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Abstract

Cohomology groups most frequently arise as obstructions to solving global analytic prob-

lems, eg. the Mittag-Le�er problem. In this article, our main purpose is to describe several

methods to reach vanishing theorems which are useful tools to eliminate cohomology groups

and have played a central role in algebraic geometry. We also



0 Introduction

Cohomology groups most frequently arise as obstructions to solving global analytic

problems, eg. the Mittag-Le�er problem. In this article, our main purpose is

to describe several methods to reach vanishing theorems which are useful tools to

eliminate cohomology groups and have played a central role in algebraic geometry.

x1 is devoted to using harmonic theory and some di�erential geometry formalism

to prove Kodaira-Nakano vanishing theorem, which states that let X be a compact

complex manifold, the higher cohomology groups Hq(X;
p(L)) = 0 for all q > 0

provided that L ! X is positive and p + q > dimX. The proof can be found in

[Gri78] or [Aki]. This is a generalization of the original statement of Kodaira in 1953,

which said Hq(X;!X 
L) = 0 under the same assumption. Moreover, we introduce

Serre vanishing theorem by generaralizing the line bundle in Kodaira-Nakano van-

ishing theorem to arbitrary coherent sheaf, which said that Hq(X;O(L�)
 F) = 0

for all q > 0 provided that � >> 0 where L ! X is a positive line bundle, and F
any coherent sheaf.

In x2, we begin with H�ormander's L2 existence theorem ([H�or]) to obtain solutions

of �@-equations and introduce the multiplier ideal sheaf I('). Let L ! X be a

line bundle equipped with a singular hermitian metric of weight e�2', where '

is a plurisubharmonic function. Then I(') is the sheaf of germs of holomorphic

functions f such that jf j2e�2' is integrable. Using the L2 existence theorem, we get

an acyclic resolution of O(KX 
L)
I('), and see Nadel vanishing theorem [Nad]:

Hq(X;O(KX 
 L) 
 I(')) = 0 for all q > 0. The reference of this section is x5 of

[Dem].

Instead of discussing line bundles with semipositivity conditions, we give a more

exible notion for algebraic purpose, the notion of numerical e�ectivity in x3, and
show that Nadel vanishing theorem is a generalization of Kawamata-Viehweg van-

ishing theorem([Kaw] or [Vie]): Hq(X;KX + dDe) = 0 for q > 0, provided that X is
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a projective algebraic manifold, and D is a nef and big Q -divisor. We discuss also

the original (more algebraic) proof of K-V vanishing theorem by applying the con-

cept of a cyclic cover ([Esn]). This can be viewed as application of the generalization

of Kodaira vanishing theorem to de Rham log complexes.

In x4 we discuss Deligne's theory of mixed Hodge structures([Del II] or [Del III]).

To extend classical Hodge theory on compact nonsingular manifolds, we construct

mixed Hodge structure on varieties with normal crossings and nonsingular quasi-

projective varieties. Deligne's technique is to express the cohomology of the variety

as the abutment of a degenerate spectral sequence (E1 = E2) whose E2 term is the

cohomology of some smooth projective manifold. Thus the E2 term has a Hodge

structure and induces a mixed Hodge structure on the cohomology of our desired

variety(see x4, x5 in [Gri]).

In the �nal x5, we apply the concept of a cyclic cover Y ([Esn]) along some smooth

divisor on X where X is a quasi-projective space with dimension n. Using the De-

Rham complexes we mentioned in x4, one can correlate the cohomology groups

Hp(X;
X 
A) with the cohomology groups Hk(Y nD; C ). Finally by some projec-

tion formula and topological vanishing theorem, we conclude that combining some

mixed Hodge structure on cohomology groups and the cyclic cover imply Kodaira

vanishing theorem.

1 Kodaira-Nakano Vanishing Theorem

In this section the remarkable result, Kodaira-Nakano vanishing theorem, which

provides the most useful condition such that the higher cohomology groups are

zero, was discussed. We use the Hodge decomposition of cohomology of a K�ahler

manifold with value in a vector bundle, together with some di�erential geometry

formalism to give the proof of the vanishing theorem. Furthermore, we reach Serre

vanishing theorem by applying Kodaira-Nakano vanishing theorem to PN and using
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Hilbert Syzygy theorem.

1.1 Harmonic theory and Kodaira-Nakano vanishing theorem

De�nition 1.1 Let X be a compact complex manifold, E a holomorphic vector

bundle on X equipped with a hermitian metric and let D = D0 + �@ be the unique

metric connection compatible with the holomorphic structure on E .

a) If A;B are di�erential operators acting on the algebra �p;q�
p;q(E), their graded

commutator is de�ned by [A;B] = AB � (�1)abBA, where a; b are the degrees
of A and B respectively.

b) If moreover, X has a hermitian metric, let A� be the adjoint operator of A and

de�ne 4A := [A;A�] the associated Laplace operator of A.

Theorem 1.2 Hodge Decomposition Theorem (Harmonic Theory) Let X

be a compact complex manifold, E a holomorphic vector bundle, both equipped with

hermitian metrics, then 4�@ is an elliptic operator. Let Hp;q := ker(4�@

���
�p;q(E)

)

a) dimHp;q <1,

b) De�ne H : �p;q(E)! Hp;q(E) to be the orthogonal projection to ker4�@ . Then

there exists an unique operator, the Green operator, G�@ : �p;q(E) ! �p;q(E),
satisfying G�@(Hp;q(E)) = 0; �@G�@ = G�@

�@, and �@�G�@ = G�@
�@� such that I =

H +4�@G�@ on �p;q(E):

Remark 1.3 In the above theorem, �@ can be replaced by D0 or D.

Proof .For the proof, see [Wel].

Proposition 1.4 Basic commutation relations(Hodge-K�ahler identities) Let

(X;!) be a compact K�ahler manifold and let L be the operator de�ned by Lu = !^u
and � = L�.Then

[ �@�; L] =
p�1D0; [ �D0�; L] = �p�1�@;
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[�; �@] = �p�1D0�; [�; D0] =
p�1�@�:

Proof .For the proof, see [Gri78].

Proposition 1.5 Bochner-Kodaira-Nakano identity If (X;!) is a compact K�ahler

manifold, then the Laplace operators4D0 and4�@ acting on E-valued forms satisfying

the identity

4�@ = 4D0 + [
p�1�(E);�]:

Moreover, given u 2 �p;q(E), we have

k�@uk2 + k�@�uk2 �
Z
X

h[p�1�(E);�]u; uidV!:

This inequality is known as the Bochner-Kodaira-Nakano inequality.

Proof .

i) From Proposition 1.4, we have �@� = �p�1[�; D0]; hence

4�@ = �p�1[�@; [�; D0]]:

Using the Jacobi Identity, we get

[�@; [�; D0]] = [�; [D0; �@]] + [D0; [ �@;�]]
= [�;�(E)] +p�1[D0; D0�];

and

4�@ = [
p�1�(F);�]:

ii) Given u 2 �p;q(E), we have hD0; ui = kD0uk2 + kD0�uk2 � 0. Plug 4D0 =

4@ + [
p�1�(E);�] into this formula, we get

k�@uk2 + k�@�uk2 �
Z
X

h[p�1�(E);�]u; uidV!:
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Theorem 1.6 Dolbeault Theorem For X a complex manifold, Hq(X;
p(L)) '
Hp;q

�@
(X;L).

Proof .For a proof, see [Gri78].

Theorem 1.7 Kodaira-Nakano Vanishing Theorem Let X be a compact com-

plex manifold with dimension n. If L ! X is a positive line bundle, then Hq(X;
p(L) =
0 for p+ q > n:

Proof .Since L ! X is positive, the associated curvature form � is a positive (1,1)-

form. Let the metric on X be the one given by ! = (
p�1=2�)�. By Theorem 1.2

and Theorem 1.7,

Hq(X;
p 
 L) ' Hp;q(L):

It su�ces to show there are no nonzero harmonic forms of degree larger than n.

De�ne Let � 2 Hp;q(L);� := D2 = D0 �@ + �@D0, where D is the metric connection on

L. Use Hodge Identities,

[�; �@] = �p�1D0�; [�; D0] =
p�1�@�

we get p�1(���; �) =
p�1(��@D0�; �)

=
p�1((�@��p�1D0�)D0�; �)

= (D0�; D0�; �)
= (D0�;D0�) � 0

since �@� = 0 implies �� = �@D0� and (�@�D0�; �) = (�D0�; �@��) = 0.

Similarly,
p�1(���; �) � 0:

Therefore,
p�1([�;�]�; �) � 0:

But � = 2�=
p�1L and

p�1([��]�; �) = 2�([�; L]�; �)
= 2�(n� p� q)k�k � 0:
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Thus p+ q � n) � = 0

Remark 1.8 Use this vanishing theorem, Kodaira has shown that: If L is a line

bundle on a compact complex manifold, then L is positive if and only if L is ample.

(i.e. sections of LN give an embedding into Pr for large N .)

One of the most important application of Theorem 1.2 is Kodaira-Serre duality.

De�nition 1.9 Let X be a compact complex manifold with dimX = n and E a

holomorphic vector bundle, both equipped with hermitian metrics, we ca de�ne

a) the star operator

�E : �p;q(E) �! �n�p;n�q(E)

by requiring, for �;  2 �p;q(E);

(�;  ) =

Z
X

� ^ �E :

b)

��E : �p;q(E) �! �n�p;n�q(E�)

by setting

��E('
 e) = �(')
 �(e);

where ' 2 �p;q; e 2 E , and � : E ! E� is the unique conjugate-linear isometry

such that �(v)(w) = (w; v) for all v; w 2 E :

Proposition 1.10 Kodaira-Serre Duality Theorem Let X be a compact, K�ahler

manifold of dimension n, E a holomorphic vector bundle over X. Then

Hq(X;
p(E)) = Hn�q(X;
n�p(E�)):
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Proof .Observe that We have the following commutative diagram, which proves the

result immediately.

�p;q(E) ��E�! �n�p;n�q(E�)
# #

Hp;q
�@
(E) ��E�! Hn�p;n�q

�@
(E�)

ojj o jj
Hp;q

�@
(E) �! Hn�p;n�q

�@
(E�)

ojj o jj
Hq(X;
p(E)) �! Hn�q(X;
n�p(E�))

Corollary 1.11 Let X be a compact, complex manifold, L ! X a negative line

bundle, then Hq(X;
p(L)) = 0 for p+ q < n:

Proof .Use Kodaira-Serre duality theorem to dualize Theorem 1.7.

Corollary 1.12 Let H = Pn�1 � Pn the hyperplane divisor, we haveHq(Pn;O(kH) =

0 for q � 1; k 2 N :

Proof .We have

Hq(Pn;O(kH) = Hq(Pn;
n(kH �KPn) = 0
= Hq(Pn;
n((k + n+ 1)H))
= 0

for q � 1; k 2 N by Theorem 1.7.

1.2 Serre vanishing theorem

Theorem 1.13 Hilbert Syzygy Theorem IfM is an A-module of �nite type and

if

0! F ! En�1 ! : : :! E1 ! E0 !M ! 0

is an exact sequence of A-module where E 0
ks are all free, then F is also free.

Proof .For a proof, see [Kob], p143.
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Lemma 1.14 Let Y be a subset of X, F a sheaf of abelian groups on Y; and j :

Y ! X the inclusion map. Then H i(Y;F) = H i(X; j�F) where j�F is the extension

of F by zero outside Y .

Proof . If (I �; d) is an injective resolution of F on Y ,then (j�I �; j�d) is also an injective
resolution of j�F on X. Thus

H i(Y;F) = H i
d(Y; I

�) = H i
d(X; j�I �) = H i(X; j�F):

The following vanishing theorem for the cohomology of arbitrary coherent sheaf

is less precise but broader in scope than theorem 1.7.

Theorem 1.15 Serre vanishing theorem Let X be a projective manifold, L ! X

a positive line bundle and F any coherent sheaf, then there is an integer �0 > 0 such

that Hq(X;O(L�)
 F) = 0 for all � � �0 and q � 1:

Proof .Since L is positive, there exists some �0 and a closed embedding �L� : X ! Pr

for some r such that ��(O(H)) = O(L�) where H is the hyperplane divisor on P. If

F is coherent on X, ��F is also coherent. By applying Lemma 1.14, we may assume

X = Pn and O(L�) = O(H) in the following. We want to prove the theorem by

using descending induction on i: For i > r, we have H i(X;O(H)
 F) = 0 since X

can be covered by r + 1 open a�ne spaces. Since F is coherent, we have the exact

sequence

0 �! G �! �m
i=1OX �! F �! 0

where m 2 Z; and G is a coherent sheaf by Theorem 1.13. We twist the above

formula by O(H) and get a long exact sequence

! H i(X;G 
 O(H)) ! H i(X;�m
i=1OX 
O(H))! H i(X;F 
O(H))

! H i+1(X;G 
 O(H)) ! : : : :

Note that

H i(X;�m
i=1OX 
O(H)) = �m

i=1H
i(X;O(H)) = 0

and H i+1(X;G 
 O(H)) = 0;
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by Corollary 1.12 and induction hypothesis, thus we get H i(X;F 
O(H)) = 0

Corollary 1.16 Nakano vanishing theorem Let X a compact, complex manifold

and L ! X a positive line bundle. Then for any holomorphic vector bundle E, there
exists � such that

Hq(E ;O(L� 
 E)) = 0 for q > 0; � � �0:

Proof .This is a special case of Theorem 1.16.

Remark 1.17 We can also prove Theorem 1.16 by a method similar to the proof

of Theorem 1.7.

2 Nadel Vanishing Theorem

We start from the L2 existence theorem and introduce the multiplier ideal sheaf I(').
At last, we reach not only Nadel vanishing theorem, but also obtain a quantitative

nature about the solution of �@-equation.

2.1 H�ormander's L2 estimate

Theorem 2.1 L2 existence Theorem Let (X;!) be a K�ahler manifold. Here X

is not necessarily compact, but we assume the geodesic distance �! is complete on

X. Let E be a hermitian vector bundle of rank r over X with a positive de�nite

curvature operator A = Ap;qE;! = [
p�1�(E);�!] on �p;qT �X 
 E ; q � 1. Then for any

form g 2 L2(X;�p;qT �X 
 E) satisfying �@g = 0 and
R
X
< A�1g; g > dV! < 1, there

exists f 2 L2(X;�p;q�1T �X 
 E) such that �@f = g andZ
X

jf j2dV! �
Z
X

< A�1g; g > dV!

Proof .Since �! is complete, there exists cut-o� functions  �with arbitrary large

support such that jd �j � 1. It follows that every form u 2 L2(X;�p;qT �X 
 E) such
that �@u 2 L2; �@�u 2 L2 in the distribution sense is a limit of a sequence of smooth
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forms u� with compact support such that u� ! u; �@u� ! �@u; �@�u� ! �@�u in L2.

Therefore Ker�@ is weakly (hence strongly) closed and

L2(X;�p;qT �X 
 E) = Ker �@ � (Ker �@)?:

According to the decomposition, write v = v1 + v2 for all v 2 Dp;q 
 E). Use

Cauchy-Schwartz inequality, (Ker�@)? � Ker�@�, and Proposition 1.5 we get

jj < g; v > jj2 = jj < g; v1 > jj2 � (

Z
X

< A�1g; g > dV!)(

Z
X

< Av1; v1 > dV!);

Z
X

< Av1; v1 > dV! � k�@v1k2 + k�@�v1k2 = j�@v1k2 = k�@vk2

Combining these inequalities, we have

k < g; v > k2 � (

Z
X

< A�1g; g > dV!)k�@vk2

for every smooth (p; q)-form v with compact support. De�ne T : �@�(Dp;q 
 E)! C ,

w = �@v 7!< v; g >. T is a well-de�ned continuous linear functional on the range of

�@� with norm � (
R
X
< A�1g; g > dV!)

1=2. By Hahn-Banach theorem, there exists

some f 2 L2(X;�p;qT �X 
 E) with kfk � R
E < A�1g; g > dV! for every v such that

< v; g >=< �@v; f > for every v, hence �@f = g in the distribution sense.

We want to show that L2 existence theorem can be applied to fairly general

manifolds,e.g. weakly pseudoconvex manifolds.

De�nition 2.2 A function u : 
 ! [�1;+1[ de�ned on an open subset 
 � C n

is said to be plurisubharmonic (psh for short ) if

a) u is upper semicontinuous;

b) for every complex line L � C n , u
���

\L

is subharmonic on 
 \ L (i.e. for all

a 2 
 and � 2 C n with j�j < d(a; @
), the function u satis�es the mean value

inequality u(a) � 1
2�

R 2�

0
u(a+ �e

p�1�)d�

The set of psh functions on 
 is denoted by Psh(
)
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De�nition 2.3  is said to be an exhaustion function if for every c < 0 the sublevel

set Xc = fx 2 X :  (x) � cg is relatively compact.

De�nition 2.4 We say that a complex manifold X is weakly pseudoconvex if there

exists a smooth psh exhaustion function  on X.

Theorem 2.5 Let (X;!) be a K�ahler manifold, dimX = n. Assume X is weakly

pseudoconvex. Let L be a hermitian line bundle and let 1(x) � : : : � n(x) be the

curvature eigenvalues(i.e. the eigenvalues of
p�1�(L) with respect to the metric !)

at x. Assume that the curvature is positive (i.e. 1 � 0 everywhere). Then for any

form g 2 L2(X;�p;qT �X 
L) satisfying �@g = 0 and
R
X
(1 + : : :+ q)

�1jgj2dV! <1,

there exists f 2 L2(X;�p;q�1T �X 
 E) such that �@f = g andZ
X

jf j2dV! �
Z
X

(1 + : : :+ q)
�1jgj2dV!

Proof .We �rst show that every weakly pseudoconvex K�ahler manifold carries a

complete K�ahler metric : let  � 0 be a psh exhaustion function and set

!� = ! + �
p�1@ �@ 2 = ! + 2

p�1�( @ �@ + @ ^ �@ ):

Then each !� de�nes a K�ahler metric on X with jd j!� � 1=� and j (x)�  (y)j �
��1�!�(x; y). It follows that the geodesic balls are relative compact, hence �!� is

complete for every � > 0. Apply Theorem 2.1 to each �!� and pass to the limit.

Since hAu; ui � (1 + : : :+ q)ju2j, we have hA�1u; ui � (1 + : : :+ q)
�1juj2; henceZ

X

jf j2dV! �
Z
X

(1 + : : :+ q)
�1jgj2dV!:

An important observation is that Theorem 2.5 still applies when the metric on E
is singular with positive curvature in the sense of currents.

De�nition 2.6 A singular metric on a line bundle L is a metric which is de�ned in

any trivilization � : L
���
U

'! U � C by

k�k = j�(�)jevarphi(x); x 2 U; � 2 Lx
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where ' 2 L1
loc(U) is an arbitrary function, called the weight of the metric with

respect to the trivialization �:

Corollary 2.7 Let (X;!) be a K�ahler manifold, dimX = n. Assume X is weakly

pseudoconvex. Let E be a holomorphic line bundle equipped with a singular metric

whose local weight are denoted by ' 2 L1
loc. Suppose that

p�1�(E) = 2
p�1@ �@' �

�! for some � > 0: Then for any form g 2 L2(X;�p;qT �X 
 E) satisfying �@g = 0,

there exists f 2 L2(X;�p;q�1T �X 
 E) such that �@f = g and
Z
X

jf j2e�2�dV! � 1

q�

Z
X

jgj2e�2�dV!:

Proof .Using convolution of psh functions by smoothing kernel, the metric can be

made smooth and the solutions for the smooth metric have limits satisfying the

desired estimates.

2.2 Nadel's vanishing theorem

Now we introduce the concept of multiplier ideal sheaf I('). The ideal I(') plays
an important role between analytic geometry and algebraic geometry because it

converts an analytic object into an algebraic one, and takes care of singularities in

a very e�cient way.

De�nition 2.8 Let ' be a psh function on an open subset 
 � X. De�ne the

multiplier ideal subsheaf I(') � O
 by I(')(U) = ff 2 O
(U) : jf j2e�2' is

integrable with respect to Lebesgue measure in some local coordinates near x for

every x 2 Ug.

We see the zero variety V (I(')) is the set of points in a neighborhood on which

e�2' is not integrable and such points occur only if ' has logarithmic poles.

De�nition 2.9 A psh function ' is said to have a logarithmic pole of coe�cient 
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at a point x 2 X if the Lelong number

�('; x) := lim inf
z!x

�(z)

log jz � xj
is nonzero and �('; x) = .

Lemma 2.10 Let ' be a psh function on an open set 
 and let x 2 


a) If �('; x) < 1, then e�2� is integrable in a neighborhood of x; in particular,

I(')x = O
;x

b) If �('; x) � n + s for some integer s � 0, then e�2' � Cjz � xj�2n�2s in a

neighborhood of x and I(�)x � ms+1

;x , where m
;x is the maximal ideal of O
;x

c) The zero variety V (I(') of I(') satis�es

En(') � V (I(') � E1(')

where Ec(') = x 2 X : �('; x) � c is the c-sublevel set of Lelong numbers of

varphi.

Proof .The proofs are mostly elementary calculation and we omit them (for details,

see [Dem]).

Lemma 2.11 Krull lemma Let R be a noetherian ring, I be an ideal of R, and

E � N be �nitely-generated R-modules, then for all n > 0, there exists an n0 > n

such that E \ In0N � InE.

Proof .For the proof, see [Ati].

Proposition 2.12 For any psh function ' on 
 2 X, the sheaf I(') is a coherent

sheaf of ideal over 
.

Proof .Since the result is local, we may assume that 
 is the unit ball in C n . Let E

be the set of all holomorphic functions f on 
 such that
R


jf j2e�2' d� < +1, then
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the set E generates a coherent ideal sheaf J � O
 We claim: J = I('). J � I(')
is clear; in order to prove the equality, by Krull lemma we need only check that

Jx + I(')x \ ms+1

;x = I(')x for every integer s. Let f 2 I(')x be de�ned in a

neighborhood V of x and let � be a cut-o� function with support in V such that

� = 1 in a neighborhood of x. We solve the equation �@u = g := �@(�f) by Theorem

2.1, where F is the trivial line bundle 
� C equipped with the strictly psh weight

~'(z) = '(z) + (n+ s) log jz � xj+ jzj2:

We get a solution u such that
R


juj2e�2'jz � xj�2(n+s)d� < 1, thus F = �f � u is

holomorphic, F 2 E and fx � Fx = ux 2 I(')x \ms+1

;x .

The multiplier ideal sheaves are functorial with respect to direct images of sheaves

by modi�cations.

Proposition 2.13 Let � : X 0 ! X be a modi�cation of nonsingular complex mani-

folds (i.e. a proper generically 1 : 1 holomorphic map), and let ' be a psh function

on X. Then

�?(O(KX0)
 I(' � �)) = O(KX0)
 I(')

Proof .Let n= dimX= dimX 0 and let S � X be an analytic subset such that

� : X 0nS 0 ! XnS is a biholomorphism. Recall that O(KX) 
 I(') is the sheaf of
holomorphic n-forms f on open sets U � X such that

p�1n2f ^ �fe�2' in L1
loc(U).

Since ' is locally bounded from above and f 2 L2
loc(U), we may even consider f

as a form de�ned only on UnS, then use Hartogs' extension theorem to extend f

through S. The change of variable formula yields
Z
U

p�1n
2

f ^ �fe�1' =
Z
��1(U)

p�1n
2

�?f ^ �?fe�2'��;

hence f 2 �(U;O(KX)
 I(')) i� �?f 2 �(��1(U);O(KX0)
 I(' � �))

De�nition 2.14 A psh function u 2 Psh(X) will be said to have analytic singu-
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larities if u can be written locally as

u =
�

2
log(jf1j2 + : : :+ jfN j2) + v;

where � 2 R+ ; v is a locally bounded function and the fj are holomorphic functions.

If X is algebraic, we say u has algebraic singularities if u can be written as above

on su�ciently small Zariski open sets, with � 2 Q+ and fj algebraic.

Remark 2.15 In some special cases, we can explicitly express I('). Consider

that ' has the form ' =
P
�j log jgjj where Dj = g�1j (0) are nonsingular irre-

ducible divisors with normal crossings, then I(') is the sheaf of function h such

that jhj2Q jgjj�2�j is locally integrable. Since locally gj can be taken to be coordi-

nate functions from a local coordinate system (z1; : : : ; zn), the condition is that h

is divisible by
Q jgjjmj where mj � �j > �1 for each j, i.e. mj � b�jc(integer).

Hence

I(') = O(�bDc) = O(�
X

b�jcDj)

In general, consider the analytic singularities ' � �
2
log(jf1j2 + : : : + jfN j2) near

the poles. We may assume that the (fj) are generators of the integrally closed

ideal sheaf J = J ('=�), de�ned as the sheaf of holomorphic functions h such that

jhj � C exp('=�). First, one computes a smooth modi�cation � : ~X ! X of

X such that �?J is an invertible sheaf O(�D) associated with a normal crossing

divisor D =
P
�jDj, where (Dj) are the components of the exceptional divisor of

~X (take the blow-up X 0 of X with respect to the ideal J so that the pull-back of J
to X 0 becomes an invertible sheaf O(�D0), then blow up again by[Hir64] to make

X 0 smooth and D0 have normal crossings). Now, we have K ~X = �?KX + R where

R =
P
�jDj is the zero divisor of the Jacobian function J� of the blow-up map. By

Theorem 2.12, we get

I(') = �? (O(K ~X � ��KX)
 I(' � �)) = �� (O(R)
 I(' � �)) :

15



Now, (fj � �) are generators of the ideal O(�D), hence

' � � � �
X

�j log jgjj

where gj are local generators of O(�Dj). Thus we are reduced to computing multi-

plier ideal sheaves in the case where the poles are given by a Q -divisor with normal

crossings
P
��jDj. We obtain I(' � �) = O(�Pb��jcDj), hence

I(') = ��O ~X

�X
(�j � b��jc)Dj

�
:

We conclude this section with Nadel vanishing theorem which might be the most

central results of analytic and algebraic geometry.

Theorem 2.16 Nadel Vanishing Theorem Let (X;
) be a K�ahler weakly psu-

doconvex manifold, and let L be a holomorphic line bundle over X equipped with a

singular hermitian metric h of weight '. Assume that
p�1�h(L) � �! foe some

continuous positive function � on X.Then

Hq(X;O(KX 
 L)
 I(h)) = 0 for all q � 1

Proof .Let Lq := �n;q
L2
h


 L be the sheaf of germs of (n; q)-forms u with values in L
and with measurable coe�cients such that both juj2e�2' and j�@uj2e�2' are locally

integrable.

0! O(KX 
 L)
 I(h) �@! �n;0
L2
h


 L �@! �n;1
L2
h


 L �@! : : :! 0

Then by Corollary 2.7, we get (L�; �@) is a resolution of the sheaf O(KX 
L). Since
each sheaf Lq is a C1-module, Lq is an acyclic resolution. Let  be a smooth

psh exhaustion function on X and apply Corollary 2.7 globally on X, with the

original metric on L multiplied by the factor e�� , where � is a convex increasing

function of arbitrary fast growth at in�nity. This factor is to ensure the conver-

gence of the integral at in�nity. Therefore, we conclude that Hq(�(X; _L)) = 0 (i.e.

Hq(X;O(KX 
 L)
 I(h)) = 0) for all q � 1.

16



3 Kawamata-Viehweg Vanishing Theorem

3.1 A proof as a special case of Nadel vanishing theorem

In this section, we claim that Nadel vanishing theorem can be seen as a generalization

of Kawamata-Viehweg vanishing theorem. First we introduce a more exible notion

suitable for algebraic purposes, the notion of numerical e�ectivity.

De�nition 3.1 A holomorphic line bundle L over a projective manifold X is said

to be numerically e�ective (nef for short), if L � C =
R
C
c1(L) � 0 for every curve

C � X

Lemma 3.2 Nakai-Moishezon ampleness criterion A line bundle L is ample

if and only if Lp � Y =
R
C
c1(L)p > 0 for every p-dimensional subvariety.

Proof .For a proof, see [Har].

Proposition 3.3 Let L be a line bundle on a projective algebraic manifold X, on

which an ample line bundle A and a hermitian metric ! are given. The following

properties are equivalent:

a) L is nef;

b) For any integer k � 1, the line bundle Lk 
A is ample;

c) for every � � 0, there is a smooth metric h� on L such that
p�1�h�(L) � ��!:

Proof . a) ) b) If L is nef and A is ample then clearly Lk 
 A satis�es the Nakai-

Moishezon criterion, hence Lk 
A is ample.

b) ) c) Statement c) is independent of the choice of the hermitian metric, so we

may select a metric hA on A with positive curvature and set ! =
p�1�(A). If

Lk 
 A is ample, the bundle has a metric hLk
A of positive curvature, then the

metric hL = (hLk
A 
 h�1A )1=k has the curvature

p�1�(L) = 1

k
(
p�1�(Lk 
A)�p�1�(A)) � �1

k

p�1�(A);

17



we can make the negative part smaller than �! by taking k large enough.

c) ) a) Under hypothesis c), we get L � C =
R
C

p�1
2�

�h�(L) � ��2� R
C
! for every

curve C and every � > 0, hence L � C � 0 and L is nef.

De�nition 3.4 If L is a line bundle, the Kodaira-Iitaka dimension �(L) is the

supremum of the rank of the canonical maps for m � 1

�m : XnBm �! P (V �
m);

x 7�! Hx = f� 2 Vm : �(x) = 0g;
with Vm = H0(X;Lm) and Bm = \�2Vm��1(0) = base locus of Vm. In case Vm = f0g
for all m � 1, we set �(L) = �1. A line bundle is said to be big if �(L) = dimX.

Lemma 3.5 Serre-Siegel lemma Let L be any line bundle on a compact complex

manifold. Then we have

h0(X;Lm) � O(m�(L)) for m � 1,

and �(L) is the smallest constant for which this estimate holds

Proof .The proof is a rather elementary consequence of Schwartz lemma, and we

omit it.

Proposition 3.6 Let X be a projective algebraic variety, L a nef line bundle, and

E an arbitrary holomorphic vector bundle. Then

hq(X;O(E 
 Lk) = O(kn�q) for all q � 0; as k ! +1

Proof .We proceed by induction on n = dimX. If n = 1, the result follows by

using Rieman-Roch Theorem. Since L is nef, there exists some k0 such that for each

k � k0, we can �nd a ample divisor A such that Hq(X;O(E 
 Lk 
 O(A)) = 0 for

all q � 1 by Corollary 1.16. Let A = O(A): The exact sequence

0! O(Lk)! O(Lk)
A)! O(Lk 
A)
���
A
! 0

18



twisted by O(E) implies

Hq(X;O(E 
 Lk)) ' Hq�1 �A;O(EjA 
 (Lk 
A)jA)
�
;

and we easily conclude by induction since dimA = n� 1.

Proposition 3.7 Let (X;!) be a compact K�ahler manifold. Then �(L) = dimX )
there exists � > 0; h (possibly singular) metric on L such that

p�1�h(L) � �!:

Proof . If �(L) = n, then h0(X; kL) � ckn for k � k0 and c > 0 by Lemma 3.5. Fix

a nonsingular ample divisor A on X. The exact cohomology sequence

0! H0(X;Lk 
O(�A))! H0(X;Lk)! H0(A;LkjA)

where h0(A;LkjA) = O(kn�1) by Lemma 3.6 shows that Lk 
 O(�A) has nonzero
sections for k large. If D is the divisor associated to such a section, then O(Lk) =
O(A +D). Select a smooth metric on A such that

p�1
2�

�(A) � "0! for some " � 0

and take the singular metric on O(D) with weight function 'D =
P
�j log jgjj: Then

the metric with weight 'L = 1
k
('A + 'D) on L yields

p�1
2�

�(L) = 1

k

�p�1
2�

�(A) + [D]

�
� ("0=k)!:

Proposition 3.8 If L is nef, then L is big (i.e. �(L) = n) if and only if Ln > 0.

Moreover, if L is nef and big, then for every � > 0, L has a singular metric h = e�2'

such that maxx2X�('; x) � � and
p�1�h(L) � "! for some " > 0. The metric h

can be chosen to be smooth on the complement of a �xed divisor D, with logarithmic

poles along D.

Proof . (i) By Proposition 3.6 and the Riemann-Roch Theorem, we have h0(X;Lk) =
�(X;Lk) + o(kn) = knLn=n! + o(kn).
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(ii) If L is big, Proposition 3.7 shows that there is a singular metric h1 on L such

that p�1
2�

�h1(L) =
1

k
(

p�1
2�

�(A) + [D])

with a positive line bundle A and an e�ective divisor D. Now, for every " > 0, there

is a smooth metric h� on L such that
p�1
2�

�h"(L) � �"!, where ! =
p�1
2�

�(A). The
convex combination of metrics h0" = hk"1 h

1�k"
" is a singular metric with poles along

D which satis�es
p�1
2�

�h0"(L) � "(! + [D])� (1� k")"! � k"2!:

Its Lelong numbers are "�(D; x) and they can be made smaller than � by choosing

" > 0 small.

De�nition 3.9 Let X be a projective algebraic manifold. We say a Q -divisor D on

X is big and nef if its associated line bundle O(D) is big and nef.

De�nition 3.10 Given a divisor D =
P
�jDj on X where Dj are irreducible hy-

persurfaces. we de�ne bDc =P
jb�jcDj; dDe =

P
jd�jeDj, where bxc is the largest

integer less than or equal to x, and dxe is the least integer greater than or equal to

x.

Theorem 3.11 Kawamata-Viehweg vanishing theorem Let X be a projective

algebraic manifold. Given D =
P

j �iDj a nef and big Q -divisor with normal cross-

ings, then

Hq(X;KX + dDe) = 0 for q � 0

Proof .Denote L = O(D), D0 = bDc �D. Since �(L) = n, by proof of Proposition

3.7, there is a singular hermitian metric on L such that the corresponding weight

'L;0 has algebraic singularities and

p�1�0(L) = 2
p�1@ �@'L � �0!
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for some �0 > 0. On the other hand, since L is nef, there are smooth metrics given

by weights 'L;� such that
p�1
2�

��(L) � ��! for every � > 0; ! being a K�ahler metric

on X. Let 'D0 =
P
�j log jgjj be the weight of the singular metric on O(D0),where

�j 2 Q+ ; gj is the generator of the ideal of Dj. We de�ne a singular metric on

O(bDc) by
'O(dDe) = (1� �)'L;� + �'L;0 + 'D;

with � << � << 1; � rational. Then 'O(dDe) has algebraic singularities, and by

taking � small enough we �nd I('L) = I('D0) = I(D0). In fact, I('L) = 0 by

taking integer parts of D0, and adding �'L;0 does not change the integer part of the

rational numbers involved when � is small. Then
p�1@ �@'O(dDe) = ((1� �)'L;� + �

p�1@ �@'L;0 +
p�1@ �@'0D)

� (�(1� �)�! + ��0! + [D0]) � ��
m
!;

if we choose � � ��0. Applying Nadel's theorem thus implies the desired vanishing

result for all q � 1.

3.2 A proof using cyclic cover

De�nition 3.12 LetX be a scheme, andA be a quasi-coherent sheaf ofOX -algebra.

There is an unique scheme Y , and a morphism f : Y ! X, such that for every open

a�ne V � X; f�1(V ) �= SpecA(V ), and for every inclusion U � V , the morphism

f�1(U) ,! f�1(V ) corresponds to the restriction homomorphism A(V ) ,! A(U).
The scheme X is called SpecA

De�nition 3.13 Let X be a complex projective manifold and D an e�ective and

normal crossing divisor. Suppose for some line bundle L and some integer N � 0,

we have

LN = OX(D):

Let s 2 H0(X;LN) be a section whose zero divisor is D. Then the dual section

�s : L�N ! OX de�nes a OX -algebra structure on A0 = �N�1
i=0 L�i. i.e. A0 =
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�1
i=0Li=I where I is the sheaf generated locally by f�s(l) : l local section of L�Ng.

Let �0 : Y 0 = SpecX(A0) ! X be the natural map, n : Y ! Y 0 the normalization,

and � = �0 � n. We will call Y the cyclic cover obtained by taking the N -th root

out of D.

Let E =
P
�jEj be an e�ective divisor, M and L invertible sheaves such that

for some large N > 0 such that LN =M
O(E):

Lemma 3.14 De�ne L(i) = Li(�[ i
N
D]) = Li
 �X(�[ iND]) and A = �N�1

i=0 (L(i))�1,

then ��OY = A:

Proof .For any open subvariety X0 in X with codimX(X � X0) � 2 and for Y0 =

��1(X0) consider the induced morphisms

Y0

X0

Y

X

�0

�

��0

Since Y is normal one has �0�OY0 = OY and ��OY = ���0�OY0 . Note that

SpecA ! X is �nite and SpecA is normal. Thus �0�OY0 = AjX0 and the lemma

follows since A is locally free.

Lemma 3.15 Let ~D = ��1(D)red, we have ��
aX(logD) � 
aY (log ~D), and more-

over this inclusion is an isomorphism at all points p where � is �nite and p 62
��1(Sing(Dred)).

Proof . It is enough to consider the case a = 1. Since both sheaves are subsheaves

of the meromorphic di�erential forms having poles along D0, we may check the

statement locally at p 2 U . We choose regular parameters x1; : : : ; xn at �(p) of

X, such that D is de�ned by z�11 � � � z�rr = 0. Hence 
1
X(logD) is generated by

dz1
z1
; � � � ; dzr

zr
, dzr+1; � � � ; dzn over OX .
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Since ~D has only transversal intersections as singularities we may choose regular

parameters w1; : : : ; wn of p at U , such that for i = 1; : : : ; r and some units ui we

have ��zi =
Q

j w
�ij
j _ui. One sees immediately that �� dzi

zi
=
P

j �ij
dwj

wj
+ u�1i dui is an

element of 
1
Y (log ~D). If �(p) belongs to the regular locus of D we have r = 1 and

if moreover � is �nite, then �� dz1
z1
; ��dz2; : : : ; ��dzn generates 
1

Y (log ~D) in U .

Lemma 3.16 With � : Y ! X as above, we have

��
aY (log ~D) = 
aX(logD)
 ��OY

and

��
aY � �N�1
i=1

�

aX(logD)
 L(i)�1

�
� 
aY :

Proof . (i)By Lemma 3.15, the former formula follows from projection formula di-

rectly. (ii) We de�ne

CD = �j

p�1
Ej

(log(Ej \ [k 6=jEk))� 
p�1B (log(B \ [jEj))

and similarly for C ~D. We have the following diagram

0

0


pX 
pX(logD) CD


pY
f�


p
Y (log

~D) f�C ~D

Applying Lemma 3.15 to the component of D, we �nd that � is injective, and

hence the second statement follows.

Theorem 3.17 Let X be a regular projective variety, F an invertible sheaf with

�(F) � m and D an e�ective divisor with regular components intersecting transver-

sally. Then

H0(X;
pX(logD)
 F�1) = 0 for p < m:

Proof .Observe that any section of the above sheaf de�nes an inclusion of F as

a subsheaf of 
pX(logD). Since �(F) � m, some power F� has m + 1 sections
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s0; : : : ; sm such that s1
s0
; � � � ; sm

s0
are algebraic independent rational functions. Let

� : Y ! X be the morphism obtained by taking the �-th root out of one of the si.

Lemma 3.15 gives ��F as subsheaf of 
pY (log
~D). Repeating this construction we

may assume � = 1. We denote the p-forms induced by si under the inclusion of F
in 
pX(logD) also by si. Then dsi = 0 for i = 0; : : : ; m and 0 = dsi = s0 ^ d( sis0 ).
This means that d( s1

s0
); � � � ; d( sm

s0
) span a rank m subsheaf of 
1

X over some open

set, which sheaf annihilates F under the exterior product. This is only possible if

p � m.

Theorem 3.18 Let notations as above. Assume that M = OX(B) for some prime

divisor B and that D = B +E is a divisor with regular components and transversal

intersections. If �(L(i)) � m for i = 1; : : : ; N � 1, then

Hp(X; (L(i))�1) = 0 for p < m:

Proof .Let � : Y ! X the cyclic cover obtained by taking n-th root out of D: Then

the symmetry of the Hodge numbers on X together with Lemma 3.14 gives

hp(OX) +
N�1X
i=1

hp((L(i))�1) = hp(OY ) = h0(
pY );

where hp(�) denotes the dimension of Hp(�). Using Lemma 3.16 one obtains the

inequality

h0(
pY ) � h0(
pX);+
N�1X
i=1

h0(
pX(logD)
 L(i)�1):

Using Theorem 3.17 and the symmetry of the Hodge numbers of X, we see that

Hp(X; (L(i))�1
) = 0, 8p < m.

Another proof of Kawamata-Viehweg Theorem. Note that the cover Y of X has at

most rational singularity, hence the statement of Theorem 3.11 is compatible with

blowing up. Since �(O(D)) = n, we can �nd H ample sheaf and B normal crossing

divisor such that O(D)N = H 
 O(B) for some N . Since D is nef, H 
 O(D)� is
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ample for all � � 0. Replacing N by N + �, we may assume N is larger than the

multiplicities of the components of B and replacing N , L, H, B by �N , L�, H�, �B

such that H is very ample. Let H be the divisor with O(H) = H and D = B +H.

Then L(1) = L and thus we get Hp(X;L 
 O(KX)) = 0. Note that since O(D) is

contained in O(dDe), dDe is also big and nef. Replacing D by dDe, we have

Kp(X;KX + dDe) = 0; 8p > 0:

4 Hodge Theory

For a general algebraic variety X (singular, non-compact), the singular cohomology

Hk(X; C ) does not admits functorial Hodge structures. However, Deligne has shown

that it always admits functorial \mixed Hodge structures". In the following, we

discuss 2 special cases of Deligne's results, namely for X a normal crossing variety

and for X a nonsingular quasi-projective variety.

Let K � be a di�erential complex with di�erential operator D, (i.e. K � is an

abelian group and D : K � ! K � is a group homomorphism such that D2 = 0.)

De�nition 4.1 A �ltered complex (F pK �; d) is a decreasing sequence of subcom-

plexes

K � = F 0K � � F 1K � � : : : � F nK � � F n+1K � = 0

The associated graded complex to a �ltered complex (F pK �; d) is the complex

Gr�K = �p�0GrpF �

where

GrpK � =
F pK �

F p+1K �
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and the di�erential is the obvious ons. The �ltration F pK � on K also induces a

�ltration on the cohomology by

F pHq(K �) =
F pZq

F pBq
:

The associated graded cohomology is

GrH �(K �) = �p;qGr
pHq(K �)

where

GrpHq(K �) =
F pHq(K �)
F p+1Hq(K �)

Remark 4.2 For notational reasons, we sometimes extend the �ltration to negative

indices by de�ning Kp = K for p � 0

De�nition 4.3 A spectral sequence is a sequence fEr; drg(r � 0) of bigraded

groups

Er = �p;q�0Ep;q
r

together with di�erentials dr : E
p;q
r ! Ep+r;q�r+1

r ; d2r = 0 such that H �(Er) = Er+1.

In practice, we will always have Er = Er+1 = : : : for r � r0 ; we call this the limit

group E1 and if E1 is equal to the associated graded group of some �ltered group

H, then we say that the spectral sequence converges to H.

Proposition 4.4 Let K � be a �ltered complex. Then there exists a spectral sequence

Er with
Ep;q

0 = F pKp+q=F p+1Kp+q = GrpK
p+q;

Ep;q
1 = Hp+q(GrpK �); and

Ep;q
1 = Grp(Hp+q(K �)):

The last statement is usually written as

Er ) H �(K �)

and we say the spectral sequence converges to H �(K �).
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Give a double complex K �;� = �p;q�0Kp;q, with di�erentials d : Kp;q ! Kp+1;p

and � : Kp;q ! Kp;q+1 satisfying d2 = 0; �2 = 0; d� = �d. The associated single

complex (K �; D) is de�ned by Kn = �; D = d+ (�1)p�.

Theorem 4.5 Give a double complex K = �p;q�0Kp;q, there is a spectral sequence

fEr; drg converging to the total cohomology HD(K) such that each Er has a bigrading

with

dr : E
p;q
r ! Ep�r+1;q+r

r

and
Ep;q

1 = Hp;q
d (K)

Ep;q
2 = Hp;q

� Hd(K)

(p,q)

dr

(p�r+1,q+r)

Ep;q
r

q

p

furthermore, the associated graded complex of the total cohomology is given by

GHn
D(K) = �p+q=nE

p;q
1 (K)

De�nition 4.6 Hodge structure Let HR be a �nite dimensional vector space,

containing a lattice HZ, and let H = HR 
R C be its complexi�cation. A Hodge

structure of weight m consists of a direct sum decomposition

H = �p+q=mH
p;q; with Hq;p = �Hp;q:

To each Hodge structure of weight m, we may associate the Hodge �ltration

H � : : : � F p�1 � F p � F p+1 � : : : � 0 with F p = �i�pH i;m�i
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Since Hp;q = F p\ �F q and F p� �Fm�p '�! H for all p, one has 1 : 1 correspondence

between Hodge structures and Hodge �ltrations.

De�nition 4.7 A mixed Hodge structure on H consists of two �ltrations,

0 � : : : � Wm�1 � Wm � Wm+1 � : : : � H;

the weight �ltration which shall be de�ned over Q , and

H � : : : � F p�1 � F p � F p+1 � : : : � 0

the Hodge �ltration, such that the �ltration induced by the latter on Grm(W�) =

Wm=Wm�1 de�nes a Hodge structure of weight m, for each m the induced �ltration

on Grm(W�) is given by

F p(Gr(Wm)) = (Wm \ F p)=(Wm�1 \ F p):

De�nition 4.8 Amorphism between two mixed Hodge structures fH;Wm; F
pg; fH 0;W 0

m; F
0
pg

is a rationally de�ned linear map ' : H ! H 0, such that '(Wm) � W 0
m and '(F p) �

F 0p: More generally, a rationally de�ned linear map ' : H ! H 0 is called a mor-

phism of mixed Hodge structures of type (r; r) if '(Wm) � W 0
m+2r; '(F

p) � F 0p+r,

for all p and m.

De�nition 4.9 Let V be a compact, K�ahler manifold, andD � V a smooth divisor.

Applying Poincar�e duality to the homology mapping

Hp(D)
i�! Hp(V )

induced by the inclusion D � V , one obtains the Gysin map

Hq(D)
�! Hq+2(V )

Remark 4.10 Both the Poincar�e duality isomorphisms and i are morphisms of

Hodge structures,  is also a morphism of type (1; 1).
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Proposition 4.11 Let (K �; d) be a �nite dimensional complex with a mixed Hodge

structure, and such that the di�erential d is a morphism of mixed Hodge structure

of type (r; r) for some r. Then the induced �ltration on the cohomology determine

a mixed Hodge structure.

Lemma 4.12 If ' 2 Ap;q(V ) is a d-exact form, V is a compact, K�ahler manifold,

then we have both ' = @�0 for some �0 2 Ap�1;q with �@ = 0; and ' = �@�00 for some

�00 2 Ap;q�1 with @�00 = 0.

Proof .Use Hodge decomposition theorem and 4d = 24@, we know ' = 4@G@',

where G@ is the Green's operator for @ which commutes with @. Then ' = @�0

where �0 = @�G@' has type (p� 1; q); another case is similar.

Remark 4.13 The use of the above lemma comes up in the principle of two types:

If ['] 2 Hm(V; C ) can be represented by '0 2 Ap0;q0(V ), and also by '00 2 Ap00;q00(V )
with p0 6= p00, then ['] = 0

4.1 Varieties with normal crossings

According to Hironaka, a suitable modi�cation of an arbitrary variety is a variety

with normal crossings. Thus We consider a compact analytic space V ,which can be

realized as a union of coordinate hyperplanes

f(z1; : : : ; zn+1) 2 C n+1 jz1 � z2 : : : zk = 0g

We assume that globally V = D1 [ : : : [ DN , where the D are compact K�ahler

manifolds meeting transversely.

Theorem 4.14 On H �(V; C ), there exists a mixed Hodge structure, which is functo-

rial for holomorphic mappings between compact analytic spaces satisfying the above

conditions.
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Proof .

step 1. For each index set I = (i1; : : : ; iq) � f1; : : : ; Ng, we de�ne
DI = Di1 \ : : : \Diq

D[q] = _tjIj=qDI (disjoint union)

Each D[q] is a compact K�ahler manifold, and we can de�ne

Ap;q = Ap(D[q]);

where A�(D[q]) is the usual de Rham complex, and

d : Ap;q ! Ap+1;q d = the exterior derivative)
� : Ap;q ! Ap;q+1

by the formula (�')(j1;:::;jq+1) =
Pq+1

l=1 '(j1;:::;ĵl;:::;jq+1)

���
D(j1;:::;jq+1)

. Therefore fAp;q; d; �g
is a double complex.

step 2. We want to show that H �
D(A

�) �= H �(V; C ) There are sheaves Ap;q on V

with �(V;Ap;q) = Ap;q and Hr(V;Ap;q) = 0 for r > 0 (by partition of unity). Setting

An = �p+q=nAp;q, we consider the complexes of sheaves

0! C V !A0 D!A1 D!A2 ! : : :

The usual sheaf-theoretical proof of de Rham theorem on manifolds will apply if we

can prove the Poincar�e lemma for D. Let Ap;q(U) = �(U;Ap;q),where U is a small

open neighborhood on V . By the usual d-Poincar�e lemma, we have Hp
d(A

�;q) = 0 for

p > 0 and H0
d(A

�;q) = H0(q-fold intersections). Thus in the spectral sequence for

fAp;q(U); d; �g; Ep;q
0 = Ap;q; d0 = d; Ep;q

1 = Hp
d(A

�;q) = 0 for p > 0 and E0;q
1
�= C (

n
q).

The d1 map � : E0;q
1 ! E0;q+1

1 is given by the formula as occurs in the coboundary

operator for a simplex, and consequently

Ep;q
2 = 0 if p+ q > 0; and

E0;0
2

�= C �= H0(U; C ):

Therefore E2 = E1 and we have the Poincar�e lemma for D.

step 3. We de�ne a weight �ltration Wn and a Hodge �ltration F p on A�;� by

Wn = �r�nAr;�;
F p = � r;s

s�p
(r; s)-forms on D[q]:

30



Consider the spectral sequence (A�;�; d; �). We have Em
1 := Em;�

1
�= �qH

m
d (D

[q]) and

consequently has a Hodge structure of pure weight m induced by the above Hodge

�ltration. Moreover, d1 = � : Em
1 ! Em

1 is a morphism of pure weight m: Therefore

the Em
2 term has a Hodge structure of pure weight m. claim : E2 = E1

Assume this holds, we have

Hk(V; C ) �= Hk
D(A

�)
= Ek;0

1 � Ek�1;1
1 � : : :� E0;k

1
= Ek;0

2 � Ek�1;1
2 � : : :� E0;k

2

Thus H �(V; C ) has a mixed Hodge structure.

step 4. To prove the claim, it su�ces to show d2 = d3 = : : : = 0. Given [�] 2 Em;q
2 ,

by decomposing this class into type, we may assume [�] is represented by a closed

C1 form � which has type (r; s) with r+ s = m. Since d1[�] = 0, we have �� = d�

for some � 2 Am�1;q+1. Applying lemma (), we may write

�� = d� 0; �� = d� 00;

where � 0 has type (r; s � 1) and � 00 has type (r � 1; s). But [�� 0] = [�� 00] in Em�1
2

which has a Hodge structure of pure weight m� 1. Thus d2([�]) = 0. The proof for

di = 0, i � 3 is similar.

De�nition 4.15 Given a complex of sheaves (K�; d) = fK0 d! K1 d! K2 ! : : :g.
The cohomology sheaf Hq(K�) is the sheaf coming from the presheaf

U 7! Kerfd : Kp(U)! Kp+1(U)g
dKq�1(U)

We note that essentially by de�nition, the cohomology sheaves Hq(K�) = 0 for all

q > 0, the Poincar�e lemma holds for the complex of sheaves (K�; d).

De�nition 4.16 A map j : L� ! K� between complexes of sheaves is a quasi-

isomorphism if it induces an isomorphism on cohomology sheaves: j�Hq(L�) '!
Hq(K�); 8q � 0.
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4.2 Mixed Hodge structure for nonsingular quasi-projective space

Let X be a smooth, quasi-projective algebraic variety over C . According to [Hir],

we may �nd a smooth compacti�cation �X ofX. Thus X is a smooth projective

variety on which there is a divisorD with normal crossings, such that X = �XnD.

Locally D is given by fz 2 C n : jzij < �; z1z2 : : : zk = 0g. It will simplify matters

notationally to assume that globally D = D1 [ : : : [DN , where the Di are smooth

divisors meeting transversely.

Theorem 4.17 The cohomology H�(X) has a functorial mixed Hodge structure.

Proof .

step 1. By a neighborhood at in�nity, we will mean an open set U � X, and �U is

the polycylinder jzij � � so that U = �Un �U \D.

De�nition 4.18 The C1 log complex A�(U; logD) is the complex of C1 forms

' 2 A�(U) such that z1 : : : zk' and z1 : : : zkd' are C1 in �U .

Lemma 4.19 A�(U; logD) = A�( �U)fdz1
z1
; : : : ; dzk

zk
g

De�nition 4.20 The C1 log complex A�(X; logD) on X is the subcomplex of

A�(X) consisting of all ' which are in A�(U; logD) for all neighborhood U at in-

�nity.

To give the global description, we consider the line bundles [Di]! �X and choose

sections �i 2 �( �X;O([Di])) with (�i) = Di and �ber metrics in [Di]. Setting

�i = 1
2�
p�1@ log j�ij2;

!i = �@�i

Lemma 4.21 A�(X; logD) = A�( �X)f�1; : : : ; �Ng.

De�nition 4.22 On A�(X; logD) we de�ne the weight �ltrationWl =Wl(A
�(X; logD))

to be those forms ' such that locally at in�nity ' 2 A�( �U)fdzi1
zi1
; : : : ;

dzil
zil
g, i.e. '

involves at most l dzi
zi

;
s.
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Note that the de�nitions of the log complex and weight �ltration are local around

a point z 2 X. Thus we may de�ne complexes of sheaves on �X

A�(logD);
Wl = Wl(A�(logD))

such that A�(X; logD) = �( �X;A�(logD)) and similarly for Wl. By the usual parti-

tion of unity argument, these sheaves have no higher cohomology.

Given that D = D1 [ : : : [DN , we shall use the following notations:

I = fi1; : : : ; ikg � f1; : : : ; Ng is an index set ;
DI = Di1 \ : : : \Dik ; jIj = k;
D[k] = _tjIj=kDI (disjoint union):

De�nition 4.23 The Poincar�e residue operator R[k] :Wk(A�(logD))!A��k(D[k])

is de�ned by R[k](� ^ dzi1
zi1

^ : : : ^ dzik
zik

) = �
���
DI

Lemma 4.24 a) R[k] is well-de�ned and R[k](Wk�1) = 0:

b) R[k] commutes with d; @, and �@:

Lemma 4.25 The induced mappings

R[k] : H�
d(Wk=Wk�1)!H��k

d (A�(D[k]))
R[k] : H�

�@
(Wk=Wk�1)!H��k

�@
(A�(D[k]))

are isomorphisms

Proof . It su�ces to show the Poinca�re lemma for KerR[k]. Let z0 = (zN+1; : : : ; zn).

Given

' =
X
I

'
dzI
zI

+ �

a representative in Wk=Wk�1 satisfying d' = 0, where I � f1; : : : ; Ng, � does not

involve dzI : Write � =  ^ �dz + �, where � � 0(dz0; d�z0): Then

d' = 0 )
�

@'I
@�zi

= 0 for i = 1; : : : ; n:

dz0� = 0;
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an so � = dz0� for some � by the usual Poincare lemma. Now by subtracting d�; we

can write

' =
X
I

�0I ^
dzI
zI

+
X
I

� 0I ^ d�zI ;

where � 0 � 0(dz0; d�z0). Again,

d' = 0 )
�
d0z�

0 = 0
d0z�

0 = 0

)
�

� 0 = d0z�
0 �P

I  
0 ^ dzI

zI
+
P

I  
00 ^ d�zI(mod exact forms);

�0I = d0z�
00:

Therefore, subtracting d(�00 ^ dzI
zI
), we have

' �P
I �I ^ d�zI ^ dzI

zI
, where d0z�I = 0

) ' �P
I �I(zI ; z

0
I) ^ d�zI ^ dzI

zI
mod exact forms.

Observe that �@(rho(zI ; z
0
I)d�zI) = 0, and by the �@-poincar�e lemma, �Id�zI = �@�I:

Without loss of generality, we may assume

' =
X
I

@�I ^ dzI
zI
;

where �I

���
DI

= o since ' 2 KerR[k]. Thus applying the usual Poincar�e lemma gives

�nally that ' is exact.

step 2. It will be proved that the canonical map

H�(A�(X; logD))! H�(A�(X)) ' H�(X; C )

is an isomorphism.

Given L� a complex of sheaves on a space Y with the cohomology groupsHq(Y;Lp) =
0 for q � 1, then we can de�ne a spectral sequence Er with

Ep;q
0 = Cp(U ;Lq)

Ep;q
1 = Hp

� (U ;Lq))
=

�
0 for p 6= 0
�(Y;Lq) for p = 0

Ep;q
2 = Hq

dH
p
� (U ;L�))

=

�
0 for p 6= 0
Hq
d(�(Y;L�)) for p = 0
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and E1 = E2.

Proposition 4.26 Given two complexes of sheaves L�;K� withHq(Y;Lp) = Hq(Y;Kp) =

0 for q > 0, and a morphism  : L� ! K� of complexes of sheaves such that the

induced cohomology sheaf map  � : H�(L�) ! H�(K�) is an isomorphism, then the

global cohomology map

kerf�(Y;Lp)! �(Y;Lp+1)g
d�(Y;Lp�1) ! kerf�(Y;Kp)! �(Y;Kp+1g

d�(Y;Kp�1)

is also an isomorphism.

Apply this principle to Y = �X;L� = A�(logD), and K� = j�A�(logD)), where

j : X ,! �X is the inclusion mapping. Note that �( �X;A�(logD)) = A�(X; logD)

and �( �X; j�A�) = A�(X). Step 2 of the proof of Theorem 4.17 consequently follows

from the following lemma.

Lemma 4.27 The induced mapping

H�(A�(logD))!H�(j�L�(X))

is an isomorphism.

Proof .The question is local in a neighborhood U at in�nity. Let C fdz1
z1
; : : : ; dzk

zk
g =

C ffdzi
zi
gg be the free di�erential graded algebra generated by dz1

z1
; : : : ; dzk

zk
and having

di�erential d = 0. There is a commutative triangle

A�(U; logD) A�(U)
i

C fdz1
z1
; � � � ; dzk

zk
g

� �

Then we have i � � = �. Since U is homotopic to (4�)k � 4n�k, and the

cohomology on (4�)k has as basis the forms dzI
zI
, where I � f1; : : : ; kg, use K�unneth
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formula, we see �� is an isomorphism on cohomology. Thus it su�ces to show �� is

an isomorphism on cohomology. There is an obvious weight �ltration Wl(C ffdzizi gg)
such that �(Wl(C ffdzizi gg) � Wl(A

�(U; logD)). Consider the commutative triangle

Wi(A
�(U;logD))

Wi�1(A�(U;logD))
A��k(D[l]; �U)

Wi(Cff dzizi gg)
Wi�1(Cff dzizi gg)

� �

R[l]

where � is the Poincar�e map. we have � = R[k] � �, �� is an isomorphism on

cohomology and R
[k]
� is also an isomorphism by Lemma 4.25. Thus �� is also an

isomorphism on cohomology. Using induction on l, it follows

� : Wl(C ffdzi
zi
gg) �!Wl(


�(U; logD))

induces an isomorphism on cohomology. For l = k, we obtain our lemma.

Corollary 4.28 The residue map R[k] : Wk=Wk�1 ! A��k(D[k]) induces isomor-

phisms on both d and �@ cohomology.

step 3. On the C1 log complex A�(X; logD) we have de�ned the weight �ltration

Wl, and we now de�ne the Hodge �ltration by

F pA�(X; logD) = �i�pAi;�(X; logD):

The weight and Hodge �ltrations induce �ltrations on the cohomologyH �(A�(logD)) '
H �(X; C ), and it is to be proved that this gives a mixed Hodge structure.

Proposition 4.29 The weight �ltration Wl(H
�(X; C )) is de�ned over Q .

Proof .Take a closed form ' 2 A�(X; logD), then R[n]' = 0. Conversely if R[n]' = 0

in cohomology, then there exists a � 2 A�(X; logD) such that ' � d� 2 Wn�1.
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Repeating this argument, we get

Wl(H
�(X; C )) = f' 2 H �(X; C ) : R[n]' = : : : = R[l+1] = 0g

where on the right side, R[�]' are taken in H �(D[�]; C ). Therefore Wl(H
�(X; C )) is

de�ned over Q .

Now consider the �ltration W�l = Wl(A
�(X; logD)) on the complex. Thus we

have the decreasing �ltration : : : � W�l � W�l+1 � : : :, and we may consider the

spectral sequence of a �ltered complex. Accordingly, there is a spectral sequence

Er such that E1 is the associated graded complex to the �ltration on H(X; C ) and

E1 = H�(W�l=W�l+1).

Lemma 4.30 The Hodge �ltration F p induces Hodge structure of pure type k + l

on Hk(W�l=W�l+1).

Proof .The Poincar�e residue operator induces

F p(W�l=W�l+1)
R[l]�! F p�1(A�(D[l])):

Applying Corollary 4.28, it follows

Hp(W�l=W�l+1) �= Hp�1(D[l]):

is a morphism of Hodge structures of type (�l;�l) and Hk(W�l=W�l+1) is of pure

type k + l.

Lemma 4.31 The mapping d1 : E1 ! E1 is a morphism of Hodge structures.

Proof .Using the isomorphism

E1
�= �IH

�(DI) note I might be an empty set ;

we want to show d1 is given by the Gysin mappings

H�(DI1:::Il)
�! H�+2(DI1:::Il)
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Given ' 2 H �(W�l=W�l+1), we may represent it by a form ' 2 Wl(A
�(logD)) with

R[l]d' = dR[l]' = 0. i.e. d' 2 Wl�1. Since d1 is the coboundary map arising from

the exact sequence of complexes

0!Wl�1=Wl�2 ! Wl=Wl�2 ! Wl=Wl�1 ! 0;

we have

d1' = R[l�1]d':

Writing ' =
P

jIj=l 'I ^ �I ; and �I = �i1 ^ : : : ^ �il : Then it su�ces to show

X
jIj=l

Z
D[l]

'I ^  =

Z
D[l�1]

R[l�1]d' ^  

for all closed form  ,

d' =
X
jIj=l

(d'I ^ �I + (�1)i+l�1
X
j

'I ^ !ij ^ �I�ij)

R
D[l�1] R

[l�1]d'
=

P
jIj=l
ij2I

R
DInfijg

(�1)j�1d'I ^ �ij ^  + (�1)j+l�1'I ^ !ij ^  
=

P
jIj=l
ij2I

R
DInfijg

f(�1)j�1d'I ^ �ij ^  + (�1)j�1d('I ^ �ij ^  )
=

P
jIj=l
ij2I

R
DInfijg

(�1)j�1d('I ^ �ij ^  )
=

P
jIj=l
ij2I

R
@DInfijg

(�1)j�1'I ^ �ij ^  
=

P
jIj=l

R
D[l] 'I ^  

by Cauchy residue formula.

Corollary 4.32 The weight and Hodge �ltrations on A�(logD) induces a mixed

Hodge structure on E2.

step 4. The main remaining step is to show that the spectral sequence in question

degenerates at E2. In case D is smooth. the weight �ltration is just W0 � W1

and therefore E2 = E1. The crucial case is when D = D1 [ D2, and we shall

show d2 = 0 | this will su�ces to make clear how the general argument goes. Let
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� 2 E�2
1 = H �(W2=W1) �= H ��2(D1 \ D2). We may assume � is a closed C1(p; q)

form on D1 \ D2. Let ~� be a C1 extension of �, then A0 = �1 ^ �2 ^ ~� gives

a form in W2(A
�(logD)) with R[2]A0 = �. Since R[2]dA0 = dR[2]A0 = 0, we have

dA0 2 W1(A
�(logD)). If d1(�) = 0, there exist forms �i 0n D such that

R[1](dA0)D1 = �2 ^ d~� + !2 ^ ~�jD1 = d�1
R[1](dA0)D2 = �1 ^ d~� + !1 ^ ~�jD2 = d�2

Moreover, we may choose the �i to have type (p+ q+1; 0)+ � � �+(p+1; q). Setting

~B0 = �(�1 ^ ~�1 + �2 ^ ~�2) where ~�i are C
1 extensions of �i. We �nd the relations

R[2](A0 +B0) = �
R[2](d(A0 +B0)) = R[1](d(A0 +B0)) = 0

d(A0 +B0) 2 F p+2A�(logD)

Then we repeat the same argument using ��1; ��2. This leads to A
00:B00 satisfying

R[2](A00 +B00) = �
R[2](d(A00 +B00)) = R[1](d(A00 +B00)) = 0

d(A00 +B00) 2 F q+2A�(logD)

Since deg(d(A0 + B0))= deg(d(A00 + B00)) = p+ q + 3, the above equations say ex-

actly that d2� 2 E0
2 has total degree p + q + 3 and is in F p+2(E0

2) \ F q+2(E0
2) = 0

since E2 has a mixed Hodge structure. Thus d2� = 0.

step 5. Given a morphism Y
f! X, we may �nd a diagram

Y ,! �Y

f
??y

??y �f

X ,! �X

according to Hironaka, and �f � : A�(X; logD) ! A�(Y; logD) commutes with the

weight and Hodge �ltrations. This implies functoriality.

Remark 4.33 Given smooth completion �X1; �X2 of X, there exists a smooth com-

pletion �X3 and a diagram according to [Hir].
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X3

X1 X2

X
SSS

S
SSS

, thus independence of the smooth compacti�cation follows.

Corollary 4.34 The Hodge numbers hp;q(Hn(X)) = 0 unless 0 � p; q � n; n �
p+ q � 2n:

Corollary 4.35 Let �X be a compacti�cation of X. Then the image of Hn( �X) !
Hn(X) is Wn(H

n(X))

Corollary 4.36 Let X; �X be as in Theorem 4.17 and furthermore �X is a K�ahler

manifold, then Hk(X; C ) = �p+q=kH
q
�@
( �X;
(logD))

Proof .By theorem 4.17, it su�ces to showHk
d (

�X;A�(logD)) = �p+q=kH
q
�@
( �X;
(logD)).

Consider the double complex fA�;�; @; �@g
...

...
...x??�@ x??�@ x??�@

A0;1(logD)
@�! A1;1(logD)

@�! A2;1(logD)
@�! : : :x??�@

x??�@
x??�@

A0;0(logD)
@�! A1;0(logD)

@�! A2;0(logD)
@�! : : :x??�@

x??�@
x??�@

0! C �X ! 
0(logD)
@�! 
1(logD)

@�! 
2(logD)
@�! : : :

we see that

Ep;q
2 = Hp

@(H
q
�@
(A�;�(logD))):

Since �X is compact and K�ahler, 4@ = 4�@, we have d1 = 0 and therefore

Ep;q
1 = Ep;q

1 = Hq
�@
(Ap;�(logD)) = Hp;q

�@
(A�;�(logD)):
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Use Dolbeault Theorem for log complexes, we have

Hp;q
�@
(A�;�(logD)) = Hq

�@
( �X;
p�X(logD)):

Hence
Hk
d (A�(logD)) = Ek;0

1 + : : :+ E0;k
1

= �p+q=kH
k( �X;
p(logD))

5 Mixed Hodge Structure ) Kodaira Vanishing Theorem

In this section, we uses the concept of cyclic cover and the decomposition of the

cohomology of a projective space to reach the Kodaira Vanishing Theorem.

Let X projective space, D some e�ective divisor. Consider � : Y ! X the cyclic

cover obtained by taking N -th root out of D as we mentioned in x4.

Theorem 5.1 A complex analytic manifold X of complex dimension k, bianalyti-

cally embedded as a closed subset of C n has the homotopy type of a k-dimensional

CW-complex.

Proof .For the proof, see [Mil].

Corollary 5.2 If X 2 C n is a nonsingular a�ne algebraic variety in complex n-

space with real dimension 2k, then H i(X; C ) = 0 for i > n.

Proof .This is trivial from theorem().

Theorem 5.3 Kodaira Vanishing Theorem Let X be a complex, projective man-

ifold and A be an ample invertible sheaf. Then

Hb(X;O(KX)
A) = 0:

Proof .Since A is ample, there exists some N such that AN = OX(D), where D is

an e�ective and nonsingular divisor. Let Y the cyclic cover obtained by taking the
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n-th root of D. De�ne ~D = (��D)red, we have that � : Y ! X is unrami�ed outside

of D and
��
aX(logD) = 
aY (log ~D);

��OY = �N�1
i=0 L�i

where 
aX(logD) denotes the sheaf of di�erential a-forms with logarithmic poles

along ~D. By projection formula,

��
nY (log ~D) = 
ax(logD)
 ��OY

= �N�1
i=0 
n(logD)
 L�i

= �N�1
i=1 
nX 
 LN�i:

Observe that Y
�! X is a �nite morphism andHq(Y;
nY (log ~D)) = 0 by the existence

of partition of unity. Therefore there exists Leray spectral sequence,

Ep;q
2 = Hq(X;Rp��
nY (log ~D))) Hp+q(Y;
nY (log ~D)):

where Rp��
nY (log ~D) is the p-th direct image sheaf associated to the presheaf U 7!
Hp(��1(U);
nY (log ~D)). Since Rp��
nY (log ~D) = 0, we get

H i(X; ��
nY (log ~D)) = H i(Y;
nY (log ~D)):

Since we have

Hk(Y n ~D; C ) = �p+q=kH
q(Y;
pY (log

~D))

and Y n ~D is a�ne, it holds that Hk(Y nD; C ) = 0 for k > n; and therefore

0 = Hb(Y;
nY (log ~D) = �N�1
i=0 H

q(X;
nX 
 LN�i)

Remark 5.4 We can see from the proof that we do not really need the mixed Hodge

structure of the cohomology of a quasi-projective space but only use cohomology

groups of de Rham log complexes to decompose it.
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