1. [Lie derivative] (20 pts)
(a) Define $L_{\xi} T$ of a tensor field T along a vector field ξ and compute $L_{\xi} T_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}$.
(b) Show that $L_{\xi} \eta=[\xi, \eta]$ for vector field η and $L_{\xi} d=d L_{\xi}$ on differential forms.
2. [Cartan d and Hodge $*$ in n dimensional Riemannian space] (20 pts)
(a) Define $*: \Lambda^{p} \rightarrow \Lambda^{n-p}$ by

$$
(* T)_{i_{p+1} \cdots i_{n}}=\frac{1}{p!} \sqrt{g} \epsilon_{i_{1} \cdots i_{n}} T^{i_{1} \cdots i_{p}} .
$$

Show that $*^{2}=(-1)^{p(n-p)}$ and $T \wedge * S=\{T, S\} d \sigma$.
(b) On Ω_{U}^{p}, forms supported in a bounded region U, with $\left\langle\omega_{1}, \omega_{2}\right\rangle:=\int_{U} \omega_{1} \wedge * \omega_{2}$, show that the adjoint of d is given by $\delta:=(-1)^{n p-n+1} * d *$ and $\delta^{2}=0$.
(c) Let $\triangle=d \delta+\delta d$. Show that \triangle is self-adjoint and it commutes with d, δ and $*$.
(d) $\Delta \omega=0$ if and only if $d \omega=0$ and $\delta \omega=0$. If furthermore $\omega=d \eta$ then $\omega=0$.
3. [Invariant metric on classical Lie groups] (20 pts)
(a) For a matrix group G with $X \in \mathfrak{g}$, show that R_{X} define by $R_{X}(A)=-X A$ for $A \in G$ is right invariant. Also $\left[R_{X}, R_{Y}\right]=R_{[X, Y]}$ and $\left[L_{X}, R_{Y}\right]=0$.
(b) Show that a left invariant metric \langle,$\rangle defined by a Killing form is bi-invariant and$ $\Omega\left(L_{X}, L_{Y}, L_{Z}\right):=\left\langle\left[L_{X}, L_{Y}\right], L_{Z}\right\rangle$ is a 3-form with $d \Omega=0$.
(c) With \langle,$\rangle in (b), determine \nabla^{L C}$ and all geodesics through $e \in G$.
4. [Geodesic normal coordinates] (20 pts)
(a) Show that $\exp _{p}: \mathbb{R}^{n} \cong T_{p} \rightarrow U$ defined by geodesics $\xi \mapsto \gamma_{\xi}(1)$ is invertible near p, and $\Gamma_{i j}^{k}$ and $\partial_{k} g_{i j}$ all vanish at p.
(b) For a surface U with polar coordinates (ρ, θ) induced from T_{p}, show that $F=$ $\left\langle\partial_{\rho}, \partial_{\theta}\right\rangle=0$. Also $G(0, \theta)=1, \sqrt{G}_{\rho}(0, \theta)=0$ and $K=-\sqrt{G}_{\rho \rho} / \sqrt{G}$.
5. [Pseudo-Riemannian space with Levi-Civita connection] (20 pts)
(a) Prove the two Bianchi identities $R_{[j k l]=0}^{i}$ and $R_{j[k l ; m]=0}^{i}$.
(b) Show that $\nabla_{i} R_{m}^{i}=\frac{1}{2} \partial_{m} R$. If $R_{i j}=\lambda g_{i j}$, when can we deduce that λ is a constant?
(c) For $n=3$ show that $R_{i j k l}$ is determined by $R_{i j}$.
6. [Gauss-Bonnet theorem on a surface] (20 pts)
(a) Let α be a piecewise smooth closed curve bounding a region Ω in a surface. Prove that $\int_{\Omega} K d A=\theta_{\alpha}$ where θ_{α} is the holonomy angle along the curve.
(b) Prove the local Gauss-Bonnet Theorem

$$
2 \pi=\sum_{\text {outer angles }} \alpha_{j}+\int_{\partial \Omega} k_{g} d \ell+\int_{\Omega} K d A .
$$

[^0]
[^0]: Date: pm 1:20-5:00, December 2, 2016 at AMB 101, A course by Chin-Lung Wang at NTU. Show your answers/computations/proofs in details. You may work on each part separately by assuming other parts.

