GEOMETRY 2016 MIDTERM EXAM - II

- 1. [Lie derivative] (20 pts)
 - (a) Define $L_{\xi}T$ of a tensor field T along a vector field ξ and compute $L_{\xi}T_{j_1\cdots j_q}^{i_1\cdots i_p}$.
 - (b) Show that $L_{\xi}\eta = [\xi, \eta]$ for vector field η and $L_{\xi}d = dL_{\xi}$ on differential forms.
- 2. [Cartan *d* and Hodge * in *n* dimensional Riemannian space] (20 pts)
 - (a) Define $*: \Lambda^p \to \Lambda^{n-p}$ by

$$(*T)_{i_{p+1}\cdots i_n} = \frac{1}{p!}\sqrt{g}\,\epsilon_{i_1\cdots i_n}\,T^{i_1\cdots i_p}.$$

Show that $*^2 = (-1)^{p(n-p)}$ and $T \wedge *S = \{T, S\} d\sigma$.

- (b) On Ω_{U}^{p} forms supported in a bounded region U, with $\langle \omega_{1}, \omega_{2} \rangle := \int_{U} \omega_{1} \wedge * \omega_{2}$, show that the adjoint of *d* is given by $\delta := (-1)^{np-n+1} * d *$ and $\delta^2 = 0$.
- (c) Let $\triangle = d\delta + \delta d$. Show that \triangle is self-adjoint and it commutes with *d*, δ and *.
- (d) $\triangle \omega = 0$ if and only if $d\omega = 0$ and $\delta \omega = 0$. If furthermore $\omega = d\eta$ then $\omega = 0$.
- 3. [Invariant metric on classical Lie groups] (20 pts)
 - (a) For a matrix group *G* with $X \in \mathfrak{g}$, show that R_X define by $R_X(A) = -XA$ for $A \in G$ is right invariant. Also $[R_X, R_Y] = R_{[X,Y]}$ and $[L_X, R_Y] = 0$.
 - (b) Show that a left invariant metric \langle , \rangle defined by a Killing form is bi-invariant and $\Omega(L_X, L_Y, L_Z) := \langle [L_X, L_Y], L_Z \rangle \text{ is a 3-form with } d\Omega = 0.$ (c) With \langle , \rangle in (b), determine ∇^{LC} and all geodesics through $e \in G$.
- 4. [Geodesic normal coordinates] (20 pts)
 - (a) Show that $\exp_p : \mathbb{R}^n \cong T_p \to U$ defined by geodesics $\xi \mapsto \gamma_{\xi}(1)$ is invertible near *p*, and Γ_{ii}^k and $\partial_k g_{ij}$ all vanish at *p*.
 - (b) For a surface U with polar coordinates (ρ, θ) induced from T_{ν} , show that F = $\langle \partial_{\rho}, \partial_{\theta} \rangle = 0$. Also $G(0, \theta) = 1$, $\sqrt{G}_{\rho}(0, \theta) = 0$ and $K = -\sqrt{G}_{\rho\rho}/\sqrt{G}$.
- 5. [Pseudo-Riemannian space with Levi-Civita connection] (20 pts)
 - (a) Prove the two Bianchi identities $R^i_{[jkl]=0}$ and $R^i_{j[kl;m]=0}$.
 - (b) Show that $\nabla_i R_m^i = \frac{1}{2} \partial_m R$. If $R_{ij} = \lambda g_{ij}$, when can we deduce that λ is a constant?
 - (c) For n = 3 show that R_{ijkl} is determined by R_{ij} .
- **6.** [Gauss–Bonnet theorem on a surface] (20 pts)
 - (a) Let α be a piecewise smooth closed curve bounding a region Ω in a surface. Prove that $\int_{\Omega} K dA = \theta_{\alpha}$ where θ_{α} is the holonomy angle along the curve.
 - (b) Prove the local Gauss–Bonnet Theorem

$$2\pi = \sum_{\text{outer angles}} \alpha_j + \int_{\partial \Omega} k_g \, d\ell + \int_{\Omega} K \, dA.$$

Date: pm 1:20 - 5:00, December 2, 2016 at AMB 101, A course by Chin-Lung Wang at NTU. Show your answers/computations/proofs in details. You may work on each part separately by assuming other parts.