GEOMETRY 2016 MIDTERM EXAM - I

There are **6 problems**. Each problem deserves **20 points**. Show your answers/computations/proofs in details. You may work on each part separately by assuming other parts.

1. (a) (10 pts) Prove that a curve in \mathbb{R}^3 lies on a sphere of radius *R* if and only if its curvature κ and torsion τ satisfy

$$R^{2} = \frac{1}{\kappa^{2}} \left(1 + \frac{(d\kappa/d\ell)^{2}}{(\tau\kappa)^{2}} \right).$$

(b) (10 pts) For a curve *r* in \mathbb{R}^3 with general parameter, show that

$$\kappa = rac{|[r', r'']|}{|r'|^3}, \qquad au = -rac{(r', r'', r''')}{|[r', r'']|^2}.$$

- **2.** Let $r : [0, L] \to \mathbb{R}^n$ be a C^{∞} curve parameterized by arc length $\ell \in [0, L]$. Assume that r is n 1 regular in the sense that $r'(\ell), r''(\ell), \dots, r^{(n-1)}(\ell) \neq 0$ for any ℓ .
 - (a) (10 pts) Show that a Frenet unitary frame $\mathbf{T} = (\mathbf{t}_1, \dots, \mathbf{t}_n)^T$ can be defined so that $\mathbf{t}_1 = r'$ and

$$\mathbf{T}' = \begin{pmatrix} \kappa_1 & & & \\ -\kappa_1 & \kappa_2 & & \\ & -\kappa_2 & \ddots & \\ & & \ddots & & \\ & & & \ddots & \\ & & & -\kappa_{n-1} \end{pmatrix} \mathbf{T},$$

where all the other entries are zero.

(b) (10 pts) Conversely, given $\kappa_1, \ldots, \kappa_{n-1} \in C^{\infty}([0, L])$, show that up to Euclidean motion there is a unique curve *r* so that its Serret–Frenet frame takes the above form.

(You get partial credit for solving the cases n = 2, 3.)

- **3.** Let $S \subset \mathbb{R}^3$ be a non-singular surface with parameterization r(u, v), and let $N : S \to S^2$ be its Gauss map. Denote the two fundamental forms by $d\ell^2 = Edu^2 + 2Fdudv + Gdv^2$ and $Ldu^2 + 2Mdudv + Ndv^2$.
 - (a) (5 pts) If the two principal curvatures of a connected surface *S* coincide $\lambda_1 = \lambda_2 = \lambda$ at all points, show that λ is a constant and *S* is a portion of a sphere or a plane.
 - (b) (7 pts) Show that the matrix for dN_p , $p \in S$, in the basis r_1, r_2 of T_pS is given by

$$\frac{1}{EG-F^2} \begin{pmatrix} MF-LG & LF-ME \\ NF-MG & MF-NE \end{pmatrix}.$$

Deduce that the Gaussian curvature *K* equals $(LN - M^2)/(EG - F^2)$.

(c) (8 pts) Gauss' famous Theorema Egregium says that *K* depends only on the first fundamental form $d\ell^2$. Prove it by any method you know. For example, one way to do it is to show that when F = 0, *K* can be written in terms of $A = \sqrt{E}$ and $B = \sqrt{G}$ as

$$K = -\frac{1}{AB} \left[\left(\frac{A_2}{B} \right)_2 + \left(\frac{B_1}{A} \right)_1 \right].$$

Another way is to prove it under isothermal coordinates.

Date: pm 1:20 – 4:20, October 21, 2016 at AMB 101, A course by Chin-Lung Wang at NTU..

- **4.** Consider the surface *S* given by the graph of z = f(x, y) over \mathbb{R}^2 .
 - (a) (10 pts) Show that the mean curvature is given by

$$H = \operatorname{div}\left(\frac{\nabla f}{\sqrt{1 + |\nabla f|^2}}\right).$$

- (b) (5 pts) Let $B \subset \mathbb{R}^2$ be an open ball, $h \in C^{\infty}(\overline{B})$, $h|_{\partial B} = 0$, and $A_h(t)$ be the area of the surface S_t defined by z = f(x, y) + th(x, y). Show that $A'_h(0) = 0$ for all such h if and only if H = 0 over B.
- (c) (5 pts) If H = 0 over B, is that true S has minimal area among all S_t for t small?
- 5. Three models of two dimensional hyperbolic geometry.
 - (a) (4 pts) Lobachevsky plane: Let $L^2 \subset \mathbb{R}^{1,2}$ be the upper half of the space-like surface $t^2 x^2 y^2 = 1$, and $d\ell^2$ be the positive metric induced from $\mathbb{R}^{1,2}$. Show that

$$d\ell^2 = d\chi^2 + \sinh\chi\,d\varphi^2$$

in the pseudo-spherical coordinates (χ , φ).

(b) (4 pts) Poincaré model: Compute the stereographic projection $L^2 \to \mathbb{D}^2$ from the south pole (0, 0, -1) onto the unit disk \mathbb{D}^2 , and show that the induced metric is given by

$$d\ell^2 = rac{4|dw|^2}{(1-|w|^2)^2}.$$

(c) (4 pts) Klein model: Construct a Möbius transformation $M : \mathbb{H} \cong \mathbb{D}^2$, where $\mathbb{H} = \{z = x + iy \in \mathbb{C} \mid y > 0\}$, and show the induced metric is given by

$$d\ell^2 = \frac{dx^2 + dy^2}{y^2}.$$

- (d) (4 pts) Determine the (direct) isometry group in one of the above three models.
- (e) (4 pts) Determine the set of all geodesics in one of the three models of hyperbolic plane. In particular show that given a point p not in a geodesic γ there are infinitely many geodesics passing through p and disjoint from γ .
- **6.** Theorem L: A surface S with $d\ell^2 = e^{\varphi} |dz|^2$ and constant K is locally isometric to an open subset of either S_R^2 , \mathbb{R}^2 or L_R^2 . Prove it by the following steps. Let $\psi(z) := \varphi_{zz} \frac{1}{2}\varphi_z^2$.
 - (a) (4 pts) Show that ψ is analytic.
 - (b) (4 pts) Under an analytic coordinate change z = f(w) we get $d\ell^2 = e^{\tilde{\varphi}} |dw|^2$ and the corresponding $\tilde{\psi}(w)$. Show that

$$\widetilde{\varphi}(w) = \varphi(z) + \log |f'(w)|^2, \qquad \widetilde{\psi}(w) = (f'(w))^2 \psi(z) + \left(\frac{f''}{f'} - \frac{3}{2} \left(\frac{f''}{f'}\right)^2\right)(w).$$

- (c) (4 pts) Denote the above RHS term (the Schwarzian derivative) by $S(z;w) \equiv S(f;w)$. Show that $S(z;w) = -S(w;z)(f')^2$, and for any two independent solutions g_1, g_2 of the ODE g''(z) + I(z)g(z) = 0 we have $S(g_1/g_2;z) = 2I(z)$.
- (d) (4 pts) Show that there exists analytic *f* such that $\tilde{\psi} = 0$ in (b). Then conclude that

$$e^{-\overline{\varphi}/2} = a|w|^2 + bw + \overline{b}\overline{w} + c$$

for some $a, c \in \mathbb{R}$, $b \in \mathbb{C}$.

(e) (4 pts) Complete the proof of Theorem L by a further change of coordinate.