Algebraic Geometry II Homework Appendix A: Intersection Theory

A course by prof. Chin-Lung Wang
2020 Spring

Exercise 6 (by Yi-Heng Tsai).
Let $i: X \rightarrow X \times X$ be the diagonal map. Consider the exact sequence $\left.0 \rightarrow \mathcal{T}_{X} \rightarrow \mathcal{T}_{X \times X}\right|_{X} \rightarrow \mathcal{N} \rightarrow 0$, then we have $c\left(\mathcal{T}_{X}\right) \cdot c(\mathcal{N})=c\left(\left.\mathcal{T}_{X \times X}\right|_{X}\right)=c\left(\mathcal{T}_{X}\right)^{2}$. Hence, $c_{n}\left(\mathcal{T}_{X}\right)=c_{n}(\mathcal{N})=i^{*} i_{*}\left(1_{X}\right)=\Delta^{2}$ by (C7).

Exercise 7 (by Yu-Chi Hou).
By Hirzebruch-Riemann-Roch, for any non-singualar projective n-fold X, any locally free sheaf \mathcal{E} on X, one has

$$
\begin{equation*}
\chi(\mathcal{E})=\operatorname{deg}\left(\operatorname{ch}(\mathcal{E}) \cdot \operatorname{td}\left(\mathcal{T}_{X}\right)\right)_{n}, \tag{HRR}
\end{equation*}
$$

where \mathcal{T}_{X} is the tangent sheaf of X. Now, we consider the case $n=3$.
First, for $\mathcal{E}=\mathcal{O}_{X}$, one has

$$
p_{a}(X)=(-1)^{3}\left(\chi\left(\mathcal{O}_{x}-1\right)=1-\chi\left(\mathcal{O}_{X}\right)\right.
$$

and

$$
c\left(\mathcal{O}_{X}\right)=1 \in A^{*}(X)
$$

Therefore, HRR gives

$$
\chi\left(\mathcal{O}_{X}\right)=1-p_{a}(X)=\operatorname{deg}\left(\operatorname{td}\left(\mathcal{T}_{X}\right)\right)_{3} .
$$

Let $c_{i}:=c_{i}(X)$ be the $i-$ th Chern classes of X, for $i=1,2,3$. Then one has

$$
\operatorname{td}\left(\mathcal{T}_{X}\right)=1+\frac{1}{2} c_{1}+\frac{1}{12}\left(c_{1}^{2}+c_{2}\right)+\frac{1}{24} c_{1} c_{2},
$$

Thus, $\operatorname{deg}\left(\operatorname{td}\left(\mathcal{T}_{X}\right)\right)_{3}=c_{1} c_{2} / 24$. This proves the first part.
For the second part, for any divisor D, take \mathcal{E} to be the associated invertible sheaf $\mathcal{O}_{X}(D)$. Then it has Chern polynomial $c_{t}\left(\mathcal{O}_{X}(D)\right)=1+t D$ and thus its Chern character is given by

$$
\operatorname{ch}\left(\mathcal{O}_{X}(D)\right)=1+D+\frac{1}{2} D^{2}+\frac{1}{6} D^{3} .
$$

By HRR,

$$
\left.\chi\left(\mathcal{O}_{X}(D)\right)=\operatorname{deg}\left(\left(1+D+\frac{1}{2} D^{2}+\frac{1}{6} D^{3}\right)\right)\left(1+\frac{1}{2} c_{1}+\frac{1}{12}\left(c_{1}^{2}+c_{2}\right)+\frac{1}{24} c_{1} c_{2}\right)\right)_{3}
$$

By direct computing, the degree 3 component of right hand side is given by

$$
\begin{equation*}
\frac{1}{24} c_{1} c_{2}+\frac{1}{12} D\left(c_{1}^{2}+c_{2}\right)+\frac{1}{4} D^{2} c_{1}+\frac{1}{6} D^{3} . \tag{1}
\end{equation*}
$$

Since $c_{1}(X)=-c_{1}\left(\omega_{X}\right)=-K$ and $c_{1} c_{2} / 24=\chi\left(\mathcal{O}_{X}\right)=1-p_{a}(X)$ by previous part, (1) becomes

$$
1-p_{a}(X)+\frac{1}{12}\left(D \cdot K^{2}-3 D^{2} \cdot K+2 D^{3}\right)+\frac{1}{12} D \cdot c_{2}=\frac{1}{12} D \cdot(D-K) \cdot(2 D-K)+\frac{1}{12} D \cdot c_{2}
$$

This proves the second assertion.
Exercise 8 (by Yu-Chi Hou).
As in exercise 8 , for $X=\mathbb{P}^{3}$,

$$
\operatorname{td}\left(\mathcal{T}_{X}\right)=1+\frac{1}{2} c_{1}(X)+\frac{1}{12}\left(c_{1}^{2}(X)+c_{2}(X)\right)+\frac{1}{24} c_{1}(X) c_{2}(X)
$$

On the other hand, \mathcal{E} is a rank 2 locally free sheaf with Chern classes c_{1}, c_{2}

$$
\operatorname{ch}(\mathcal{E})=2+c_{1}+\frac{1}{2}\left(c_{1}^{2}-2 c_{2}\right)+\frac{1}{6}\left(c_{1}^{3}-3 c_{1} c_{2}\right)
$$

By (HRR),

$$
\chi(\mathcal{E})=\operatorname{deg}_{3}\left(\operatorname{td}\left(\mathcal{T}_{X}\right) \operatorname{ch}(\mathcal{E})\right)_{3}
$$

Hence,

$$
\chi(\mathcal{E})=\frac{1}{12} c_{1}(X) c_{2}(X)+\frac{1}{12} c_{1} \cdot\left(c_{1}^{2}(X)+c_{2}(X)\right)+\frac{1}{4} c_{1}(x) \cdot\left(c_{1}^{2}-2 c_{2}\right)+\frac{1}{6}\left(c_{1}^{3}-3 c_{1} c_{2}\right) .
$$

Then the left hand side is an integer, but right hand side is a priori a rational number only. Since $X=\mathbb{P}^{3}$, by Euler sequence, $c_{k}(X)=\binom{4}{k} h^{k}$, where $h \in A^{1}(X)$ is the hyperplane class. Therefore, $c_{1}(X)=4 h$, $c_{2}(X)=6 h^{2}, c_{3}(X)=4 h^{3}=4$. As a result,

$$
\chi(\mathcal{E})=2+\frac{11 c_{1} \cdot h^{2}}{6}+h \cdot\left(c_{1}^{2}-2 c_{2}\right)+\frac{c_{1}^{3}}{6}-\frac{c_{1} \cdot c_{2}}{2} .
$$

Exercise 9 (by Yi-Heng Tsai).
(a) The goal is to verify $d^{2}-10 d-5 H . K-2 K^{2}+12+12 p_{a}=0$. By the definition of rational cubic scroll, we have $K \equiv-2 C_{0}-3 f$ and $H \equiv C_{0}+2 f$. Thus, $d^{2}-10 d-5 H . K-2 K^{2}+12+12 p_{a}=$ $9-30+25-16+12+0=0$.
(b) By the definition of K3 surface, we have $K=0$ and $p_{a}=1$. Thus the formula in (4.1.3) becomes $d^{2}-10 d+24=0$, which implies $d=4,6$.
(c) Again, by the definition of abelian surface, the formula in (4.1.3) becomes $d^{2}-10 d=0$, which implies $d=10$.
(d) Assume X_{e} can be embedded in \mathbb{P}^{4} by the very ample divisor $H \equiv a C_{0}+b f$. Then $5=h^{0}(\mathcal{L}(H))=$ $h^{0}\left(\pi_{*} \mathcal{L}(H)\right)=h^{0}\left((\mathcal{O} \oplus \mathcal{O}(-e))^{\otimes a} \otimes \mathcal{O}(b)\right)=\oplus_{i=1}^{a} C_{i}^{a} \mathcal{O}(b-i e)=\left(\sum_{i=1}^{a} C_{i}^{a}(b-i e+1)\right)$. Note that we have $a>0, b>a e$ and $e \geq 0$. Thus, $(a, b, e)=(1,2,1)$. Indeed, by the above facts, $a=1,2,3,4$. When $a=1$, we have $5=2 b-e+2$, which implies $(a, b, e)=(1,2,1)$. When $a=2$, we have $5=4 b-4 e+4$, which is impossible. The rest cases $(a=3,4)$ admit no solution similarly. Combining with (a), the rational ruled surface $X_{e}, e \geq 0$ which admitting an embedding in \mathbb{P}^{4} is the rational cubic scroll in \mathbb{P}^{4}.

Exercise 10 (by Yi-Heng Tsai).
Suppose we have such embedding, then consider the exact sequence $\left.0 \rightarrow \mathcal{T}_{X} \rightarrow \mathcal{T}_{\mathbb{P}^{5}}\right|_{X} \rightarrow \mathcal{N}_{Y / X} \rightarrow 0$ where $i: X \rightarrow Y=\mathbb{P}^{5}$ is the embedding. Thus, $c\left(\left.\mathcal{T}_{\mathbb{P}^{5}}\right|_{X}\right)=c\left(\mathcal{T}_{X}\right) . c\left(\mathcal{N}_{Y / X}\right)$ i.e. $1+6 x+15 x^{2}+20 x^{3}=$ $1 .\left(1+c_{1}\left(\mathcal{N}_{Y / X}\right)+c_{2}\left(\mathcal{N}_{Y / X}\right)\right.$ with x the pullback of $\mathcal{O}(1)$. Therefore we get $20 x^{3}=0$, which is impossible.

Algebraic Geometry II Homework Appendix B: Transcendental Methods

A course by prof. Chin-Lung Wang
2020 Spring

Exercise 1 (by Yu-Chi Hou).
Suppose $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}=X^{h}$ for some scheme X over \mathbb{C}. Then X must be 1 -dimensional non-singular algebraic variety over \mathbb{C}. Since X is quasi-projective, we can take normalization Y of closure of X with respect to the embedding. Hence, we can write

$$
X=Y \backslash\left\{P_{1}, \ldots, P_{n}\right\}
$$

for some $n \geq 1$. Also, Y is non-singular complete (and hence projective) curve. By Chow's theorem, its associated analytic space $Y^{h}=Y$ is a compact Riemann surface of genus g. If $g \geq 1$, then Y is not simply connected and hence X^{h} which is puntured Riemann surface is not simply connected as well. However, \mathbb{D} is contractible and hence simply conected. Therefore, one must have $Y=\mathbb{P}^{1}$. If $n>2$, then X^{h} is homeomorphic to $n-1$ puntured complex plane, which is again not simply connected. If $n=1$, then $X^{h} \cong \mathbb{C}$. However, by Liouville theorem, there cannot be any non-constant holomorphic map from \mathbb{C} to \mathbb{D}. Thus, \mathbb{C} cannot be biholomorphic to \mathbb{D}. This gives the contradiction.

Exercise 2 (by Tzu-Yang Chou).
Assume that there exists an desired ideal sheaf \mathscr{I}. Then since it is over affine line, it corresponds to an ideal of $\mathbb{C}[z]$, which is principal. But its generator can not have infinitely many zeros since it's a polynomial, which leads to a contradiction. On the other hand, by complex analysis, we can construct a holomorphic function f with prescribed zeros z_{1}, z_{2}, \ldots and then the sheaf corresponding to the $\mathbb{C}[z]$-module generated by f is our desired coherent sheaf.

Algebraic Geometry II Homework Appendix C: The Weil Conjectures

A course by prof. Chin-Lung Wang
2020 Spring

Exercise 1 (by Yu-Chi Hou).
Let $N_{r}^{(i)}$ be the number of $\mathbb{F}_{q^{r}}:=k_{r}$-rational points of $\bar{X}_{i}=X_{i} \times_{k} \bar{k}$. Since $X=\coprod_{i} X_{i}, N_{r}=\sum_{i} N_{r}^{(i)}$, for all $r \in \mathbb{N}$ and for all i. Hence, the Zeta function for X is given by

$$
Z(X ; t)=\exp \left(\sum_{r=1}^{\infty} N_{r} \frac{t^{r}}{r}\right)=\exp \left(\sum_{r=1}^{\infty}\left(\sum_{i} N_{r}^{(i)}\right) \frac{t^{r}}{r}\right)=\exp \left(\sum_{i} \sum_{r=1}^{\infty} N_{r}^{(i)} \frac{t^{r}}{r}\right)
$$

Thus,

$$
Z(X ; t)=\prod_{i} \exp \left(\sum_{r=1}^{\infty} N_{r}^{(i)} \frac{t^{r}}{r}\right)=\prod_{i} Z\left(X_{i} ; t\right) .
$$

Exercise 2 (by Po-Sheng Wu).
For the projective space of dimension n we have $N_{r}=\frac{q^{r(n+1)}-1}{q^{r}-1}=\left(1+q^{r}+\cdots+q^{r n}\right)$, so

$$
Z\left(\mathbb{P}_{n}, t\right)=\exp \left(\sum_{r=1}\left(1+q^{r}+\cdots+q^{r n}\right) \frac{t^{r}}{r}\right)=\exp \left(\sum_{i=0}^{n}-\log \left(1-q^{i} t\right)\right)=\frac{1}{(1-t)(1-q t)^{2} \cdots\left(1-q^{n} t\right)}
$$

Exercise 3 (by Yu-Chi Hou).
Observe that $N_{r}\left(X \times \mathbb{A}^{1}\right)=N_{r}(X) \times N_{r}\left(\mathbb{A}^{1}\right)=q^{r} N_{r}(X)$. Hence, the Zeta function

$$
Z\left(X \times \mathbb{A}^{1} ; t\right)=\exp \left(\sum_{r=1}^{\infty} N_{r}\left(X \times \mathbb{A}^{1}\right) \frac{t^{r}}{r}\right)=\exp \left(\sum_{r=1}^{\infty} N_{r}(X) \frac{(q t)^{r}}{r}\right)=Z(X ; q t) .
$$

Exercise 4 (by Yu-Chi Hou).

Consider

$$
\zeta_{X}(s):=\prod_{x \in X_{\mathrm{cl}}}\left(1-N(x)^{-s}\right)^{-1}
$$

where X_{cl} is the set of closed points of $X, N(x)=|k(x)|$. Since X is defined over $k=\mathbb{F}_{q}, x \in X_{\mathrm{cl}}$ if and only if $k(x) / k$ is a finite algebraic extension and hence $N(x)=q^{[k(x): k]}$. Let $D_{r}:=\left\{x \in X_{\mathrm{cl}}:[k(x): k]=r\right\}$ and $d_{r}:=\left|D_{r}\right|$, then for $x \in D_{r}, N(x)=q^{r}$. Thus, we can write $\zeta_{X}(s)$ into

$$
\zeta_{X}(s)=\prod_{r \geq 1}\left(1-q^{-r s}\right)^{-d_{r}}
$$

Next, observe that for $k_{l}=\mathbb{F}_{q^{l}}$, we claim the following:

Claim.

$$
N_{l}:=\left|\bar{X}\left(k_{l}\right)\right|=\sum_{r \mid l} r d_{r}
$$

Assuming the claim for now, we show that $\zeta_{X}(s)=Z\left(X ; q^{-s}\right)$. Taking logarithm on $Z\left(X ; q^{-s}\right)$,

$$
\log Z\left(X ; q^{-s}\right)=\sum_{l \geq 1} N_{l} \frac{q^{-s l}}{l}=\sum_{l \geq 1}\left(\sum_{r \mid l} r d_{r}\right) \frac{q^{-l s}}{l}=\sum_{r \geq 1} d_{r} \sum_{k \geq 1} \frac{q^{-r k s}}{k}=-\sum_{r \geq 1} d_{r} \log \left(1-q^{-r s}\right) .
$$

On the other hand, taking logarithm on $\zeta_{X}(s)$,

$$
\log \zeta_{X}(s)=-\sum_{r \geq 1} d_{r} \log \left(1-q^{-r s}\right)
$$

Hence, this porves the assertion.
Proof of Claim. Recall that a k_{l}-rational point of \bar{X} is a morphism of $\operatorname{scheme} \operatorname{Spec}\left(k_{l}\right) \rightarrow \bar{X}$ and thus

$$
\bar{X}\left(k_{l}\right)=\operatorname{Hom}_{\operatorname{Spec} k}\left(\operatorname{Spec}\left(k_{l}\right), \bar{X}\right)
$$

By Hartshorne Ex.II.2.7 and the fact that x is a k_{l}-rational points if and only if $k(x) / k$ is finite algebraic and thus $x \in X_{\mathrm{cl}}$,

$$
\bar{X}\left(k_{l}\right)=\operatorname{Hom}_{\operatorname{Spec} k}\left(\operatorname{Spec}\left(k_{l}\right), \bar{X}\right)=\coprod_{x \in X_{\mathrm{cl}}} \operatorname{Hom}_{k-\mathrm{alg}}\left(k(x), k_{l}\right)=\coprod_{x \in D_{r}, r \mid l} \operatorname{Hom}_{k-\mathrm{alg}}\left(k(x), k_{l}\right)
$$

Now, for $x \in D_{r}$, then $\operatorname{Hom}_{k-\operatorname{alg}}\left(k(x), k_{l}\right)$ has a transitive action by $\operatorname{Gal}\left(\mathbb{F}_{q^{l}} / \mathbb{F}_{q}\right) \cong \mathbb{Z} / l \mathbb{Z}$. Moreover, the stabilizer of each element is just $\operatorname{Gal}\left(\mathbb{F}_{q^{l}} / \mathbb{F}_{q^{r}}\right)$. Thus,

$$
N_{l}=\left|\bar{X}\left(k_{l}\right)\right|=\sum_{x \in D_{r}, r \mid l} \left\lvert\, \operatorname{Hom}_{k-\operatorname{alg}}\left(k(x), k_{l} \left\lvert\,=\sum_{x \in D_{r}, r \mid l} \frac{\left|\operatorname{Gal}\left(\mathbb{F}_{\mathrm{q}^{1}} / \mathbb{F}_{\mathrm{q}}\right)\right|}{\left|\operatorname{Gal}\left(\mathbb{F}_{q^{l}} / \mathbb{F}_{q^{r}}\right)\right|}=\sum_{x \in D_{r}, r \mid l} r=\sum_{r \mid l} r d_{r}\right.\right.\right.
$$

Exercise 5 (by Yu-Chi Hou).
By Weil conjecture, we know that the zeta function for X is given by

$$
Z(X ; t)=\frac{\left(1-\alpha_{1} t\right) \cdots\left(1-\alpha_{2 g} t\right)}{(1-t)(1-q t)}
$$

Write $N_{r}=1-a_{r}+q^{r}$, where $\alpha_{1}, \ldots, \alpha_{2 g}$ are algebraic integers with $\left|\alpha_{i}\right|=q^{1 / 2}$. By Exercise $7, a_{r}=\sum_{i=1}^{2 g} \alpha_{i}^{r}$. Thus, for $r>2 g, a_{r}=\sum_{i=1}^{2 g} \alpha_{i}^{r}$ is the symmetric polynomial in $\alpha_{1}, \ldots, \alpha_{2 g}$, which can be generated by the power sum symmetric polynomial $a_{1}, \ldots, a_{2 g}$. Hence, knowing $N_{1}, \ldots, N_{2 g}$ suffices to determine N_{r} for all $r \geq 1$. It remains to show that N_{1}, \ldots, N_{g} already determine $N_{g+1}, \ldots, N_{2 g}$.

In view of the proof of Theorem 4.4 in Hartshorne Appendix C, one finds that in the case of curve, $B_{1}(C)=2 g$. The functional equation is given by

$$
Z\left(X ; \frac{1}{q t}\right)=q^{1-g} t^{2-2 g} Z(X ; t)
$$

A little unwinding shows (cf. calculation in Exercise 7c)

$$
\left(q t-\alpha_{1}\right) \cdots\left(q t-\alpha_{2 g}\right)=q^{g}\left(1-\alpha_{1} t\right) \cdots\left(1-\alpha_{2 g} t\right)
$$

This shows that the set (counted multiplicities) $\left\{\alpha_{1}, \ldots, \alpha_{2 g}\right\}$ is invariant under $x \mapsto q / x$. Moreover, since $P(t)=\left(1-\alpha_{1} t\right) \cdots\left(1-\alpha_{2 g} t\right)$ is a rational polynomial in t, the roots of $P(t)$ must come in conjugate pairs. By Riemann hypothesis, $\left|\alpha_{i}\right|=q^{1 / 2}, \overline{\alpha_{i}}=\left|\alpha_{i}\right|^{2} / \alpha_{i}=q / \alpha_{i}$. Combining these observations, we may rename indices of α_{i} so that $\alpha_{2 g-i+1}=q / \alpha_{i}$, for $i=1, \ldots, g$. Thus, we can write $P(t)$ as

$$
P(t)=\left(1-\alpha_{1} t\right)\left(1-\alpha_{2} t\right) \cdots\left(1-\alpha_{g} t\right)\left(1-\frac{q}{\alpha_{g}} t\right) \cdots\left(1-\frac{q}{\alpha_{1}} t\right)=c_{2 g} t^{2 g}+c_{2 g-1} t^{2 g-1}+\cdots+c_{1} t+c_{0},
$$

where $c_{2 g}=q^{g}, c_{0}=1$. By above observation, consider

$$
f(t)=\prod_{i=1}^{2 g}\left(t-\alpha_{i}\right)=t^{2 g}+c_{1} t^{2 g-1}+\cdots+c_{2 g-1} t+c_{2 g}
$$

then $t^{2 g} f(q / t)$ has the same roots as $f(t)$. In other words,

$$
t^{2 g} f(q / t)=q^{g}+c_{1} q^{2 g-1} t+\cdots+c_{2 g} t^{2 g}=q^{g} c_{0} t^{2 g}+q^{g} c_{1} t^{2 g-1}+\cdots+q^{g} c_{2 g-1} t+c_{2 g} q^{g}=q^{g} f(t) .
$$

Then by comparing coefficients, one finds that

$$
c_{g+l}=q^{l} c_{g-l}, \quad l=0, \ldots, g
$$

Also, $c_{i}=(-1)^{i} \sigma_{i}$, where σ_{i} is the elementary symmetric polynomial of degree i in $\alpha_{1}, \ldots, \alpha_{2 g}$. Thus, $\sigma_{g+l}=q^{l} \sigma_{g-l}$. By Newton's identity,

$$
\sigma_{k}=\frac{1}{k}\left(\sum_{i=1}^{k-1}(-1)^{i-1} \sigma_{k-i} a_{i}\right), \quad k=1, \ldots, g
$$

Hence, $\sigma_{1}, \ldots, \sigma_{g}$ is determined by a_{1}, \ldots, a_{g}. On the other hand,

$$
a_{k}=(-1)^{k-1} k \sigma_{k}+\sum_{i=1}^{k-1}(-1)^{k-1+i} \sigma_{k-i} a_{i}, \quad k=g+1, \ldots, 2 g .
$$

shows that $a_{g+1}, \ldots, a_{2 g}$ can be determined inductive by a_{1}, \ldots, a_{g} and σ_{i}. From $\sigma_{g+l}=q^{l} \sigma_{g-l}$, we conclude that $a_{g+1}, \ldots, a_{2 g}$ can be determined by a_{1}, \ldots, a_{g}. Therefore, $N_{i}=1+q^{i}-a_{i}$ is determined by N_{1}, \ldots, N_{g}, for $i=g+1, \ldots, 2 g$.

Exercise 6 (by Po-Sheng Wu).
By IV.Ex $4.16(\mathrm{c})$, we have $N_{r}=1-a_{r}+q^{r}=1-\left(f^{r}+\hat{f}^{r}\right)+q^{r}\left(\right.$ identity in $\left.\mathbb{Q}(f) \subset \operatorname{End}^{0}(E)\right)$, so

$$
\begin{aligned}
Z(t) & =\exp \left(\sum_{r=1}\left(1-\left(f^{r}+\hat{f}^{r}\right)+q^{r}\right) \frac{t^{r}}{r}\right) \\
& =\exp (-\log (1-t)+\log (1+f t)+\log (1+\bar{f} t)-\log (1+q t)) \\
& =\frac{(1-f t)(1-\bar{f} t)}{(1-t)(1-q t)}=\frac{1-a t+q t^{2}}{(1-t)(1-q t)}
\end{aligned}
$$

$E=0$, thus $Z(1 /(q t))=\frac{1-a /(q t)+1 /\left(q t^{2}\right)}{(1-1 /(q t))(1-1 / t)}=\frac{q t^{2}-a t+1}{(q t-1)(t-1)}=Z(t)$. Since $|a| \leq 2 q^{1 / 2}$, the two roots of $1-t a+q t^{2}$ are either both $\pm q^{1 / 2}$ or non-real, hence are conjugate with each other and has absolute value $q^{1 / 2}$.

Exercise 7 (by Yu-Chi Hou).
(a) For a curve C of genus g defined over \mathbb{F}_{q}, the Zeta function is given by

$$
Z(C ; t)=\frac{\left(1-\alpha_{1} t\right) \cdots\left(1-\alpha_{2 g} t\right)}{(1-t)(1-q t)}
$$

where $\alpha_{1}, \cdots, \alpha_{2 g}$ are all algebraic integers. Taking logarithm on both sides,

$$
\sum_{r=1}^{\infty} N_{r} \frac{t^{r}}{r}=\log Z(C ; t)=\sum_{i=1}^{2 g} \log \left(1-\alpha_{i} t\right)-\log (1-t)-\log (1-q t)
$$

Using the Taylor expansion $\log (1-x)=-\sum_{r=1}^{\infty} \frac{x^{r}}{r}$ to expand right hand side, one has

$$
\sum_{r=1}^{\infty} N_{r} \frac{t^{r}}{r}=\sum_{r=1}^{\infty} \frac{\left(1+q^{r}-\sum_{i=1}^{2 g} \alpha_{i}^{r}\right) t^{r}}{r}
$$

By comparing coefficients and writing $N_{r}=1+q^{r}-a_{r}$, we obtain

$$
a_{r}=\sum_{i=1}^{2 g} \alpha_{i}^{r}
$$

(b) If $\left|\alpha_{i}\right| \leq \sqrt{q}$, then

$$
\left|a_{r}\right|=\left|\sum_{i=1}^{2 g} \alpha_{i}^{r}\right| \leq \sum_{i=1}^{2 g}\left|\alpha_{i}\right|^{r} \leq 2 g \sqrt{q^{r}}, \quad \text { for all } r
$$

Conversely, if $\left|a_{r}\right| \leq 2 g \sqrt{q^{r}}$ for all r, then consider the generating function

$$
\begin{equation*}
\sum_{r=1}^{\infty} a_{r} t^{r}=\sum_{r=1}^{\infty} \sum_{i=1}^{2 g} \alpha_{i}^{r} t^{r}=\sum_{i=1}^{2 g} \sum_{r \geq 1}\left(\alpha_{i} t\right)^{r}=\sum_{i=1}^{2 g} \frac{\alpha_{i} t}{1-\alpha_{i} t} \tag{A}
\end{equation*}
$$

Notice that

$$
\sum_{r=1}^{\infty}\left|a_{r}\right||t|^{r} \leq \sum_{r=1}^{\infty} 2 g\left(q^{1 / 2}|t|\right)^{r}=\frac{2 g q^{1 / 2}|t|}{1-q^{1 / 2}|t|}
$$

Thus, for $|t|<q^{-1 / 2}$, the generating function converges absolutely and hence the expression in (A) is legitimate. Moreover, (A) shows that the generating function has poles at $t=1 / \alpha_{i}$. But above estimates shows that those poles cannot occur in the disk $|t|<q^{-1 / 2}$. As a result, we obtain that for all $i=1, \ldots, 2 g,\left|1 / \alpha_{i}\right| \geq q^{-1 / 2}$ and hence $\left|\alpha_{i}\right| \leq \sqrt{q}$.
(c) By functional equation,

$$
Z(C ; 1 / q t)= \pm q^{E / 2} t^{E} Z(C ; t)
$$

Since $E=c_{2}(C)=2-2 g$ and C is a curve (cf. Discussion in Exercise 5),

$$
Z\left(C ; \frac{1}{q t}\right)=q^{1-g} t^{2-2 g} Z(C ; t)
$$

That is,

$$
\frac{\left(1-\frac{\alpha_{1}}{q t}\right) \cdots\left(1-\frac{\alpha_{2 g}}{q t}\right)}{\left(1-\frac{1}{q t}\right)\left(1-\frac{1}{t}\right)}=q^{1-g} t^{2-2 g} \frac{\left(1-\alpha_{1} t\right) \cdots\left(1-\alpha_{2 g} t\right)}{(1-t)(1-q t)}
$$

and thus

$$
\frac{\left(t-\frac{\alpha_{1}}{q}\right) \cdots\left(t-\frac{\alpha_{2 g}}{q}\right)}{(q t-1)(t-1)}=q^{-g} \frac{\left(1-\alpha_{1} t\right) \cdots\left(1-\alpha_{2 g} t\right)}{(1-t)(1-q t)} .
$$

This gives

$$
\left(t-\alpha_{1} / q\right) \cdots\left(t-\alpha_{2 g} / q\right)=q^{-g}\left(1-\alpha_{1} t\right) \cdots\left(1-\alpha_{2 g} t\right)
$$

This shows that $\left|\alpha_{1} \cdots \alpha_{2 g}\right|=q^{g}$. Thus, if there exists $j \in\{1,2, \ldots, 2 g\}$ such that $\left|\alpha_{j}\right|<\sqrt{q}$, then $\left|\alpha_{1} \cdots \alpha_{2 g}\right|<q^{g}$, a contradiction. In conclusion, one must have $\left|\alpha_{i}\right|=\sqrt{q}$, for all i.

