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Exercise 6 (by Yi-Heng Tsai).

Let i : X → X ×X be the diagonal map. Consider the exact sequence 0→ TX → TX×X |X → N → 0,
then we have c(TX).c(N ) = c(TX×X |X) = c(TX)2. Hence, cn(TX) = cn(N ) = i∗i∗(1X) = ∆2 by (C7).

Exercise 7 (by Yu–Chi Hou).

By Hirzebruch–Riemann–Roch, for any non–singualar projective n−fold X, any locally free sheaf E on
X, one has

χ(E) = deg(ch(E).td(TX))n, (HRR)

where TX is the tangent sheaf of X. Now, we consider the case n = 3.
First, for E = OX , one has

pa(X) = (−1)3(χ(Ox − 1) = 1− χ(OX)

and
c(OX) = 1 ∈ A∗(X).

Therefore, HRR gives
χ(OX) = 1− pa(X) = deg(td(TX))3.

Let ci := ci(X) be the i−th Chern classes of X, for i = 1, 2, 3. Then one has

td(TX) = 1 +
1

2
c1 +

1

12
(c21 + c2) +

1

24
c1c2,

Thus, deg(td(TX))3 = c1c2/24. This proves the first part.
For the second part, for any divisor D, take E to be the associated invertible sheaf OX(D). Then it has

Chern polynomial ct(OX(D)) = 1 + tD and thus its Chern character is given by

ch(OX(D)) = 1 +D +
1

2
D2 +

1

6
D3.
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By HRR,

χ(OX(D)) = deg((1 +D +
1

2
D2 +

1

6
D3))(1 +

1

2
c1 +

1

12
(c21 + c2) +

1

24
c1c2))3

By direct computing, the degree 3 component of right hand side is given by

1

24
c1c2 +

1

12
D(c21 + c2) +

1

4
D2c1 +

1

6
D3. (1)

Since c1(X) = −c1(ωX) = −K and c1c2/24 = χ(OX) = 1− pa(X) by previous part, (1) becomes

1− pa(X) +
1

12
(D.K2 − 3D2.K + 2D3) +

1

12
D.c2 =

1

12
D.(D −K).(2D −K) +

1

12
D.c2

This proves the second assertion.

Exercise 8 (by Yu–Chi Hou).

As in exercise 8, for X = P3,

td(TX) = 1 +
1

2
c1(X) +

1

12
(c21(X) + c2(X)) +

1

24
c1(X)c2(X),

On the other hand, E is a rank 2 locally free sheaf with Chern classes c1, c2

ch(E) = 2 + c1 +
1

2
(c21 − 2c2) +

1

6
(c31 − 3c1c2)

By (HRR),
χ(E) = deg3(td(TX)ch(E))3

Hence,

χ(E) =
1

12
c1(X)c2(X) +

1

12
c1.(c

2
1(X) + c2(X)) +

1

4
c1(x).(c21 − 2c2) +

1

6
(c31 − 3c1c2).

Then the left hand side is an integer, but right hand side is a priori a rational number only. Since X = P3,
by Euler sequence, ck(X) =

(
4
k

)
hk, where h ∈ A1(X) is the hyperplane class. Therefore, c1(X) = 4h,

c2(X) = 6h2, c3(X) = 4h3 = 4. As a result,

χ(E) = 2 +
11c1.h

2

6
+ h.(c21 − 2c2) +

c31
6
− c1.c2

2
.

Exercise 9 (by Yi-Heng Tsai).

(a) The goal is to verify d2 − 10d − 5H.K − 2K2 + 12 + 12pa = 0. By the definition of rational cubic
scroll, we have K ≡ −2C0 − 3f and H ≡ C0 + 2f . Thus, d2 − 10d − 5H.K − 2K2 + 12 + 12pa =
9− 30 + 25− 16 + 12 + 0 = 0.

(b) By the definition of K3 surface, we have K = 0 and pa = 1. Thus the formula in (4.1.3) becomes
d2 − 10d+ 24 = 0, which implies d = 4, 6.
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(c) Again, by the definition of abelian surface, the formula in (4.1.3) becomes d2− 10d = 0, which implies
d = 10.

(d) Assume Xe can be embedded in P4 by the very ample divisor H ≡ aC0 + bf . Then 5 = h0(L(H)) =
h0(π∗L(H)) = h0((O ⊕ O(−e))⊗a ⊗ O(b)) = ⊕a

i=1C
a
i O(b − ie) = (

∑a
i=1C

a
i (b − ie + 1)). Note that

we have a > 0, b > ae and e ≥ 0. Thus, (a, b, e) = (1, 2, 1). Indeed, by the above facts, a = 1, 2, 3, 4.
When a = 1,we have 5 = 2b − e + 2, which implies (a, b, e) = (1, 2, 1). When a = 2,we have
5 = 4b− 4e+ 4, which is impossible. The rest cases(a = 3, 4) admit no solution similarly. Combining
with (a), the rational ruled surface Xe, e ≥ 0 which admitting an embedding in P4 is the rational
cubic scroll in P4.

Exercise 10 (by Yi-Heng Tsai).

Suppose we have such embedding, then consider the exact sequence 0 → TX → TP5|X → NY/X → 0
where i : X → Y = P5 is the embedding. Thus, c(TP5|X) = c(TX).c(NY/X) i.e. 1 + 6x + 15x2 + 20x3 =
1.(1 + c1(NY/X) + c2(NY/X) with x the pullback of O(1). Therefore we get 20x3 = 0, which is impossible.
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Exercise 1 (by Yu–Chi Hou).

Suppose D := {z ∈ C : |z| < 1} = Xh for some scheme X over C. Then X must be 1−dimensional
non–singular algebraic variety over C. Since X is quasi–projective, we can take normalization Y of closure
of X with respect to the embedding. Hence, we can write

X = Y \ {P1, . . . , Pn},

for some n ≥ 1. Also, Y is non–singular complete (and hence projective ) curve. By Chow’s theorem, its
associated analytic space Y h = Y is a compact Riemann surface of genus g. If g ≥ 1, then Y is not simply
connected and hence Xh which is puntured Riemann surface is not simply connected as well. However,
D is contractible and hence simply conected. Therefore, one must have Y = P1. If n > 2, then Xh is
homeomorphic to n − 1 puntured complex plane, which is again not simply connected. If n = 1, then
Xh ∼= C. However, by Liouville theorem, there cannot be any non–constant holomorphic map from C to D.
Thus, C cannot be biholomorphic to D. This gives the contradiction.

Exercise 2 (by Tzu-Yang Chou).

Assume that there exists an desired ideal sheaf I . Then since it is over affine line, it corresponds to an
ideal of C[z], which is principal. But its generator can not have infinitely many zeros since it’s a polynomial,
which leads to a contradiction. On the other hand, by complex analysis, we can construct a holomorphic
function f with prescribed zeros z1, z2, ... and then the sheaf corresponding to the C[z]-module generated
by f is our desired coherent sheaf.

1



Algebraic Geometry II Homework
Appendix C: The Weil Conjectures

A course by prof. Chin-Lung Wang

2020 Spring

Exercise 1 (by Yu–Chi Hou).

Let N (i)
r be the number of Fqr := kr−rational points of X̄i = Xi ×k k̄. Since X =

∐
iXi, Nr =

∑
iN

(i)
r ,

for all r ∈ N and for all i. Hence, the Zeta function for X is given by

Z(X; t) = exp

(
∞∑
r=1

Nr
tr

r

)
= exp

(
∞∑
r=1

(∑
i

N (i)
r

)
tr

r

)
= exp

(∑
i

∞∑
r=1

N (i)
r

tr

r

)

Thus,

Z(X; t) =
∏
i

exp

(
∞∑
r=1

N (i)
r

tr

r

)
=
∏
i

Z(Xi; t).

Exercise 2 (by Po-Sheng Wu).

For the projective space of dimension n we have Nr =
qr(n+1) − 1

qr − 1
= (1 + qr + · · ·+ qrn), so

Z(Pn, t) = exp(
∑
r=1

(1 + qr + · · ·+ qrn)
tr

r
) = exp(

n∑
i=0

− log(1− qit)) =
1

(1− t)(1− qt)2 . . . (1− qnt)

Exercise 3 (by Yu–Chi Hou).

Observe that Nr(X × A1) = Nr(X)×Nr(A1) = qrNr(X). Hence, the Zeta function

Z(X × A1; t) = exp

(
∞∑
r=1

Nr(X × A1)
tr

r

)
= exp

(
∞∑
r=1

Nr(X)
(qt)r

r

)
= Z(X; qt).

Exercise 4 (by Yu–Chi Hou).
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Consider
ζX(s) :=

∏
x∈Xcl

(1−N(x)−s)−1,

where Xcl is the set of closed points of X, N(x) = |k(x)|. Since X is defined over k = Fq, x ∈ Xcl if and
only if k(x)/k is a finite algebraic extension and hence N(x) = q[k(x):k]. Let Dr := {x ∈ Xcl : [k(x) : k] = r}
and dr := |Dr|, then for x ∈ Dr, N(x) = qr. Thus, we can write ζX(s) into

ζX(s) =
∏
r≥1

(1− q−rs)−dr

Next, observe that for kl = Fql , we claim the following:

Claim.
Nl := |X(kl)| =

∑
r|l

rdr

Assuming the claim for now, we show that ζX(s) = Z(X; q−s). Taking logarithm on Z(X; q−s),

logZ(X; q−s) =
∑
l≥1

Nl
q−sl

l
=
∑
l≥1

∑
r|l

rdr

 q−ls

l
=
∑
r≥1

dr
∑
k≥1

q−rks

k
= −

∑
r≥1

dr log(1− q−rs).

On the other hand, taking logarithm on ζX(s),

log ζX(s) = −
∑
r≥1

dr log(1− q−rs)

Hence, this porves the assertion.

Proof of Claim. Recall that a kl−rational point of X is a morphism of scheme Spec(kl)→ X and thus

X(kl) = HomSpec k(Spec(kl), X)

By Hartshorne Ex.II.2.7 and the fact that x is a kl−rational points if and only if k(x)/k is finite algebraic
and thus x ∈ Xcl,

X(kl) = HomSpec k(Spec(kl), X) =
∐
x∈Xcl

Homk−alg(k(x), kl) =
∐

x∈Dr, r|l

Homk−alg(k(x), kl)

Now, for x ∈ Dr, then Homk−alg(k(x), kl) has a transitive action by Gal(Fql/Fq) ∼= Z/lZ. Moreover, the
stabilizer of each element is just Gal(Fql/Fqr). Thus,

Nl = |X(kl)| =
∑

x∈Dr, r|l

|Homk−alg(k(x), kl| =
∑

x∈Dr, r|l

|Gal(Fql/Fq)|
|Gal(Fql/Fqr)|

=
∑

x∈Dr, r|l

r =
∑
r|l

rdr.
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Exercise 5 (by Yu–Chi Hou).

By Weil conjecture, we know that the zeta function for X is given by

Z(X; t) =
(1− α1t) · · · (1− α2gt)

(1− t)(1− qt)
,

Write Nr = 1−ar+qr, where α1, . . . , α2g are algebraic integers with |αi| = q1/2. By Exercise 7, ar =
∑2g

i=1 α
r
i .

Thus, for r > 2g, ar =
∑2g

i=1 α
r
i is the symmetric polynomial in α1, . . . , α2g, which can be generated by the

power sum symmetric polynomial a1, . . . , a2g. Hence, knowing N1, . . . , N2g suffices to determine Nr for all
r ≥ 1. It remains to show that N1, . . . , Ng already determine Ng+1, . . . , N2g.

In view of the proof of Theorem 4.4 in Hartshorne Appendix C, one finds that in the case of curve,
B1(C) = 2g. The functional equation is given by

Z(X;
1

qt
) = q1−gt2−2gZ(X; t)

A little unwinding shows (cf. calculation in Exercise 7c)

(qt− α1) · · · (qt− α2g) = qg(1− α1t) · · · (1− α2gt).

This shows that the set (counted multiplicities) {α1, . . . , α2g} is invariant under x 7→ q/x. Moreover, since
P (t) = (1− α1t) · · · (1− α2gt) is a rational polynomial in t, the roots of P (t) must come in conjugate pairs.
By Riemann hypothesis, |αi| = q1/2, αi = |αi|2/αi = q/αi. Combining these observations, we may rename
indices of αi so that α2g−i+1 = q/αi, for i = 1, . . . , g. Thus, we can write P (t) as

P (t) = (1− α1t)(1− α2t) · · · (1− αgt)(1−
q

αg
t) · · · (1− q

α1

t) = c2gt
2g + c2g−1t

2g−1 + · · ·+ c1t+ c0,

where c2g = qg, c0 = 1. By above observation, consider

f(t) =

2g∏
i=1

(t− αi) = t2g + c1t
2g−1 + · · ·+ c2g−1t+ c2g,

then t2gf(q/t) has the same roots as f(t). In other words,

t2gf(q/t) = qg + c1q
2g−1t+ · · ·+ c2gt

2g = qgc0t
2g + qgc1t

2g−1 + · · ·+ qgc2g−1t+ c2gq
g = qgf(t).

Then by comparing coefficients, one finds that

cg+l = qlcg−l, l = 0, . . . , g.

Also, ci = (−1)iσi, where σi is the elementary symmetric polynomial of degree i in α1, . . . , α2g. Thus,
σg+l = qlσg−l. By Newton’s identity,

σk =
1

k

(
k−1∑
i=1

(−1)i−1σk−iai

)
, k = 1, . . . , g.
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Hence, σ1, . . . , σg is determined by a1, . . . , ag. On the other hand,

ak = (−1)k−1kσk +
k−1∑
i=1

(−1)k−1+iσk−iai, k = g + 1, . . . , 2g.

shows that ag+1, . . . , a2g can be determined inductive by a1, . . . , ag and σi. From σg+l = qlσg−l, we conclude
that ag+1, . . . , a2g can be determined by a1, . . . , ag. Therefore, Ni = 1 + qi− ai is determined by N1, . . . , Ng,
for i = g + 1, . . . , 2g.

Exercise 6 (by Po-Sheng Wu).

By IV.Ex 4.16(c), we have Nr = 1− ar + qr = 1− (f r + f̂ r) + qr (identity in Q(f) ⊂ End0(E)), so

Z(t) = exp(
∑
r=1

(1− (f r + f̂ r) + qr)
tr

r
)

= exp(− log(1− t) + log(1 + ft) + log(1 + f̄ t)− log(1 + qt))

=
(1− ft)(1− f̄ t)
(1− t)(1− qt)

=
1− at+ qt2

(1− t)(1− qt)

E = 0, thus Z(1/(qt)) =
1− a/(qt) + 1/(qt2)

(1− 1/(qt))(1− 1/t)
=

qt2 − at+ 1

(qt− 1)(t− 1)
= Z(t). Since |a| ≤ 2q1/2, the two

roots of 1− ta+ qt2 are either both ±q1/2 or non-real, hence are conjugate with each other and has absolute
value q1/2.

Exercise 7 (by Yu-Chi Hou).

(a) For a curve C of genus g defined over Fq, the Zeta function is given by

Z(C; t) =
(1− α1t) · · · (1− α2gt)

(1− t)(1− qt)
,

where α1, · · · , α2g are all algebraic integers. Taking logarithm on both sides,

∞∑
r=1

Nr
tr

r
= logZ(C; t) =

2g∑
i=1

log(1− αit)− log(1− t)− log(1− qt).

Using the Taylor expansion log(1− x) = −
∑∞

r=1
xr

r
to expand right hand side, one has

∞∑
r=1

Nr
tr

r
=
∞∑
r=1

(1 + qr −
∑2g

i=1 α
r
i )t

r

r
.

By comparing coefficients and writing Nr = 1 + qr − ar, we obtain

ar =

2g∑
i=1

αri .

4



(b) If |αi| ≤
√
q, then

|ar| =

∣∣∣∣∣
2g∑
i=1

αri

∣∣∣∣∣ ≤
2g∑
i=1

|αi|r ≤ 2g
√
qr, for all r.

Conversely, if |ar| ≤ 2g
√
qr for all r, then consider the generating function

∞∑
r=1

art
r =

∞∑
r=1

2g∑
i=1

αri t
r =

2g∑
i=1

∑
r≥1

(αit)
r =

2g∑
i=1

αit

1− αit
. (A)

Notice that
∞∑
r=1

|ar| |t|r ≤
∞∑
r=1

2g(q1/2|t|)r =
2gq1/2|t|

1− q1/2|t|
.

Thus, for |t| < q−1/2, the generating function converges absolutely and hence the expression in (A)
is legitimate. Moreover, (A) shows that the generating function has poles at t = 1/αi. But above
estimates shows that those poles cannot occur in the disk |t| < q−1/2. As a result, we obtain that for
all i = 1, . . . , 2g, |1/αi| ≥ q−1/2 and hence |αi| ≤

√
q.

(c) By functional equation,
Z(C; 1/qt) = ±qE/2tEZ(C; t).

Since E = c2(C) = 2− 2g and C is a curve (cf. Discussion in Exercise 5),

Z(C;
1

qt
) = q1−gt2−2gZ(C; t)

That is,
(1− α1

qt
) · · · (1− α2g

qt
)

(1− 1
qt

)(1− 1
t
)

= q1−gt2−2g
(1− α1t) · · · (1− α2gt)

(1− t)(1− qt)

and thus
(t− α1

q
) · · · (t− α2g

q
)

(qt− 1)(t− 1)
= q−g

(1− α1t) · · · (1− α2gt)

(1− t)(1− qt)
.

This gives
(t− α1/q) · · · (t− α2g/q) = q−g(1− α1t) · · · (1− α2gt).

This shows that |α1 · · ·α2g| = qg. Thus, if there exists j ∈ {1, 2, . . . , 2g} such that |αj| <
√
q, then

|α1 · · ·α2g| < qg, a contradiction. In conclusion, one must have |αi| =
√
q, for all i.
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