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0 Introduction
Duering [1] in 1950s proved that the L-function of an elliptic curve E over Q with complex
multiplication coincides with L(s,λ ) for some grossencharacter λ on the imaginary number
field K = EndQ(E). Later Shimura [6] in 1971 proved the modularity L(s,λ ) by applying the
converse theorem of Weil to show that fλ is a normalized eigenform, hence proved the modu-
larity of E. He also showed that the abelian variety Aλ decomposed into n-fold product of an
elliptic curve whose endomorphism algebra is K.

Theorem I. Let K be an imaginary quadratic field with ∆K = D, ν ≥ 1, λ ∈ Λ
ν
m a grossen-

character modulo m⊂ OK on K. Set

fλ (z) = ∑
ξ⊂OK , (m,ξ )=1

λ (ξ )e2πiN(ξ )z.

Then

(A) fλ is a normalized eigenform in Sν+1(D ·N(m),ε), where ε(a) =
(

D
a

)
λ ((a))

aν
.

(B) Aλ := A fλ is isogenous to a product of an elliptic curve whose endomorphism algebra is
isomorphic K.

Theorem II. If E is an elliptic curve over Q with complex multiplication, then E is isogenous
to Aλ , λ is a grossencharacter such that L(s,E) = L(s,λ ).

1 Preliminaries
Definition 1.1. An abelian varieties A of dimension n over k has complex multiplication (cm)
if there exists a ring homomorphism ι : K ↪→ EndQ(A) := End(A)⊗Q for some imaginary
quadratic field K = Q(

√
−D) of degree 2n. Denoted by (A, ι ,K) or (A, ι) or A when there is no

embiguity.

If E/C is an elliptic curve, it has cm if and only if End(A) ̸= Z and in that case, ι : K ≃
EndQ(E) is an imaginary quadratic field (c.f. Hartshorne). Indeed, if E ≃ C/Λτ whose endo-
morphism is larger than Z, then τ is an algebraic number of degree 2 and Q ⊊ EndQ(A)⊂ Q(τ).
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Key Lemma. Let (A, ι ,K) be an abelian variety with cm over C of dimension n. Suppose that
the representation of K on tangent space of X at the origin is equivalent to n copies of the
identity injection of K into C. Then A is isogenous to a product of n copies of an elliptic curve
E such that EndQ(E)≃ K.

Proof. Suppose X = Cn/Λ. Let dι : K → EndQ(TeX) be the representation of |iota : K →
EndQ(X) on the tangent space, then by assumption there is a K-equivariant isomorphism

TeX ∼−→ Cn,

let p : ΛQ → Kn be the restriction, and let p′ : TeX = Λ⊗Q R ∼−→ Kn ⊗Q R ≃ Cn the R-linear
extension. Since p′ is both K-linear and R-linear, hence C = K ⊗R-linear. Take any rank 2
OK-submodule a ⊂ K, (in fact one can take any nontrivial OK-submodule) then we obtain an
isogeny (over C)

(C/a)n → Cn/Λ.

Clearly, OK ⊂ End(C/a)⊂ K, so EndQ(C/a) = K.

Some general facts from class field theory will be assumed without proof:

Definition-Fact. Let K/Q be a number field of degree n.

1. The ring of integers OK := K ∩Z is a dedekind domain, i.e. every nonzero proper ideal
uniquely factors into primes, i.e. it is noetherian and the localization at each maximal
ideals is PID.

2. If a is a nonzero integral ideal, N(a) := |OK/a|. N is multiplicative, hence defined a norm
on I(1).

3. Let m be an integral ideal, denoted by I(m) the set of all nonzero fractional ideals coprime
to m, P(m) the set of ideals (a) with a ∈ K, a ≡ 1 mod×m, i.e. a = b/c with b,c ∈
OK, (b,m) = (c,m) = 1 and b ≡ c mod m. I(m) is a group under ideals multiplication,
P(m) is a subgroup and I(m)/P(m) is a finite group. Put I = I(1), P = P(1).

4. The different ideal d is defined to be {a ∈K : tr(ay)∈Z ∀y ∈O} where tr := trK
Q, it defines

a nondegenerate bilinear form on K/Q. Note that tr(O,O)⊂ O ∩Q ⊂ Z, so O ⊂ d, thus
d−1 is integral.

If K is a quadratic field with discriminant D, then

1. OK = Z[(D+
√

D)/2],

2. for all rational primes p, pOK =


pq if (D/p) = 1,
p if (D/p) =−1,
p2 if (D/p) = 0.

,

3. for nonzero a ∈ K = Q(
√

D), N((a)) = |a|2, where | · | takes absolute value on C.

Definition 1.2 (Grossencharacter). Let K be an imaginary quadratic field, m⊂OK be an integral
ideal, a grossencharacter modulo m is a character λ : I(m)→C∗ and for some ν ∈N0, λ ((a)) =
aν , let Λ

ν
m denote the set of those. The conductor of λ ∈ Λ

ν
m is the minimal divisor c|m such

that λ is the restriction of some µ ∈ Λ
ν
n . λ ∈ Λ

ν
m is called primitive if n=m.

By setting λ (q) = 0 for (q,m) ̸= 1, λ can be lifted to Λ
ν

(1), hence Λ
ν
n → Λ

ν
m for n|m. Note

that if Λ
ν
m ̸= /0, then it has length [I(m) : P(m)]. To see this, take λ ∈ Λ

ν
m, then

1
λ

Λ
ν
m consists of

all characters I(m)/P(m)→ C∗, there will be |I(m) : P(m)| of such.
Grossencharacters play a vital role in the studies of cm elliptic curves.
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2 L-function of a grossencharacter

Definition 2.1. For λ ∈ Λ
ν
m, set L(s,λ ) = ∑

ξ

λ (ξ )N(ξ )−s, fλ (z) = ∑
ξ

λ (ξ )qN(ξ ), q = e2πiz

where each sum is taken over all integral ideals ξ in I(m).

Note that L(s,λ ) is holomorphic for Re(s) > ν/2+1. Let λ ∈ Λ
ν
m, then λ f : (O/m)∗×→

C∗, a 7→ λ ((a))/aν defines a character, called the finite part. Since (O/m)∗ is a fintie abelian
group, we have gauss sum in hand to obtain the functional equation of a L-function associated
to a character on it. However λ cannot be recovered from its finite part, because an ideal of a
number field is not principal in general. To make it a character on a finite abelian group while
keeping the information, we have to enlarge the space ”to make the ideals principal,” that is, to
associate each ideal a number that is determined up to a unit in O∗.

This section will end up with a proof of the following theorem using the converse theorem
of Weil.

Theorem 2.1 (Hecke). Let λ ∈ Λ
ν
m be a primitive grossencharacter, put

Λ(s,λ ) = (
√

D ·N(m)/2π)s−ν/2
Γ(s)L(s,λ ).

Then Λ satisfies the functional equation

Λ(ν +1− s,λ ) = T (λ )Λ(s,λ )

where
T (λ ) = i−νg(λ )/N(m)1/2.

Thoughout this section, K/Q denotes a number field of degree n.

Definition 2.2 (Gauss sum). Let χ be a character of (O/m)∗ and y ∈ m−1d−1. We define the
Gauss sum of χ to be

g(χ,y) = ∑
x∈(O/m)∗

χ(x)e2πi tr(xy).

Fact 1. Let χ : (O/m)∗ → C∗ be a primitive character, y ∈m−1d−1, a ∈ O, then

g(χ,ay) =

{
χ(a)g(χ,y), if (a,m) = 1,
0, else.

Definition 2.3. Let K/Q be a number field of degree n, X = Hom(K,C).

1. τ ∈ Hom(K,C) is real if τ(K)⊂ R, and is complex otherwise.

2. KC := ∏
τ∈X

C ≃ Cn, let ⟨ , ⟩ be the canonical inner product. For z = (zτ)τ ∈ KC, set z ∈ KC

such that (z)τ = zτ . The involution z∗ is defined to be (z∗)τ = zτ .

3. Define the Minkowski space KR to be {z ∈ KC : z = z}. There is a natural inclusion K ↪→
KR ⊂ KC defined by z 7→ (τ(z))τ .

4. Define (KR)
∗
+ by {x ∈ KR : x = x∗, xτ > 0 ∀τ} and the absolute value | | : (KR)

∗ → (KR)
∗
+

by x 7→ (|xτ |)τ .
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5. The trace map tr : KC → C is defined to be z 7→∑
τ

zτ , while the norm map N : K∗
C → C∗ is

defined to be z 7→∏
τ

zτ . When restricted to K, the trace and norm map are the usual ones.

6. KC equipped with the canonical hermitian product ⟨(xτ),(yτ)⟩=∑
τ

xτyτ , which restricted

to an inner product on KR.

7. An ideal a ⊂ K can be regarded as a lattice on the euclidean space (KR, ⟨ , ⟩), the dual
lattice is denoted by a′. One can show that (a′)∗ = (ad)−1 and the volume vol(a) =
N(a)

√
D.

If K is an imaginary quadratic field, then X = {id, ρ}, KC = C2, KR = {(z,z : z ∈ C)}, the
inclusion is K ↪→ KR, z 7→ (z,z).

Proposition 2.1. There is a subgroup K̂∗ ⊂ K∗
C containing K∗ and a group homomorphism

( ) : K̂∗ → I such that there is a commutative exact diagram

1 O∗ K∗ P 1

1 O∗ K̂∗ I 1

id

( )

( )

and
N((a)) = |N(a)|.

Proof. See [4], p. 485

Consequently, there is an exact sequence 1 → K∗ → K̂∗ ( )−→ I/P → 1.
The elements of K̂∗ are called the ideal numbers. Let Ô denote the set {a ∈ K̂∗ : (a)⊂OK},

an element in Ô called an ideal integer. For a,b ∈ K̂∗, write a ∼ b if ab−1 ∈ K∗, i.e. (a)/(b)∈ P.
For a,b,m ∈ K̂∗, write

a ≡ b(m)

if a ∼ b and
a−b

m
∈ Ô ∪{0}, if m = (m) is an ideal, write a ≡ b(m). For an integral ideal m,

denote by Ô(m) the set of all ideal integers coprime to m, that is, a ∈ Ô∗ such that ((a)+m) =
1I/P.

Lemma 2.1. For every a ∈ Ô(m) one has

amodm= a+a(a−1)m.

We now consider the set
(Ô/m)∗ = Ô(m)/≡m .

Proposition 2.2. (Ô/m)∗ is an abelian group, and we have a canonical exact sequence

1 → (O/m)∗ → (Ô/m)∗ → I/P → 1.

Sketch of proof. For a,b∈ (Ô/m)∗, a ·b := ab is well-defined. Since (a)+m=O, ∃µ ∈m, α ∈
(a) such that α + µ = 1, then x := α/a ∈ Ô and xa = 1. The surjectivity of ( ) : (Ô/m)∗ →
I/P follows from the fact that every class contains an integral ideal that is coprime to m. the
exactness of the other parts are trivial.

4



We now study the character χ : (Ô/m)∗ →C∗ and put χ(a) = 0 for a∈O such that (a,m) ̸=
1. For a grossencharacter λ ∈ Λ

ν
m, we define a λ̂ f : (Ô/m)∗ → C∗ by a 7→ λ ((a))/N(aν). In the

application, χ will come from a grossencharacter, but the following treatments of the theory are
independent of the origin of χ. Fix m,d ∈ K̂∗ such that m = (m), d = (d). For a class ∈J/P,
define a′ =md/a.

Definition-Proposition. (Gauss sum again) Let χ : (Ô/m)∗ → C∗ be a character, a ∈ I/P be
a class. For a ∈ Ô ∩a := {a ∈ Ô : (a) ∈ a}, we define the Gauss sum to be

ĝ(χ,a) = ∑
x∈(Ô/m)∗, (x)∈a′

χ(x)e2πi tr(xa/md), ĝ(χ) := ĝ(χ,1).

Then for primitive χ, one has
ĝ(χ,a) = χ(a)ĝ(χ)

For x ̸= x′ ∈ Ô(m) such that x ≡ x′(m), we have x/x′−1 ∈ K∗, then ((x′a/md)(x/x′−1)) =

(x′a/md)= a′a/md= 1, i.e.
a(x− x′)

md
∈K∗, and since

x− x′

m
∈ Ô,

a(x− x′)
md

∈ ((x−x′)a/md)⊂
d−1, then tr((x− x′)a/md) ∈ Z, i.e. the sum is well-defined.

Proof. Fix x ∈ (Ô/m)∗ such that (x) = a′, let y = xa/md. Since (y) = 1, we have y ∈ K∗, so y ∈
(y) = (ax)m−1d−1 ⊂ m−1d−1. From the exact sequence 1 → (O/m)∗ → (Ô/m)∗ → I/P → 1,
we see that

{x′ ∈ (Ô/m)∗ : (x) = a′}= x(O/m)∗.

Hence
ĝ(χ,a) = χ(x)g(χ,xa/md),

on the otherhand, if (a,m) = 1,

ĝ(χ,1) = χ(ax)g(χ,xa/md),

hence
ĝ(χ,a) = χ(a)ĝ(χ).

Suppose (a,m) =m′ ̸= 1. Assuming primitivity, then we can find b ∈ (O/m)∗ such that

χ(b) ̸= 1 and b ≡ 1(m/m′).

As a consequence, ab≡ a(m), so ĝ(χ,a)= ĝ(χ,ba)= χ(b)ĝ(χ,a), hence ĝ(χ,a)= 0= χ(a)ĝ(χ)
still, in this case.

2.1 Hecke theta function
Now we can define Hecke theta function for a character χ : (Ô/m)∗ → C∗ and prove the func-
tional equation. If χ = λ̂ f for some primitive grossencharacter λ , the Mellin transform is exactly
the L-function of λ , hence the functional equation of L(s,λ ) obtained.

Definition 2.4. Let χ be a character of (Ô/m)∗, p ∈ ∏
τ

Z such that pτ ≥ 0. Define the Hecke

theta series
ϑ

p(χ,z) = ∑
a∈Ô∪{0}

χ(a)N(ap)eπi⟨az/|md|,a⟩.

For a ∈ I/P,
ϑ

p
a (χ,z) = ∑

a∈Ô∩a∪{0}
χ(a)N(ap)eπi⟨az/|md|,a⟩.
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It is easy to see that ϑ
p(χ,z) = ∑

a∈I/P
ϑ

p
a (χ,z). Note that

ϑ
p
a (χ,z) = ∑

b∈a∩Ô(m)

· · ·

and if a= (a), from the exact sequence

1 → (O/m)∗ → (Ô/m)∗ → I/P → 1,

a∩ Ô(m) = ∪a∈(O/m)∗{a(x+a−1m)},

this gives

ϑ
p
a (χ,z) = χ(a)N(ap) ∑

x∈(O/m)∗
χ(x) ∑

g∈Γ

N((x+g)p)eπi⟨(x+g)z|a2/md|,x+g⟩, (1)

where Γ = a−1m⊂ KR regarded as a lattice. Thus

∑
g∈Γ

N((x+g)p)eπi⟨(x+g)z|a2/md|,x+g⟩

is the Poisson summation of the Schwartz function fp(x) = N(xp)e−π⟨x,x⟩ shifted by a, followed
by scalar multiplication. A standard calculation shows that the Fourier transform of fp is

f̂p(y) = i− tr(p) fp(y).

Let ϑ
p
Γ
(a,b,z) = ∑

g∈Γ

N((a+ g)p)eπ⟨(a+g)z,a+g⟩+2πi⟨b,g⟩. In order to obtain the functional equa-

tion, we need

Lemma 2.2 (Theta transformation formula). For a,b ∈ KR,

ϑΓ(a,b,−1/z) = i− tr(p)e−2πi⟨a,b⟩ vol(Γ)−1N((z/i)p+1/2)ϑ p
Γ′(−b,a,z).

Proof. Since functions on both sides are holomorphic, therefore it suffices to check the identity
for z = i/t2 with t ∈ KR, t ≥ 0, i.e. to show that

ϑΓ(a,b, it2) = i− tr(p)e−2πi⟨a,b⟩ vol(Γ)−1N(t−2p−1)ϑ p
Γ′(−b,a, i/t2).

Note that ϑΓ(a,b, it2) = N(t−p) ∑
g∈Γ

fp((a+g)t)e2πi⟨b,g⟩, by Poisson summation formula,

ϑΓ(a,b, it2) = N(t−p)vol(Γ)−1
∑

g∈Γ′

̂z 7→ fp((a+ z)t)(g−b)

= N(t−p−1)vol(Γ)−1
∑

g∈Γ′
f̂ ((g−b)/t)e2πi⟨a,g⟩

= N(t−p−1)vol(Γ)−1
∑

g∈Γ′
i− tr(p) fp((g−b)/t)e2πi⟨a,g⟩

= i− tr(p)e−2πi⟨a,b⟩ vol(Γ)−1N(t−2p−1)ϑ p
Γ′(−b,a, i/t2).
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Corollary 2.1. For a primitive character χ of (Ô/m)∗, one has the transformation formula

ϑ
p
a (χ,−1/z) =W (χ, p)N((z/i)p+1/2)ϑa′

with constant factor

W (χ, p) = i− tr(p)N((md/|md|)p)−1g(χ)/
√

N(m).

Hence the Hecke theta series has functional equation

ϑ
p(χ,−1/z) =W (χ, p)N((z/i)p+1/2)ϑ p(χ,z)

Proof. Let Γ =m/a, recall from Equation 1 that

ϑ
p
a (χ,z) = χ(a)N(ap) ∑

x∈(O/m)∗
χ(x)ϑ p

Γ
(x,0,z|a2/md|),

and vol(a) = N(m/a)
√

D = N(|m/a|)N(|d|)1/2, then by the transformation formula,

ϑ
p
Γ
(x,0,−1/|md/a2|z) = A(z)ϑ p

Γ′(0,x,z|md/a2|)

with the factor
A(z) = i− tr(p)

√
N(m)

−1
N(|md/a2|p)N((z/i)p+1/2).

Since a(md)−1 ⊂ K∗,

md/a · (m/a)∗= md/a ·a(md)−1 = a′∩ Ô ∪{0},

ϑ
p
Γ′(0,x,z|md/a2|) = ∑

g∈Γ′
N(gp)e2πi⟨x,g⟩eπi⟨gz|md/a2|,g⟩

= N((a/md)p) ∑
g∈a′∩Ô∪{0}

N(gp)e2πi⟨x,g∗/(md/a)∗⟩eπi⟨g∗z|md/a2|/(md/a∗),g∗/(md/a)∗⟩

= N((a/md)p) ∑
y∈a′∩Ô∪{0}

N(yp)e2πi tr(axy/md)eπi tr(yz/|md|,y)

Now

ϑa(χ,−1/z) = N(ap) ∑
x∈(O/m)∗

χ(ax)ϑ p
Γ
(x,0,−1/|md/a2|z)

= A(z)N(ap)N((a/md)p) ∑
y∈a′∩Ô∪{0}

(
∑

x∈(O/m)∗
χ(xa)e2πi tr(axy/md)

)
N(yp)eπi⟨yz/|md,y⟩

= A(z)N(ap)N((a/md)p) ∑
y∈a′∩Ô∪{0}

g(χ,y)N(yp)eπi⟨yz/|md,y⟩

= A(z)N(ap)N((a/md)p) ∑
y∈a′∩Ô∪{0}

g(χ)χ(y)N(yp)eπi⟨yz/|md,y⟩

=W (χ, p)N((z/i))ϑ p
a′(χ,z).
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For a character ψ : Z/p∗ → C∗, ψ̃ := ψ ◦N : O/pO∗ → C∗ defines a primitive charac-
ter. If (p,m) = 1, then λ f ψ̃χ : O/pmO∗ → C∗ defines a primitive character. If λ ∈ Λ

ν
m is a

grossencharacter, denote by λ̂ f : (Ô/m)∗ → C∗ the finite part. For a function f = ∑
n

anqn, let

ΛM(s, f ) = (2π/
√

M)−s
Γ(s)L(s, f ),

if χ : Z/r∗ → C∗ is a character, let

ΛM(s, f ,ψ) = (2π/r
√

M)−s
Γ(s)L(s, f ,ψ)

where
L(s, f ,ψ) = ∑

n
anψ(n)n−s,

as defined in the statement of the converse theorem of Weil.

2.2 Functional equation and modularity
Proposition 2.3. Suppose K = Q(

√
−D), let M = N(m)D, r be a prime such that (r,M) = 1,

λ ∈ Λ
ν
m be a primitive grossencharacter, ψ : Z/r∗ → C∗ a character. Then

ΛM(ν +1− s, f
λ

; ,ψ) = T (ψ)ΛM(s, fλ ,ψ)

where

T (ψ) =Ci−ν
λ f (p)ψ(M)

g(ψ)

g(ψ)

g(λ̂ f )√
N(m)

for some contant C depends only on m

Proof. In this case KC = C×C, KR = {(z,z),z ∈ C}. Set p = (ν ,0),χ = λ̂ f ψ̂ : (Ô/m)∗ → C∗.

Let g(χ,y) = ϑ
p
a (χ, i(y,y)) = ∑

a∈a∩Ô∪{0}
χ(a)N(ap)e−πt⟨a/|md|,a⟩. Then

M (g)((s/2,s/2)) = 21−s
Γ(s)π−s(DN(m))−s/2 1

|O∗| ∑
ξ⊂OK

λ (ξ )N(ξ )−s =
2

|O∗|
ΛM(s, fλ ,ψ)

The functional equation of ϑ
p
a (χ,z) gives

g(χ,1/y) =W (χ, p)yν+1g(χ,y),

by the technique used to find the functional equation of a Mellin transform,

ΛM(ν +1− s, f
λ
,ψ) =W (χ, p)ΛM(s, fλ ,ψ).

Let C = N((md/|md|)p)−1, then W (χ, p) = Ci−ν
g(λ̂ f ψ̂)√

N(pm)
. Since for (p,M) = 1, g(λ̂ f ψ̂) =

λ f (p)ψ(N(m))g(ψ̂)g(λ̂g) and g(ψ̂) = p
(
−D

p

)
ψ(D)g(ψ)2,

W (χ, p) = λ f (p)
(
−D

p

)
ψ(M)

g(ψ)

g(ψ)
·Ci−ν

g(λ̂ f )√
N(m)

.
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Corollary 2.2 (Hecke). If ν > 0, λ ∈ Λ
ν
m is a primitive character, then fλ ∈ Sν+1(M,ε). where

ε(a) = λ f (a)
(
−D
a

)
.

Proof. Let g(z) = i−2ν−1 g(λ̂ f )√
N(m)

∑
ξ⊂O

λ (ξ )e2πiN(ξ )z, then by the previous proposition,

ΛM(s, f ,ψ) = iν+1CψΛM(ν +1− s,g,ψ)

where Cψ = ε(p)ψ(M)
g(ψ)

g(ψ)
. Let fλ = ∑

n
anqn, g = ∑

n
bnqn. Clearly an = O(nnu+1) and bn =

O(nν+1) and ΛM(s, f ), ΛM(s,g), ΛM(s, f ,ψ), ΛM(s,g,ψ) satisfy conditions in the converse
theorem of Weil for all p coprime to M and the character ψ : Z/p∗→C∗, hence fλ ∈Mν+1(M,ε).
Furthermore, L(s, f ) converges for Re(s) > ν/2+ 1 = ν + 1− (ν/2), then for ν > 0, fλ ∈
Sν+1(M,ε) by the converse theorem of Weil.

Proof of theorem I(A).i

If p|c−1m, put n= p−1m, let µ ∈ Λ
ν
n so the restriction to Λ

ν
m is λ . Then

fµ(N(p)z) = ∑
(ξ ,ν)=1

µ(ξ )qN(pξ )

, hence
fµ(z)−µ(p) fµ(N(p)z) = ∑

(ξ ,n)=1
− ∑

(ξ ,m)=p

µ(ξ )qN(ξ ) = fλ (z).

By induction on N(c−1
µ), it suffices to prove the theorem for the case m = c, i.e. λ ∈ Λ

ν
m is

primitive. But this reduced to the theorem of Hecke (Corollary 2.2).

Lemma 2.3 (Euler product). The L-function L(s,λ ) has an euler product:

L(s,λ ) = ∏
p
(1−ap p−s + ε(p)pν−2s)−1,

where ε(p) = (D/p)λ ((p))/pν .

Proof. Observe that L(s,λ ) = ∏
0̸=p∈SpecOK

(1−λ (p)N(p)−s)−1. For a rational prime p,

if (D/p) = 1, pOK = p1p2, N(p1) = N(p2) = p, ap = λ (p1)+λ (p2), (2)

if (D/p) =−1, pOK = p, N(p) = p2, ap = 0, λ (p) = λ ((p)), (3)

if (D/p) = 0, pOK = p2, N(p) = p, ap = λ (p). (4)

L(s,λ ) = ∏
(D/p)=1

∏
p|p

(1−λ (p)p−s)−1
∏

(D/p)=−1
(1−λ ((p))p−2s)−1

∏
(D/p)=0

(1−λ (p)p−2s)−1

= ∏
(D/p)=1

(1− (λ (p1)+λ (p2))p−s +λ (p1p2)p−2s)−1
∏

(D/p)=−1
(1−λ ((p))p−2s)−1

∏
(D/p)=0

(1−ap p−2s)−1

= ∏
p
(1−ap p−s +(D/p)λ ((p))p−2s)−1

= ∏
p
(1−ap p−s + ε(p)pν−2s)−1
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Corollary 2.3 (theorem I(A).ii). fλ is a normalized eigenform.

Proof. By theorem I(A).1, f ∈ Sν+1(M,ε), together with the euler product in the previous
lemma, we conclude that f is a normalized eigenform. (Cf. [2]]).

3 Decomposition of Aλ

Lemma 3.1. Let f (z) = ∑
n∈N

anqn be an element of Sk(N,χ), r a positive integer, M a common

multiple of Nr and r2, and let
g(z) = ∑

(n,r)=1
anqn.

Then g ∈ Sk(M,χ ′), where χ
′ is the restriction of χ to (Z/MZ)×.

Proof. Since det(ζ un
r )0≤i≤r−1, 0≤ j≤r−1 = ∏

0≤i< j<r−1
(ζ j

r − ζ
i
r) ̸= 0, we can solve x0, . . . ,xr−1 ∈

Q(ζr) such that
r−1

∑
u=0

xuζ
un
r =

{
1 if (n,r) = 1
0. else

.

Set xm = xu if m ≡ u(r) ∀m ∈ Z. It can be seen that xu is invariant under Gal(Q(ζr)/Q), hence

xi ∈ Q and g(z) =
r−1

∑
u=0

xi f [ηu]k where ηu =

(
r u
0 r

)
. Note that

(
r u
0 r

)
γ

(
r d2

γ u
0 r

)−1

∈ M2(Z) ∀γ ∈ Γ0(M),

(
r u
0 r

)
γ

(
r d2

γ u
0 r

)−1

≡
(

aγ ∗
0 dγ

)
(N),

so f [ηu][γ] = f [ηd2u] and since (d,r) = 1,

r−1

∑
u=0

xu f [ηu][γ] =
r−1

∑
u=0

xu f [ηd2u] =
r−1

∑
u=0

xd−2u f [ηu] =
r−1

∑
u=0

xu f [ηu],

i.e. g ∈ Sk(Γ1(M)). If (d,M) = 1, put γ =

(
a b
c d

)
∈ Γ0(M), then (d,r) = 1 and f [ηu][γ] =

χ(d) f [ηd2u], g[γ] = χ(d)g.

Let us recall that for a normalized eigenform of weight 2, f = ∑
n∈N

anqn ∈ Sk(N,χ), the

associated abelian variety A f has dimension (i) [K f : Q], (ii) K f ↪→ EndQ(A f ), an 7→ Tn ∀n
(Hecke opoerators) and (iii) it is defined over Q. (See [shim1], [diam]).

Let V ν
m = ⟨ fλ : λ ∈ Λ

ν
µ⟩C, dimV ν

µ = [I(m) : P(m)]. Fix a set of representatives S for I(m)
modulo P(m), define for each a ∈ S,

ga(z) = ∑
(α)∈P(m), α∈a

α
νqN(α)/N(a).

Note that
fλ (z) = ∑

a∈S
λ (a)−1ga,
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so {ga : a ∈ S} forms a basis of V ν
m . Note that for an automorphism σ : C → C, Kσ = K since K

is a quadratic field and so mσ =m or mσ =mρ := {x : x ∈m} for m⊂ OK. For λ ∈ Λ
ν
m, define

λσ ∈ Λ
ν
mσ by λσ (ξ ) = λ (ξ σ )σ . Then f σ

λ
= fλσ

. Lastly before the proceeding to the proof, we
recall a theorem from the theory of abelian varieties:

Poincaré’s complete reducibility theorem. Any abelian variety over k is isogenous over k
to a product of simple abelian varieties over k. The isogeny type of the factors are uniquely
determined.

Proof of theorem I(B)

Case 1. m is divisible by 2
√
−D and m = mρ . Put Γ = Γ1(M), δ =

(
1 1/D
0 1

)
, suppose

ΓδΓ = ⊔κ
i=1Γδγi, γi ∈ Γ. Then

Ga[ΓδΓ]2 = ∑
i

ga[δγi]2.

Note that if α,β ∈Wm∩a,

N(α)/N(a)≡ N(β )/N(a) mod D,

to see this, choose r ∈O such that ra⊂O, may suppose a⊂O, then N(α), N(β )∈ Z and since
α ≡ β (

√
−D), D divides N(α)−N(β ). On the other hand, since N(a) divides N(α)−N(β )

and is coprime to D, we conclude the equation. Therefore

ga[ΓδΓ]2 = κζ
N(α)/N(a)
D ga,

with α ∈ a fixed. Let A′ be the abelian subvariety of J (CM) generated by Aλ ∀λ ∈ Λ
1
m, i.e.

the isogenous image in J (CM). The tangent space of A′ is spanned by f σ

λ
− fλ σ ∀λ ∈ Λ

1
m σ :

C → C, but since m=mρ , the tangent space is exactly V 1
m. Then [ΓδΓ] acts on A′. Let ω denote

the corresponding endomorphism, then the representation of ω on the tangent space diagonally
with eigenvalues κζ −DN(α)/N(a). Let χ(r) = (−D/r) be the Kronecker symbol, recall that

√
−D = g(χ) = ∑

a∈Z/D∗
χ(a)ζ a

D.

One sees that N(α)/N(a) is prime to D and χ(N(α)/N(a)) = 1. Define an embedding

ι : Q(ζD)→ EndQ(A′)

by
ζD 7→ κ

−1
ω.

ι(
√
−D) is the idendity map since ι(

√
−D) has components of the form

∑
a∈Z/D∗

χ(a)ιζ
a
D = ∑

a∈Z/D∗
χ(a)ζ aN(α)/N(a)

D = ∑
a∈Z/D∗

χ(a)χ(N(α)/N(a))−1
ζ

a
D =

√
−D,

i.e. ι : K = Q(
√
−D)→ EndQ(A) is equivalent to the identity injection of K into C, by Defini-

tion 1, A′ is isogenous to a product of an elliptic curve whose endomorphism algebra is K, so
does its subvariety Aλ by Poincaré’s complete reducibility theorem.
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Case 2. λ is primitive.

Put m′ := 2mmρ(
√
−D), M′ = N(m′)D, ηu =

(
M u

M

)
for u ∈ Z. Then M′ = M2 and m′ =

m′ρ . Define xu ∈ Q as in the proof of Lemma 3.1 so that

M−1

∑
u=0

xuζ
un
M =

{
1 if (n,M) = 1
0 else.

Take t ∈ Q so that txu ∈ Z ∀u and put

ξ =
M−1

∑
u=0

txu[ηu]2.

Then by the proof in Lemma 3.1, if

f = ∑
n

anqn ∈ S2(M,ε),

we have
f |ξ = t ∑

(n,M)=1
anqn ∈ S2(M′,ε).

Especially fλ |ξ = t fµ where µ ∈ Λ
1
m′ is the restriction of λ to I(m′). In fact, if a, b are integral

ideals,
(a,bbρ) = 1 iff (N(a),N(b)) = 1.

Let Vλ be the subspace of V 1
m+V 1

m′ spanned by fλ σ , σ : C → C, then we see that ξ maps Vλ

into V 1
m′, it is injective by primitivity of λ . Let A′′ be abelian subvariety of J (CM′) generated

by Aµ , µ ∈ Λ
1
m′, the tangent space is V 1

m′ since (m′)ρ =m′. Hence ξ induces a morphism

ξ
∗ : J (M′)→ J (M)

and restricts to a surjection
A′′ ↠ Aλ

where by case 1, A′′ is isogenous to product of an abelian variety E whose endomorphism
algebra is K, then there is a surjective morphism ϕ : Ek ↠ Aλ , and hence Aλ is isogenous to a
product of E. Here we made use of Poincaré’s complete reducibility theorem again.

Case 3. General case.
Let c be the conductor of λ . We prove by induction on N(c−1m), based on the primitive case,
which was proved in case 2. Suppose p|c−1m, put

n= p−1m, q = N(p), N = q−1M, β =

(
q

1

)
.

Since βΓ1(M)β−1 ⊂ Γ1(N), [β ]2 defines a morphism

ψ : J (CM)→ J (CN).

Let
ϕ : J (CM)→ J (CN)

be the morphism induced by natural projection CM → CN . Take µ ∈ Λ
1
n whose restriction to

I(m) is λ , then since fλ σ = fµσ − s fµσ [β ]2, then

(res, [β ]2) : V 1
n ×V 1

n ↠V 1
m

12



is a surjection, so
(ψ,ϕ)J (CM)→ J (CN)×J (CN)

induces a finite morphism
Aλ → Aµ ×Aµ .

By induction hypothesis Aµ is isogenous to product of an elliptic curve whose endomorphism
algbera is K, , hence also Aλ , by Poincaré’s complete reducibility theorem.

4 Modularity of E/Q with complex multiplication
Here we let E be an elliptic curve over Q with complex multiplication. Deuring in 1950s proved
that L(s,E) comes from a grossencharacter λ ∈ Λ

1
m:

Theorem 4.1 (Deuring). Let E be an elliptic curve over Q with K ≃ EndQ(E), then

L(s,E) = L(s,λE)

for some λE ∈ Λ
1
m.

Let λ = λE ∈ Λ
1
ν , by theorem I(A), λ ∈ S2(M,ε) and is a normalized eigenform. Since E is

defined over Q, we see that an ∈ Q, so Aλ has dimension 1, is defined over Q.
By previous results, if fλ = ∑

n
anqn,

L(s,λ ) = ∏
p
(1−ap p−s + ε(p)p1−2s).

Since E is defined over Q, an ∈ Q and ε is the trivial character, so fλ ∈ S2(Γ0(M)) and both Aλ

and A′
λ

are elliptic curves over Q where A′
λ

is the abelian subvariety of J (X0(M)Q). Clearly
Aλ and A′

λ
are isogenous over Q.

Theorem 4.2. The elliptic curve A′
λ

is isogenous to E over Q

Proof. The cotangent space of A′
λ

generated solely by fλ , so the Hecke operators Tn acts on
A′

λ
as multiplication by an( f ). By Eichler-Shimura relation, for all but finitely many rational

prime p (exactly those primes inducing good reduction), Tp = σ
∗
p +(σp)∗ = 1+ p− ♯(A′

λ
[p])

modulo p, hence ap( f ) = 1+ p− ♯(A′
λ
[p]), i.e. the euler factor at p of L(s,A′

λ
) and that of

L(s,λ ) coincides. By theorem I(B) EndQ(A) = K, and by the theorem of Deuring, there exists
a grossencharacter µ of K such that L(s,µ) = L(s,Aλ ). Thus L(s,λ ) coincides with L(s,µ) up
to finitely many euler factors. Let m be the common multiple of conductors of λ and µ , then
λ/µ : I(m)/P(m) → C∗ is well-defined. Since λ/µ ̸= 1 only for finitely many primes, and
there are infinitely many in each classes of I(m)/P(m) with has finite order, so λ = µ. Thus E
and Aλ determine the same grossencharacter, hence isogenous over Q.
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