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In this report, we will investigate the integrality of some genera. To do this, we need to view a family of

genera as a modular form, which comes naturally if we defined the genera by power series f(τ, x) that are

Jacobi form of weight −1. We will introduce some theory of Jacobi form to investigate elliptic genera of

level 2. The modular form expanding at different cusps (0 and ∞) corresponds to twisted Â-genera and

signature introduced in subsection 3.1 and 3.2. Using the theory of modular forms and the integrality of

twisted Â-genera on spin manifold, we obtain the theorem of Ochanine.

The argument can be applied to more general situation, elliptic genera of level N defined for complex

manifolds. We will introduce the Φ-function, which is a theta function, and define a family of complex

elliptic genera. This time, involving twisted χy-genera and Euler characteristic, we can obtain similar result

under appropriate assumptions.
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1 Jacobi form and theta function

1.1 Jacobi form

Definition 1.1. For τ ∈ H, let Ψ(τ, x) be an elliptic function in x (i.e., meromorphic, doubly periodic with

respect to 2πi(Z τ +Z)). Let k ∈ Z, Γ ⊂ SL2(Z) congruent, then we call Ψ a Jacobi form on Γ of weight k if

Ψ(γ(τ),
x

cτ + d
)(cτ + d)−k = Ψ(τ, x) for γ =

(
a b
c d

)
∈ Γ

Notice that the Weierstrass ℘-function

℘(τ, x) =
1

x2
+

∑
ω∈2πi(Z τ+Z),ω ̸=0

(
1

(x− ω)2
− 1

ω2
)

is a Jacobi form on Γ = SL2(Z) of weight 2.

Ψ(τ, x) = x, a function only in x, can be viewed as a Jacobi form of weight −1.

Theorem 1.2. Let Ψ(τ, x) be a Jacobi form on Γ of weight k as above. Let n ∈ Z, α, β ∈ R, and let gn(τ)

be the n-th coefficient in the Laurent expansion of Ψ(τ, ·) at 2πi(ατ + β). Then we have

gn[γ]k+n = gn for all γ ∈ Γ with (α, β)γ ≡ (α, β) mod Z2

Proof. By the Cauchy integral formula,

gn(τ) =
1

2πi

∮
Ψ(τ, x+ 2πi(ατ + β))

xn+1
dx

Thus by definition,

gn[γ]k+n(τ) = gn(γ(τ))(cτ + d)−(k+n)

=
1

2πi

∮
Ψ(γ(τ), (x(cτ + d) + 2πi(α′τ + β′))/(cτ + d))

(x(cτ + d))n+1
(cτ + d)−k d(x(cτ + d))

=
1

2πi

∮
Ψ(τ, y + 2πi(α′τ + β′))

yn+1
dy

where γ =
(
a b
c d

)
∈ Γ and (α′, β′) = (α, β)γ. Notice that y = x(cτ + d) preserves the orientation of the closed

loop when changing variable.

Corollary 1.3. Define e1(τ) = ℘(τ, πi), e2(τ) = ℘(τ, πiτ), e3(τ) = ℘(τ, πi(τ +1)), the value of Weierstrass

℘-function at the 2-division points πi, πiτ, πi(τ + 1). Then

e1 ∈M2(Γ0(2)), e2 ∈M2(Γ
0(2)), and e3 ∈M2(

(
1 1
−1 0

)
Γ0(2)

(
0 −1
1 1

)
)
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Moreover, for γ ∈ SL2(Z), [γ]2 permutes e1, e2, e3 (This follows directly from the fact that ℘ is a Jacobi form

of weight 2.). In particular,

e1[
(
0 −1
1 0

)
]2 = e2, e2[

(
0 −1
1 0

)
]2 = e1, e3[

(
0 −1
1 0

)
]2 = e3

Proof. e1(τ) is the 0-th coefficient of ℘(τ, ·) at 2πi(0τ + 1

2
), so by 1.2 it is modular of weight 2 with respect

to

{γ ∈ SL2(Z) : (0,
1

2
)γ ≡ (0,

1

2
) mod Z2}

which is exactly Γ0(2). Similar for e2(τ). For e3 one should check

{γ =
(
a b
c d

)
: a+ c, b+ d odd } =

(
1 1
−1 0

)
Γ0(2)

(
0 −1
1 1

)
This can be done by, for example, two directions of containment using conjugation.

In the proof of 1.2, we see that since (0,
1

2
)
(
0 −1
1 0

)
= (

1

2
, 0), we have e1[

(
0 −1
1 0

)
]2 = e2. Similar for e2, e3.

Theorem 1.4. We have

℘(τ, x) =
∑
n∈Z

1

(qn/2ex/2 − q−n/2e−x/2)2
− (− 1

12
+

∑
n∈Z,n̸=0

1

(qn/2 − q−n/2)2
)

where q = e2πiτ .

Proof. For a fixed τ ∈ H, notice that |q| < 1, so the first summand converges absolutely and uniformly in

x at least on bounded subset, but it is also periodic in x with respect to 2πi(Z τ + Z). It has pole of order

2 exactly at those x so that e2πinτ+x = 1 for some n ∈ Z, which are the lattice points. Moreover the local

behavior is
1

x2
Thus it differs by ℘(τ, ·) up to addition of a constant. To determine the constant notice that

℘(x) =
1

x2
+O(x), and for x→ 0 we have

∑
n∈Z

1

(qn/2ex/2 − q−n/2e−x/2)2
=

1

(ex/2 − e−x/2)2
+

∑
n ̸=0

1

(qn/2 − q−n/2)2
+O(x)

=
1

x2
− 1

12
+

∑
n̸=0

1

(qn/2 − q−n/2)2
+O(x)

where we computed (ex/2 − e−x/2)2 = (x+
x3

24
+O(x4))2 = x2 +

1

12
x4 +O(x6).

Corollary 1.5. For |q| < min{|ex|, |e−x|},

℘(τ, x) =
1

(ex/2 − e−x/2)2
+

∞∑
n=1

(
∑
d|n

d(edx + e−dx))qn +
1

12
(1− 24

∞∑
n=1

σ1(n)q
n)

where σr(n) =
∑
d|n

dr.
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Proof. Apply

1

(a1/2 − a−1/2)2
=

a

(1− a)2
=

∞∑
k=1

k · ak

for |a| < 1 to 1.4, we get

℘(τ, x) =
1

(ex/2 − e−x/2)2
+

∑
n ̸=0

1

(qn/2ex/2 − q−n/2e−x/2)2
+

1

12
−

∑
n ̸=0

1

(qn/2 − q−n/2)2

=
1

(ex/2 − e−x/2)2
+

∑
n>0

∞∑
d=1

d(edx + e−dx)qdn +
1

12
− 2

∑
n>0

∞∑
d=1

dqdn

=
1

(ex/2 − e−x/2)2
+

∞∑
n=1

(
∑
d|n

d(edx + e−dx))qn +
1

12
(1− 24

∞∑
n=1

σ1(n)q
n)

Corollary 1.6. The functions e1(τ) = ℘(τ, πi), e2(τ) = ℘(τ, πiτ), e3(τ) = ℘(τ, πi(τ + 1)) defined in 1.3 are

modular form of weight 2 (with respect to different groups), and we have the Fourier expansion

e1(τ) = −1

6
(1 + 24

∞∑
n=1

σodd
1 (n)qn) ∈M2(Γ0(2))

e2(τ) =
1

12
(1 + 24 ·

∞∑
n=1

σodd
1 (n)qn/2) ∈M2(Γ

0(2))

e3(τ) =
1

12
(1 + 24 ·

∞∑
n=1

(−1)nσodd
1 (n)qn/2) ∈M2(

(
1 1
−1 0

)
Γ0(2)

(
0 −1
1 1

)
)

where σodd
1 (n) =

∑
d|n,d odd

d. In particular we see that e2(2τ) =
−1

2
e1(τ).

Proof.

• Simply put x = πi in 1.5 and edπi + e−dπi = 2(−1)d we get the formula for e1(τ).

• Note that edπiτ − e−dπiτ = qd/2 − q−d/2. So

e2(τ) =
1

12
+

∞∑
n=1

nqn/2 +

∞∑
n=1

∑
d|n

(dqd(1+2n/d)/2 + dqd(−1+2n/d)/2)− 2

∞∑
n=1

σ1(n)q
n

=
1

12
+

∞∑
m=1

mqm/2 +

∞∑
m=1

(
∑

1 ̸=m/d odd

dqm/2 +
∑

m/d odd

dqm/2)− 2

∞∑
n=1

σ1(n)q
n

=
1

12
+

∞∑
m=1

(2
∑

m/d odd

d)qm/2 − 2

∞∑
n=1

σ1(n)q
n

The coefficient of qm/2, m odd, is 2
∑

m/d odd

d = 2σ1(m) = 2σodd
1 (m).
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The coefficient of qm/2, m even, is 2
∑

m/d odd

d− 2σ1(m/2). Now write m/2 = 2l · a, with a odd. Then

2
∑

m/d odd

d = 2l+2
∑

a/d odd

d = 2l+2σodd
1 (a)

Also, we have the formula σ1(m/2) = (2l+1 − 1)σodd
1 (a), which can be easily obtained by induction on

l. To sum up, the coefficient is

2l+2σodd
1 (a)− 2(2l+1 − 1)σodd

1 (a) = 2σodd
1 (a) = 2σodd

1 (m)

• Finally,

e3(τ) =
1

12
+

∞∑
n=1

(−1)nnqn/2+

∞∑
n=1

∑
d|n

((−1)ddqd(1+2n/d)/2+(−1)ddqd(−1+2n/d)/2)− 2

∞∑
n=1

(−1)nσ1(n)q
n

=
1

12
+

∞∑
m=1

(−1)mmqm/2 +

∞∑
m=1

(
∑

1̸=m/d odd

(−1)ddqm/2 +
∑

m/d odd

(−1)ddqm/2)− 2

∞∑
n=1

(−1)nσ1(n)q
n

=
1

12
+

∞∑
m=1

(2
∑

m/d odd

(−1)dd)qm/2 − 2

∞∑
n=1

(−1)nσ1(n)q
n

The coefficient of qm/2, m odd, is 2
∑

m/d odd

(−1)dd = −2σ1(m) = 2(−1)mσodd
1 (m).

The coefficient of qm/2, m even, is 2
∑

m/d odd

(−1)dd− 2(−1)mσ1(m/2). Now write m/2 = 2l · a, with a

odd. Then

2
∑

m/d odd

(−1)dd = 2l+2
∑

a/d odd

d = 2l+2σodd
1 (a)

Also, we have the formula σ1(m/2) = (2l+1 − 1)σodd
1 (a), which can be easily obtained by induction on

l. To sum up, the coefficient is

2l+2σodd
1 (a)− 2(2l+1 − 1)σodd

1 (a) = 2σodd
1 (a) = 2(−1)mσodd

1 (m)

Definition 1.7. Define the ·̃ operator for a function f(τ, x) by f̃(τ, x) = f(
−1

2τ
,
x

2τ
)(2τ)−k for an appropriate

weight k for f . If f(τ) ∈Mk(Γ0(2)), a function only in τ , we give it weight k, the weight as a modular form,

then

f̃(τ) = f(
−1

2τ
)(2τ)−k = f [

(
0 −1
1 0

)
]k(2τ)

Recall that Γ0(2) has two cusp, ∞ and 0. Thus the operator on f is simply computing the expansion at 0,

and composing with τ 7→ 2τ since 0 has width 2. One can easily verify that f [
(
0 −1
1 0

)
]k(τ) ∈Mk(Γ

0(2)) and

f̃(τ) = f [
(
0 −1
1 0

)
]k(2τ) ∈Mk(Γ0(2)), and in fact ·̃ is a graded algebra automorphism of M∗(Γ0(2)).
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Corollary 1.8. We can define two modular forms δ ∈ M2(Γ0(2)) and ϵ ∈ M4(Γ0(2)) and compute their

Fourier coefficients:

δ = −3

2
e1 =

1

4
+ 6

∞∑
n=1

σodd
1 (n)qn =

1

4
+ 6q + · · ·

ϵ = (e1 − e2)(e1 − e3)

= (
−1

4
− 4

∞∑
n=1

σodd
1 (n)qn − 2

∞∑
n=1

σodd
1 (n)qn/2)(

−1

4
− 4

∞∑
n=1

σodd
1 (n)qn − 2

∞∑
n=1

(−1)nσodd
1 (n)qn/2)

= (
−1

4
− 2q1/2 − 6q + · · · )(−1

4
+ 2q1/2 − 6q + · · · )

=
1

16
− q + · · ·

Notice that for γ ∈ Γ0(2), [γ]2 fixes e1 and either fixes e2, e3 or interchanges e2 with e3 (1.3), thus indeed

ϵ ∈M4(Γ0(2)).

Next, apply the ·̃ operator we get δ̃ ∈M2(Γ0(2)) and ϵ̃ ∈M2(Γ0(2)):

δ̃(τ) = −3

2
e2(2τ) =

3

4
e1(τ) =

−1

8
− 3

∞∑
n=1

σodd
1 (n)qn

ϵ̃(τ) = (e2(2τ)− e1(2τ))(e2(2τ)− e3(2τ))

= (
1

4
+ 2

∞∑
n=1

σodd
1 (n)qn + 4

∞∑
n=1

σodd
1 (n)q2n) · 2(

∞∑
n=1

(1− (−1)n)σodd
1 (n)qn)

= (1 + 8

∞∑
n=1

σodd
1 (n)qn + 16

∞∑
n=1

σodd
1 (n)q2n) · (

∞∑
n=1

(1− (−1)n)

2
σodd
1 (n)qn)

= q + · · ·

From the above expression, an important observation is that 4δ, 16ϵ, 8δ̃ and ϵ̃ has an integral q-expansion,

which is the key in our proof of theorem of Ochanine.

Theorem 1.9.

M∗(Γ0(2)) = C[δ, ϵ]

Proof. Notice that Γ0(2) = Γ1(2). −I ∈ Γ0(2) so there is no odd weight. By the table in 3.9 of [Diam], we

have for k even,

dimMk(Γ0(2)) =

⌊
k

4

⌋
+ 1

Now since δ is of weight 2 and ϵ of weight 4, in M2n(Γ0(2)) we have δ2n, δ2n−2ϵ, . . . , ϵn/2 ( or δϵ(n−1)/2 if n

odd). Since the number matches

⌊
2n

4

⌋
+1, we only need to prove they are linearly independent. Suppose there

is such relation, dividing by δ2n we know that ϵ/δ2 satisfies a polynomial of constant coefficient everywhere,

hence a constant. But from the Fourier coefficient expanded at ∞ (1.8),

ϵ =
1

16
− q + · · ·

δ2 =
1

16
+ 3q + · · ·
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We see that ϵ and δ2 are linearly independent over C, a contradiction.

Remark 1.10. In the above proof, we see that if n is odd, every modular form in M2n(Γ0(2)) can be

divided by δ. In the proof of Ochanine’s theorem, we essentially will use this observation from the condition

dimX ≡ 4 (8).

1.2 Theta function

Definition 1.11. Let L ⊂ C be a lattice. A meromorphic function f is called a theta function for L

if
d2

dx2
log f(x) is elliptic with respect to L. The theta functions f(x) = eax

2+bx+c for a, b, c ∈ C are called

trivial theta functions.

Definition 1.12. The Weierstrass σ-function for the lattice 2πi(Z τ + Z) is defined by the product

σ(τ, x) = x
∏

ω∈2πi(Z τ+Z),ω ̸=0

(1− x

ω
) · exp(x

ω
+

1

2
(
x

ω
))

It is clear that
d2

dx2
log(σ) = −℘(τ, x). Hence σ is a theta function. Also observe easily that

σ(γ(τ),
x

cτ + d
) · (cτ + d) = σ(τ, x)

for γ =
(
a b
c d

)
∈ SL2(Z), so it is a Jacobi form of weight −1.

Theorem 1.13. We have a product expansion

σ(τ, x) = exp(
1

2
G2(τ) · x2) · (ex/2 − e−x/2) ·

∞∏
n=1

(1− qnex)(1− qne−x)

(1− qn)2

where G2(τ) =
∑
c

∑
d

1

(2πi(cτ + d))2
, and the sum omits (c, d) = (0, 0).

Proof. Apply
d2

dx2
log to right-hand side we get

G2(τ) +
d

dx
(
1

2
coth(

x

2
) +

∞∑
n=1

(
−qnex

1− qnex
+

qne−x

1− qne−x
))

= G2(τ)−
1

4 sinh(x2 )
2
+

d

dx
(

∞∑
n=1

∞∑
k=1

(e−kx − ekx) · qnk)

=
−1

12
+ 2

∞∑
n=1

σ1(n)q
n − 1

(ex/2 − e−x/2)2
−

∞∑
n=1

∑
d|n

d(edx + e−dx)qn

= −℘(τ, x)

We have used the expansion G2(τ) =
−1

12
+ 2

∞∑
n=1

σ1(n)q
n and 1.5.

We then know that σ differs from right-hand side up to a multiplication of eb(τ)x+c(τ). Both sides begins

with x+O(x2) as x→ 0, so c(τ) = 0. Also both sides are odd, so b(τ) = 0. Hence they are equal.
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Definition 1.14. Define the Φ-function

Φ(τ, x) = σ(τ, x) · exp(−1

2
G2(τ) · x2)

Then it is also a theta function since σ(τ, x) is. We then from 1.13 obtain a product formula

Φ(τ, x) = (ex/2 − e−x/2) ·
∞∏

n=1

(1− qnex)(1− qne−x)

(1− qn)2

= 2 sinh(
x

2
) ·

∞∏
n=1

(1− qnex)(1− qne−x)

(1− qn)2

We are going to investigate some properties of Φ, which is important for elliptic genera.

Theorem 1.15.

(a)

Φ(γ(τ),
x

cτ + d
) · (cτ + d) = exp(

cx2

4πi(cτ + d)
) · Φ(τ, x)

for γ =
(
a b
c d

)
∈ SL2(Z).

(b)

Φ(τ, x+ 2πi · (λτ + µ)) = q−
λ2

2 e−λx(−1)λ+µ · Φ(τ, x)

for λ, µ ∈ Z.

Proof.

(a) Since σ(τ, x) is a Jacobi form, the extra factor comes from the term exp(−1

2
G2(τ) · x2) and the formula

G2(τ)[γ]2(τ) = G2(τ)−
c

2πi(cτ + d)
.

(b) We only need to prove for λ > 0, since changing left hand side to right hand side we get the formula for

(−λ,−µ).

Φ(τ, x+ 2πi · (λτ + µ)) = (qλ/2(−1)µex/2 − q−λ/2(−1)µe−x/2)

∞∏
n=1

(1− qn+λex)(1− qn−λe−x)

(1− qn)2

= (−1)µ · (−1)q−λ/2e−x/2(1− qλex) ·
∞∏

n=λ+1

(1− qnex)

·
0∏

n=1−λ

(−qne−x)(1− q−nex) ·
∞∏

n=1

(1− qne−x) ·
∞∏

n=1

(1− qn)−2

= (−1)µ · (−1)λ+1q−λ/2−λ(λ−1)/2e−λxe−x/2(1− ex)

∞∏
n=1

(1− qnex)(1− qne−x)

(1− qn)2

= q−
λ2

2 e−λx(−1)λ+µ · Φ(τ, x)
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Theorem 1.16. For a lattice L and E = C /L, we define ΘL to be theta functions for L and Θ̃L the trivial

ones. Then, the assignment f 7→ div(f) induces an exact sequence:

1 → Θ̃L → ΘL → Div(E) → 1

Proof. If f ∈ ΘL has neither zeros nor poles, then
d

dx
log(f) =

f ′

f
is globally defined, thus

d2

dx2
log(f) is a

constant, say 2a, we get f = eax
2+bx+c for some a, b, c ∈ C.

It is clear that the Weierstrass σ-function has divisor (0) and is a theta function, so considering the products

of σ(x− xi)
ni ensures the surjectivity.

2 Elliptic genera

Recall the fact that on the elliptic curve E = C /L, a divisor D =
∑

nP · (P ) is principal if and only if∑
nP = 0 and

∑
nP · P ≡ 0 (L).

2.1 Elliptic genera of level 2

Theorem 2.1.

(a) For τ ∈ H, let φ1(τ, x) be the elliptic function in x for the lattice 2πi(Z ·2τ + Z) with the divisor

(πi) + (πi(1 + 2τ))− (πi · 2τ)− (0) and the normalization φ1(τ, x) =
1

x
+O(1) as x→ 0. Then we have

φ1(γ(τ),
x

cτ + d
)(cτ + d)−1 = φ1(τ, x) for all γ =

(
a b
c d

)
∈ Γ0(2)

φ1(τ, x)
2 = ℘(τ, x)− e1(τ)

φ1(τ, x) =
1

2

ex/2 + e−x/2

ex/2 − e−x/2
·

∞∏
n=1

(1 + qnex)(1 + qne−x)/(1 + qn)2

(1− qnex)(1− qne−x)/(1− qn)2

(b) For another 2-division point, let φ2(τ, x) be the elliptic function in x for the lattice 2πi(Z τ + 2Z) with

the divisor (πiτ) + (πi(2 + τ))− (2πi)− (0) and the normalization φ2(τ, x) =
1

x
+O(1) as x→ 0. Then

φ2(γ(τ),
x

cτ + d
)(cτ + d)−1 = φ2(τ, x) for all γ =

(
a b
c d

)
∈ Γ0(2)

φ2(τ, x)
2 = ℘(τ, x)− e2(τ)

φ2(τ, x) =
1

ex/2 − e−x/2

∏
n=2m+1(1− qn/2ex)(1− qn/2e−x)/(1− qn/2)2∏
n=2m+2(1− qn/2ex)(1− qn/2e−x)/(1− qn/2)2

where the product is over m ≥ 0.

(c)

φ1(
−1

τ
,
x

τ
)τ−1 = φ2(τ, x)

Thus φ̃1(τ, x) = φ1(
−1

2τ
,
x

2τ
)(2τ)−1 = φ2(2τ, x), here we give φ1, φ2 weight 1 with respect to the ·̃

operator (1.7).
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Proof.

(a) • For Jacobi form, for a fixed γ =
(
a b
c d

)
∈ Γ0(2) define

ψ1(τ, x) = φ1(γ(τ),
x

cτ + d
) · (cτ + d)−1 =

1

x
+O(1)

For λ, µ ∈ Z compute

ψ1(τ, x+ 2πi(2λτ + µ)) = φ1(γ(τ),
x+ 2πi(2λτ + µ)

cτ + d
) · (cτ + d)−1

= φ1(γ(τ),
x

cτ + d
+ 2πi(λ′ · 2γ(τ) + µ′)) · (cτ + d)−1

where (λ′, µ′) satisfies
(
λ′ µ′

0 1

)(
2a 2b
c d

)
=

(
2λ µ
c d

)
, that is, (λ′ µ′)

(
a 2b

c/2 d

)
= (λ µ). So λ′, µ′ ∈ Z and ψ

is also doubly periodic. Also using this on the pair (0 0), (
1

2
0), (0

1

2
), (

1

2

1

2
), one can check that ψ1

has the same zeros and poles as φ1, thus they are equal.

• Second, we prove φ1(τ, x + 2πiτ) = −φ1(τ, x). Since φ1(τ, x + 2πiτ) + φ1(τ, x) is elliptic with

respect to 2πi(Z τ + Z) and has at most one pole of order one on this lattice, we know that it

should be a constant. Take x = πi we find that the terms vanish and the constant is 0. So now

φ2
1(τ, x) is elliptic with respect to 2πi(Z τ + Z) and has the same poles of order two as ℘(τ, x), so

φ2
1(τ, x) = ℘(τ, x) + C1(τ). Again set x = πi we see C1(τ) = −e1(τ).

• Call the right hand side p1(x). It is meromorphic since |q| < 1. Denominator gives poles at

x ∈ 2πiZ, 2πinτ ± x ∈ 2πiZ, n ∈ N, which are 2πi(Z τ + Z). Numerator gives zeros at x ∈

πi + 2πiZ, 2πinτ ± x ∈ πi + 2πiZ, n ∈ N, which are πi + 2πi(Z τ + Z). So the divisors of φ1 and

p1 coincides. It is clear that p1(x+ 2πi) = p1(x), and

p1(x+ 2πiτ) =
1

2

qex + 1

qex − 1
·

∞∏
n=1

(1 + qn+1ex)(1 + qn−1e−x)/(1 + qn)2

(1− qn+1ex)(1− qn−1e−x)/(1− qn)2

= −1

2

1 + e−x

1− e−x
·

∞∏
n=1

(1 + qnex)(1 + qne−x)/(1 + qn)2

(1− qnex)(1− qne−x)/(1− qn)2
= −p1(x)

Finally we see that as x→ 0 the product cancel out and the behavior is
1

x
+O(1). Thus p1 = φ1.

(b) • First two equations are similar to (a).

• Call the right hand side p2(x). It is meromorphic since |q| < 1. Denominator gives poles at

x ∈ 2πiZ, πinτ ± x ∈ 2πiZ, n ∈ 2N, which are 2πi(Z τ + Z). Numerator gives zeros at πinτ ± x ∈

πi + 2πiZ, n ∈ 2N−1, which are πiτ + 2πi(Z τ + Z). So the divisors of φ2 and p2 coincides. It is

clear that p2(x+ 2πi) = −p2(x), and

p2(x+ 2πiτ) =
1

q1/2ex/2 − q−1/2e−x/2

∏
n=2m+1(1− q(n+2)/2ex)(1− q(n−2)/2e−x)/(1− qn/2)2∏
n=2m+2(1− q(n+2)/2ex)(1− q(n−2)/2e−x)/(1− qn/2)2

=
1

q1/2ex/2 − q−1/2e−x/2

(1− qex)(1− q−1/2e−x)

(1− q1/2ex)(1− e−x)

∏
n=2m+1(1− qn/2ex)(1− qn/2e−x)/(1− qn/2)2∏
n=2m+2(1− qn/2ex)(1− qn/2e−x)/(1− qn/2)2
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=
1

ex/2 − e−x/2

∏
n=2m+1(1− qn/2ex)(1− qn/2e−x)/(1− qn/2)2∏
n=2m+2(1− qn/2ex)(1− qn/2e−x)/(1− qn/2)2

= p2(x)

Finally we see that as x→ 0 the product cancel out and the behavior is
1

x
+O(1). Thus p2 = φ2.

(c) We have (1.3)

φ1(
−1

τ
,
x

τ
)2τ−2 = ℘(

−1

τ
,
x

τ
)τ−2 − e1[

(
0 −1
1 0

)
]2(τ) = ℘(τ, x)− e2(τ) = φ2(τ, x)

2

So φ1(
−1

τ
,
x

τ
)τ−1 = ±φ2(τ, x), but φ1(

−1

τ
,
x

τ
)τ−1 =

1

x
+O(1) as x→ 0, so they are equal.

Definition 2.2. For each τ ∈ H, take f(x) = f(τ, x) = (℘(τ, x)−e1(τ))−1/2 with the choice of normalization

(℘(τ, x) − e1(τ))
1/2 =

1

x
+ O(1). Then f is an odd function and Q(x) =

x

f(x)
defines a genus for compact

oriented differentiable manifold of dimension 4k:

φ(X) = (

2k∏
i=1

xi
f(xi)

)[X]

where p(TX) = (1 + x21) · · · (1 + x22k). Notice that φ(X) = φ(X)(τ) can be written as a function of τ .

Notice that the choice of normalization says that (℘(τ, x) − e1(τ))
1/2 = φ1(τ, x), the function in 2.1. Thus

we can also write the genus as

φ(X)(τ) = (

2k∏
i=1

xiφ1(τ, xi))[X]

Remark 2.3. In [Hirz] 1.7, we say that a genus is an elliptic genus (of level 2) if it is defined by a power

series Q(x) =
x

f(x)
with f satisfying a differential equation

f ′2 = 1− 2δ · f2 + ϵ · f4

for some constant δ, ϵ.

In fact, the genera defined in 2.2 are elliptic genera, and for each τ ∈ H, the corresponding f(τ, x) satisfies

the differential equation with δ(τ), ϵ(τ) defined in 1.8.

Corollary 2.4. For a compact oriented differentiable manifoldX of dimension 4k, the elliptic genus φ(X)(τ)

is a modular form of weight 2k on Γ0(2).

Proof. Notice that the elliptic genus is defined by the even power series xφ1(τ, x). (We can see that this is

even by action of −I to obtain φ1(τ,−x) = −φ1(τ, x).) That is, formal factorize p(X) = p(TX) =

2k∏
i=1

(1+x2i )

and we can write

φ(X)(τ) = {
2k∏
i=1

xiφ1(τ, xi)}4k[X]
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where {·}4k takes the weight 4k part of polynomials in xi, view each xi as weight 2 indeterminates. Thus,

for γ =
(
a b
c d

)
∈ Γ0(2),

φ(X)[γ]2k(τ) = {
2k∏
i=1

xiφ1(γ(τ), xi)}4k(cτ + d)−2k[X] = {
2k∏
i=1

xi
cτ + d

φ1(γ(τ),
xi

cτ + d
)}4k[X]

= {
2k∏
i=1

xiφ1(τ, xi)}4k[X] = φ(X)(τ)

We have used that xφ1(τ, x) is a Jacobi form of weight 0 proved in 2.1. It is holomorphic on H and at ∞

since from the expansion of φ1(τ, xi), we see that φ(X)(τ) is a power series in q converging for |q| < 1.

Γ0(2) = Γ1(2) has another cusps at 0, we consider

φ(X)[
(
0 −1
1 0

)
]2k(τ) = {

2k∏
i=1

xi
τ
φ1(

−1

τ
,
xi
τ
)}4k[X] = {

2k∏
i=1

xiφ2(τ, xi)}4k[X]

which is the elliptic genus defined by xφ2(τ, x), thus has a power series expansion in q1/2. We conclude that

φ(X)(τ) is a modular form of weight 2k on Γ0(2).

2.2 Elliptic genera of level N for complex manifolds

Similar to the construction of the real cobordism ring, one can define the complex cobordism ring. This

time, the objects collected are the stably almost complex manifolds, which means that we can give TM ⊕Rk

a structure of complex vector bundle for some trivial bundle Rk. Then we can again define the cobordant

relation and form a cobordism ring. For details and more general definition of cobordism, see [Ston]. Complex

genera are again defined simply as ring homomorphisms.

Recall that given an odd power series f(x) = x+· · · , we can define a genus on a compact oriented differentiable

(real) manifold X of dimension 4k by

φ(X) = (

2k∏
i=1

xi
f(xi)

)[X]

where p(TX) = (1 + x21) · · · (1 + x22k).

But if the manifold is almost complex of dimension 2d, we can use Chern class c(X) instead of Pontryagin

class. Then our power series f(x) = x+ · · · needs not be odd and we can define a complex genus

φ(X) = (

d∏
i=1

xi
f(xi)

)[X]

where c(X) = (1 + x1) · · · (1 + xd).

We are now going to define a particular family of genera called complex elliptic genera.

Definition 2.5. Recall (1.14) the Φ-function

Φ(τ, x) = 2 sinh(
x

2
)

∞∏
n=1

(1− qnex)(1− qne−x)

(1− qn)2

12



If the power series f(x) is given by

f(x) = ekx
Φ(τ, x)Φ(τ,−ω)
Φ(τ, x− ω)

for some k, τ, ω, we call the resulting complex genus a complex elliptic genus.

In elliptic genera of level 2, we use the power series f(x) =
1

φ1(τ, x)
. Also, in Theorem 2.1 we proved that

f(x) = 2
ex/2 − e−x/2

ex/2 + e−x/2
·

∞∏
n=1

(1− qnex)(1− qne−x)/(1− qn)2

(1 + qnex)(1 + qne−x)/(1 + qn)2
=

Φ(τ, x)Φ(τ,−πi)
Φ(τ, x− πi)

Thus they are also elliptic genera in this sense with k = 0, ω = πi.

There is a complex analogue of 2.1, called elliptic genera of level N that can be defined on complex manifolds.

Theorem 2.6. Let N ∈ N and α, β ∈ Z, not both divisible by N , that is, 2πi
ατ + β

N
is a nonzero N -division

point on the elliptic curve C /2πi(Z τ + Z). Then there is a unique function fα,β(τ, x) with the following

properties:

1) x 7→ fα,β(τ, x) is a theta function on the lattice 2πi(Z τ + Z).

2) The divisor of fα,β(τ, x) is (0)− (2πi
(ατ + β)

N
).

3) fα,β(τ, x) = x+O(x2) for x→ 0 and for all λ, µ ∈ Z there exists an N -th root of unity ν so that

fα,β(τ, x+ 2πi(λτ + µ)) = ν · fα,β(τ, x)

i.e. x 7→ fNα,β(τ, x) is doubly periodic with respect to 2πi(Z τ + Z).

Proof. From 1.16, we see that there exists a fα,β(τ, x) satisfying fα,β(τ, x), and is unique up to multiplication

with a trivial theta function. Now fNα,β is a theta function with divisor N · ((0) − (2πi
ατ + β

N
)). But

N · (0− 2πi
ατ + β

N
) ∈ 2πi(Z τ + Z), so there is an elliptic function g with the same divisor. fNα,β/g is then a

theta function without zeros and poles, by 1.16 this should be trivial θ. So by multiplying fα,β by θ1/N and

constant, we may assume fNα,β is elliptic with respect to 2πi(Z τ + Z) and satisfies fα,β(τ, x) = x+O(x2) as

x→ 0. This fNα,β is uniquely determined and fα,β is uniquely determined by the normalization condition.

Theorem 2.7. Let ω = 2πi
ατ + β

N
, and fα,β(τ, x) as before.

(a) fα,β(τ, x) = eαx/N
Φ(τ, x)Φ(τ,−ω)
Φ(τ, x− ω)

.

(b) fα,β(τ, x+ 2πi(λτ + µ)) = e2πi(αµ−βλ)/N · fα,β(τ, x) for all λ, µ ∈ Z.

(c) fα,β(γ(τ),
x

cτ + d
)(cτ + d) = f(α,β)γ(τ, x) for all γ ∈ SL2(Z). In particular, f0,β(τ, x) is a Jacobi form on

Γ1(N) of weight −1.
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Proof. To prove (a), we need to show that right-hand side satisfies the conditions in 2.6. From the properties

of Φ we immediately see 1) and 2). For 3) we prove (b) for right-hand side and we will conclude (a),(b) at

once. By Theorem 1.15 we see the change x 7→ x+ 2πi(λτ + µ) produces the extra factor

e2πi(αλτ+αµ)/N · e−λ2/2e−λx(−1)λ+µ

e−λ2/2e−λ(x−ω)(−1)λ+µ
= e2πi(αλτ+αµ)/N · e−2πi(λατ+λβ)/N = e2πi(αµ−βλ)/N

Finally, for (c) we again claim that left-hand side satisfies conditions 1),2),3) for (α′, β′) = (α, β)γ. For 3),

write (λ′, µ′)γ = (λ, µ),

fα,β(γ(τ),
x+ 2πi(λτ + µ)

cτ + d
) = fα,β(γ(τ),

x+ 2πi(λ′(aτ + b) + µ′(cτ + d))

cτ + d
)

= fα,β(γ(τ),
x

cτ + d
+ 2πi(λ′γ(τ) + µ′))

= e2πi(αµ
′−βλ′) · fα,β(γ(τ),

x

cτ + d
)

(1)

This also implies 1), and clearly the function is also normalized as x + O(x2) for x → 0. Simple zero at 0,

and simple pole at
x

cτ + d
= 2πi

αγ(τ + β)

N
, x = 2πi

α(aτ + b) + β(cτ + d)

N
= 2πi

α′τ + β′

N
. This checks 2)

and finished the proof.

We call the genera defined by these fα,β complex elliptic genera of level N .

Corollary 2.8. The complex elliptic genera of level N defined by fα,β are modular forms of weight d on

Γ, where Γ consists of those γ ∈ SL2(Z) such that (α, β)γ ≡ (α, β) (N). For f0,β this is Γ1(N).

Proof. Exactly same argument as in level 2. Remember that 2.7 tells us that fα,β(τ, x) is a Jacobi form on

Γ of weight −1. For γ =
(
a b
c g

)
∈ SL2(Z),

φ(X)[γ]d(τ) = {
d∏

i=1

xi
fα,β(γ(τ), xi)

}2d(cτ + d)−d[X] = {
d∏

i=1

xi/(cτ + d)

fα,β(γ(τ), xi/(cτ + d))
}2d[X]

= {
d∏

i=1

xi
f(α,β)γ(τ, xi)

}2d[X] = φ(X)(τ)

So if in particular γ ∈ Γ, this shows that φ(X)(τ) is invariant under [γ]d for γ ∈ Γ. In general [γ]d for

γ ∈ SL2(Z) transforms it to other elliptic genera of level N defined by f(α,β)γ . Thus it remains to show that

all elliptic genera of level N defined by fα,β is holomophic on H and at ∞. We may assume 0 ≤ α, β < N .

Recall that we have the product expansion (ω = 2πi
(ατ + β)

N
)

fα,β(τ, x) = eαx/N · Φ(τ, x)Φ(τ,−ω)
Φ(τ, x− ω)

= eαx/N
(ex/2 − e−x/2)(1− eω)

(ex/2 − e−x/2+ω)
·

∞∏
n=1

(1− qnex)(1− qne−x)(1− qneω)(1− qne−ω)

(1− qnex−ω)(1− qne−x+ω)(1− qn)2

From our assumption 0 ≤ α < N and all n ≥ 1 we see that the elliptic genera has an expansion in q1/N ,

converging for |q| < 1.
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3 More genera and twisted genera

3.1 Â genus

Definition 3.1. Let X be a differentiable manifold of dimension 2k and W a complex vector bundle over

X. Then the twisted Â-genus Â(X,W ) is defined as

Â(X,W ) = (

k∏
i=1

xi/2

sinh(xi/2)
· ch(W ))[X]

where c(TCX) = (1 + x1) · · · (1 + xk)(1− x1) · · · (1− xk), p(TX) = (1 + x21) · · · (1 + x2k), and ch is the Chern

character.

Theorem 3.2. For a spin manifold X, Â(X,W ) ∈ Z.

Proof. Since X is spin, it has a global spinor bundle S → X. Now for any complex vector bundle W , give it

a trivial Clifford module structure and we obtain a Clifford module E = S ⊗W . Take a Clifford connection

∇E on E, consider the associated Dirac operator D, defined by the composition

Γ(X,E)
∇E

−→ Γ(X,T ∗X ⊗ E)
c−→ Γ(X,E)

where c is the bundle isomorphism from
∧
T ∗X to the Clifford bundle C(X). In local coordinates, D =∑

i

c(dxi)∇E
∂i
. We see that D : Γ(X,E±) → Γ(X,E∓), so that we can write

D =

 0 D−

D+ 0


where D± are the restrictions of D to Γ(X,E±). The index of D is defined to be

ind(D) = dim(KerD+)− dim(KerD−)

which is obviously an integer. The Atiyah-Singer index theorem says that

ind(D) =

∫
X

Â(X). ch(W )

where the Â(X) means the class

k∏
i=1

xi/2

sinh(xi/2)
here, so the right hand side is exact the definition of Â(X,W )

in our article.

Definition 3.3. Now let X be a compact oriented differentiable manifold of dimension 4k. Define φ̃(X)(τ)

as viewing the components xiφ1(τ, xi) as weight 0 with respect to the ·̃ operator (1.7), that is,

φ̃(X)(τ) = {
2k∏
i=1

xi
2τ
φ1(

−1

2τ
,
xi
2τ

)}4k[X]
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On the other hand, view φ(X)(τ) as a modular form of weight 2k with respect to Γ0(2) (2.4), so that we

have the expression

φ̃(X)(τ) = φ(X)(
−1

2τ
)(2τ)−2k = φ(X)[

(
0 −1
1 0

)
]2k(2τ)

In fact, φ̃(X)(τ) = φ̃(X)(τ), since

φ̃(X)(τ) = {
2k∏
i=1

xi
2τ
φ1(

−1

2τ
,
xi
2τ

)}4k[X] = {
2k∏
i=1

xiφ1(
−1

2τ
, xi)}4k[X] · (2τ)−2k = φ(X)(

−1

2τ
)(2τ)−2k = φ̃(X)(τ)

Since ·̃ induces a graded automorphism of M∗(Γ0(2)), we conclude that φ̃(X)(τ) is also a modular form of

weight 2k.

Definition 3.4. Let r = rankE. We define formally the expressions

∧
t
E =

∞∑
k=0

(
∧k

E) · tk, StE =

∞∑
k=0

(SkE) · tk

Then in view of the formulas

r∑
k=0

ch(
∧k

E∗) · tk =

r∏
i=1

(1 + te−xi),

∞∑
k=0

ch(SkE∗) · tk =

r∏
i=1

(1 + te−xi + t2e−2xi + · · · )

We will denote these expressions by

ch(
∧

t
E∗) =

r∏
i=1

(1 + te−xi), ch(StE
∗) =

r∏
i=1

1

1− te−xi

r = rankE. Thus we can also put these expression into the twisted genera.

Theorem 3.5.

φ̃(X)(τ) = Â(X,
⊗

n=2m+1

∧
−qn

TC ⊗
⊗

n=2m+2

SqnTC) · (
∏

n=2m+2(1− qn)2∏
n=2m+1(1− qn)2

)2k

Proof.

φ̃(X)(τ) = {
2k∏
i=1

xi
2τ
φ1(

−1

2τ
,
xi
2τ

)}4k[X] = {
2k∏
i=1

xiφ2(2τ, xi)}4k[X]

= {
2k∏
i=1

xi
exi/2 − e−xi/2

∏
n=2m+1(1− qnexi)(1− qne−xi)/(1− qn)2∏
n=2m+2(1− qnexi)(1− qne−xi)/(1− qn)2

}4k[X]

= {
2k∏
i=1

xi/2

sinh(xi/2)

∏
n=2m+1(1− qnexi)(1− qne−xi)∏
n=2m+2(1− qnexi)(1− qne−xi)

}4k[X] · (
∏

n=2m+2(1− qn)2∏
n=2m+1(1− qn)2

)2k

= Â(X,
⊗

n=2m+1

∧
−qn

TC ⊗
⊗

n=2m+2

SqnTC) · (
∏

n=2m+2(1− qn)2∏
n=2m+1(1− qn)2

)2k
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3.2 Equivariant signature of the loop space

Definition 3.6. let X be a compact oriented differentiable manifold of dimension 4k. The equivariant

signature of the loop space is (defined as)

sign(q,L X) =

2k∏
i=1

(xi
1 + e−xi

1− e−xi
·

∞∏
n=1

(
(1 + qne−xi)(1 + qnexi)

(1− qne−xi)(1− qnexi)
))[X]

Corollary 3.7.

sign(q,L X) = 22k · φ(X) · (
∞∏

n=1

(1 + qn)2

(1− qn)2
)2k

Proof. By definition and the product expansion of φ1(τ, x) (2.1),

sign(q,L X) = 22k ·
2k∏
i=1

(xi ·
1

2

exi/2 + e−xi/2

exi/2 − e−xi/2
·

∞∏
n=1

(
(1 + qne−xi)(1 + qnexi)/(1 + qn)2

(1− qne−xi)(1− qnexi)/(1− qn)2
))[X] · (

∞∏
n=1

(1 + qn)2

(1− qn)2
)2k

= 22k ·
2k∏
i=1

xiφ1(τ, xi)[X] · (
∞∏

n=1

(1 + qn)2

(1− qn)2
)2k

= 22k · φ(X) · (
∞∏

n=1

(1 + qn)2

(1− qn)2
)2k

Theorem 3.8 (Hirzebruch signature theorem). For a compact oriented differentiable manifold X of dimen-

sion 4k,

L(X) = sign(X)

where the L-genus is defined by the even power series
x

tanhx
.

Proof. (Sketch) The signature is a cobordism invariant, which is compatible with the ring structure, so it is

a genus. Moreover, sign(CP2n) = 1 = L(CP2n), and CP2n generates Ω⊗Q, we have sign = L.

Corollary 3.9. The constant term of sign(q,L X) is sign(X).

Proof. The constant term is

{
2k∏
i=1

xi
1 + e−xi

1− e−xi
}4k[X] = 2−2k{

2k∏
i=1

(2xi)
1 + e−2xi

1− e−2xi
}4k[X] = {

2k∏
i=1

xi
tanhxi

}4k[X] = L(X) = sign(X)
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3.3 χy-genus of the loop space

Definition 3.10. Let X be a compact complex manifold of complex dimension d, then the Hodge numbers

are defined as hp,q = hq(X,Ωp) and the p-th holomorphic Euler number is defined as

χp =

d∑
q=0

(−1)q · hp,q

χp is the index of the Dolbeault complex. Further define

χy(X) =

d∑
p=0

χp(X) · yp

Then the yields

Theorem 3.11.

χy(X) =

d∏
i=1

(xi
1 + y · e−xi

1− e−xi
)[X]

Proof. This is a corollary of the Atiyah-Singer index theorem on elliptic complexes. Apply it on the Dolbeault

complex:

χp =

d∑
q=0

(−1)q · hp,q = ((

d∑
q=0

(−1)q ch(
∧p

T ∗ ⊗
∧q

T ))

d∏
i=1

(
xi

1− e−xi
· 1

1− exi
))[X]

= (ch(
∧p

T ∗)(

d∑
q=0

(−1)q ch(
∧q

T ))

d∏
i=1

(
xi

1− e−xi
· 1

1− exi
))[X]

= (ch(
∧p

T ∗)

d∏
i=1

(
xi

1− e−xi
))[X]

So now

χy(X) = ((

d∑
p=0

ch(
∧p

T ∗) · yp)
d∏

i=1

(
xi

1− e−xi
))[X] =

d∏
i=1

(xi
1 + y · e−xi

1− e−xi
)[X]

This is not actually a genus since the power series does not begin with 1, so we must normalize it to obtain

a genus

χy(X)

(1 + y)d
=

d∏
i=1

(xi
1 + ye−xi

1− e−xi
· 1

1 + y
)[X]

Also, we can define the twisted χy-genus for a complex vector bundle E over X by replacing hp,q = hq(X,Ωp)

by hq(X,Ωp ⊗ E), similarly we get

χy(X,E) = (

d∏
i=1

xi
1 + ye−xi

1− e−xi
· ch(E))[X]

In the last section, we will turn some expression into these twisted genera and deduce integrality from that

of hq(X,Ωp ⊗ E).
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Definition 3.12. Assume 2N |d. Let −y = eα be an N -th root of unity. We define the χy-genus of the loop

space

χy(q,L X) = (

d∏
i=1

xi ·
1 + ye−xi

1− e−xi
(

∞∏
n=1

1 + yqne−xi

1− qne−xi
· 1 + y−1qnexi

1− qnexi
))[X]

In view of 3.4,

χy(q,L X) = χy(X,

∞⊗
n=1

∧
yqn

T ∗ ⊗
∞⊗

n=1

SqnT
∗ ⊗

∞⊗
n=1

∧
y−1qn

T ⊗
∞⊗

n=1

SqnT )

Theorem 3.13. Assume 2N |d. Let α = 2πik/N with 0 < k < N and gcd(k,N) = 1, −y = eα, then

χy(q,L X) = φN,α(X) · Φ(−α)d · (−y)d/2

Also, Φ(τ,−α)−d is a modular form of weight d on Γ1(N). Hence, χy(q,L X) is a modular function on

Γ1(N), that is, an automorphic form of weight 0.

Proof. Simply recall −y = eα,

Φ(x) = (ex/2 − e−x/2) ·
∞∏

n=1

(1− qnex)(1− qne−x)

(1− qn)2

and φN,α(X) is defined by f(x) =
Φ(x)Φ(x− α)

Φ(−α)
. Now we get

χy(q,L X) = (

d∏
i=1

xi ·
1− e−(xi−α)

1− e−xi
(

∞∏
n=1

1− qne−(xi−α)

1− qne−xi
· 1− qnexi−α

1− qnexi
))[X]

= (

d∏
i=1

xi ·
1− e−(xi−α)

1− e−xi
· exi/2 − e−xi/2

e(xi−α)/2 − e−(xi−α)/2
· Φ(xi − α)

Φ(xi)
)[X]

= (

d∏
i=1

xie
α/2Φ(xi − α)

Φ(xi)
)[X]

= (

d∏
i=1

xi
f(xi)

)[X] · Φ(−α)d · edα/2

= φN,α(X) · Φ(−α)d · (−y)d/2

Next, using 1.15 we compute for γ =
(
a b
c g

)
∈ Γ1(N),

Φ(γ(τ),−α) · (cτ + g) = Φ(γ(τ),
−α(cτ + g)

cτ + g
) · (cτ + g)

= exp(
cα2(cτ + g)2

4πi(cτ + g)
) · Φ(τ,−α(cτ + g))

= exp(2πiτ
k2c2

2N2
) · exp(2πik

2cg

2N2
) · Φ(τ, −2πik

N
+ 2πi · (−kc

N
τ +

−k(g − 1)

N
))

= qk
2c2/2N2

· exp(2πik
2cg

2N2
) · q−k2c2/2N2

exp(−2πi
k2c

N2
) · (−1)

−kc
N − k(g−1)

N · Φ(τ, −2πik

N
)

= exp(2πi
k2c(g − 2)

2N2
) · (−1)−k(c+g−1)/N · Φ(τ,−α)
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Notice that N |c and N |(g − 1). Now if we consider the power Φ(τ,−α)2N , we will see the difference factor

becomes 1.

Next we show that Φ(τ,−α)−2N is holomorphic at all cusps. For general γ =
(
a b
c g

)
∈ SL2(Z), we see during

the above computation that

Φ(γ(τ),−α)−1 · (cτ + g)−1 = C1q
−k2c2/2N2

· Φ(τ, 2πiτ(−kc
N

) + C2)

where C1, C2 are constants independent of τ that are not important for now. We may assume c ≥ 0, if not,

replacing γ by −γ. Plug in the product form of Φ and try to cancel the negative powers of q, it suffices to

show that

−k
2c2

2N2
+

kc

2N
+ (

kc

N
− 1) + · · ·+ (

kc

N
− l) ≥ 0

where l =

⌊
kc

N

⌋
. Summing and completing the square, the above quantity is

−1

2
(l +

1

2
− kc

N
)2 +

1

8

But by the definition of l,

−1

2
< l +

1

2
− kc

N
≤ 1

2

we thus conclude that the quantity is nonnegative and Φ(τ, α)−2N has an expansion in q1/N , i.e. it is

holomorphic at every cusp of Γ1(N) and on H.

Summing up, we get Φ(τ,−α)−2N is a modular form on Γ1(N) of weight 2N . Since 2N |d, Φ(τ,−α)−d is

then a modular form on Γ1(N) of weight d. Quotient and we know χy(q,L X) is a modular function.

4 A divisibility theorem for elliptic genera

4.1 Ochanine’s theorem on spin manifolds

Theorem 4.1. Let W be the complex extension of a real vector bundle over a compact, oriented, differen-

tiable spin manifold X with dimX ≡ 4 (8). Then Â(X,W ) ∈ 2Z.

Proof. (Sketch) In the proof of 3.2, we consider the Dirac operator D : Γ(X,E±) → Γ(X,E∓) with

D =

 0 D−

D+ 0


where E = S ⊗W . The Atiyah-Singer index theorem says that

Â(X,W ) = ind(D) = dim(KerD+)− dim(KerD−)

But when dimM ≡ 4 (8) and that W comes from a real bundle, in fact there is a quaternionic structure on

KerD+ and KerD−, so as complex vector spaces they have even dimensions. Thus Â(X,W ) ∈ 2Z.
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For the original proof, see [AtHi].

Theorem 4.2 (Ochanine). Let X be a compact, oriented, differentiable spin manifold with dimX ≡ 4 (8).

Then

sign(X) ≡ 0 (16)

Proof. First recall that the elliptic genus (2.2)

φ(X)(τ) = {
2k∏
i=1

xiφ1(τ, xi)}4k[X]

Recall that ·̃ : M∗(Γ0(2)) → M∗(Γ0(2)) is a well-defined automorphism of graded algebra (1.7). From 1.9,

M∗(Γ0(2)) = C[δ, ϵ], so we know that M∗(Γ0(2)) = C[δ̃, ϵ̃] as well. Also, recall that φ(X)(τ), φ̃(X)(τ) ∈

M2k(Γ0(2)) (2.4, 3.3). We now can write φ̃(X) as a polynomial in 8δ̃ and ϵ̃:

φ̃(X) =
∑

2a+4b=2k

ca,b · (8δ̃)a · ϵ̃b = P (8δ̃, ϵ̃)

where ca,b ∈ C for now. But φ̃1(τ, x) = φ1(
−1

2τ
,
x

2τ
)(2τ)−1 = φ2(2τ, x). Recall that φ̃(X)(τ) has the

expansion (3.5)

φ̃(X)(τ) = Â(X,
⊗

n=2m+1

∧
−qn

TC ⊗
⊗

n=2m+2

SqnTC) · (
∏

n=2m+2(1− qn)2∏
n=2m+1(1− qn)2

)2k

The product factor has an integral q-expansion, while the q-coefficient of the other factor is some twisted

Â-genera Â(X,W ).

Now if X is spin, we know that Â(X,W ) ∈ Z (3.2). Thus φ̃(X)(τ) has an integral q-expansion. Recall that

we have computed the Fourier coefficients (1.8)

8δ̃ = −1 + · · · , ϵ̃ = q + · · ·

These facts implies that the coefficients ca,b must also be integral by induction. Hence φ̃ ∈ Z[8δ̃, ϵ̃]. Apply

the inverse of ·̃ we get φ ∈ Z[8δ, ϵ].

Finally, by 3.7,

sign(q,L X) = 22kφ(X) · (
∞∏

n=1

(1 + qn)2

(1− qn)2
)2k

The product factor again has an integral q-expansion, and the other factor

22kφ(X) = 22kP (8δ, ϵ) = P (32δ, 16ϵ)

where we again have computed the Fourier coefficients

32δ = 8(1 + 24q + · · · ), 16ϵ = 1 + 16q + · · ·
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If our manifold has dimension 4k with k odd, then the polynomial P (32δ, 16ϵ) is divisible by 32δ, otherwise

the weight could not be 2k. (Note that ϵ has weight 4.) Hence all q-coefficients of sign(q,L X) are divisible

by 8:

sign(q,L X) ≡ 0 (8)

Moreover, by 4.1, in above argument the genera Â(X,W ) ∈ 2Z since each W comes from real operations of

TC = TX ⊗R C, thus a complex extension of a real vector bundle. We conclude that the coefficients ca,b of

P must be even, and that

sign(q,L X) ≡ 0 (16)

In particular this holds for the constant term, the signature of X (3.9).

4.2 Complex analogue

Let X be a compact complex manifold of dimension d.

Theorem 4.3. Let α = 2πik/N with 0 < k < N and gcd(k,N) = 1. −y = eα, then

φN,α(τ) =
(q-expansion with coefficients in Z[y])

(1 + y)d

Proof. Recall 3.13 that

χy(q,L X) = φN,α(X) · Φ(τ,−α)d · (−y)d/2

But on the other hand, from 3.12,

χy(q,L X) = χy(X,

∞⊗
n=1

∧
yqn

T ∗ ⊗
∞⊗

n=1

SqnT
∗ ⊗

∞⊗
n=1

∧
y−1qn

T ⊗
∞⊗

n=1

SqnT )

Notice that the coefficients of qi are the sum of twisted χy-genera multiplying with powers of y, thus in Z[y].

Next we directly expand Φ(τ,−α):

Φ(τ,−α)d = ((e−α/2 − eα/2) · (1 + integral q-expansion))d

= e−dα/2(1− eα)d · (1 + integral q-expansion)

= (−y)−d/2(1 + y)d · (1 + integral q-expansion)

Combining all of these we get the desired result.

Since the q-expansion of χy(q,L X) starts with χy(X), the value of φN,α(X) at ∞ is
χy(X)

(1 + y)d
.

If N = 2 and y = 1, Z[y] = Z and the numerator is an integral q-expansion.

We consider the expansion at some other cusps. To do this we can also change the N -division point to

α = 2πikτ/N .
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Theorem 4.4. Assume c1(X) ≡ 0 (N), which is equivalent to that K = LN for some line bundle L. For

α = 2πikτ/N with 0 < k < N and gcd(k,N) = 1, the q-expansion of φ̃N,α(X)(τ) = φN,α(Nτ) has integral

coefficients.

Proof. Recall (2.7) that for this N -division point, the power series we consider takes the form

f(x) = e(k/N)x · Φ(τ, x)Φ(τ,−α)
Φ(τ, x− α)

Insert α = 2πiτ
k

N
, we get

φN,α(X) = (

d∏
i=1

(
xi

1− e−xi
·1− qk/Ne−xi

1− qk/N
·e−(k/N)xi ·

∞∏
n=1

(1− qn+k/Ne−xi)(1− qn−k/Nexi)(1− qn)2

(1− qne−xi)(1− qnexi)(1− qn+k/N )(1− qn−k/N )
))[X]

φN,α(X)(τ) is a modular form on Γ1(N). We replace q by qN and obtain a modular form on Γ1(N).

Now notice that

d∏
i=1

xi
1− e−xi

is the Todd class of X and

d∏
i=1

e−(k/N)xi = e(k/N)c1(K) = ch(Kk/N ). By

Riemann-Roch theorem we get

φ̃N,α(X) =

∞∏
n=1

(1− qnN )2

(1− qnN+k)(1− qnN−k)

· χ(X,Kk/N ⊗
⊗

n≡k(N),n≥N+k

∧
qn
T ∗ ⊗

∞⊗
n=1

SqnT
∗ ⊗

⊗
n≡−k(N),n≥N−k

∧
qn
T ⊗

∞⊗
n=1

SqnT )

Thus the integrality of coefficients of qi comes from that of χ(X,Kk/N ⊗W ), since c1(X) ≡ 0 (N).
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