Final report: Modularity for CM elliptic curves

Jia Hua Chong

June 15, 2023

0 Introduction

Duering [1] in 1950s proved that the *L*-function of an elliptic curve *E* over **Q** with complex multiplication coincides with $L(s,\lambda)$ for some grossencharacter λ on the imaginary number field $K = \text{End}_{\mathbf{Q}}(E)$. Later Shimura [6] in 1971 proved the modularity $L(s,\lambda)$ by applying the converse theorem of Weil to show that f_{λ} is a normalized eigenform, hence proved the modularity of *E*. He also showed that the abelian variety A_{λ} decomposed into *n*-fold product of an elliptic curve whose endomorphism algebra is *K*.

Theorem I. Let K be an imaginary quadratic field with $\Delta_K = D$, $\nu \ge 1$, $\lambda \in \Lambda_{\mathfrak{m}}^{\nu}$ a grossencharacter modulo $\mathfrak{m} \subset \mathscr{O}_K$ on K. Set

$$f_{\boldsymbol{\lambda}}(z) = \sum_{\boldsymbol{\xi} \subset \mathscr{O}_{K}, \ (\mathfrak{m}, \boldsymbol{\xi}) = 1} \boldsymbol{\lambda}(\boldsymbol{\xi}) e^{2\pi i N(\boldsymbol{\xi}) z}$$

Then

- (A) f_{λ} is a normalized eigenform in $S_{\nu+1}(D \cdot N(\mathfrak{m}), \varepsilon)$, where $\varepsilon(a) = \left(\frac{D}{a}\right) \frac{\lambda((a))}{a^{\nu}}$.
- (B) $A_{\lambda} := A_{f_{\lambda}}$ is isogenous to a product of an elliptic curve whose endomorphism algebra is isomorphic K.

Theorem II. If *E* is an elliptic curve over **Q** with complex multiplication, then *E* is isogenous to A_{λ} , λ is a grossencharacter such that $L(s, E) = L(s, \lambda)$.

1 Preliminaries

Definition 1.1. An abelian varieties *A* of dimension *n* over *k* has *complex multiplication* (cm) if there exists a ring homomorphism $\iota : K \hookrightarrow \text{End}_{\mathbf{Q}}(A) := \text{End}(A) \otimes \mathbf{Q}$ for some imaginary quadratic field $K = \mathbf{Q}(\sqrt{-D})$ of degree 2*n*. Denoted by (A, ι, K) or (A, ι) or *A* when there is no embiguity.

If E/\mathbb{C} is an elliptic curve, it has cm if and only if $End(A) \neq \mathbb{Z}$ and in that case, $\iota : K \simeq End_{\mathbb{Q}}(E)$ is an imaginary quadratic field (c.f. Hartshorne). Indeed, if $E \simeq \mathbb{C}/\Lambda_{\tau}$ whose endomorphism is larger than \mathbb{Z} , then τ is an algebraic number of degree 2 and $\mathbb{Q} \subsetneq End_{\mathbb{Q}}(A) \subset \mathbb{Q}(\tau)$.

Key Lemma. Let (A, ι, K) be an abelian variety with cm over C of dimension n. Suppose that the representation of K on tangent space of X at the origin is equivalent to n copies of the identity injection of K into C. Then A is isogenous to a product of n copies of an elliptic curve E such that $End_{O}(E) \simeq K$.

Proof. Suppose $X = \mathbb{C}^n / \Lambda$. Let $d\iota : K \to \operatorname{End}_{\mathbb{Q}}(T_e X)$ be the representation of $|iota : K \to \operatorname{End}_{\mathbb{Q}}(X)$ on the tangent space, then by assumption there is a *K*-equivariant isomorphism

$$T_e X \longrightarrow \mathbf{C}^n$$
,

let $p : \Lambda_{\mathbf{Q}} \to K^n$ be the restriction, and let $p' : T_e X = \Lambda \otimes_{\mathbf{Q}} \mathbf{R} \xrightarrow{\sim} K^n \otimes_{\mathbf{Q}} \mathbf{R} \simeq \mathbf{C}^n$ the **R**-linear extension. Since p' is both *K*-linear and **R**-linear, hence $\mathbf{C} = K \otimes \mathbf{R}$ -linear. Take any rank 2 \mathcal{O}_K -submodule $\mathfrak{a} \subset K$, (in fact one can take any nontrivial \mathcal{O}_K -submodule) then we obtain an isogeny (over \mathbf{C})

$$(\mathbf{C}/\mathfrak{a})^n \to \mathbf{C}^n/\Lambda.$$

Clearly, $\mathscr{O}_K \subset \operatorname{End}(\mathbf{C}/\mathfrak{a}) \subset K$, so $\operatorname{End}_{\mathbf{O}}(\mathbf{C}/\mathfrak{a}) = K$.

Some general facts from class field theory will be assumed without proof:

Definition-Fact. Let K/\mathbf{Q} be a number field of degree n.

- 1. The ring of integers $\mathcal{O}_K := K \cap \overline{\mathbf{Z}}$ is a dedekind domain, i.e. every nonzero proper ideal uniquely factors into primes, i.e. it is noetherian and the localization at each maximal ideals is PID.
- 2. If a is a nonzero integral ideal, $N(\mathfrak{a}) := |\mathcal{O}_K/\mathfrak{a}|$. N is multiplicative, hence defined a norm on I(1).
- 3. Let \mathfrak{m} be an integral ideal, denoted by $I(\mathfrak{m})$ the set of all nonzero fractional ideals coprime to \mathfrak{m} , $P(\mathfrak{m})$ the set of ideals (a) with $a \in K$, $a \equiv 1 \mod^{\times} \mathfrak{m}$, i.e. a = b/c with $b, c \in \mathcal{O}_K$, $(b,\mathfrak{m}) = (c,\mathfrak{m}) = 1$ and $b \equiv c \mod \mathfrak{m}$. $I(\mathfrak{m})$ is a group under ideals multiplication, $P(\mathfrak{m})$ is a subgroup and $I(\mathfrak{m})/P(\mathfrak{m})$ is a finite group. Put I = I(1), P = P(1).
- 4. The different ideal \mathfrak{d} is defined to be $\{a \in K : \operatorname{tr}(ay) \in \mathbb{Z} \ \forall y \in \mathscr{O}\}$ where $\operatorname{tr} := \operatorname{tr}_{\mathbb{Q}}^{K}$, it defines a nondegenerate bilinear form on K/\mathbb{Q} . Note that $\operatorname{tr}(\mathscr{O}, \mathscr{O}) \subset \mathscr{O} \cap \mathbb{Q} \subset \mathbb{Z}$, so $\mathscr{O} \subset \mathfrak{d}$, thus \mathfrak{d}^{-1} is integral.

If K is a quadratic field with discriminant D, then

1. $\mathscr{O}_K = \mathbf{Z}[(D+\sqrt{D})/2],$

2. for all rational primes $p, p\mathcal{O}_K = \begin{cases} \mathfrak{pq} & if(D/p) = 1, \\ \mathfrak{p} & if(D/p) = -1, \\ \mathfrak{p}^2 & if(D/p) = 0. \end{cases}$

3. for nonzero $a \in K = \mathbf{Q}(\sqrt{D}), N((a)) = |a|^2$, where $|\cdot|$ takes absolute value on **C**.

Definition 1.2 (Grossencharacter). Let *K* be an imaginary quadratic field, $\mathfrak{m} \subset \mathscr{O}_K$ be an integral ideal, a grossencharacter modulo \mathfrak{m} is a character $\lambda : I(\mathfrak{m}) \to \mathbb{C}^*$ and for some $v \in \mathbb{N}_0$, $\lambda((a)) = a^v$, let $\Lambda^v_{\mathfrak{m}}$ denote the set of those. The conductor of $\lambda \in \Lambda^v_{\mathfrak{m}}$ is the minimal divisor $\mathfrak{c}|\mathfrak{m}$ such that λ is the restriction of some $\mu \in \Lambda^v_{\mathfrak{m}}$. $\lambda \in \Lambda^v_{\mathfrak{m}}$ is called primitive if $\mathfrak{n} = \mathfrak{m}$.

By setting $\lambda(\mathfrak{q}) = 0$ for $(\mathfrak{q}, \mathfrak{m}) \neq 1$, λ can be lifted to $\Lambda_{(1)}^{\nu}$, hence $\Lambda_{\mathfrak{n}}^{\nu} \to \Lambda_{\mathfrak{m}}^{\nu}$ for $\mathfrak{n}|\mathfrak{m}$. Note that if $\Lambda_{\mathfrak{m}}^{\nu} \neq \emptyset$, then it has length $[I(\mathfrak{m}) : P(\mathfrak{m})]$. To see this, take $\lambda \in \Lambda_{\mathfrak{m}}^{\nu}$, then $\frac{1}{\lambda} \Lambda_{\mathfrak{m}}^{\nu}$ consists of all characters $I(\mathfrak{m})/P(\mathfrak{m}) \to \mathbb{C}^*$, there will be $|I(\mathfrak{m}) : P(\mathfrak{m})|$ of such.

Grossencharacters play a vital role in the studies of cm elliptic curves.

2

L-function of a grossencharacter 2

Definition 2.1. For $\lambda \in \Lambda_{\mathfrak{m}}^{\nu}$, set $L(s,\lambda) = \sum_{\xi} \lambda(\xi) N(\xi)^{-s}$, $f_{\lambda}(z) = \sum_{\xi} \lambda(\xi) q^{N(\xi)}$, $q = e^{2\pi i z}$

where each sum is taken over all integral ideals ξ in $I(\mathfrak{m})$.

Note that $L(s,\lambda)$ is holomorphic for $\operatorname{Re}(s) > \nu/2 + 1$. Let $\lambda \in \Lambda_{\mathfrak{m}}^{\nu}$, then $\lambda_f : (\mathscr{O}/\mathfrak{m})^* \times \to$ \mathbf{C}^* , $a \mapsto \lambda((a))/a^{\mathbf{v}}$ defines a character, called the finite part. Since $(\mathcal{O}/\mathfrak{m})^*$ is a finite abelian group, we have gauss sum in hand to obtain the functional equation of a L-function associated to a character on it. However λ cannot be recovered from its finite part, because an ideal of a number field is not principal in general. To make it a character on a finite abelian group while keeping the information, we have to enlarge the space "to make the ideals principal," that is, to associate each ideal a number that is determined up to a unit in \mathcal{O}^* .

This section will end up with a proof of the following theorem using the converse theorem of Weil.

Theorem 2.1 (Hecke). Let $\lambda \in \Lambda_m^{\vee}$ be a primitive grossencharacter, put

$$\Lambda(s,\lambda) = (\sqrt{D \cdot N(\mathfrak{m})}/2\pi)^{s-\nu/2} \Gamma(s) L(s,\lambda).$$

Then Λ *satisfies the functional equation*

$$\Lambda(\nu+1-s,\lambda) = T(\lambda)\Lambda(s,\lambda)$$

where

$$T(\lambda) = i^{-\nu} g(\lambda) / N(\mathfrak{m})^{1/2}.$$

Thoughout this section, K/\mathbf{Q} denotes a number field of degree *n*.

Definition 2.2 (Gauss sum). Let χ be a character of $(\mathscr{O}/\mathfrak{m})^*$ and $y \in \mathfrak{m}^{-1}\mathfrak{d}^{-1}$. We define the Gauss sum of χ to be

$$g(\boldsymbol{\chi}, y) = \sum_{x \in (\mathscr{O}/\mathfrak{m})^*} \boldsymbol{\chi}(x) e^{2\pi i \operatorname{tr}(xy)}.$$

Fact 1. Let $\chi : (\mathscr{O}/\mathfrak{m})^* \to \mathbb{C}^*$ be a primitive character, $y \in \mathfrak{m}^{-1}\mathfrak{d}^{-1}$, $a \in \mathscr{O}$, then

$$g(\boldsymbol{\chi}, ay) = \begin{cases} \overline{\boldsymbol{\chi}}(a)g(\boldsymbol{\chi}, y), & \text{if } (a, \mathfrak{m}) = 1, \\ 0, & \text{else.} \end{cases}$$

Definition 2.3. Let K/\mathbf{Q} be a number field of degree $n, X = \text{Hom}(K, \mathbf{C})$.

- 1. $\tau \in \text{Hom}(K, \mathbb{C})$ is real if $\tau(K) \subset \mathbb{R}$, and is complex otherwise.
- 2. $K_{\mathbf{C}} := \prod_{\tau \in X} \mathbf{C} \simeq \mathbf{C}^n$, let \langle , \rangle be the canonical inner product. For $z = (z_{\tau})_{\tau} \in K_{\mathbf{C}}$, set $\overline{z} \in K_{\mathbf{C}}$ such that $(\overline{z})_{\tau} = \overline{z}_{\overline{\tau}}$. The involution z^* is defined to be $(z^*)_{\tau} = \overline{z}_{\tau}$.
- 3. Define the *Minkowski space* $K_{\mathbf{R}}$ to be $\{z \in K_{\mathbf{C}} : \overline{z} = z\}$. There is a natural inclusion $K \hookrightarrow$ $K_{\mathbf{R}} \subset K_{\mathbf{C}}$ defined by $z \mapsto (\tau(z))_{\tau}$.
- 4. Define $(K_{\mathbf{R}})^*_+$ by $\{x \in K_{\mathbf{R}} : x = x^*, x_{\tau} > 0 \ \forall \tau\}$ and the absolute value $||: (K_{\mathbf{R}})^* \to (K_{\mathbf{R}})^*_+$ by $x \mapsto (|x_{\tau}|)_{\tau}$.

- 5. The trace map tr : $K_{\mathbf{C}} \to \mathbf{C}$ is defined to be $z \mapsto \sum_{\tau} z_{\tau}$, while the norm map $N : K_{\mathbf{C}}^* \to \mathbf{C}^*$ is defined to be $z \mapsto \prod_{\tau} z_{\tau}$. When restricted to K, the trace and norm map are the usual ones.
- 6. $K_{\mathbf{C}}$ equipped with the canonical hermitian product $\langle (x_{\tau}), (y_{\tau}) \rangle = \sum_{\tau} x_{\tau} \overline{y}_{\tau}$, which restricted to an inner product on $K_{\mathbf{R}}$.
- 7. An ideal $\mathfrak{a} \subset K$ can be regarded as a lattice on the euclidean space $(K_{\mathbf{R}}, \langle , \rangle)$, the dual lattice is denoted by \mathfrak{a}' . One can show that $(\mathfrak{a}')^* = (\mathfrak{a}\mathfrak{d})^{-1}$ and the volume $\operatorname{vol}(\mathfrak{a}) = N(\mathfrak{a})\sqrt{D}$.

If *K* is an imaginary quadratic field, then $X = \{id, \rho\}, K_{\mathbf{C}} = \mathbf{C}^2, K_{\mathbf{R}} = \{(z, \overline{z} : z \in \mathbf{C})\}$, the inclusion is $K \hookrightarrow K_{\mathbf{R}}, z \mapsto (z, \overline{z})$.

Proposition 2.1. There is a subgroup $\hat{K}^* \subset K_C^*$ containing K^* and a group homomorphism (): $\hat{K}^* \to I$ such that there is a commutative exact diagram

$1 \longrightarrow \mathscr{O}^* \longrightarrow K^*$	$\xrightarrow{()} P \longrightarrow 1$
\downarrow id \downarrow	
$1 \longrightarrow \widehat{\mathscr{O}} * \longrightarrow \widehat{K}^*$	$\xrightarrow{()} \stackrel{\downarrow}{I} \longrightarrow 1$

and

$$N((a)) = |N(a)|.$$

Proof. See [4], p. 485

Consequently, there is an exact sequence $1 \to K^* \to \hat{K}^* \xrightarrow{()} I/P \to 1$.

The elements of \hat{K}^* are called the ideal numbers. Let $\hat{\mathcal{O}}$ denote the set $\{a \in \hat{K}^* : (a) \subset \mathcal{O}_K\}$, an element in $\hat{\mathcal{O}}$ called an ideal integer. For $a, b \in \hat{K}^*$, write $a \sim b$ if $ab^{-1} \in K^*$, i.e. $(a)/(b) \in P$. For $a, b, m \in \hat{K}^*$, write

 $a \equiv b(m)$

if $a \sim b$ and $\frac{a-b}{m} \in \hat{\mathcal{O}} \cup \{0\}$, if $\mathfrak{m} = (m)$ is an ideal, write $a \equiv b(\mathfrak{m})$. For an integral ideal \mathfrak{m} , denote by $\hat{\mathcal{O}}^{(\mathfrak{m})}$ the set of all ideal integers coprime to \mathfrak{m} , that is, $a \in \hat{\mathcal{O}}^*$ such that $((a) + \mathfrak{m}) = 1_{I/P}$.

Lemma 2.1. For every $a \in \hat{\mathcal{O}}^{(\mathfrak{m})}$ one has

$$a \mod \mathfrak{m} = a + a(a^{-1})\mathfrak{m}.$$

We now consider the set

$$(\hat{\mathscr{O}}/\mathfrak{m})^* = \hat{\mathscr{O}}^{(\mathfrak{m})} / \equiv_{\mathfrak{m}} .$$

Proposition 2.2. $(\hat{\mathcal{O}}/\mathfrak{m})^*$ is an abelian group, and we have a canonical exact sequence

$$1 \to (\mathscr{O}/\mathfrak{m})^* \to (\widehat{\mathscr{O}}/\mathfrak{m})^* \to I/P \to 1.$$

Sketch of proof. For $\overline{a}, \overline{b} \in (\hat{\mathcal{O}}/\mathfrak{m})^*, \overline{a} \cdot \overline{b} := \overline{ab}$ is well-defined. Since $(a) + \mathfrak{m} = \mathcal{O}, \exists \mu \in \mathfrak{m}, \alpha \in (a)$ such that $\alpha + \mu = 1$, then $x := \alpha/a \in \hat{\mathcal{O}}$ and $\overline{xa} = 1$. The surjectivity of $() : (\hat{\mathcal{O}}/\mathfrak{m})^* \to I/P$ follows from the fact that every class contains an integral ideal that is coprime to \mathfrak{m} . the exactness of the other parts are trivial.

We now study the character $\chi : (\hat{\mathcal{O}}/\mathfrak{m})^* \to \mathbb{C}^*$ and put $\chi(a) = 0$ for $a \in \mathcal{O}$ such that $(a, \mathfrak{m}) \neq 1$. For a grossencharacter $\lambda \in \Lambda^{\nu}_{\mathfrak{m}}$, we define a $\hat{\lambda}_f : (\hat{\mathcal{O}}/\mathfrak{m})^* \to \mathbb{C}^*$ by $a \mapsto \lambda((a))/N(a^{\nu})$. In the application, χ will come from a grossencharacter, but the following treatments of the theory are independent of the origin of χ . Fix $m, d \in \hat{K}^*$ such that $\mathfrak{m} = (m), \ \mathfrak{d} = (d)$. For a class $\in J/P$, define $\mathfrak{a}' = \mathfrak{m}\mathfrak{d}/\mathfrak{a}$.

Definition-Proposition. (*Gauss sum again*) Let $\chi : (\hat{\mathcal{O}}/\mathfrak{m})^* \to \mathbb{C}^*$ be a character, $\mathfrak{a} \in I/P$ be a class. For $a \in \hat{\mathcal{O}} \cap \mathfrak{a} := \{a \in \hat{\mathcal{O}} : (a) \in \mathfrak{a}\}$, we define the Gauss sum to be

$$\hat{g}(\boldsymbol{\chi},a) = \sum_{\boldsymbol{\chi} \in (\hat{\mathscr{O}}/\mathfrak{m})^*, \ (\boldsymbol{\chi}) \in \mathfrak{a}'} \boldsymbol{\chi}(\boldsymbol{\chi}) e^{2\pi i \operatorname{tr}(\boldsymbol{\chi}a/md)}, \ \hat{g}(\boldsymbol{\chi}) := \hat{g}(\boldsymbol{\chi},1).$$

Then for primitive χ *, one has*

$$\hat{g}(\boldsymbol{\chi}, a) = \overline{\boldsymbol{\chi}}(a)\hat{g}(\boldsymbol{\chi})$$

For $x \neq x' \in \hat{\mathcal{O}}^{(\mathfrak{m})}$ such that $x \equiv x'(\mathfrak{m})$, we have $x/x' - 1 \in K^*$, then $((x'a/md)(x/x'-1)) = (x'a/md) = \mathfrak{a}'\mathfrak{a}/\mathfrak{m}\mathfrak{d} = 1$, i.e. $\frac{a(x-x')}{md} \in K^*$, and since $\frac{x-x'}{m} \in \hat{\mathcal{O}}$, $\frac{a(x-x')}{md} \in ((x-x')a/md) \subset \mathfrak{d}^{-1}$, then $\operatorname{tr}((x-x')a/md) \in \mathbb{Z}$, i.e. the sum is well-defined.

Proof. Fix $x \in (\hat{\mathcal{O}}/\mathfrak{m})^*$ such that $(x) = \mathfrak{a}'$, let y = xa/md. Since (y) = 1, we have $y \in K^*$, so $y \in (y) = (ax)\mathfrak{m}^{-1}\mathfrak{d}^{-1} \subset \mathfrak{m}^{-1}\mathfrak{d}^{-1}$. From the exact sequence $1 \to (\mathcal{O}/\mathfrak{m})^* \to (\hat{\mathcal{O}}/\mathfrak{m})^* \to I/P \to 1$, we see that

$$\{x' \in (\widehat{\mathcal{O}}/\mathfrak{m})^* : (x) = \mathfrak{a}'\} = x(\mathcal{O}/\mathfrak{m})^*.$$

Hence

$$\hat{g}(\boldsymbol{\chi},a) = \boldsymbol{\chi}(x)g(\boldsymbol{\chi},xa/md),$$

on the other hand, if $(a, \mathfrak{m}) = 1$,

$$\hat{g}(\boldsymbol{\chi}, 1) = \boldsymbol{\chi}(ax)g(\boldsymbol{\chi}, xa/md),$$

hence

$$\hat{g}(\boldsymbol{\chi}, a) = \overline{\boldsymbol{\chi}}(a)\hat{g}(\boldsymbol{\chi}).$$

Suppose $(a, \mathfrak{m}) = \mathfrak{m}' \neq 1$. Assuming primitivity, then we can find $b \in (\mathcal{O}/\mathfrak{m})^*$ such that

$$\chi(b) \neq 1$$
 and $b \equiv 1(\mathfrak{m}/\mathfrak{m}')$.

As a consequence, $ab \equiv a(\mathfrak{m})$, so $\hat{g}(\chi, a) = \hat{g}(\chi, ba) = \overline{\chi}(b)\hat{g}(\chi, a)$, hence $\hat{g}(\chi, a) = 0 = \overline{\chi}(a)\hat{g}(\chi)$ still, in this case.

2.1 Hecke theta function

Now we can define Hecke theta function for a character $\chi : (\hat{\mathcal{O}}/\mathfrak{m})^* \to \mathbb{C}^*$ and prove the functional equation. If $\chi = \hat{\lambda}_f$ for some primitive grossencharacter λ , the Mellin transform is exactly the *L*-function of λ , hence the functional equation of $L(s,\lambda)$ obtained.

Definition 2.4. Let χ be a character of $(\hat{\mathcal{O}}/\mathfrak{m})^*$, $p \in \prod_{\tau} \mathbb{Z}$ such that $p_{\tau} \geq 0$. Define the *Hecke*

theta series

$$\vartheta^p(\boldsymbol{\chi}, z) = \sum_{a \in \hat{\mathcal{O}} \cup \{0\}} \boldsymbol{\chi}(a) N(a^p) e^{\pi i \langle az/|md|, a \rangle}.$$

For $\mathfrak{a} \in I/P$,

$$\vartheta^{p}_{\mathfrak{a}}(\boldsymbol{\chi}, z) = \sum_{a \in \hat{\mathscr{O}} \cap \mathfrak{a} \cup \{0\}} \boldsymbol{\chi}(a) N(a^{p}) e^{\pi i \langle az/|md|, a \rangle}$$

It is easy to see that $\vartheta^p(\chi, z) = \sum_{\mathfrak{a} \in I/P} \vartheta^p_{\mathfrak{a}}(\chi, z)$. Note that

$$\vartheta^p_{\mathfrak{a}}(\boldsymbol{\chi},z) = \sum_{b \in \mathfrak{a} \cap \hat{\mathscr{O}}^{(\mathfrak{m})}} \cdots$$

and if a = (a), from the exact sequence

$$\begin{split} &1 \to (\mathscr{O}/\mathfrak{m})^* \to (\widehat{\mathscr{O}}/\mathfrak{m})^* \to I/P \to 1, \\ &\mathfrak{a} \cap \widehat{\mathscr{O}}^{(\mathfrak{m})} = \cup_{a \in (\mathscr{O}/\mathfrak{m})^*} \{a(x + \mathfrak{a}^{-1}\mathfrak{m})\}, \end{split}$$

this gives

$$\vartheta^{p}_{\mathfrak{a}}(\boldsymbol{\chi}, z) = \boldsymbol{\chi}(a) N(a^{p}) \sum_{x \in (\mathscr{O}/\mathfrak{m})^{*}} \boldsymbol{\chi}(x) \sum_{g \in \Gamma} N((x+g)^{p}) e^{\pi i \langle (x+g)z|a^{2}/md|, x+g \rangle},$$
(1)

where $\Gamma = \mathfrak{a}^{-1}\mathfrak{m} \subset K_{\mathbf{R}}$ regarded as a lattice. Thus

$$\sum_{g \in \Gamma} N((x+g)^p) e^{\pi i \langle (x+g)z | a^2/md |, x+g \rangle}$$

is the Poisson summation of the Schwartz function $f_p(x) = N(x^p)e^{-\pi \langle x,x \rangle}$ shifted by *a*, followed by scalar multiplication. A standard calculation shows that the Fourier transform of f_p is

$$\hat{f}_p(\mathbf{y}) = i^{-\operatorname{tr}(p)} f_p(\mathbf{y}).$$

Let $\vartheta_{\Gamma}^{p}(a,b,z) = \sum_{g \in \Gamma} N((a+g)^{p}) e^{\pi \langle (a+g)z, a+g \rangle + 2\pi i \langle b,g \rangle}$. In order to obtain the functional equation, we need

Lemma 2.2 (Theta transformation formula). For $a, b \in K_{\mathbf{R}}$,

$$\vartheta_{\Gamma}(a,b,-1/z) = i^{-\operatorname{tr}(p)} e^{-2\pi i \langle a,b \rangle} \operatorname{vol}(\Gamma)^{-1} N((z/i)^{p+1/2}) \vartheta_{\Gamma'}^p(-b,a,z).$$

Proof. Since functions on both sides are holomorphic, therefore it suffices to check the identity for $z = i/t^2$ with $t \in K_{\mathbf{R}}$, $t \ge 0$, i.e. to show that

$$\vartheta_{\Gamma}(a,b,it^2) = i^{-\operatorname{tr}(p)} e^{-2\pi i \langle a,b \rangle} \operatorname{vol}(\Gamma)^{-1} N(t^{-2p-1}) \vartheta_{\Gamma'}^p(-b,a,i/t^2).$$

Note that $\vartheta_{\Gamma}(a,b,it^2) = N(t^{-p}) \sum_{g \in \Gamma} f_p((a+g)t) e^{2\pi i \langle b,g \rangle}$, by Poisson summation formula,

$$\begin{split} \vartheta_{\Gamma}(a,b,it^2) &= N(t^{-p})\operatorname{vol}(\Gamma)^{-1}\sum_{g\in\Gamma'} z\mapsto \widehat{f_p((a+z)t)}(g-b) \\ &= N(t^{-p-1})\operatorname{vol}(\Gamma)^{-1}\sum_{g\in\Gamma'} \widehat{f}((g-b)/t)e^{2\pi i \langle a,g\rangle} \\ &= N(t^{-p-1})\operatorname{vol}(\Gamma)^{-1}\sum_{g\in\Gamma'} i^{-\operatorname{tr}(p)} f_p((g-b)/t)e^{2\pi i \langle a,g\rangle} \\ &= i^{-\operatorname{tr}(p)}e^{-2\pi i \langle a,b\rangle}\operatorname{vol}(\Gamma)^{-1}N(t^{-2p-1})\vartheta_{\Gamma'}^p(-b,a,i/t^2). \end{split}$$

Corollary 2.1. For a primitive character χ of $(\hat{\mathcal{O}}/\mathfrak{m})^*$, one has the transformation formula

$$\vartheta_{\mathfrak{a}}^{p}(\boldsymbol{\chi},-1/z) = W(\boldsymbol{\chi},\overline{p})N((z/i)^{p+1/2})\vartheta_{\mathfrak{a}'}$$

with constant factor

$$W(\boldsymbol{\chi},\overline{p}) = i^{-\operatorname{tr}(p)} N((md/|md|)^{\overline{p}})^{-1} g(\boldsymbol{\chi})/\sqrt{N(\mathfrak{m})}.$$

Hence the Hecke theta series has functional equation

$$\vartheta^p(\boldsymbol{\chi}, -1/z) = W(\boldsymbol{\chi}, \overline{p}) N((z/i)^{p+1/2}) \vartheta^{\overline{p}}(\overline{\boldsymbol{\chi}}, z)$$

Proof. Let $\Gamma = \mathfrak{m}/\mathfrak{a}$, recall from *Equation* 1 that

$$\vartheta^p_{\mathfrak{a}}(\boldsymbol{\chi}, z) = \boldsymbol{\chi}(a) N(a^p) \sum_{x \in (\mathscr{O}/\mathfrak{m})^*} \boldsymbol{\chi}(x) \vartheta^p_{\Gamma}(x, 0, z | a^2 / md |),$$

and $\operatorname{vol}(\mathfrak{a}) = N(\mathfrak{m}/\mathfrak{a})\sqrt{D} = N(|m/a|)N(|d|)^{1/2}$, then by the transformation formula,

$$\vartheta_{\Gamma}^{p}(x,0,-1/|md/a^{2}|z) = A(z)\vartheta_{\Gamma'}^{p}(0,x,z|md/a^{2}|)$$

with the factor

$$A(z) = i^{-\operatorname{tr}(p)} \sqrt{N(\mathfrak{m})}^{-1} N(|md/a^2|^p) N((z/i)^{p+1/2}).$$

Since $\mathfrak{a}(\mathfrak{md})^{-1} \subset K^*$,

$$md/a \cdot (\mathfrak{m}/\mathfrak{a}) * = md/a \cdot \mathfrak{a}(\mathfrak{m}\mathfrak{d})^{-1} = \mathfrak{a}' \cap \hat{\mathscr{O}} \cup \{0\},$$

$$\begin{split} \vartheta_{\Gamma'}^{p}(0,x,z|md/a^{2}|) &= \sum_{g \in \Gamma'} N(g^{p}) e^{2\pi i \langle x,g \rangle} e^{\pi i \langle gz|md/a^{2}|,g \rangle} \\ &= N((a/md)^{\overline{p}}) \sum_{g \in \mathfrak{a}' \cap \hat{\mathscr{O}} \cup \{0\}} N(g^{\overline{p}}) e^{2\pi i \langle x,g^{*}/(md/a)^{*} \rangle} e^{\pi i \langle g^{*}z|md/a^{2}|/(md/a^{*}),g^{*}/(md/a)^{*} \rangle} \\ &= N((a/md)^{\overline{p}}) \sum_{y \in \mathfrak{a}' \cap \hat{\mathscr{O}} \cup \{0\}} N(y^{\overline{p}}) e^{2\pi i \operatorname{tr}(axy/md)} e^{\pi i \operatorname{tr}(yz/|md|,y)} \end{split}$$

Now

$$\begin{split} \vartheta_{\mathfrak{a}}(\chi,-1/z) &= N(a^{p}) \sum_{x \in (\mathscr{O}/\mathfrak{m})^{*}} \chi(ax) \vartheta_{\Gamma}^{p}(x,0,-1/|md/a^{2}|z) \\ &= A(z)N(a^{p})N((a/md)^{\overline{p}}) \sum_{y \in \mathfrak{a}' \cap \widehat{\mathcal{O}} \cup \{0\}} \left(\sum_{x \in (\mathscr{O}/\mathfrak{m})^{*}} \chi(xa)e^{2\pi i \operatorname{tr}(axy/md)} \right) N(y^{\overline{p}})e^{\pi i \langle yz/|md,y \rangle} \\ &= A(z)N(a^{p})N((a/md)^{\overline{p}}) \sum_{y \in \mathfrak{a}' \cap \widehat{\mathcal{O}} \cup \{0\}} g(\chi,y)N(y^{\overline{p}})e^{\pi i \langle yz/|md,y \rangle} \\ &= A(z)N(a^{p})N((a/md)^{\overline{p}}) \sum_{y \in \mathfrak{a}' \cap \widehat{\mathcal{O}} \cup \{0\}} g(\chi)\overline{\chi}(y)N(y^{\overline{p}})e^{\pi i \langle yz/|md,y \rangle} \\ &= W(\chi,\overline{p})N((z/i))\vartheta_{\mathfrak{a}'}^{\overline{p}}(\overline{\chi},z). \end{split}$$

For a character $\Psi : \mathbb{Z}/p^* \to \mathbb{C}^*$, $\widetilde{\Psi} := \Psi \circ N : \mathscr{O}/p\mathscr{O}^* \to \mathbb{C}^*$ defines a primitive character. ter. If $(p, \mathfrak{m}) = 1$, then $\lambda_f \widetilde{\Psi}_{\chi} : \mathscr{O}/p\mathfrak{m}\mathscr{O}^* \to \mathbb{C}^*$ defines a primitive character. If $\lambda \in \Lambda^v_{\mathfrak{m}}$ is a grossencharacter, denote by $\widehat{\lambda}_f : (\widehat{\mathscr{O}}/\mathfrak{m})^* \to \mathbb{C}^*$ the finite part. For a function $f = \sum_n a_n q^n$, let

$$\Lambda_M(s,f) = (2\pi/\sqrt{M})^{-s}\Gamma(s)L(s,f)$$

if $\chi : \mathbf{Z}/r^* \to \mathbf{C}^*$ is a character, let

$$\Lambda_M(s, f, \psi) = (2\pi/r\sqrt{M})^{-s}\Gamma(s)L(s, f, \psi)$$

where

$$L(s, f, \Psi) = \sum_{n} a_n \Psi(n) n^{-s},$$

as defined in the statement of the converse theorem of Weil.

2.2 Functional equation and modularity

Proposition 2.3. Suppose $K = \mathbf{Q}(\sqrt{-D})$, let $M = N(\mathfrak{m})D$, r be a prime such that (r, M) = 1, $\lambda \in \Lambda^{\nu}_{\mathfrak{m}}$ be a primitive grossencharacter, $\Psi : \mathbf{Z}/r^* \to \mathbf{C}^*$ a character. Then

$$\Lambda_M(\nu+1-s,f_{\overline{\lambda}};,\overline{\psi})=T(\psi)\Lambda_M(s,f_{\lambda},\psi)$$

where

$$T(\boldsymbol{\psi}) = Ci^{-\nu} \lambda_f(p) \boldsymbol{\psi}(M) \frac{g(\boldsymbol{\psi})}{g(\boldsymbol{\psi})} \frac{g(\hat{\lambda}_f)}{\sqrt{N(\boldsymbol{\mathfrak{m}})}}$$

for some contant C depends only on m

Proof. In this case $K_{\mathbf{C}} = \mathbf{C} \times \mathbf{C}$, $K_{\mathbf{R}} = \{(z, \overline{z}), z \in \mathbf{C}\}$. Set $p = (v, 0), \chi = \hat{\lambda}_f \hat{\psi} : (\hat{\mathcal{O}}/\mathfrak{m})^* \to \mathbf{C}^*$. Let $g(\chi, y) = \vartheta_{\mathfrak{a}}^p(\chi, i(y, y)) = \sum_{a \in \mathfrak{a} \cap \hat{\mathcal{O}} \cup \{0\}} \chi(a) N(a^p) e^{-\pi t \langle a/|md|, a \rangle}$. Then

$$\mathscr{M}(g)((s/2,s/2)) = 2^{1-s}\Gamma(s)\pi^{-s}(DN(\mathfrak{m}))^{-s/2}\frac{1}{|\mathscr{O}^*|}\sum_{\xi\subset\mathscr{O}_K}\lambda(\xi)N(\xi)^{-s} = \frac{2}{|\mathscr{O}^*|}\Lambda_M(s,f_\lambda,\psi)$$

The functional equation of $\vartheta_{\mathfrak{a}}^{p}(\boldsymbol{\chi}, z)$ gives

$$g(\boldsymbol{\chi}, 1/y) = W(\boldsymbol{\chi}, \overline{p}) y^{\boldsymbol{\nu}+1} g(\overline{\boldsymbol{\chi}}, y),$$

by the technique used to find the functional equation of a Mellin transform,

$$\Lambda_M(\mathbf{v}+1-s,f_{\overline{\lambda}},\overline{\psi})=W(\boldsymbol{\chi},\overline{p})\Lambda_M(s,f_{\lambda},\psi).$$

Let $C = N((md/|md|)^{\overline{p}})^{-1}$, then $W(\chi, \overline{p}) = Ci^{-\nu} \frac{g(\hat{\lambda}_f \hat{\psi})}{\sqrt{N(p\mathfrak{m})}}$. Since for (p, M) = 1, $g(\hat{\lambda}_f \hat{\psi}) = \lambda_f(p)\psi(N(\mathfrak{m}))g(\hat{\psi})g(\hat{\lambda}_g)$ and $g(\hat{\psi}) = p\left(\frac{-D}{p}\right)\psi(D)g(\psi)^2$, $W(\chi, \overline{p}) = \lambda_f(p)\left(\frac{-D}{p}\right)\psi(M)\frac{g(\psi)}{g(\overline{\psi})} \cdot Ci^{-\nu}\frac{g(\hat{\lambda}_f)}{\sqrt{N(\mathfrak{m})}}.$

Corollary 2.2 (Hecke). If v > 0, $\lambda \in \Lambda_{\mathfrak{m}}^{v}$ is a primitive character, then $f_{\lambda} \in S_{v+1}(M, \varepsilon)$. where $\varepsilon(a) = \lambda_{f}(a) \left(\frac{-D}{a}\right)$.

Proof. Let $g(z) = i^{-2\nu-1} \frac{g(\hat{\lambda}_f)}{\sqrt{N(\mathfrak{m})}} \sum_{\xi \subset \mathscr{O}} \overline{\lambda}(\xi) e^{2\pi i N(\xi) z}$, then by the previous proposition,

$$\Lambda_M(s,f,\psi) = i^{\nu+1} C_{\psi} \Lambda_M(\nu+1-s,g,\overline{\psi})$$

where $C_{\psi} = \varepsilon(p)\psi(M)\frac{g(\psi)}{g(\overline{\psi})}$. Let $f_{\lambda} = \sum_{n} a_{n}q^{n}$, $g = \sum_{n} b_{n}q^{n}$. Clearly $a_{n} = O(n^{nu+1})$ and $b_{n} = O(n^{nu+1})$.

 $O(n^{\nu+1})$ and $\Lambda_M(s, f)$, $\Lambda_M(s, g)$, $\Lambda_M(s, f, \psi)$, $\Lambda_M(s, g, \overline{\psi})$ satisfy conditions in the converse theorem of Weil for all p coprime to M and the character $\psi : \mathbb{Z}/p^* \to \mathbb{C}^*$, hence $f_{\lambda} \in M_{\nu+1}(M, \varepsilon)$. Furthermore, L(s, f) converges for $\operatorname{Re}(s) > \nu/2 + 1 = \nu + 1 - (\nu/2)$, then for $\nu > 0$, $f_{\lambda} \in S_{\nu+1}(M, \varepsilon)$ by the converse theorem of Weil.

Proof of theorem I(A).i

If $\mathfrak{p}|\mathfrak{c}^{-1}\mathfrak{m}$, put $\mathfrak{n} = \mathfrak{p}^{-1}\mathfrak{m}$, let $\mu \in \Lambda_{\mathfrak{n}}^{\nu}$ so the restriction to $\Lambda_{\mathfrak{m}}^{\nu}$ is λ . Then

$$f_{\mu}(N(\mathfrak{p})z) = \sum_{(\xi, \mathbf{v})=1} \mu(\xi) q^{N(\mathfrak{p}\xi)}$$

, hence

$$f_{\mu}(z) - \mu(p)f_{\mu}(N(\mathfrak{p})z) = \sum_{(\xi,\mathfrak{n})=1} - \sum_{(\xi,\mathfrak{m})=\mathfrak{p}} \mu(\xi)q^{N(\xi)} = f_{\lambda}(z).$$

By induction on $N(\mathfrak{c}^{-1}\mu)$, it suffices to prove the theorem for the case $\mathfrak{m} = \mathfrak{c}$, i.e. $\lambda \in \Lambda_{\mathfrak{m}}^{\nu}$ is primitive. But this reduced to the theorem of Hecke (Corollary 2.2).

Lemma 2.3 (Euler product). *The L-function* $L(s, \lambda)$ *has an euler product:*

$$L(s,\lambda) = \prod_p (1-a_p p^{-s} + \varepsilon(p) p^{\nu-2s})^{-1},$$

where $\varepsilon(p) = (D/p)\lambda((p))/p^{\nu}$.

Proof. Observe that $L(s,\lambda) = \prod_{0 \neq \mathfrak{p} \in \text{Spec } \mathscr{O}_K} (1 - \lambda(\mathfrak{p})N(\mathfrak{p})^{-s})^{-1}$. For a rational prime p,

if
$$(D/p) = 1$$
, $p\mathcal{O}_K = \mathfrak{p}_1\mathfrak{p}_2$, $N(\mathfrak{p}_1) = N(\mathfrak{p}_2) = p$, $a_p = \lambda(\mathfrak{p}_1) + \lambda(p_2)$, (2)

if
$$(D/p) = -1$$
, $p\mathcal{O}_K = \mathfrak{p}$, $N(\mathfrak{p}) = p^2$, $a_p = 0$, $\lambda(\mathfrak{p}) = \lambda((p))$, (3)

if
$$(D/p) = 0$$
, $p\mathcal{O}_K = \mathfrak{p}^2$, $N(\mathfrak{p}) = p$, $a_p = \lambda(\mathfrak{p})$. (4)

$$\begin{split} L(s,\lambda) &= \prod_{(D/p)=1} \prod_{\mathfrak{p}|p} (1-\lambda(\mathfrak{p})p^{-s})^{-1} \prod_{(D/p)=-1} (1-\lambda((p))p^{-2s})^{-1} \prod_{(D/p)=0} (1-\lambda(\mathfrak{p})p^{-2s})^{-1} \\ &= \prod_{(D/p)=1} (1-(\lambda(\mathfrak{p}_1)+\lambda(\mathfrak{p}_2))p^{-s}+\lambda(\mathfrak{p}_1\mathfrak{p}_2)p^{-2s})^{-1} \prod_{(D/p)=-1} (1-\lambda((p))p^{-2s})^{-1} \\ &\prod_{(D/p)=0} (1-a_pp^{-2s})^{-1} \\ &= \prod_p (1-a_pp^{-s}+(D/p)\lambda((p))p^{-2s})^{-1} \\ &= \prod_p (1-a_pp^{-s}+\varepsilon(p)p^{\nu-2s})^{-1} \end{split}$$

Corollary 2.3 (theorem I(A).ii). f_{λ} is a normalized eigenform.

Proof. By theorem I(A).1, $f \in S_{\nu+1}(M, \varepsilon)$, together with the euler product in the previous lemma, we conclude that f is a normalized eigenform. (Cf. [2]]).

3 Decomposition of A_{λ}

Lemma 3.1. Let $f(z) = \sum_{n \in \mathbb{N}} a_n q^n$ be an element of $S_k(N, \chi)$, r a positive integer, M a common multiple of Nr and r^2 , and let

$$g(z) = \sum_{(n,r)=1} a_n q^n.$$

Then $g \in S_k(M, \chi')$, where χ' is the restriction of χ to $(\mathbb{Z}/M\mathbb{Z})^{\times}$.

Proof. Since det $(\zeta_r^{un})_{0 \le i \le r-1, \ 0 \le j \le r-1} = \prod_{0 \le i < j < r-1} (\zeta_r^j - \zeta_r^i) \ne 0$, we can solve $x_0, \ldots, x_{r-1} \in \mathbf{O}(\zeta)$ such that

 $\mathbf{Q}(\zeta_r)$ such that

$$\sum_{u=0}^{r-1} x_u \zeta_r^{un} = \begin{cases} 1 & \text{if } (n,r) = 1\\ 0. & \text{else} \end{cases}$$

Set $x_m = x_u$ if $m \equiv u(r) \ \forall m \in \mathbb{Z}$. It can be seen that x_u is invariant under $\operatorname{Gal}(\mathbb{Q}(\zeta_r)/\mathbb{Q})$, hence $x_i \in \mathbb{Q}$ and $g(z) = \sum_{u=0}^{r-1} x_i f[\eta_u]_k$ where $\eta_u = \begin{pmatrix} r & u \\ 0 & r \end{pmatrix}$. Note that $\begin{pmatrix} r & u \\ 0 & r \end{pmatrix} \gamma \begin{pmatrix} r & d_\gamma^2 u \\ 0 & r \end{pmatrix}^{-1} \in M_2(\mathbb{Z}) \ \forall \gamma \in \Gamma_0(M),$ $\begin{pmatrix} r & u \\ 0 & r \end{pmatrix} \gamma \begin{pmatrix} r & d_\gamma^2 u \\ 0 & r \end{pmatrix}^{-1} \equiv \begin{pmatrix} a_\gamma & * \\ 0 & d_\gamma \end{pmatrix} (N),$

so $f[\eta_u][\gamma] = f[\eta_{d^2u}]$ and since (d, r) = 1,

$$\sum_{u=0}^{r-1} x_u f[\eta_u][\gamma] = \sum_{u=0}^{r-1} x_u f[\eta_{d^2 u}] = \sum_{u=0}^{r-1} x_{d^{-2} u} f[\eta_u] = \sum_{u=0}^{r-1} x_u f[\eta_u],$$

i.e. $g \in S_k(\Gamma_1(M))$. If (d,M) = 1, put $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(M)$, then (d,r) = 1 and $f[\eta_u][\gamma] = \chi(d)f[\eta_{d^2u}], g[\gamma] = \chi(d)g$.

Let us recall that for a normalized eigenform of weight 2, $f = \sum_{n \in \mathbb{N}} a_n q^n \in S_k(N, \chi)$, the associated abelian variety A_f has dimension (i) $[K_f : \mathbb{Q}]$, (ii) $K_f \hookrightarrow \operatorname{End}_{\mathbb{Q}}(A_f)$, $a_n \mapsto T_n \forall n$ (Hecke operators) and (iii) it is defined over \mathbb{Q} . (See [shim1], [diam]).

Let $V_{\mathfrak{m}}^{\nu} = \langle f_{\lambda} : \lambda \in \Lambda_{\mu}^{\nu} \rangle_{\mathbb{C}}$, dim $V_{\mu}^{\nu} = [I(\mathfrak{m}) : P(\mathfrak{m})]$. Fix a set of representatives *S* for $I(\mathfrak{m})$ modulo $P(\mathfrak{m})$, define for each $\mathfrak{a} \in S$,

$$g_{\mathfrak{a}}(z) = \sum_{(\alpha) \in P(\mathfrak{m}), \ \alpha \in \mathfrak{a}} \alpha^{\nu} q^{N(\alpha)/N(\mathfrak{a})}$$

Note that

$$f_{\lambda}(z) = \sum_{\mathfrak{a} \in S} \lambda(\mathfrak{a})^{-1} g_{\mathfrak{a}},$$

so $\{g_{\mathfrak{a}} : \mathfrak{a} \in S\}$ forms a basis of $V_{\mathfrak{m}}^{\nu}$. Note that for an automorphism $\sigma : \mathbb{C} \to \mathbb{C}, K^{\sigma} = K$ since K is a quadratic field and so $\mathfrak{m}^{\sigma} = \mathfrak{m}$ or $\mathfrak{m}^{\sigma} = \mathfrak{m}^{\rho} := \{\overline{x} : x \in \mathfrak{m}\}$ for $\mathfrak{m} \subset \mathcal{O}_{K}$. For $\lambda \in \Lambda_{\mathfrak{m}}^{\nu}$, define $\lambda_{\sigma} \in \Lambda_{\mathfrak{m}}^{\nu}$ by $\lambda_{\sigma}(\xi) = \lambda(\xi^{\sigma})^{\sigma}$. Then $f_{\lambda}^{\sigma} = f_{\lambda_{\sigma}}$. Lastly before the proceeding to the proof, we recall a theorem from the theory of abelian varieties:

Poincaré's complete reducibility theorem. Any abelian variety over k is isogenous over k to a product of simple abelian varieties over k. The isogeny type of the factors are uniquely determined.

Proof of theorem I(B)

Case 1. \mathfrak{m} is divisible by $2\sqrt{-D}$ and $\mathfrak{m} = \mathfrak{m}^{\rho}$. Put $\Gamma = \Gamma_1(M)$, $\delta = \begin{pmatrix} 1 & 1/D \\ 0 & 1 \end{pmatrix}$, suppose $\Gamma \delta \Gamma = \sqcup_{i=1}^{\kappa} \Gamma \delta \gamma_i$, $\gamma_i \in \Gamma$. Then

$$\mathscr{G}_{\mathfrak{a}}[\Gamma\delta\Gamma]_2 = \sum_i g_{\mathfrak{a}}[\delta\gamma_i]_2.$$

Note that if $\alpha, \beta \in W_{\mathfrak{m}} \cap \mathfrak{a}$,

$$N(\alpha)/N(\mathfrak{a}) \equiv N(\beta)/N(\mathfrak{a}) \mod D,$$

to see this, choose $r \in \mathcal{O}$ such that $r\mathfrak{a} \subset \mathcal{O}$, may suppose $\mathfrak{a} \subset \mathcal{O}$, then $N(\alpha)$, $N(\beta) \in \mathbb{Z}$ and since $\alpha \equiv \beta(\sqrt{-D})$, *D* divides $N(\alpha) - N(\beta)$. On the other hand, since $N(\mathfrak{a})$ divides $N(\alpha) - N(\beta)$ and is coprime to *D*, we conclude the equation. Therefore

$$g_{\mathfrak{a}}[\Gamma\delta\Gamma]_2 = \kappa\zeta_D^{N(\alpha)/N(\mathfrak{a})}g_{\mathfrak{a}},$$

with $\alpha \in \mathfrak{a}$ fixed. Let A' be the abelian subvariety of $\mathscr{J}(C_M)$ generated by $A_{\lambda} \forall \lambda \in \Lambda_{\mathfrak{m}}^1$, i.e. the isogenous image in $\mathscr{J}(C_M)$. The tangent space of A' is spanned by $f_{\lambda}^{\sigma} - f_{\lambda^{\sigma}} \forall \lambda \in \Lambda_{\mathfrak{m}}^1 \sigma$: $\mathbf{C} \to \mathbf{C}$, but since $\mathfrak{m} = \mathfrak{m}^{\rho}$, the tangent space is exactly $V_{\mathfrak{m}}^1$. Then $[\Gamma \delta \Gamma]$ acts on A'. Let ω denote the corresponding endomorphism, then the representation of ω on the tangent space diagonally with eigenvalues $\kappa \zeta - D^{N(\alpha)/N(\mathfrak{a})}$. Let $\chi(r) = (-D/r)$ be the Kronecker symbol, recall that

$$\sqrt{-D} = g(\boldsymbol{\chi}) = \sum_{a \in \mathbf{Z}/\mathbf{D}^*} \boldsymbol{\chi}(a) \zeta_D^a$$

One sees that $N(\alpha)/N(\mathfrak{a})$ is prime to D and $\chi(N(\alpha)/N(\mathfrak{a})) = 1$. Define an embedding

$$\iota: \mathbf{Q}(\zeta_D) \to \operatorname{End}_{\mathbf{Q}}(A')$$

by

$$\zeta_D \mapsto \kappa^{-1} \omega.$$

 $\iota(\sqrt{-D})$ is the idendity map since $\iota(\sqrt{-D})$ has components of the form

$$\sum_{a \in \mathbf{Z}/\mathbf{D}^*} \chi(a) \iota \zeta_D^a = \sum_{a \in \mathbf{Z}/\mathbf{D}^*} \chi(a) \zeta_D^{aN(\alpha)/N(\mathfrak{a})} = \sum_{a \in \mathbf{Z}/\mathbf{D}^*} \chi(a) \chi(N(\alpha)/N(\mathfrak{a}))^{-1} \zeta_D^a = \sqrt{-D},$$

i.e. $\iota: K = \mathbf{Q}(\sqrt{-D}) \to \operatorname{End}_{\mathbf{Q}}(A)$ is equivalent to the identity injection of *K* into **C**, by Definition 1, *A'* is isogenous to a product of an elliptic curve whose endomorphism algebra is *K*, so does its subvariety A_{λ} by Poincaré's complete reducibility theorem.

Case 2. λ is primitive.

Put $\mathfrak{m}' := 2\mathfrak{m}\mathfrak{m}^{\rho}(\sqrt{-D}), M' = N(\mathfrak{m}')D, \eta_u = \begin{pmatrix} M & u \\ M \end{pmatrix}$ for $u \in \mathbb{Z}$. Then $M' = M^2$ and $\mathfrak{m}' = \mathfrak{m}'^{\rho}$. Define $x_u \in \mathbb{Q}$ as in the proof of Lemma 3.1 so that

$$\sum_{u=0}^{M-1} x_u \zeta_M^{un} = \begin{cases} 1 & \text{if } (n,M) = 1\\ 0 & \text{else.} \end{cases}$$

Take $t \in \mathbf{Q}$ so that $tx_u \in \mathbf{Z} \ \forall u$ and put

$$\xi = \sum_{u=0}^{M-1} t x_u [\eta_u]_2.$$

Then by the proof in Lemma 3.1, if

$$f=\sum_n a_n q^n \in S_2(M,\varepsilon),$$

we have

$$f|\xi = t \sum_{(n,M)=1} a_n q^n \in S_2(M',\varepsilon).$$

Especially $f_{\lambda}|\xi = tf_{\mu}$ where $\mu \in \Lambda^{1}_{\mathfrak{m}'}$ is the restriction of λ to $I(\mathfrak{m}')$. In fact, if \mathfrak{a} , \mathfrak{b} are integral ideals,

$$(\mathfrak{a},\mathfrak{bb}^{\rho}) = 1$$
 iff $(N(\mathfrak{a}), N(\mathfrak{b})) = 1$.

Let V_{λ} be the subspace of $V_{\mathfrak{m}}^1 + V_{\mathfrak{m}'}^1$ spanned by $f_{\lambda^{\sigma}}$, $\sigma : \mathbb{C} \to \mathbb{C}$, then we see that ξ maps V_{λ} into $V_{\mathfrak{m}'}^1$, it is injective by primitivity of λ . Let A'' be abelian subvariety of $\mathscr{J}(C_{M'})$ generated by A_{μ} , $\mu \in \Lambda_{\mathfrak{m}'}^1$, the tangent space is $V_{\mathfrak{m}'}^1$ since $(\mathfrak{m}')^{\rho} = \mathfrak{m}'$. Hence ξ induces a morphism

$$\xi^*: \mathscr{J}(M') \to \mathscr{J}(M)$$

and restricts to a surjection

 $A'' \twoheadrightarrow A_{\lambda}$

where by case 1, A'' is isogenous to product of an abelian variety E whose endomorphism algebra is K, then there is a surjective morphism $\varphi : E^k \to A_\lambda$, and hence A_λ is isogenous to a product of E. Here we made use of Poincaré's complete reducibility theorem again.

Case 3. General case.

Let \mathfrak{c} be the conductor of λ . We prove by induction on $N(\mathfrak{c}^{-1}\mathfrak{m})$, based on the primitive case, which was proved in case 2. Suppose $\mathfrak{p}|\mathfrak{c}^{-1}\mathfrak{m}$, put

$$\mathfrak{n} = \mathfrak{p}^{-1}\mathfrak{m}, \ q = N(\mathfrak{p}), \ N = q^{-1}M, \ \beta = \begin{pmatrix} q \\ 1 \end{pmatrix}.$$

Since $\beta \Gamma_1(M) \beta^{-1} \subset \Gamma_1(N)$, $[\beta]_2$ defines a morphism

$$\psi: \mathscr{J}(C_M) \to \mathscr{J}(C_N).$$

Let

$$\varphi: \mathscr{J}(C_M) \to \mathscr{J}(C_N)$$

be the morphism induced by natural projection $C_M \to C_N$. Take $\mu \in \Lambda^1_{\mathfrak{n}}$ whose restriction to $I(\mathfrak{m})$ is λ , then since $f_{\lambda^{\sigma}} = f_{\mu^{\sigma}} - sf_{\mu^{\sigma}}[\beta]_2$, then

$$(\operatorname{res}, [\boldsymbol{\beta}]_2): V_{\mathfrak{n}}^1 \times V_{\mathfrak{n}}^1 \twoheadrightarrow V_{\mathfrak{m}}^1$$

is a surjection, so

$$(\psi, \varphi) \mathscr{J}(C_M) \to \mathscr{J}(C_N) \times \mathscr{J}(C_N)$$

induces a finite morphism

$$A_{\lambda} \to A_{\mu} \times A_{\mu}.$$

By induction hypothesis A_{μ} is isogenous to product of an elliptic curve whose endomorphism algbera is K, hence also A_{λ} , by Poincaré's complete reducibility theorem.

4 Modularity of E/Q with complex multiplication

Here we let *E* be an elliptic curve over **Q** with complex multiplication. Deuring in 1950s proved that L(s, E) comes from a grossencharacter $\lambda \in \Lambda_m^1$:

Theorem 4.1 (Deuring). Let *E* be an elliptic curve over **Q** with $K \simeq \text{End}_{\mathbf{Q}}(E)$, then

$$L(s,E) = L(s,\lambda_E)$$

for some $\lambda_E \in \Lambda^1_{\mathfrak{m}}$.

Let $\lambda = \lambda_E \in \Lambda_V^1$, by theorem I(A), $\lambda \in S_2(M, \varepsilon)$ and is a normalized eigenform. Since *E* is defined over **Q**, we see that $a_n \in \mathbf{Q}$, so A_{λ} has dimension 1, is defined over **Q**.

By previous results, if $f_{\lambda} = \sum a_n q^n$,

$$L(s,\lambda) = \prod_p (1 - a_p p^{-s} + \varepsilon(p) p^{1-2s}).$$

Since *E* is defined over \mathbf{Q} , $a_n \in \mathbf{Q}$ and ε is the trivial character, so $f_{\lambda} \in S_2(\Gamma_0(M))$ and both A_{λ} and A'_{λ} are elliptic curves over \mathbf{Q} where A'_{λ} is the abelian subvariety of $\mathscr{J}(X_0(M)_{\mathbf{Q}})$. Clearly A_{λ} and A'_{λ} are isogenous over \mathbf{Q} .

Theorem 4.2. The elliptic curve A'_{λ} is isogenous to E over **Q**

Proof. The cotangent space of A'_{λ} generated solely by f_{λ} , so the Hecke operators T_n acts on A'_{λ} as multiplication by $a_n(f)$. By Eichler-Shimura relation, for all but finitely many rational prime p (exactly those primes inducing good reduction), $T_p = \sigma_p^* + (\sigma_p)_* = 1 + p - \sharp(A'_{\lambda}[p])$ modulo p, hence $a_p(f) = 1 + p - \sharp(A'_{\lambda}[p])$, i.e. the euler factor at p of $L(s,A'_{\lambda})$ and that of $L(s,\lambda)$ coincides. By theorem I(B) End_Q(A) = K, and by the theorem of Deuring, there exists a grossencharacter μ of K such that $L(s,\mu) = L(s,A_{\lambda})$. Thus $L(s,\lambda)$ coincides with $L(s,\mu)$ up to finitely many euler factors. Let m be the common multiple of conductors of λ and μ , then $\lambda/\mu : I(\mathfrak{m})/P(\mathfrak{m}) \to \mathbb{C}^*$ is well-defined. Since $\lambda/\mu \neq 1$ only for finitely many primes, and there are infinitely many in each classes of $I(\mathfrak{m})/P(\mathfrak{m})$ with has finite order, so $\lambda = \mu$. Thus E and A_{λ} determine the same grossencharacter, hence isogenous over \mathbb{Q} .

References

- [1] Max Deuring. "Die Zetafunktion einer algebraischen Kurve vom Gerschlecht Eins, I, II, III, IV". In: *Nachr. Akad. Wiss. Göttingen* (1953,1955,1956,1957).
- [2] Jerry Shurman Fred Diamond. A First Course in Modular Forms. Springer.
- [3] Toshitsune Miyake. Modular Forms. Springer.
- [4] Jürgen Neukirch. Algebraic Number Theory. Springer.
- [5] Goro Shimura. *Introduction to Arithmetic Theory of Automorphic Functions*. Princeton University Press.
- [6] Goro Shimura. "On elliptic curves with complex multiplication as factors of Jacobians of modular function field". In: *Nagoya Mathematical Journal* 43 (1971), pp. 199–208.
- [7] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Springer.