GEOMETRY FINAL EXAM

1. Given $L(x, \xi)$, derive the Euler-Lagrange equations of the action

$$
S[\gamma]=\int_{a}^{b} L(x, \dot{x}) d t
$$

for end-points fixed γ. When x^{i} and $p_{i}:=\partial L / \partial \dot{x}^{i}$ can be used as coordinates for (x, ξ), prove its equivalence with Hamilton's equations

$$
\dot{x}^{i}=\partial H / \partial p_{i}, \quad \dot{p}_{i}=-\partial H / \partial x^{i}
$$

where $H(x, p):=\sum_{i} p_{i} \xi^{i}(x, p)-L(x, \xi(x, p))$ is the energy.
2. Prove Cartan's homotopy formula

$$
L_{X}=\iota_{X} d+d \iota_{X}
$$

on forms, and show that for a Hamiltonian system $\dot{y}=\nabla H(y)$ defined by a general symplectic form Ω we have $\dot{\Omega}=0$.
3. Show that the second variation for $S[\gamma]=\frac{1}{2} \int_{a}^{b} \sum_{i, j} g_{i j} \dot{x}^{i} \dot{x}^{j} d t$ is

$$
G_{\gamma}(\xi, \eta)=-\int_{a}^{b}\left\langle\nabla_{T}^{2} \xi+R(\xi, T) T, \eta\right\rangle d t
$$

where γ is a geodesic and $T:=d / d t=\gamma^{\prime}=\sum_{i} \dot{x}^{i} \partial_{i}$. If $R_{i j} \geq(n-1) K g_{i j}$ for some constant $K>0$, show that a curve with length $>\pi / \sqrt{K}$ is not shortest.
4. For the Hilbert-Einstein action $S\left[g^{i j}\right]=\int_{S} R d \sigma=\int_{S} R \sqrt{|g|} d^{n} x$, show that

$$
\frac{1}{\sqrt{|g|}} \frac{\delta S}{\delta g^{i j}}=R_{i j}-\frac{1}{2} R g_{i j}
$$

for fast decayed $g^{i j}$. Determine its energy-momentum tensor $T_{i j}$. (If you do not know how to do it, give its general definition and prove $\nabla_{k} T_{i}^{k}=0$.)
5. For $A=\sum_{i} A_{i}(x) d x^{i} \in \Lambda^{1}(\mathfrak{g})$, where $\mathfrak{g} \subset M(n, \mathbb{R})$ is a matrix Lie algebra, define $\nabla_{i}=\partial_{i}+A_{i}$ and curvature F by $F(X, Y) \psi:=\left(\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}\right) \psi$. Show
(1) F is a tensor and $F=d A+A \wedge A \in \Lambda^{2}(\mathfrak{g})$, i.e. $F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}+\left[A_{i}, A_{j}\right]$.
(2) $\nabla_{i} B=\partial_{i} B+\left[A_{i}, B\right]$ for $B(x)$ a \mathfrak{g}-valued function,
(3) Bianchi's identity $d_{A} F=0$, where $d_{A} \equiv D: \Lambda^{k}(\mathfrak{g}) \rightarrow \Lambda^{k+1}(\mathfrak{g})$ extends ∇.
(4) For a non-degenerate Killing form \langle,$\rangle of \mathfrak{g}$, any extremal A for

$$
S[A]=\int_{S}\left\langle F^{i j}, F_{i j}\right\rangle d \sigma
$$

with fast decay satisfies the Yang-Mills equation $d_{A}^{*} F=0$.
6. Show anything "significant" in the last two chapters of the book or in my class which you have "well prepared" but not on the above.

[^0]
[^0]: Date: pm 1:20-5:00, January 13, 2017 at AMB 101, A course by Chin-Lung Wang at NTU. Show your answers/computations/proofs in details. Each problem deserves 20 points.

