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Exercise 6 (by Yi-Heng Tsai).

Let i : X — X X X be the diagonal map. Consider the exact sequence 0 — Tx — Txxx|x = N — 0,
then we have ¢(Tx).c(N) = c(Txxx|x) = ¢(Tx)?. Hence, ¢,(Tx) = c,(N) = i*i,(1x) = A? by (CT).
Exercise 7 (by Yu—Chi Hou).

By Hirzebruch—Riemann—Roch, for any non—singualar projective n—fold X, any locally free sheaf £ on

X, one has
X(&) = deg(ch(E).td(Tx))n, (HRR)

where Tx is the tangent sheaf of X. Now, we consider the case n = 3.
First, for &€ = Ox, one has

Pa(X) = (=1’ (x(Or — 1) =1 — x(Ox)
and
C(Ox) =1€ A*(X)

Therefore, HRR gives
X(Ox) =1 — po(X) = deg(td(7x))s.

Let ¢; := ¢;(X) be the i—th Chern classes of X, for i = 1,2,3. Then one has

1 1 1
td(Tx) =1+ 501 + E(Cf + ) + ﬂclcg,

Thus, deg(td(7x))s = ¢1c2/24. This proves the first part.
For the second part, for any divisor D, take £ to be the associated invertible sheaf Ox (D). Then it has
Chern polynomial ¢;(Ox (D)) = 1+ ¢D and thus its Chern character is given by

1 1
ch(Ox(D)) =1+ D + 5D2 + 6D3'



By HRR,

1 1 1 1 1
X(0x(D)) = deg((1+ D+ 5D* + =D*))(1 + 5e1 + 5 (cf + ) + 5re162)s
By direct computing, the degree 3 component of right hand side is given by
1 1 1 1
216162 + ED(C% +c2) + ZDZCI + ng- (1)

Since ¢;(X) = —c1(wx) = —K and ¢1¢2/24 = x(Ox) = 1 — pa(X) by previous part, (1)) becomes

1 . o1 1 1
- —(D. —3D*.K +2D —D.ecyo=—D.(D—-K).(2D - K —D.
1—po(X)+ 12(DK 3 + )+ 19 Co B ( ).( )+ 19 Co

This proves the second assertion.
Exercise 8 (by Yu-Chi Hou).
As in exercise 8, for X = P3,

(Tx) = 1+ gai(X) + T5(EX) + (X)) + g rer(X)ea(X),

On the other hand, £ is a rank 2 locally free sheaf with Chern classes ¢y, ¢o

1 1
ch(&) =2+ + 5(0% — 2¢9) + a(ci’ — 3c109)

By (HRR),
X(€) = degs(td(Tx)ch(E))s
Hence,
1 1 9 1 2 L s
X&) = Ecl(X)cz(X) + 1—201.(01()() + (X)) + ch(x).(cl —209) + 6(01 — 3c102).

Then the left hand side is an integer, but right hand side is a priori a rational number only. Since X = IP3,
by Euler sequence, c;(X) = (:) h* where h € A'(X) is the hyperplane class. Therefore, ¢;(X) = 4h,
c2(X) = 6h%, c3(X) = 4h3 = 4. As a result,

1161.h2
6

C1.Co

X&) =2+ 5

+ h.(? —2co) +

o

Exercise 9 (by Yi-Heng Tsai).

(a) The goal is to verify d*> — 10d — 5H.K — 2K? + 12 + 12p, = 0. By the definition of rational cubic
scroll, we have K = —2Cy — 3f and H = Cy + 2f. Thus, d*> — 10d — 5H.K — 2K? + 12 + 12p, =
9-30+25—-16+12+0=0.

(b) By the definition of K3 surface, we have K = 0 and p, = 1. Thus the formula in (4.1.3) becomes
d® — 10d + 24 = 0, which implies d = 4, 6.



(c) Again, by the definition of abelian surface, the formula in (4.1.3) becomes d? — 10d = 0, which implies
d = 10.

(d) Assume X, can be embedded in P* by the very ample divisor H = aCy + bf. Then 5 = h°(L(H)) =
RO(m.L(H)) = h°((O & O(—e€))®* @ O(b)) = ®L,CeO0(b —ie) = (31, C&(b — ie + 1)). Note that
we have a > 0,b > ae and e > 0. Thus, (a,b,e) = (1,2,1). Indeed, by the above facts, a = 1,2, 3, 4.
When a = 1,we have 5 = 2b — e¢ + 2, which implies (a,b,e) = (1,2,1). When a = 2,we have
5 = 4b — 4e + 4, which is impossible. The rest cases(a = 3,4) admit no solution similarly. Combining
with (a), the rational ruled surface X.,e > 0 which admitting an embedding in P* is the rational
cubic scroll in P4,

Exercise 10 (by Yi-Heng Tsai).

Suppose we have such embedding, then consider the exact sequence 0 — Tx — Tps|x — Ny,;x — 0
where ¢ : X — Y = P is the embedding. Thus, ¢(7ps|x) = ¢(Tx).c(Ny,x) i.e. 1+ 6z + 152% + 202° =
L.(1+ c1(WNy)x) + c2(Ny)x) with z the pullback of O(1). Therefore we get 202® = 0, which is impossible.
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Exercise 1 (by Yu-Chi Hou).

Suppose D := {z € C : |z|] < 1} = X" for some scheme X over C. Then X must be 1—dimensional
non-singular algebraic variety over C. Since X is quasi—projective, we can take normalization Y of closure
of X with respect to the embedding. Hence, we can write

X=Y\{P~,...,P.},

for some n > 1. Also, Y is non-singular complete (and hence projective ) curve. By Chow’s theorem, its
associated analytic space Y"* =Y is a compact Riemann surface of genus g. If ¢ > 1, then Y is not simply
connected and hence X" which is puntured Riemann surface is not simply connected as well. However,
D is contractible and hence simply conected. Therefore, one must have Y = P'. If n > 2, then X" is
homeomorphic to n — 1 puntured complex plane, which is again not simply connected. If n = 1, then
X" =~ C. However, by Liouville theorem, there cannot be any non-constant holomorphic map from C to .
Thus, C cannot be biholomorphic to ID. This gives the contradiction.

Exercise 2 (by Tzu-Yang Chou).

Assume that there exists an desired ideal sheaf .#. Then since it is over affine line, it corresponds to an
ideal of C|z], which is principal. But its generator can not have infinitely many zeros since it’s a polynomial,
which leads to a contradiction. On the other hand, by complex analysis, we can construct a holomorphic
function f with prescribed zeros zi, 2o, ... and then the sheaf corresponding to the C[z]-module generated
by f is our desired coherent sheaf.
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Exercise 1 (by Yu-Chi Hou).

Let N be the number of F, := k,—rational points of X; = X, X}, k. Since X = ILX:, N.=>, N,Si),
for all »r € N and for all . Hence, the Zeta function for X is given by

Z(X;t) =exp (i NT%) = exp (i (Z Nﬁ”) g) — exp (Zi]\c@§>

=1 i i r=1

Z(X;t) =[] exp (i N,@g) =[[2(x:0).

r=1 %

Exercise 2 (by Po-Sheng Wu).
qr(n+1) -1

o1 S g s0

For the projective space of dimension n we have N, =

r n

Z(Pyt) =exp(d_(1+¢ +--+ qm)t;) = exp(D_ —log(1 —q't)) =

r=1 =0

1
(1—=t)(1—qt)?...(1 —q™)

Exercise 3 (by Yu-Chi Hou).
Observe that N,.(X x A!) = N,(X) x N,(A') = ¢"N,(X). Hence, the Zeta function

Z(X x A t) = exp (i N, (X x AU?) = exp <i NdX)@) = Z(X;qt).

r=1

Exercise 4 (by Yu-Chi Hou).



Consider

r€X

where X, is the set of closed points of X, N(x) = |k(z)|. Since X is defined over k =TF,, x € X if and
only if k(x)/k is a finite algebraic extension and hence N (x) = ¢*@* . Let D, := {z € X : [k(z) : k] = r}
and d, := |D,|, then for z € D,, N(z) = ¢". Thus, we can write (x(s) into

() =[[a—gm)*

r>1
Next, observe that for k; = IFi, we claim the following:

Claim.

Assuming the claim for now, we show that (x(s) = Z(X;q¢™*). Taking logarithm on Z(X;q¢™*),

—rks

log Z(X;q~° ZNZ =S (Y v, qT 34, Zq =Y d,log(1 —q7).

>1 >1 r|l r>1 k>1 r>1

On the other hand, taking logarithm on (x(s),

log Cx(s) = = ) drlog(1 —¢ ")

r>1
Hence, this porves the assertion.

Proof of Claim. Recall that a k;—rational point of X is a morphism of scheme Spec(k;) — X and thus
X (k;) = Homgpee x (Spec(ky), X)

By Hartshorne Ex.I1.2.7 and the fact that x is a k;—rational points if and only if k(z)/k is finite algebraic
and thus z € X,

7(1{71) Homspeck(Spec k?l H HOIHk alg H Homk alg ),k}l)

re€X €Dy, 7|l

Now, for « € D,, then Homy,_,,(k(x), k;) has a transitive action by Gal(F, /F,;) = Z/IZ. Moreover, the
stabilizer of each element is just Gal(F,/F4). Thus,

Ne=[X(k)| = ) [Homeag(k(x), kil = > %

€Dy, r|l €Dy, r|l

Z T—ZT’CZ

x€Dy,r|l r|l



Exercise 5 (by Yu-Chi Hou).

By Weil conjecture, we know that the zeta function for X is given by

Z(Xﬂf) _ (]_ — Ojlt) (1 —aggt)7
(1-)(1—qt)
Write N, = 1—a,+q", where o, . . . , ay, are algebraic integers with |a;| = ¢'/2. By Exercise 7, a, = Zfil al.
Thus, for r > 2¢g, a, = Zfﬁ L «; is the symmetric polynomial in oy, ..., agy, which can be generated by the
power sum symmetric polynomial a4, ..., as,. Hence, knowing NNy,..., Ny, suffices to determine N, for all
r > 1. It remains to show that Ny,..., N, already determine Ny ,..., No,.

In view of the proof of Theorem 4.4 in Hartshorne Appendix C, one finds that in the case of curve,
By (C) = 2g. The functional equation is given by
1

Z(X;—
qt

) =q' HTHZ(X)

A little unwinding shows (cf. calculation in Exercise 7c)
(gt — o)+ (gt — agg) = ¢?(1 — ast) -+ (1 — ag,t).

This shows that the set (counted multiplicities) {av, ..., ag,} is invariant under x — ¢/x. Moreover, since
P(t) = (1 —aqt)--- (1 — ag,t) is a rational polynomial in ¢, the roots of P(¢) must come in conjugate pairs.
By Riemann hypothesis, |a;| = ¢/, @ = |a;]?/a; = q/a;. Combining these observations, we may rename

indices of a; so that agy_;41 = g/, for i =1,...,g. Thus, we can write P(t) as
P(t) = (1 — ant)(1 — ast) - (1 — agt)(1 — ait) (1 — ait) = 0ot + oy 119 ot + g,
g 1

where coq = ¢7, ¢y = 1. By above observation, consider

29
&) =Tt =) =t + it "+ + eyt + e,
=1

then %9 f(q/t) has the same roots as f(¢). In other words,
P9f(q/t) = ¢ + @+ ept™ = @Ieot® + et o Toggat + gq? = O f(1).
Then by comparing coefficients, one finds that
Cotl = qlcg_l, [=0,...,9.

Also, ¢; = (—1)%0;, where o; is the elementary symmetric polynomial of degree i in ay,...,az,. Thus,
Ogtl = qlag,l. By Newton’s identity,

k-1
1 .
oL = % ( E (—1)Z_lak_iai) , k=1,...,9.

i=1



Hence, o4,...,0, is determined by ay, ..., as. On the other hand,
k—1
ar, = (—1)" ko, + Z(—l)k_lJriak_iai, k=g+1,...,2g.
i=1

shows that ag41, ..., az, can be determined inductive by ay,...,a, and o;. From o4y = qlag,l, we conclude
that ag41,...,as, can be determined by ay, ..., a,. Therefore, N; =1+ ¢' — a; is determined by Ny, ..., Ny,
fori=9g+1,...,2g.

Exercise 6 (by Po-Sheng Wu).
By IV.Ex 4.16(c), we have N, =1 —a, +¢" = 1 — (f" + f7) + ¢" (identity in Q(f) C End’(E)), so

2(0) = esp(3 (1~ (7 + ) +4))

= exp(—log(1 — t) + log(1 + ft) + log(1 + ft) — log(1 + qt))
(1— ft)(1 — ft) 1 —at+ qt?

1=t —qt) (1-1)(1-qt)

E =0, thus Z(1/(qt)) = (11__"1//((ft)))+<11£ (gf/t)) _ (jtt__lf(itll) — Z(t). Since |a| < 2/, the two

roots of 1 — ta + ¢t? are either both £¢*/? or non-real, hence are conjugate with each other and has absolute
value ¢'/2.

Exercise 7 (by Yu-Chi Hou).

(a) For a curve C of genus g defined over [, the Zeta function is given by

(1 — Oélt) cee (1 — Oéggt)
1-=t)1—qt)

where o, -+, ay, are all algebraic integers. Taking logarithm on both sides,

Z(Cit) =

00 r 29

E NTt— =log Z(C;t) = E log(1 — a;t) —log(1 —t) — log(1 — qt).
T

r=1 =1

o

=1 % to expand right hand side, one has

Using the Taylor expansion log(l —z) = —>_

r

ST RS iy
r
r=1

r=1

By comparing coefficients and writing N, = 1+ ¢" — a,., we obtain



(b)

If || < /g, then )
9
< Z || < 2g+/q7,  for all .

i=1

|ar| =

29
r
P
i=1

Conversely, if |a,| < 2g+/q" for all r, then consider the generating function

00 0o 29 2g 2g

r T r a;t
E at" = E E ajt” = E E ()" = E T
r=1 r=1 i=1 i=1 r>1 i=1 v

Notice that )

- - 29q"°|t]

Y lapl [t <Y 2g(q "2t = =g

— |(l ’ | | = £ g<q | |> 1 — q1/2|t|

Thus, for [t| < ¢~'/2, the generating function converges absolutely and hence the expression in (A)
is legitimate. Moreover, (A) shows that the generating function has poles at t = 1/«a;. But above

estimates shows that those poles cannot occur in the disk |t| < ¢~!/2

alli =1,...,2g, |1/ay] > ¢~'/? and hence |oy] < (/7.

By functional equation,
Z(C;1/qt) = +¢P*P Z(C;1).

Since E = ¢»(C') =2 —2g and C'is a curve (cf. Discussion in Exercise 5),

Z(C, %) = ¢ I Z(C5t)
That is,
=) 0= s, —ant) (1~ agt)

1-hHa-1 (1-8)(1—qt)
and thus o

(=) (=) (L= agt) - (1= anyt)

@-ne-1 T a-n0-qa)

This gives

(t—a1/q) - (t —ag/q) = ¢ (1 —ast) -+ - (1 — ag,t).

. As a result, we obtain that for

This shows that [oy - - agy| = ¢7. Thus, if there exists j € {1,2,...,2¢} such that |a;| < /g, then

vy - - - agg| < @7, a contradiction. In conclusion, one must have |a;| = /g, for all 7.



