GEOMETRY FINAL EXAM

1. Given $L(x, \xi)$, derive the Euler–Lagrange equations of the action

$$S[\gamma] = \int_a^b L(x, \dot{x}) \, dt$$

for end-points fixed γ . When x^i and $p_i := \partial L / \partial \dot{x}^i$ can be used as coordinates for (x, ξ) , prove its equivalence with Hamilton's equations

$$\dot{x}^i = \partial H / \partial p_i, \qquad \dot{p}_i = -\partial H / \partial x^i,$$

where $H(x, p) := \sum_{i} p_i \xi^i(x, p) - L(x, \xi(x, p))$ is the energy.

2. Prove Cartan's homotopy formula

$$L_X = \iota_X d + d\iota_X$$

on forms, and show that for a Hamiltonian system $\dot{y} = \nabla H(y)$ defined by a general symplectic form Ω we have $\dot{\Omega} = 0$.

3. Show that the second variation for $S[\gamma] = \frac{1}{2} \int_a^b \sum_{i,j} g_{ij} \dot{x}^i \dot{x}^j dt$ is

$$G_{\gamma}(\xi,\eta) = -\int_{a}^{b} \langle \nabla_{T}^{2}\xi + R(\xi,T)T,\eta \rangle \, dt$$

where γ is a geodesic and $T := d/dt = \gamma' = \sum_i \dot{x}^i \partial_i$. If $R_{ij} \ge (n-1)K g_{ij}$ for some constant *K* > 0, show that a curve with length > π/\sqrt{K} is not shortest.

4. For the Hilbert–Einstein action $S[g^{ij}] = \int_S R \, d\sigma = \int_S R \sqrt{|g|} \, d^n x$, show that

$$\frac{1}{\sqrt{|g|}}\frac{\delta S}{\delta g^{ij}} = R_{ij} - \frac{1}{2}Rg_{ij}$$

for fast decayed g^{ij} . Determine its energy-momentum tensor T_{ij} . (If you do not know how to do it, give its general definition and prove $\bigtriangledown_k T_i^k = 0.$)

5. For $A = \sum_i A_i(x) dx^i \in \Lambda^1(\mathfrak{g})$, where $\mathfrak{g} \subset M(n, \mathbb{R})$ is a matrix Lie algebra, define $\nabla_i = \partial_i + A_i$ and curvature *F* by $F(X, Y)\psi := ([\nabla_X, \nabla_Y] - \nabla_{[X,Y]})\psi$. Show

(1) *F* is a tensor and $F = dA + A \land A \in \Lambda^2(\mathfrak{g})$, i.e. $F_{ij} = \partial_i A_j - \partial_j A_i + [A_i, A_j]$.

- (2) $\nabla_i B = \partial_i B + [A_i, B]$ for B(x) a g-valued function,
- (3) Bianchi's identity $d_A F = 0$, where $d_A \equiv D : \Lambda^k(\mathfrak{g}) \to \Lambda^{k+1}(\mathfrak{g})$ extends \bigtriangledown . (4) For a non-degenerate Killing form \langle , \rangle of \mathfrak{g} , any extremal A for

$$S[A] = \int_{S} \langle F^{ij}, F_{ij} \rangle \, d\sigma$$

with fast decay satisfies the Yang–Mills equation $d_A^* F = 0$.

6. Show anything "significant" in the last two chapters of the book or in my class which you have "well prepared" but not on the above.

Date: pm 1:20 - 5:00, January 13, 2017 at AMB 101, A course by Chin-Lung Wang at NTU. Show your answers/computations/proofs in details. Each problem deserves 20 points.