2023 SPRING - INTRODUCTION TO MODULAR FORMS

MIDTERM EXAM

A COURSE BY CHIN-LUNG WANG AT NTU

1. (a) Show that

$$\tau^{-2}E_2(-1/\tau) = E_2(\tau) + \frac{12}{(2\pi i \tau)}.$$

(b) Show that

$$\eta(\tau) := q_{24} \prod_{n=1}^{\infty} (1 - q^n)$$

satisfies

$$\eta(-1/\tau) = \sqrt{-i\tau}\,\eta(\tau)$$

and conclude that $\eta^{24} \in \mathcal{S}_{12}(\mathrm{SL}_2(\mathbb{Z})).$

- **2.** (a) Show that for any congruence subgroup there are only finite many elliptic points. Also the isotropy groups are finite cyclic. What are they?
 - (b) Show that there are no elliptic points for $\Gamma_0(N)$ for *N* divisible by any prime $p \equiv -1 \pmod{12}$.
- **3.** (a) Let Γ be a congruent subgroup. Derive the genus formula

$$g(X(\Gamma)) = 1 + \frac{d}{12} - \frac{\epsilon_2}{4} - \frac{\epsilon_3}{3} - \frac{\epsilon_\infty}{2}$$

where *d* is the degree of $X(\Gamma) \to X(1)$, and the dimension formula for $S_k(\Gamma)$ for *k* even. (In terms of *g*, ϵ_2 , ϵ_3 and ϵ_∞ .)

(b) Show that

$$\mathcal{M}(\mathrm{SL}_2(\mathbb{Z})) = \mathbb{C}[E_4, E_6]$$

and $\mathcal{S}(SL_2(\mathbb{Z}))$ is the ideal $\langle \Delta \rangle$.

4. Let $N, k \ge 3$ with $\bar{v} \in (\mathbb{Z}/N\mathbb{Z})^2$ be a row vector of order *N*. Let

$$E_k^{\bar{v}}(\tau) := \sum_{(c,d)\equiv v(N); \gcd(c,d)=1} (c\tau+d)^{-k}.$$

(a) Show that

$$E_k^{\overline{v}}[\gamma]_k = E_k^{\overline{v\gamma}}, \qquad \gamma \in \mathrm{SL}_2(\mathbb{Z}).$$

Moreover, the set $\{E_k^{\bar{v}}\}_{\bar{v}}$ with v = (c, d) such that $\{-d/c\}_{\bar{v}}$ represents the set of cusps of $\Gamma(N)$ form a basis of $\mathcal{E}_k(\Gamma(N))$.

(b) Show that $E_k^{\bar{v}}$ is a linear combination of the unnormalized versions $G_k^{\bar{v}'}$ s as

$$E_k^{\bar{v}} = \sum_{n \in (\mathbb{Z}/N\mathbb{Z})^{\times}} \zeta_+^n(k,\mu) \, G_k^{n^{-1}\bar{v}}$$

Date: April 27, 2023, pm 6:00 - 9:00 at AMB 201. Total 120 points. You may work on each part independently.

MIDTERM EXAM

5. (a) For
$$f = \sum_{m=0}^{\infty} a_m(f)q^m \in \mathcal{M}_k(N,\chi) \subset \mathcal{M}_k(\Gamma_1(N))$$
, show that
 $a_m(T_n f) = \sum_{d \mid (m,n)} \chi(d) d^{k-1} a_{mn/d^2}(f)$.
(b) For $f \in \mathcal{M}_k(\Gamma_0(N))$, show that $T_n f = \sum_{\gamma \in M_n} f[\gamma]_k$ where
 $M_n := \bigcup_{0 < d \mid n, (n/d,N) = 1} \bigcup_{j=0}^{d-1} \begin{bmatrix} n/d & j \\ 0 & d \end{bmatrix}$.

(c) Let $f \in \mathcal{M}_k(\Gamma_1(N))^{\text{new}}$ which is an eigenform for T_n and $\langle n \rangle$ for all n with (n, N) = 1. Show that the restriction (n, N) = 1 can be removed.

6. Let $f \in S_k(\Gamma_1(N))$ with Mellin transform

$$g(s) := \int_0^\infty f(it) \, t^s \, \frac{dt}{t}$$

and $\Lambda(s) := N^{s/2}g(s)$. (a) Show that

$$g(s) = (2\pi)^{-s} \Gamma(s) L(s, f)$$

for $\text{Re}(s) > \frac{k}{2} + 1$.

(b) Let

$$Wf(\tau) := i^k N^{-k/2} \tau^{-k} f(-1/(N\tau)).$$

 $(Wf)(\tau) := i^k N^{-k/2} \tau^{-k} f(-1/(N\tau)).$ Show that *W* is idempotent. Moreover, if $Wf = \pm f$ then

$$\Lambda(s) = \pm \Lambda(k-s).$$

* You may replace one problem by presenting an essential topic in Ch.1-Ch.5 which you have well-prepared but not listed above.

$$\coprod_{\det \alpha = n, \, \alpha \in M_2(\mathbb{Z})} \Gamma_0(N) \alpha \Gamma_0(N),$$

hence leads to an intrinsic definition of T_n using double cosets.

¹It is in fact the coset representatives of