q = \kappa(V)$. For n such that $|nK| \neq \emptyset$, take $D \in |nK|$, then we have

$$L(D) \subseteq L(2D) \subseteq L(3D) \subseteq \cdots \subseteq K(V).$$

So,

$$Q(D) \subseteq Q(2D) \subseteq Q(3D) \subseteq \cdots \subseteq K(V).$$

Since K(V) is finitely generated over k, $\bigcup_{n\geq 0}Q(nD)$ is also finitely generated over k. Thus, $\exists m \in \mathbb{N}$ such that $Q(mD) = Q((m+1)D) = \ldots$. Since this holds for any n such that $|nK| \neq \emptyset$, so Q = Q(mD) for m large enough. Now, notice that for a effective divisor E, $Q(E) = K(\operatorname{Im}(\varphi_{|E|}))$. Hence,

tr. deg
$$Q$$
 = tr. deg $Q(mD)$ = dim $(Im(\varphi_{|E|})) = \kappa(V)$.

This complete the proof.

Exercise 2 (by Tzu-Yang Tsai).

We know that $\omega_{V \times W} = K_X = p_1^* \omega_V + p_2^* \omega_W$, where $X = V \times W$ $V \xrightarrow{p_1} W$ are projection.

Also, $H^0(V \times W, \mathcal{O}_{V \times W}(nK_{V \times W})) = H^0(V, \mathcal{O}_V(nK_V)) \oplus H^0(W, \mathcal{O}_W(nK_W)) \forall n \in \mathbb{N}.$ Thereby the map $\phi_n K_{V \times W} : V \times W \dashrightarrow \mathbb{P}^{N_V \times W}$ can be factor as:

$$\phi_{nK_{V\times W}}: V \times W \xrightarrow{(\phi_{nK_{V}}, \phi_{nK_{W}})} \mathbb{P}^{N_{V}} \times \mathbb{P}^{N_{W}} \xrightarrow{\text{Segre's embedding}} \mathbb{P}^{N_{V\times W}}$$

Thus dim $(Im(\phi_{nK_{V\times W}})) = \dim(Im(\phi_{nK_V})) + \dim(Im(\phi_{nK_W})) \forall n \in \mathbb{N}$ Let $a, b \in \mathbb{N}$ s.t. dim $(Im(\phi_{aK_V})) = \kappa(V)$, dim $(Im(\phi_{bK_W})) = \kappa(W)$, then

$$\kappa(V) + \kappa(W) \ge \kappa(V \times W) \ge \dim(Im(\phi_{abK_{V \times W}})) = \dim(Im(\phi_{abK_{V}})) + \dim(Im(\phi_{abK_{W}})) = \kappa(V) + \kappa(W)$$

Therefore $\kappa(V) + \kappa(W) = \kappa(V \times W)$

Exercise 3 (by Yu–Chi Hou).

Given any surjective morphism $f: X \to Y$ between varieties, one has $K(Y) \subset K(X)$. Also, the induced map on global section of pluricanonical bundle

$$f^*: H^0(Y, rK_Y) \hookrightarrow H^0(X, rK_X)$$

is injective, for any $r \ge 0$. In view of Exercise 1 in this chapter, we see that pluricanonical ring of Y is a subring of pluricanonical ring of X and thus $\kappa(Y) \le \kappa(X)$.

Now, observe that f is étale if and only if it is flat and $\Omega_{X/Y} = 0$. Thus, the exact sequence of Kähler differential gives

$$f^*\omega_X \to \omega_Y \to 0.$$

Since X and Y are smooth varieties, $f^*\omega_X$ and ω_Y are both invertible sheaves, $f^*\omega_X \cong \omega_Y$ and thus

$$H^0(X, rK_X) \cong H^0(Y, rK_Y).$$

This of course shows that $\kappa(X) = \kappa(Y)$.

VIII Surfaces with $\kappa = 0$

Exercise 1 (by Yi-Heng Tsai).

Since $K^2 + \mathcal{X}_{top}(S) = \mathcal{X}(\mathcal{O}_S) = 0$ and $K^2, \mathcal{X}_{top}(S) \ge 0$, we have $K^2 = \mathcal{X}_{top}(S) = 0$. By Ex.VI.4, $S = {}^{B \times F}/_{G}$ with g(B) = 1. Thus, $g({}^{B}/_{G}) = 0, 1$ and $B \times F \to S$ is étale.

- 1. $(g({}^{B}/{}_{G}) = 0)$ Note $q = h^{0}(\Omega_{S}) = g({}^{B}/{}_{G}) + g({}^{F}/{}_{G})$, so $g({}^{F}/{}_{G}) = 2$. Also, $P_{2} = h^{0}({}^{F}/{}_{G}, \mathcal{L}_{2})$ where $\mathcal{L}_{2} = \omega_{F/G}^{2}(\sum_{P} [2(1-1/e_{P})]P)$. Apply Riemann-Roch theorem, we have $P_{2} \ge 3 + \sum [2(1-1/e_{P})] > 1$.
- 2. $(g({}^B/G) = 1)$ Similarly, $g({}^F/G) = 1$. If g(F) > 1, $r \ge 3$ by Hurwitz's theorem. In this case, $P_2 \ge \sum [2(1-1/e_P)] \ge 3 > 1$. On the other hand, if g(F) = 1, then $P_n = 1 \forall n \ge 1$. In this case, $\kappa(S) = 0$, which implies S is an Abelian surface.

Exercise 10 (by Chi-Kang Chang).

For g = 2k - 1 case, consider the double cover $f : S \to \mathbb{P}^1 \times \mathbb{P}^1$ which is branch on a (4,4) curve, hen we have $K_S = f^*(K_{\mathbb{P}^1 \times \mathbb{P}^1} + R \text{ with } R \text{ be the ramified locus with coefficient 1. Thus } K_S = f^*(-2h_1 - 2h_2) + R = 0.$

Now since $h_1 + kh_2$ is very ample on $\mathbb{P}^1 \times \mathbb{P}^1$, then since f is finite, we have $f^*|h_1 + kh_2|$ is ample and base point free. Thus the general element $C \in f^*|h_1 + kh_2|$ is smooth (and hence reduced). To show the irreducibility, consider the exact sequence $0 \to \mathcal{O}_S(-C) \to \mathcal{O}_S \to \mathcal{O}_C \to 0$, this induces the cohomology sequence

$$0 \to H^0(S, -C) \to H^0(S, 0) \to H^0(C, 0) \to H^1(S, -C).$$

Since by Kodaira vanishing $H^1(S, -C) = 0$, by the above sequence we conclude $H^0(C, 0) = \mathbb{C}$, thus C is connected, hence irreducible by the smoothness. And then we have $C^2 = (\deg(f))(h_1 + kh_2)^2 = 4k = 2g - 2$, thus g(C) = 2k + 1.

Next we show that S is K3. Now we consider the exact sequence $0 \to \mathscr{O}_S \to \mathscr{O}_S(C) \to \mathscr{O}_C \to 0(C)$, this induces the cohomology sequence

$$0 \to H^0(S,0) \to H^0(S,C) \to H^0(C,C|_C) \to H^1(S,0) \to H^1(S,C) \to H^1(C,C|_C)...$$

Again by Kodaira vanishing, $\chi(\mathscr{O}_S(C)) = h^0(\mathscr{O}_S(C)) = g - q + 1$ by surface Riemann-Roch. On the other hand, again by surface Riemann-Roch and Kodaira vanishing

$$h^{0}(\mathscr{O}_{S}(C)) = h^{0}(\mathbb{P}^{1} \times \mathbb{P}^{1}, h_{1} + kh_{2})$$

= $\chi(\mathbb{P}^{1} \times \mathbb{P}^{1}, h_{1} + kh_{2}) = v2k + 2 = g + 1.$

Thus q = 0 and hence S is K3. Finally, since $h^0(\mathscr{O}_S(C)) = g + 1$, we know that $\phi_{|C|}$ is a 2 to 1 map sends S to $\mathbb{P}^1 \times \mathbb{P}^1$ in \mathbb{P}^g , completes our proof.

For g = 2k case, let \mathbb{F}_1 be the ruled surface $\mathbb{P}(\mathscr{O}_{\mathbb{P}^1} \oplus \mathscr{O}_{\mathbb{P}^1}(-1))$. Then take the double cover of \mathbb{F}_1 branch over a curve linearly equivalent to $4C_0 + 6f$, then repeat the similar computation of g = 2k + 1 case again, we get our consequence. Exercise 12 (by Yi-Tsung Wang).

For S being a K3 surface, consider the exact sequence

$$0 \to \mathbb{Z} \to \mathcal{O} \to \mathcal{O}^* \to 0$$

It gives the long exact sequence

$$0 \to H^1(S, \mathcal{O}) \to \operatorname{Pic}(S) = H^1(S, \mathcal{O}^*) \xrightarrow{\alpha} H^2(S, \mathbb{Z}) \xrightarrow{\beta} H^2(S, \mathcal{O}) = H^0(S, \mathcal{O}) = \mathbb{C}$$

For $x \in (H^2(S,\mathbb{Z}))_{tor}$, $\beta(x) \in \mathbb{C}_{tor} = \{0\}$, that is, $\beta(x) = 0$. Hence there exists $L \in Pic(S)$ such that $\alpha(L) = x$. Suppose mx = 0, then $\alpha(mL) = 0$. Since α is injective, we have mL = 0. In particular, $L \equiv 0$. By Riemann-Roch theorem, $h^0(L) + h^0(-L) \ge 2$, we see that either $h^0(L) \ge 1$ or $h^0(-L) \ge 1$. No matter which the case holds, we have $L \sim 0$, and then x = 0, that is, $(H^2(S,\mathbb{Z}))_{tor} = 0$. By mixed variance universally coefficient theorem,

$$H^{2}(S,\mathbb{Z}) = \operatorname{Ext}_{\mathbb{Z}}^{1}(H_{1}(S,\mathbb{Z}),\mathbb{Z}) \oplus \operatorname{Hom}_{\mathbb{Z}}(H_{2}(S,\mathbb{Z}),\mathbb{Z})$$

Write $H_1(S,\mathbb{Z}) = \mathbb{Z}^r \oplus (H_1(S,\mathbb{Z}))_{tor}$, then we have

$$\operatorname{Ext}_{\mathbb{Z}}^{1}\left(H_{1}\left(S,\mathbb{Z}\right),\mathbb{Z}\right) = \operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathbb{Z}^{r},\mathbb{Z}\right) \times \operatorname{Ext}_{\mathbb{Z}}^{1}\left(\left(H_{1}\left(S,\mathbb{Z}\right)\right)_{\operatorname{tor}},\mathbb{Z}\right) = \left(H_{1}\left(S,\mathbb{Z}\right)\right)_{\operatorname{tor}}$$

Therefore $0 = (H^2(S,\mathbb{Z}))_{tor} = (H_1(S,\mathbb{Z}))_{tor}$. By Poincaré duality and Hodge decomposition theorem, we have

$$H_1(S,\mathbb{Z}) \otimes \mathbb{C} = H_1(S,\mathbb{C}) = H^3(S,\mathbb{C})^{\vee}$$
 and $H^3(S,\mathbb{C}) = H^{3,0} \oplus H^{2,1} \oplus H^{1,2} \oplus H^{0,3} = 0$

Thus $H_1(S, \mathbb{Z}) \otimes \mathbb{C} = 0$, which says r = 0. Therefore we conclude that $H_1(S, \mathbb{Z}) = 0$. For X being an Enrique surface, we also have the long exact sequence

$$0 \to \operatorname{Pic}(X) \to H^2(X, \mathbb{Z}) \to H^2(X, \mathcal{O}) = H^0(X, K) = 0$$

Hence $\operatorname{Pic}(X) \cong H^2(X, \mathbb{Z})$. For $L \in (\operatorname{Pic}(X))_{\operatorname{tor}}$, let mL = 0 for some $m \in \mathbb{N}_{n \geq 2}$, we have $h^0(L) = h^0(-(m-1)L) = 0$. By Riemann-Roch theorem, $h^0(K-L) \geq 1$, so $K-L \geq 0$, and $-2L \geq 0$. Since $L \equiv 0$, we get $-2L \sim 0$. Note that $2K \sim 0$, then $K-L \sim -K+L$, and then $-(K-L) \geq 0$, thus $K-L \sim 0$, that is, $K \sim L$. Since $p_g = 0$, we have $K \not\sim 0$. Therefore $(\operatorname{Pic}(X))_{\operatorname{tor}}$ (and then $(H^2(X,\mathbb{Z}))_{\operatorname{tor}})$ is $\mathbb{Z}/2\mathbb{Z}$ generated by [K].

IX Surfaces with $\kappa = 1$

Exercise 2 (by Pei-Hsuan Chang).

<u>[Recall]</u> Let *E* be an Euclidean space with a positive definite symmetric billnear form (,). Define $\sigma_{\alpha} := \beta - \frac{2(\beta, \alpha)}{(\alpha, \alpha)}$, and $<\beta, \alpha > := \frac{2(\beta, \alpha)}{(\alpha, \alpha)}$.

Definition. Φ is called a *root system* in *E* if

- 1. Φ is finite, span E and does not contain 0.
- 2. If $\alpha \in \Phi$, then the only multiple of α in Φ are exactly $\pm \alpha$.
- 3. If $\alpha \in \Phi$, then $\sigma_{\alpha}(\Phi) = \Phi$.
- 4. If $\alpha, \beta \in \Phi$, then $\langle \beta, \alpha \rangle \in \mathbb{Z}$.

Definition. We can choose a set of positive roots $\Phi^+ \subset \Phi$. This is a subset of Φ such that

- 1. $\forall \alpha \in \Phi$, exactly one of the roots $\alpha, -\alpha$ is contain in Φ^+ .
- 2. $\forall \alpha, \beta \in \Phi^+$ such that if $\alpha + \beta \in \Phi$, then $\alpha + \beta \in \Phi^+$.

An element of Φ^+ is said to be simple root of it cannot be written as sum of two elements in Φ^+ .

Solution. By adjunction formula,

$$02g(F) - 2 = F(F + K_S) = F(K_S) = (\sum n_i C_i) K_S = \sum n_i (2g(C_i) - 2 - C_i^2)$$

Notice that $C_i^2 < 0$, $\forall i$, so $"2g(C_i) - 2 - C_i^2 < 0 \Rightarrow g(C_i) = 0$, $C_i^2 = -1"$. Since S is minimal, we get

$$2g(C_i) - 2 - C_i^2 \ge 0.$$

Thus,

$$0 = C_i K_S = 2g(C_i) - 2 - C_i^2, \ \forall i.$$

Hence, $g(C_i) = 0, C_i^2 = -2, \forall i$. Also, Corollary VIII.4 says that

$$0 \ge (C_i + C_j)^2 = -4 + 2C_i \cdot C_j,$$

so we know that $C_i C_j \leq 2$ and $"C_i C_j = 2 \Leftrightarrow F = m(C_i + C_j)$ for some $m \in \mathbb{Q}$ ". So there are two cases:

(1)
$$F = m(C_1 + C_2)$$
 (2) $C_i \cdot C_j = 0$ or $1, \forall i \neq j$.

For the second case, let M' be the \mathbb{Z} -modules generated by $\{C_i\}$ in Pic S. M' is free, since if $\sum m_i C_i \sim 0$, then $(\sum m_i C_i)^2 = 0$. By Corollary VIII.4 again, $\sum m_i C_i = rF$, for some $r \in \mathbb{Q}$, so $rF \sim 0 \Rightarrow r = 0 \Rightarrow m_i = 0$, $\forall i$. Now, define $M = M'/\mathbb{Z}[F]$. The intersection pairing induce a well-defined symmetric billnear form on M, since $C_i \cdot F = 0$ and $F^2 = 0$. Now, let $(a, b) = -\frac{1}{2}a \cdot b$, so

$$(C_i, C_j) = \begin{cases} 1 & \text{, if } i = j \\ -\frac{1}{2} \text{or} 0 & \text{, if } i \neq j \end{cases}$$

Again, by Corollary VIII.4, $\forall a \in M$, $(a, a) = -\frac{1}{2}a^2 > 0$, so (,) is positive definite.

Now, let $\Phi := \{r \in M | (r,r) = -\frac{1}{2}r^2 = 1\}$. It is easy to check Φ is a root system. Also, let $\Phi^+ := \{r \in \Phi | r = \sum m_i C_i \text{ with } m_i \ge 0, \forall i\}$. It is clearly a set of positive roots, and $\{C_i\}$ are all simple roots. Finally, we only need to check that Φ is of type A_n , D_n , E_n . Since

$$< C_i, C_j > < C_j, C_i > = \frac{2(C_i, C_j)}{(C_j, C_j)} \frac{2(C_j, C_i)}{(C_i, C_i)} = 0 \text{ or } 1,$$

any two points in the Dynkin diagram are connected by at most one line. By the classification of Lie algebra, Φ cannot of the type B_n , C_n , G_2 . Thus, Φ must of type A_n , D_n , E_n .

Exercise 4 (by Shuang-Yen Lee).

S is Enriques implies $p_g = q = 0, 2K \sim 0$. By R-R,

$$h^{0}(K+E) - h^{1}(K+E) + h^{2}(K+E) = \frac{1}{2}(K+E) \cdot E + 1 = 1$$

so $h^0(K+E) \ge 1$ since $h^2(K+E) = h^0(-E) = 0$, and hence $|K+E| \ne \emptyset$.

Let $E' \in |K + E|$, then $E \cdot E' = E(K + E) = 0$ and $E \not\sim E'$ implies $E \cap E' = \emptyset$. The exact sequence

$$0 \longrightarrow \mathcal{O}_S \longrightarrow \mathcal{O}_S(E) \longrightarrow \mathcal{O}_E(E) \longrightarrow 0$$

implies $h^0(E) = 1 + h^0(E|_E)$, so $h^0(E) = 1$ or 2 since $E^2 = 0$.

If $h^0(E) = 1$, by the exact sequence

$$0 \longrightarrow \mathcal{O}_S(-E - E') \longrightarrow \mathcal{O}_S(-E') \longrightarrow \mathcal{O}_E(-E') \longrightarrow 0,$$

we get $0 \to \mathbb{C} = h^0(-E'|_E) \to h^1(-E - E')$ exact, implies $h^1(-E - E') \ge 1$ and by R-R,

$$h^{0}(-E - E') - h^{1}(-E - E') + h^{2}(-E - E') = \frac{1}{2}(-E - E')(-E - E' - K) + 1 = 1,$$

so $h^0(2E) \ge 2$. The exact sequence

$$0 \longrightarrow \mathcal{O}_S(E) \longrightarrow \mathcal{O}_S(2E) \longrightarrow \mathcal{O}_E(2E) \longrightarrow 0$$

implies that $h^0(2E) \leq h^0(E) + h^0(2E|_E) = 2$ so $h^0(2E) = 2$ and hence dim |2E| = 1. Since $2E \sim 2E'$ and $2E \cap 2E' = \emptyset$, $|2E| : S \to \mathbb{P}^1$ is base-point-free, then $|2E| = A \cup B$, where $A = \{D \in |2E| \mid D \text{ is smooth }\}$ and $B = |2E| \setminus A$ is finite. For $D \in A$, write $D = \sum C_i$, then $D^2 = 0$ implies that $\sum C_i^2 = 0$ since $C_i \cap C_j = \emptyset$ for $i \neq j$. If there's *i* such that $C_i^2 < 0$, then $C_i \cdot (2E) = C_i \cdot D = C_i < 0$ implies $C_i \cdot E < 0$, but *E* is numerically effective, a contradiction. So $C_i^2 = 0$ for all *i*, implies $g(C_i) = 1$.

By Stein factorization theorem, $|2E|: S \to \mathbb{P}^1$ can be factored into $\pi: S \to C$ and a finite morphism $C \to \mathbb{P}^1$. Then $\pi(D) = \{P_1, \ldots, P_n\}$ with $C_i = \pi^{-1}(P_i)$. Then π is an elliptic fibration, by Ex. IX. 1, we have 0 = q(S) = g(C) or g(C) + 1, which means $C \cong \mathbb{P}^1$. Then $C_i \sim C_j$, this gives $D \sim nF$, but general fiber is reduced, and hence n = 1. So |2E| is a pencil of elliptic curves.

If $h^0(E) = 2$, then $h^0(E|_E) = 1$, or $E|_E = \mathcal{O}_E$. Let $D \in |E|$ and suppose that $D \neq E$, then $D \cap E = \emptyset$, which means |E| is base-point-free, by s same argument as above, we have |E| is a pencil of elliptic curves.

X Surface of General Types

Exercise 1 (by Yi-Tsung Wang).

Since $K^2 > 0$, we may assume that $p_g \ge 3$. Write |K| = |C| + V, where |C| is the mobile part and V is the fixed part. Then we have $C^2 \ge 0$ and $C \ge 0$, and then $2 - 2g_a(C) = (K + C) \cdot C \ge 0$. Hence

$$K^{2} = \frac{1}{2} \left(K \left(C + V \right) + \left(C + V \right) K \right)$$

$$\geq \frac{1}{2} \left(K.C + K^{2} \right)$$

$$= p_{a} \left(C \right) - 1$$

$$= h^{1} \left(C, \mathcal{O}_{C} \right) - 1$$

$$= h^{0} \left(C, \Omega_{C}^{1} \right) - 1$$

$$= h^{0} \left(C, \mathcal{O}_{X} \left(K_{X} + C \right) |_{C} \right) - 1$$

$$= h^{0} \left(C, 2C + V \right) - 1$$

$$\geq h^{0} \left(C, 2C \right) - 1$$

For $1, s_1, \ldots, s_{n-1} \in \Gamma(C, \mathcal{O}_C(C))$, note that $1, s_1, \ldots, s_{n-1}, s_1^2, s_1s_2, \ldots, s_1s_{n-1} \in \Gamma(C, \mathcal{O}(2C))$ are linearly independent sections, hence $h^0(C, 2C) \ge 2h^0(C, \mathcal{O}_C(C)) - 1$. Now consider the exact sequence

$$0 \to \mathcal{O}_X \to \mathcal{O}_X(C) \to \mathcal{O}_X(C) \mid_C \to 0$$

It gives that $h^0(C, \mathcal{O}_C(C)) \ge h^0(\mathcal{O}_X(C)) - 1$. Hence we conclude that $K^2 \ge 2h^0(C, \mathcal{O}_C(C)) - 2 = 2p_g - 4$. Exercise 2 (by Ping-Hsun Chuang).

Proof. Since $H_1(S,\mathbb{Z})$ is finitely generated with free rank q = 0, we have $H_1(S,\mathbb{Z})$ is finite. Consider the abelian universal cover of S, $S^{ab} \xrightarrow{p} S$. Note that p is étale since it is a covering space. Moreover, p is of degree $|H_1(S,\mathbb{Z})|$ since $\pi_1(S^{ab}/S) = [\pi_1(S), \pi_1(S)]$ and $H_1(S,\mathbb{Z}) = \pi_1(S) / [\pi_1(S), \pi_1(S)]$. Say $|H_1(S,\mathbb{Z})| = d$. Then, we have $K_{S^{ab}}^2 = K_S^2 = d$ and $\chi(S^{ab}) = d\chi(S) = d$. By Noether inequality, we have $p_g \ge \frac{K^2 + 4}{2}$. Note that $\pi^* K_S = K_{S^{ab}}$ implies $K_{S^{ab}}$ is nef, that is, S^{ab} is minimal. Then, we have

$$d = \chi \left(S^{ab} \right) = 1 - q \left(S^{ab} \right) + p_g \left(S^{ab} \right) \le 1 + p_g \left(S^{ab} \right) \le 1 + \frac{K_{S^{ab}}^2 + 4}{2} = 1 + \frac{4 + d}{2}$$

Hence, $d \leq 6$.

Now, we need to exclude the case d = 6. For d = 6, we have $q(S^{ab}) = 0$, $K_{S^{ab}}^2 = d = 6$, and Noether equality. If the equality holds in Noether inequality, then write K = C + V, where C is moving part and V is fixed part. Then, $C \cdot V = 0$ and $K \cdot V = 0$ (See proof in class.) Moreover, using the fact that the general $C \in |K|$ are hyperelliptic curve, we may find an automorphism on C such that it has fixed point. (Here, we need $g(C) \ge 2$, this holds since now $g(C) = \frac{C(C+K)}{2} + 1 = K^2 + 1 = 7$.) However, the automorphism of S^{ab} cannot have fixed point except identity since it is the covering space. This is a contradiction. Hence, we proved $|H_1(S,\mathbb{Z})| \le 5$.

However, I cannot conclude $|H_1(S,\mathbb{Z})| = 5$ implies S is Godeaux.

Exercise 3 (by Yu-Chi Hou).

Consider $G := (\mathbb{Z}/2\mathbb{Z})^3$ acting on \mathbb{P}^6 by

$$\begin{array}{l} e_1: [x_0:x_1:x_2:x_3:x_4:x_5:x_6] \to [-x_0:x_1:x_2:x_3:-x_4:-x_5:-x_6] \\ e_2: [x_0:x_1:x_2:x_3:x_4:x_5:x_6] \to [x_0:-x_1:x_2:-x_3:x_4:-x_5:-x_6] \\ e_3: [x_0:x_1:x_2:x_3:x_4:x_5:x_6] \to [x_0:x_1:-x_2:-x_3:-x_4:x_5:-x_6] \end{array}$$

From the construction of the action, one see that any point which is fixed by e_i has at least three coordinates vanishing for each i = 1, 2, 3. Thus, consider

$$S' = Z(\sum_{i=0}^{6} a_i x_i^2, \sum_{i=0}^{6} b_i x_i^2, \sum_{i=0}^{6} c_i x_i^2, \sum_{i=0}^{6} d_i x_i^2),$$

for any a_i, b_i, c_i, d_i 's such that any maximal minors of the matrix

$$\Lambda = \begin{pmatrix} a_0 & \cdots & a_6 \\ b_0 & \cdots & b_6 \\ c_0 & \cdots & c_6 \\ d_0 & \cdots & d_6 \end{pmatrix}$$

are non-zero. The condition for the minors shows that S' is a non-singular complete intersection in \mathbb{P}^6 . Moreover, it has degree $2^4 = 16$ and $K_{S'} \sim (-7H + 8H)|_{S'} = H|_{S'}$. Obviously, S' is G-invariant. If e_i acts on S' trivially, say e_1 for instance, then $x_1 = x_2 = x_3 = 0$. Hence, the equation of S' is given by

$$a_0x_0^2 + a_4x_4^2 + a_5x_5^2 + a_6x_6^2 = b_0x_0^2 + b_4x_4^2 + b_5x_5^2 + b_6x_6^2 = c_0x_0^2 + c_4x_4^2 + c_5x_5^2 + c_6x_6^2 = d_0x_0^2 + d_4x_4^2 + d_5x_5^2 + d_6x_6^2 = 0$$

In matrix notation, this gives

$$\begin{pmatrix} a_0 & a_4 & a_5 & a_6 \\ b_0 & b_4 & b_5 & b_6 \\ c_0 & c_4 & c_5 & c_6 \\ d_0 & d_4 & d_5 & d_6 \end{pmatrix} \begin{pmatrix} x_0^2 \\ x_4^2 \\ x_5^2 \\ x_6^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Since the maximal minors of Λ are non-zero, the matrix from the left-hand side is invertible. Hence, it only has trivial solution $x_0^2 = x_4^2 = x_5^2 = x_6^2 = 0$ and thus $x_0 = x_4 = x_5 = x_6 = 0$. However, $[0:\cdots:0] \notin \mathbb{P}^6$. Similarly, we can repeat the argument for e_2 and e_3 . Thus, G acts on S' freely.

Since G acts on S' freely and hence $S' \to S = S'/G$ is a deg 8 unramified covering. Since S' is complete intersection and hence the irregularity q(S') = 0 = q(S). Also, $p_g(S') = 7$ since $K_{S'} \sim H|_{S'}$, where H is the hyperplane on \mathbb{P}^6 . Hence, $\chi(\mathcal{O}_{S'}) = 1 - q(S') + p_g(S') = 8$ and $\chi(\mathcal{O}_S) = \chi(\mathcal{O}_{S'})/8 = 1$. Finally, $K_S^2 = K_{S'}^2/8 = 16/8 = 2$.

In sum, we obtain a surface which $p_g = 0 = q$ and $K^2 = 2$. This is a surface of general type, which again provides an example showing that Castelnuovo's rationality criterion is sharp.

Exercise 4 (by Po-Sheng Wu).

Let $C_1 = C_2 = C$ and $S = (C_1 \times C_2)/G$. We choose $\phi(a, b) = (a - 2b, a - 4b)$. Note that the action of $(a, b) \in G$ on C_1 has fixed points iff a = 0 or b = 0 or a = b, while acting on C_2 has fixed points iff a - 2b = 0 or a - 4b = 0 or 2a - 6b = 0, thus G acts freely on $C_1 \times C_2$. Note that $q = g(C_1/G) + g(C_2/G) = 0$ since $2g(C) - 2 = n(2g(C/G) - 2) + \deg R$ and $g(C) = 6, n = 25, R = 3 \cdot 20$, and $\chi(\mathcal{O}_S) = \frac{1}{25}\chi(\mathcal{O}_{C\times C}) = \frac{1}{25}\chi(\mathcal{O}_C)^2 = \frac{1}{25}(1 - g(C))^2 = 1$, so $p_g = 0$. $K_S^2 = \frac{1}{25}K_{C\times C} = \frac{1}{25}(p_1^*(\omega_{C_1}) + p_2^*(\omega_{C_2}))^2 = \frac{1}{25} \cdot 2 \cdot 10 \cdot 10 = 8$. To give another example, consider C the complete intersection of $x^3 + y^3 + z^3 + w^3 = 0$ and xy = zw

To give another example, consider C the complete intersection of $x^3 + y^3 + z^3 + w^3 = 0$ and xy = zwin \mathbb{P}^3 , which by adjunction formula has genus 4. $(a,b) \in G = (\mathbb{Z}/3)^2$ acts on C by $(a,b)(x,y,z,w) = (\omega^a x, \omega^{-a} y, \omega^b z, \omega^{-b} w), \omega^3 = 1, S = (C \times C)/G$ with action $g(x,y) = (gx, \phi(g)y)$ with $\phi(a,b) = (a+b, a-b)$. Similarly we have $q = 0, \chi(\mathcal{O}_S) = \frac{1}{9} \cdot (-3)^2 = 1 \Rightarrow p_g = 0$ and $K_X^2 = \frac{1}{9} \cdot 2 \cdot 6 \cdot 6 = 8$.