
ON THE BEHAVIOR OF NEWTON ITERATION

C. C. TSAI

ABSTRACT. We study the multivariate Newton method for the case of
non-simple root. We give a criterion for it to converge, in which case
the convergence rate will be linear. We then give a modified method to
achieve an exponential rate of convergence. In contrast to this, we present
also a number of examples to demonstrate some critical phenomenons
of the Newton iteration when the criterion does not hold, and discuss
possible ways to resolve the problem.

1. INTRODUCTION

The Newton iteration provides an algorithm to approximate the roots of
smooth maps f : Rn → Rn from Euclidean n-space to itself. Namely

x 7→ N(x) := x− (D f |x)−1 f (x).

For the one-variable case it is well known that the Newton iteration al-
ways converges locally at any root, unless the derivative of all order vanish
there. For multivariate case, the method is efficient if the root a is a simple
root, i.e. the Jacobian of the map det D f |a at a is non-zero. If det D f |a = 0,
the Newton iteration is undefined at a, and therefore difficult for us to an-
alyze its local behavior.

In section 2, we show that if the root is a zero of homogeneous order k,
then the Newton iteration behaves like a contraction mapping of dissipation
factor (k− 1)/k. Furthermore, if f is dominated by its lowest homogeneous
part in the sense that a non-degeneracy condition holds, then N behaves like
the strictly homogeneous case (c.f. Theorem 2.1). In this case, we can even
modify the Newton iteration to make the dissipation factor approximates
0, and therefore achieve an exponential rate of convergence (c.f. Theorem
2.3). The non-degeneracy holds trivially for one variable analytic case.

In section 3 we consider several examples, where the non-degeneracy
fails, to demonstrate the wild behavior of Newton iteration. It may blows
up along certain dangerous directions which are unavoidable. But in the
(generalized) homogeneous case, a notion to be defined in section 3.1, we can
still conclude that the Newton iteration is good at almost every direction,
and all direction in certain case (c.f. Theorem 3.1).

For other situation, we separate them into two category: non-homogeneous
case and implicitly non-homogeneous case. We begin the exploration of non-
homogeneous case in section 3.2, where we show that the Newton iteration in

1

2 C. C. TSAI

general won’t be a contraction, but it may still converge. In section 3.3 we give
a non-convergent example of a smooth but non-analytic map which has a
zero of infinite order.

In section 3.4, we give a non-homogeneous example randomly gener-
ated by computer, in which the Jacobian never vanishes outside the root, but
the Newton iteration could still diverge. In section 3.5, we give another
non-homogeneous example, in which the Newton iteration almost never
converge to the root. Finally in section 3.6, implicitly non-homogeneous case
is considered. We present two examples and show its very similarity and
connection with the non-homogeneous cases.

Lastly, in section 4, we discuss the difficulties we have met in the non-
homogeneous case. Some possible approaches are proposed, and we briefly
discuss the obstructions one has to overcome when seeking for such a method.

There is an appendix section which contains the computer code in C++
which gives to all the examples discussed in section 3.

2. CRITERIA FOR CONVERGENCE

2.1. Simple roots. Let us begin with a smooth map f : Rn → Rn, the New-
ton iteration is defined to be the map N(x) = x − D(x), where D(x) =
(D f |x)−1 f (x). This arose from our interest in approaching the root of f . If
a is a root of f where det D f |a 6= 0, namely a is a simple root, then a is a
fixed point of N. In fact

DN|x = In − D((D f |x)−1) f (x)− (D f |x)−1D f |x = −D((D f |x)−1) f (x).

Hence DN|a = 0 and N is a contraction mapping in a neighborhood of
a. Moreover the Newton iteration converges exponentially there. Thus we
only focus on the convergence issue at non-simple roots.

2.2. The strictly homogeneous case. Suppose now the origin 0 is a root of
f . We are interested in the behavior of N near 0. Let f = (f1, f2, . . . , fn).
Suppose that fi are algebraic and homogeneous of the same degree k. Then
we have Euler’s relation D f |xx = k f (x) (by differentiating the equation
f (λx) = λk f (x) at λ = 1). Hence

D f |x
x
k

= f (x), D(x) =
x
k

, N(x) =
k− 1

k
x

and the Newton iteration converges to 0 with a fixed linear rate.
We remark here that the Newton iteration is invariant under invertible

linear transformation, both on the domain and on the range space.

2.3. A non-degeneracy condition. Now suppose that each fi has k zeroes
at the origin, i.e. fi = Pi + Ri, where Pi is a polynomial of degree k and the
first derivative of the remainder is bounded

DRi ≤ M|x|k

ON THE BEHAVIOR OF NEWTON ITERATION 3

in a neighborhood of the origin. We further assume that |Pi| ≤ |x|k (note
that we’re free to scale fi) and at some point x0 in the neighborhood the
non-degeneracy condition holds: There is a constant C such that

| (DP|x0)
−1 | ≤ C|x0|−k+1,

where P = (P1, . . . , Pn). Then we have

Theorem 2.1. Under the non-degeneracy assumption on f at x0, we have

D(x0) = x0/k + ε(x0) with |ε(x0)| ≤ BC2|x0|2,

where the bound B depends only on n and M. In particular if f is non-degenerate
in a neighborhood of a root, the the Newton iteration converges locally with rate
being approximately 1− 1/k.

Proof. Notice that DRi ≤ M|x|k gives Ri ≤ M|x|k+1 in a neighborhood of
the origin. We shall estimate the effect of the Newton iteration at x0.

Since by assumption we know (DP)−1 P very well (= x/k), it suffices to
estimate |(DP)−1P− (DP)−1 f | and |(DP)−1 f − (D f)−1 f |.

For the first we have

|(DP)−1P− (DP)−1 f | ≤ |(DP)−1||P− f | ≤ CMn1/2|x0|2.

For the second we use the fact that if x is a solution for Ax = b and x + εx
is a solution for (A + δA)(x + εx) = b, then

(δA)x + A(εx) + (δA)εx = 0

=⇒ A(In + A−1δA)εx = −(δA)A−1b

=⇒ |εx| ≤ 2(|b| · |δA| · |A|−2), provided |A−1δA| < 1
2

.

By applying this to A = D f |x0 , δA = DR|x0 and b = f (x0), we have

|A−1δA| ≤ CMn1/2|x| < 1
2

if |x| < 1
2CMn1/2 . And |b| ≤ |P|+ |R| ≤ n1/2|x|k + n1/2M|x|k+1. Hence

|(DP)−1 f − (D f)−1 f | ≤ nMC2|x0|2 + nM2C2|x0|3.

From

D(x0) = (D f |x0)
−1 f = (DP|x0)

−1P + ((DP|x0)
−1P− (D f |x0)

−1 f)

and the above two estimates (we may assume that |x0| < 1), we conclude
that

|D(x0)− x0/k| < nCM(1 + CM + CM2)|x0|2.

�

Remark 2.2. Theorem 2.1 and the non-degenerate condition can be regarded as
the simplest generalization of the one variable case with multiple roots.

4 C. C. TSAI

2.4. A modified method. Suppose that for all x satisfying | x
|x| −

x0
|x0| | < δ

we have the non-degeneracy |DP|x|−1 ≤ C|x|−k+1.
Let A = BC2(δ−1 + 1) + 1. Then we begin with

|x0| ≤
A−1

16k
,

and let
x1 = x0 − (1− 2−3)kD(x0),

x2 = x1 − (1− 2−4)kD(x1),

...

xn+1 = Nn(xn) = xn − (1− 2−(2n+2))kD(xn),

Note that we can compute multiples of D(x), since D(x) is invariant under
translation of coordinates. Inductively we have

Theorem 2.3. Begin with the condition assumed as above, we have

|xn| ≤
A−1

2Cn k
,

∣∣∣∣ x0

|x0|
− xn

|xn|

∣∣∣∣ < δ,

where Cn = 2n + n + 3 and the xn’s are given by the iteration

xn+1 = xn − (1− 2−(2n+2))kD(xn).

Proof. We claim

|xn| ≤
A−1

2Cn k
,

∣∣∣∣ xn

|xn|
− xn+1

|xn+1|

∣∣∣∣ < 2−nδ.

Indeed, suppose it holds for n− 1. Then

xn+1 = 2−(2n+2)xn + (1− 2−(2n+2))(xn − kD(xn))

which, by theorem 2.1, implies that

(∗) |xn+1 − 2−(2n+2)xn| ≤ BC2k|xn|2 ≤
2−Cn

δ−1 + 1
|xn|.

On one hand, this shows that

|xn+1| ≤
(

2−(2n+2) +
2−Cn

δ−1 + 1

)
|xn| ≤ 2−(2n+1)|xn| ≤

A−1

2Cn+1
.

On the other hand, letting x̄n = 2−(2n+2)xn,∣∣∣∣ xn

|xn|
− xn+1

|xn+1|

∣∣∣∣ =
∣∣∣∣ x̄n

|x̄n|
− xn+1

|xn+1|

∣∣∣∣ ≤ ∣∣∣∣ x̄n

|x̄n|
− xn+1

|x̄n|

∣∣∣∣+ ∣∣∣∣ xn+1

|x̄n|
− xn+1

|xn+1|

∣∣∣∣ .

ON THE BEHAVIOR OF NEWTON ITERATION 5

The first term of the RHS is controlled by (∗). It is no greater than 2−(n+1)

δ−1+1 .
Using the estimation of |xn+1| together with (∗), and keep in mind that
| 1a −

1
b | ≤

|a−b|
ab , we have∣∣∣∣ xn+1

|x̄n|
− xn+1

|xn+1|

∣∣∣∣ ≤ 2−Cn

δ−1 + 1
· |xn+1| · |xn|
|x̄n| · |xn+1|

≤ 2−(n+1)

δ−1 + 1
< 2−(n+1)δ.

Hence the sum of the two terms is smaller than 2−nδ, as promised. �

This gives a method to converge to the root by exponential rate (as the
rate of Newton method for usual simple root), provided that we know k.
We may detect k by letting |x0| � A−1, and compare the ratio between
|x0− N(x0)| and |N(x0)− N(N(x0))|. They should be about k

k−1 , as can be
controlled by the above estimate.

3. EXAMPLES AND PHENOMENONS

3.1. The necessity of the bound C. Here we give an example here to show
that the assumption in Theorem 2.1 and Theorem 2.3 about the constant C
is necessary. Consider

f1 = 2x2 − 5xy + 2y2 + x2y2,
f2 = xy.

The Newton iteration is given by

N
(

x
y

)
=

1
2

(
x
y

)
+

1
2x2 − 2y2

(
x3y2

−x2y3

)
When |x| is close to |y|. N(x

y) will blow up; N(x
y) become very big after the

first step of iteration, and it will continue going toward infinity. Hence it
will be impossible to approximate the root by the Newton iteration if we
begin at a bad direction.

However, one sees that in Theorem 2.3 we only require that x0 is smaller
by some multiple of A−1. Hence if we consider B fixed, C can be taken to
be of the order O(|x0|−0.5). This shows that if the point we begin is close
enough to the root, then almost every direction will leads us to the root.
Indeed, we only asked for the assumption

|DP|x0 |−1 ≤ C|x0|−(k−1)

But | (DP|x)−1 | ≤ (det DP|x)−1 |DP|x|n−1, which should be of −(k − 1)
degree in x, thus such C must exist for any fixed direction (i.e. on a line
through the origin), unless we are on the hypersurface det DP = 0 of codi-
mension 1, or det DP is the zero polynomial.

When all the Pi’s are of the same degree and det DP is not the zero poly-
nomial, we call the case homogeneous. When all the Pi’s are of the same

6 C. C. TSAI

degree but det DP is the zero polynomial, we call the case implicitly non-
homogeneous, and non-homogeneous when some of the Pi’s are not of the
same degree.

We have seen the good behavior of homogeneous case. The rest of this
chapter will deal with non-homogeneous cases, in which we postpone the
explanation and discussion of implicit non-homogeneity to section 3.6.

We also remark here that if det DP is positive/negative definite (that is,
non-vanishing except at the origin), then with some control of the kind
|DP|x|n−1 ≤ N|x|k−1 (recall that we’re free to scale f and P), we may choose
a large enough C for any direction, i.e. Theorem 2.1 and Theorem 2.3 holds
for all x in a neighborhood of the origin. In summary we have

Theorem 3.1. In homogeneous case, if det DP is positive/negative definite, then
the Newton iteration is a contraction in a neighborhood of the root x0 with the
dissipation factor → (k − 1)/k as x → x0. And we have a modified method to
make the factor→ 0 and thus achieve an exponential rate of convergence.

3.2. A non-contraction example which ”converges”. In section 2 it seems
like things just work like a contraction; we have N(x) v k−1

k x. That is,
however, not the general case.

Recall that when each Pi are homogeneous of degree k. We have DP|x x
k =

P(x). But if now each Pi are of degree ki not all the same, then we have

(DPi|x)
x
ki

= Pi(x).

But then we can have no good guess about (DP|x)−1P(x). Consider

f1 = x2,

f2 = x3 + y5.

The Newton iteration is given by

N
(

x
y

)
=

(
1
2 x

x3

10y3 + 4
5 y

)
.

This is not a contraction mapping. In fact, N(x, y) does not even con-
verge to (0, 0) as (x, y) approaches (0, 0); when x and y are of about equal
magnitude, the term x3/10y3 is constant. However, one sees that under
Newton iteration, x does decreases steadily, in a rate which is generally
faster than y. Hence x will converges to zero, and y will follow x to the
zero, in a relatively slow rate, making the term x3/10y3 not a threat.

To be precise, suppose at some step |x|3 < |y|4. Writing (x′
y′) = N(x

y), we
have

|x3/10y3| < |y|/10⇒ 0.7 < |y′|/|y| < 0.9
Hence we have two estimate: |y′| < 0.9|y| and |x′|3 = 1

8 |x|3 < (0.7)4|y|4 <

|y′|4. In this case by induction we see that the Newton iteration converges.
If otherwise |y|4 ≤ |x|3 at all steps, then since x always decreases to zero,

ON THE BEHAVIOR OF NEWTON ITERATION 7

the Newton iteration also converges. Thus unless the denominator van-
ishes at some step, the Newton iteration will send any point toward the
origin, the only root of this system.

It is in fact no surprise that we have a non-contraction convergence. The
Newton iteration is totally decided by the linear structure of Rn, while
when we talk about contraction, it has to do with metric. Hence the only
chance for it to be a contraction is that the vector shrink by a factor N(x) =
ρx, with ρ < 1. And we have seen that it happens only for homogeneous
cases.

3.3. The order of zero = ∞. We already know that when k is a fixed inte-
ger, the contraction factor (for homogeneous case) is (k − 1)/k. Now we
consider the following smooth real-valued function

f (x) = φ(x)e
1
|x| , where φ(x) = 100− 3 sin3 x cos x− 5 sin x cos3 x.

And we define f (0) = 0. We have φ′(x) = 3− 8 cos4 x and the Newton
iteration is given by

N(x) = x− f (x)/ f ′(x) = x + x3
(

6− 16 cos4 x
100− 3 sin3 x cos x− 5 sin x cos3 x

− x
)−1

.

The second term may be arbitrary large. Moreover it is more likely to be
of the same sign with x rather than opposite sign. This shows that the
finiteness of the order of zero is somehow necessary.

3.4. Non-homogeneous example I. Next we observe two non-homogeneous
examples. Here is the first one:

f1 = 5x2 + 3xy− 5y2,

f2 = 14x4 − 7x3y− 4xy3 − 11y4.

The Newton iteration is given by

N
(

x
y

)
=


−161x5 + 462x4y− 235x3y2 − 220x2y3 − 93xy4 − 110y5

−238x4 + 602x3y− 330x2y2 − 464xy3 − 172y4

140x5 − 147x4y + 280x3y2 − 205x2y3 − 354xy4 − 119y5

−238x4 + 602x3y− 330x2y2 − 464xy3 − 172y4

 .

Let S1 = {(x, y) | y/x ∈ [−3.9,−3.3]}, S2 = {(x, y) | x/y ∈ [2, 2.3]}.
Then N(S1) ⊂ S2, N(S2) ⊂ S1. And if we begin with any x ∈ S1 or S2 then
the Newton iteration will send it to infinity. The picture below show the
direction of −D(x) = N(x)− x. When x is at the upper left region ⊂ S1,
N(x) will be in the right upper region ⊂ S2, then N(N(x)) will be in the
lower right region ⊂ S1, and so on. And it will be sent further and further
(although pretty slowly) from the origin.

Furthermore, one notes that in this example, D f (that is, the denomina-
tor above) never vanishes except at the root, but the Newton iteration still

8 C. C. TSAI

diverge. This shows that homogeneity is essential in the general conver-
gence of Newton iteration.

3.5. Non-homogeneous example II. The second example is given by

f1 = y− x3 + x100y100,

f2 = y2 − x5 + x99y99.

If X = (x
y) is close to zero and is not close to the x-axis (that is, the com-

mon tangent of f1 and f2) in the sense that x/y is bounded, then the Newton
iteration will sends X far away along the x-axis. This may be explained by
that both ∇ f1 and ∇ f2 are almost parallel to the y-axis, but the ratios∣∣∣∣∇ f1

f1

∣∣∣∣ and
∣∣∣∣∇ f2

f2

∣∣∣∣ are distinct.

Indeed, recalled that in Newton iteration, the modification D(x) is to satis-
fies the property

D f |xD(x) = f (x), which becomes
(

0 + ε 1 + ε
0 + ε 2y + ε

)
D(x) =

(
y + ε
y2 + ε

)
where the +ε roughly means ”smaller terms”. If we see the above equation
as two linear equations, it means that D(x) has to be the intersection of two
lines almost parallel to the x-axis. At the origin, the distance of the two

ON THE BEHAVIOR OF NEWTON ITERATION 9

lines looks like y
2 (consider setting all ε = 0). Hence the solution D(x) will

be driven far away along the x-axis, depending on the behavior of the small
terms and how small they are. They can be very small, and in particular in
this example we have

D
(

x
y

)
=

 y2−2x3y+x5+98x99y99−99x102y98−98x100y101+100x105y99−x199y198

−6x2y+5x4−99x98y99+200x99y101−297x101y98+500x104y99

−3x2y2+5x4y−2x7−99x98y100+96x101y99+100x99y102−95x104y100+x198y199

−6x2y+5x4−99x98y99+200x99y101−297x101y98+500x104y99

 .

When x, y are very small, we have

N
(

x
y

)
v

1
6x2y

(
−y2 + 4x3y

3x2y2

)
.

After X has been sent far away along the x-axis by the first step, the sec-
ond step will send it further (and not along the x-axis), it will then be sent
toward infinity because of the higher order terms. If f1 and f2 are merely
smooth, then anything can happen after the first step, e.g. it may converge
to another root.

3.6. About implicit non-homogeneity. Recall that implicit non-homogeneity
happens when the Pi’s are of the same degree but det DP is the zero-polynomial.
First we give an example.

f1 = 5x2 + 3xy− 5y2 − 14x4 + 7x3y + 4xy3 + 11y4,

f2 = 5x2 + 3xy− 5y2 + 14x4 − 7x3y− 4xy3 − 11y4.

One sees immediately that after a simple linear transformation, this is
nothing but the example in 3.4. That’s why we call it implicitly non-homogeneous.
In this case, the Pi’s are just all the same. And thus they are of the same de-
gree, but det DP is definitely zero.

For n = 2, the implicit non-homogeneity is just non-homogeneity, hid-
den by a linear transformation. However, for n = 3 things becomes more
complicated. Consider

f1 = x2,

f2 = y2,

f3 = xy + x2y2 + z8 − z6.

In this case all the Pi’s are independent of z, and thus det DP = 0. The
Newton iteration is given by

N(x, y, z) =
(

1
2

x,
1
2

y, z− z8 − z6 − x2y2

8z7 − 6z5

)
It has similar property with the example in 3.5. Begin with small x, y, z,

not too close to the z-axis in the sense that |z2/xy| is bounded, The z-
component becomes large after the first step. Later steps of Newton itera-
tions then send it to the root (0, 0, 1) or (0, 0,−1); it almost never converges
to the root (0, 0, 0).

10 C. C. TSAI

4. DISCUSSION

All the results above may be generalized without change to the complex
case. We have seen that things are not bad when f is homogeneous. When f
happens to be (explicitly or implicitly) non-homogeneous, then the Newton
iteration may break down. And when it happens that for two components
fi, f j we have Pa

i = Pb
j with a 6= b (that is the general form for the example in

3.5; they have similar tangents but distinct degree), the root becomes almost
impossible to be approached by the Newton iteration; roughly we have
limx→0 N(x) −→ ∞ for almost every direction. To overcome this problem,
one may pick a fi and solve for D fi = 0. However this may still break
down. For example, if we pick D f2 in

f1 = y− x3,

f2 = y2 − xy3 + x7.

Then we see that D f2 also has a root in the origin, but Newton iteration will
not approach the root for the same reason as above. Another more general
problem is

f1 = y− x3,

f2 = y + y2 − x3 − xy3 + x7.

This is the implicitly non-homogeneous version of the above. Since D f1, D f2 6=
0 at the origin, we gain nothing by considering D f1 or D f2, unless we know
how to ”separate” y2 − xy3 + x7 from f1 and f2. The point is that implic-
itly non-homogeneous cases seem to have all the troubles which happen in
(explicitly) non-homogeneous case, but it might be harder to detect it.

Such separation problem seems to be an essential difficulty. If we can
overcome it, then we can perform some transformation to make it better.
For example, in the first example in this section, if we know to square f1 =
f 2
1 = y2 − 2x3y + x6, and furthermore apply linear transformation f1 =

f1 − f2. it becomes

f1 = xy3 − 2x3y + x6 − x7,

f2 = y2 − xy3 + x7.

That is the case as in 3.4. Now, if again we know to square f2, then it
becomes homogeneous:

f1 = xy3 − 2x3y + x6 − x7,

f2 = y4 − 2xy5 + x2y6 + 2x7y2 − 2x8y3 + x14.

This is the case that we can control. However, since our purpose is to find
the root, we cannot pretend that we know the root is at the origin, hence
we cannot talk about the degree of fi directly; one needs another method
to ”detect” the degree in the non-homogeneous case.

ON THE BEHAVIOR OF NEWTON ITERATION 11

One should also note that, as shown in 3.6, implicit non-homogeneity
can introduce greater difficulty for the separation. Recall the example

f1 = x2,

f2 = y2,

f3 = xy + x2y2 + z8 − z6,

in which the implicit non-homogeneity cannot be resolved by linear trans-
formation. We might need algebraic technique, e.g. take f̄3 = (f3− f1 f2)2−
f1 f2.

5. APPENDIX — PROGRAM CODES

The following is a program using standard C++ language. In the line
”#define CASE 1”, one may change the 1 to 2, 3, 4, 5, or 6. The resulting
program corresponds to the example in 3.1, 3.2, 3.3, 3.4, or 3.5, or the second
example in 3.6, respectively.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define CASE 1
#define N 210
double x, y, z;
struct poly{

int co[N][N];
};
poly Dx(poly p){

poly tmp;
int i, j;
for (i=0; i<N; i++){

for (j=0; j<N; j++){
if (i == N - 1)

tmp.co[i][j] = 0;
else

tmp.co[i][j] = p.co[i+1][j]*(i + 1);
}

}
return tmp;
}
poly Dy(poly p){

poly tmp;
int i, j;
for (i = 0; i < N; i++){

for (j = 0; j < N; j++){
if (j == N - 1)

tmp.co[i][j] = 0;
else

12 C. C. TSAI

tmp.co[i][j] = p.co[i][j + 1]*(j + 1);
}

}
return tmp;
}
double eval(poly p){

double px[N],py[N];
double sum = 0;
int i, j;
px[0] = py[0]= 1;
for (i = 1; i < N; i++)

px[i] = px[i-1]*x, py[i] = py[i - 1]*y;
for (i = 0;i < N;i ++){

for (j = 0; j ¡ N; j++){
if (p.co[i][j]! = 0)

sum+ = px[i]*py[j]*p.co[i][j];
}

}
return sum;
}
poly f,g;
void newton(){

double fx = eval(Dx(f)), fy = eval(Dy(f)), gx = eval(Dx(g)), gy = eval(Dy(g));
double det = fx*gy - fy*gx;
double dx = gy*eval(f) - fy*eval(g), dy = fx*eval(g) - gx*eval(f);
x = x - dx/det, y = y - dy/det;
}
int main(){

int c, t, k, ch;
double tx, ty;
if (CASE == 1){

f.co[2][0] = 2, f.co[1][1] = -5, f.co[0][2] = 2, f.co[2][2] = 1;
g.co[1][1] = 1;

}
if (CASE == 2){

f.co[2][0] = 1;
g.co[3][0] = 1, g.co[0][5] = 1;

}
if (CASE == 3){

scanf(”%lf”,&x);
while(1){

y=1/(x*x);
for(int t=0;t¡100000;t++)

x+=x*x*x/((3-8*pow(cos(y),4))/(100.0-1.5*pow(sin(y),3)*cos(y)-2.5*sin(y)*pow(cos(y),3))-
x);

printf(”%.12lf”,x);
system(”pause”);
}

ON THE BEHAVIOR OF NEWTON ITERATION 13

}
if (CASE == 4){

f.co[2][0] = 5, f.co[1][1] = 3, f.co[0][2] = -5;
g.co[4][0] = 14, g.co[3][1] = -7, g.co[2][2] = 0;
g.co[1][3] = -4, g.co[0][4] = -11;

}
if (CASE == 5){

f.co[0][1] = 1, f.co[3][0] = -1, f.co[100][100] = 1;
g.co[0][2] = 1, g.co[5][0] = -1, g.co[99][99] = 1;

}
if (CASE == 6){

scanf(”%lf %lf %lf”,&x,&y,&z);
while(1){

x/=2,y/=2,z-=(pow(z,8)-pow(z,6)-x*x*y*y)/(8*pow(z,7)-6*pow(z,5));
printf(”%.12lf %.12lf %.12lf”,x,y,z);
system(”pause”);

}
}
scanf(”%lf %lf”,&x,&y);
while(1){

newton();
printf(”%.12lf %.12lf \ n”, x, y);
system(”pause”);

}
system(”pause”);
}

DEPARTMENT OF MATHEMATICS, NATIONAL TAIWAN UNIVERSITY
E-mail address: b95201056@ntu.edu.tw

