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ABSTRACT. In this report I present new proofs and improvement of results for two kinds of
multiple cover formula, which were previously established in [8], [7].

1. INTRODUCTION

Morrison-Aspinwall [10] and [11] computed the genus zero multiple cover formula for
Gromov-Witten invariants of P1. For more general cases or for higher genus, it often hap-
pens that the coarse moduli space is not of the correct dimension. And one needs to replace
the fundamental class by the virtual fundamental class to define the Gromov-Witten invari-
ants. This was done by Li-Tian [9] and Behrend-Fantechi [2], [3]. Graber-Pandharipande [6]
used this to develop the virtual localization formula, which may be thought as a generaliza-
tion version of the Atiyah-Bott localization formula, and applied it to compute the genus 1
multiple cover formula and gived the conjecture for higher genus. This conjecture was later
proved by Faber-Pandharipande [5].

In this article we recall Faber-Pandharipande’s result and previous techniques, and give
a direct-localization proof on two other multiple cover formulas on higher dimensional
cases, which was proved by Lee, Lin and Wang [8], [7] using more advanced tools (mir-
ror symmetry, quantizations). In particular, the result of Faber and Pandharipande to-
gether with our results determine Gromov-Witten invariant of the following moduli of sta-
ble maps into local Calabi-Yau of the formE = O(−1)r+1 → Pr, in the sense that we integral
over e(R1π∗f

∗N)∩ [M̄g,n(Pr, d)]vir, where [M̄g,n(Pr, d)]vir is the virtual fundamental class of
M̄g,n(Pr, d) and N is the normal bundle O(−1)r+1.

2. EQUIVARIANT COHOMOLOGY AND LOCALIZATION FORMULA

The group action in consideration throughout this article will be G = C∗r+1
acting on Pr

and other G-action induced by this action (of course, C∗r is enough, but this setting make
our formula cleaner) , where r is some fixed positive integer. We have

H∗G(pt) = H∗(BG) = Q[λ0, ..., λr],

where BG is the classifying space for G. λi ∈ H2
G(pt) is the Euler class of a trivial line

bundle, on which some piece of C∗ acts by w.z = wz. Let G acts on Pr by (w0, ..., wr).(z0 :
... : zr) = (w−1

0 z0 : ... : w−1
r zr). We have

H∗G(Pr) = Q[h][λ0, ..., λr]/(
∏

(h− λi)).

Under the action of G, Pr has r + 1 fixed points, which we will denote by p0, ..., pr. The
tautological bundle O(−1) has Euler class −λi when restricted to {pi}. When a trivial line
bundle (in particular, a 1-dimensional vector space) has Euler class µ ∈ H2

G(pt), we say that
the bundle has weight µ.

This is a report which fulfills the course Special Project for Undergraduate, supervised by Professor Chin-Lung
Wang, at National Taiwan University from September 2009 to January 2000, in which I studied moduli problems
and Gromov-Witten theory.
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Consider the map ιi : pt → Pr, where the image is pi. For τ ∈ H∗G(Pr), ι∗i τ = τ(λi) :=
τ |h=λi

. Moreover ιi∗1 =
∏
j 6=i(h− λj). This can be seen as follows: firstly ι∗i ιi∗ =

∏
j 6=i(λi −

λj), the Euler class of the tangent space of Pr at pi. Also λiιi∗1 = ιi∗(λi) = ιi∗(ι∗ih) = hιi∗1
by the projection formula, that is (h− λi)ιi∗1 = 0, and thus the result.

The Atiyah-Bott localization formula [1] is as follows: suppose {Fi} are the fixed loci
under G of some space M . ιi : Fi → M is the imbedding. Then for every µ ∈ H∗G(M), we
have, for some polynomial f ∈ H∗G(pt), in the localized module H∗G(M)f

µ =
∑
i

ιi∗

(
ι∗iµ

ι∗i ιi∗1

)
,

∫
M
µ =

∑
i

∫
Fi

ι∗iµ

ι∗i ιi∗1

where ι∗i ιi∗1 may also be seen as the Euler class of the normal bundle of Fi in M . Origi-
nally, this result was proven in equivariant cohomology. For our purpose, the equivariant
Chow group was constructed and algebraic localization for schemes has been established
by [4]. Generalization to Delinge-Mumford stack may be found in [6].

3. VIRTUAL FUNDAMENTAL CLASS AND PERFECT OBSTRUCTION THEORY

For the moduli of stable maps, the expected dimension is often different from the dimen-
sion of the moduli space. The expected dimension for the moduli of stable maps M̄g,n(X, d)
is rk(H0(C, f∗TX))−rk(H1(C, f∗TX))+(3g−3)+n = d.c1(TX)+(dimX−3)(1−g)+n. Now
M̄2,0(P1, 2) has expected dimension 2[P]1.c1(TP1)+(dim P1−3)(1−2) = 6. However, the set
of maps of a collapsing genus two curve glued with a double rational cover has dimension
7.

Nevertheless, there is a virtual fundamental class of the moduli space that lies in the cor-
rect dimension component of the rational Chow group, constructed via perfect obstruction
theory. A perfect obstruction theory on a space X consists of:

(i) A two term complex of vector bundles E• = [E−1 → E0] on X .
(ii) A morphism φ in the derived category of bounded above complexes of quasi-coherent

sheaves from E• to L•X , the cotangent complex of X , such that φ induces an isomorphism
in degree 0 cohomology and a surjection in degree −1 surjection.

Here, a morphism in the derived category τ : F • → G• may be explained as follows:
there exists an object F̃ • in the category such that we have actual morphism of complexes
F̃ • → G• and F̃ • → F •, such that the later morphism is a quasi-isomorphism, i.e. it induces
isomorphism in cohomology.

The virtual fundamental class is of dimension rk(E0) − rk(E−1). In our case, the mod-
uli of stable maps M̄g,n(Pr, d) can be constructed as a quotient of a locally closed scheme
of some Hilbert scheme by PGL. One may embed the Hilbert scheme into a larger Grass-
mannian, so that its quotient by PGL is still non-singular [6]. Thus X = M̄g,n(Pr, d) can be
embedded into a non-singular Deligne-Mumford stack Y (this still holds if Pr is replaced
by a subscheme V which possess an equivariant embedding V ↪→ Pr, since we have the
embedding M̄g,n(V, β) ↪→ M̄g,n(Pr, d)). In this case, the cotangent complex can be taken to
be its two-term cutoff:

L•X = [I/I2 → ΩY ]

where I is the ideal sheaf of X in Y . We assume for simplicity that E• → [I/I2 → ΩY ] is
an actual map of complexes. This is not needed for the construction in [9], [3]. On the other
hand, the embedding into quotient of Hilbert scheme shows that M̄g,n(Pr, d) has enough
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locally frees, so we may indeed make this assumption. The mapping cone associated to the
map gives rise to an exact sequence

E−1 → E0 ⊕ I/I2 → ΩY → 0

whose exactness is equivalent to the condition imposed on φ. Let Q be the kernel of
E0 ⊕ I/I2 → ΩY . The associated exact sequence of abelian cones reads

0→ TY → C(I/I2)×X E0 → C(Q)→ 0

The normal cone of X in Y , CX/Y is a closed substack of C(I/I2). Let D = CX/Y ×X E0.
Then TY is a subcone of D [3], and the quotient Dvir := D/TY is a subcone of C(Q) and
thusE1. The virtual fundamental class [Xvir] is defined to be the refined intersection ofDvir

with the zero section of the vector bundle E1.

Suppose now (and indeed in our case) X ↪→ Y is G-equivariant, together with a G-
equivariant lifting to E•.

Then we have an equivariant perfect obstruction theory and an equivariant virtual fun-
damental class. Let Xf be the G-fixed locus of X . If X = Spec(A), then Xf is defined
by the ideal of functions with non-trivial G-characters. Similarly defining Y f , we have
Xf = Y f ∩X . Moreover we have

ΩY |fY f = ΩY f , ΩX |fXf = ΩXf

where Sf denote the fixed part of a sheaf S. In [6] it was then proved

Lemma 3.1 The map φf : (E•|Xf )f → L•Xf is a perfect obstruction theory on Xf .

Now, we define the virtual normal bundle Nvir
f to Xf to be the moving part of E•|Xf .

This is a two-term complex of vector bundles, and for such a complex [B0 → B1] its Euler
class is defined to be e(B0)/e(B1). Let K be the quotient field of A∗G(pt). In this setting, [6]
proved the following virtual localization formula

[X]vir = ι∗
[Xf ]vir

e(Nvir
f )

where ι∗ : AC
∗
∗ (Xf )⊗A∗G(pt) K → AC

∗
∗ (X)⊗A∗G(pt) K is the push-forward map.

For the moduli of stable maps, there is a canonical perfect obstruction theory. In [2], the
relative deformation problem

M̄g,n(V, β)→Mg,n

is studied to obtain the canonical obstruction theory. Here Mg,n is the nonsingular Artin
stack of prestable curves. The explicit result we need in the computation will be written
down in the next section.

4. LOCALIZATION THE MODULI OF STABLE MAPS

In this section we discuss the combinatorial summation that appear when we apply the
virtual localization formula to the moduli of stable maps M̄g,n(Pr, d).
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We discuss the fixed locus of M̄g,n(Pr, d) byG. SinceG = C∗r+1
acts on the universal curve

Ūg,n(Pr, d), on each point in the fixed locus of M̄g,n(Pr, d), we obtain an induced action of G
on the fiber curve which is compatible with the stable map and the action of G on Pr, i.e. we
obtain an G-equivariant map from the fiber curve to Pr. In particular, for stable maps in the
fixed locus, any special points (nodes and marked points, images of contracted components
and ramified points) must be mapped to some pi ∈ Pr.

Moreover, for any component not contracted, since its image has dimension 1, the image
must be a coordinate line connecting some pi and pj . Moreover, we obtain a group action
on the component, with at least two fixed points, which forces the component to be rational.
Since the map must only ramify at pi and pj , by Riemann-Hurwitz formula the map must
be of the form: P1 → P1 given by z 7→ zd, where 0 and∞ correspond to pi and pj .

Let f denote the stable map(s) to Pr. By the above analysis, a closed point on the fixed
locus of M (by action of G) is described by the following graph:

(i) A set of vertices, corresponding to each connected component of f−1({p0, ..., pr}).
For each vertex one number is associated, namely its genus. Also there are two labels on it,
one being its image (some of the pi’s) and the other being a subset of all the marked points.

(ii) A set of edges, corresponding to each non-contracted irreducible component. A edge
has two vertices at its endpoints, which are the connected component of the two points
corresponding to some pi and pj . Also, there is a positive number associated, the degree of
the map from the component to Pr.

The genus of such a graph is defined to be the first Betti number of the graph plus the
sum of the genus of all vertices. The degree of the graph is the sum of degrees of all edges.
The valence of a vertex, denoted val(v) below, is the sum of the number of neighboring edge
and the number of marked points. Let Sg,n,d be the set of such graphs with correct genus,
degree and marked point set and is connected. For each Γ ∈ Sg,n,d, define

MΓ =
∏

vertex v

M̄g(v),val(v)

where M̄0,1 and M̄0,2 may appear, and in that case shall be realized as a point. Then there
is a natural morphism M̄Γ → M̄g,n(Pr, d) given by the moduli property. There is a ”kernel”
A of the morphism, which is a group acting on MΓ as well as the universal curve UΓ. A can
be described by the exact sequence of groups

1→
∏

edge e

Z/d(e)→ A→ Aut(Γ)→ 1

where the left term of the sequence arises from the automorphisms of the non-contracted
rational component. We thus have a closed immersion MΓ/A → M̄g,n(Pr, d), and a compo-
nent of the fixed locus of M̄g,n(Pr, d) byG is supported onMΓ/A for each Γ. It can be shown
that the fixed component is non-singular, and thus equal to MΓ/A.

To apply the virtual localization formula, we must compute the virtual normal bundle of
the fixed locus, which by definition is the moving part of the dual of the perfect obstruction
theory. Let E•,Γ denote the dual canonical perfect obstruction theory restricted to MΓ/A.
There are exact sequences [6]

(4.1) 0→ T 1 → E0,Γ → E1,Γ → T 2 → 0

(4.2) 0→ Aut(C)→ H0(C, f∗TPr)→ T 1 → Def(C)→ H1(C, f∗TPr)→ T 2 → 0
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where we represent the bundle by its fiber. C is the fiber curve and Aut(C) and Def(C)
are the bundle of infinitesimal automorphism and deformation fixing the marked points,
respectively. In general, when one applies the virtual localization formula on M̄g,n(Pr, d),
one compute a summation over all possible connected graph of correct genus, degree and
number of marked point, and reduces to intersection theory on the moduli of curves via
the above exact sequence. Also we may carry out the computation on M̄Γ and divided the
result by |A| in the end.

We now claim that the bundle H1(C, f∗TPr) has no fixed part (on MΓ/A), so is T 2. This
shows that the fixed loci is nonsingular, as promised. For a vertex v ∈ Γ, let i(v) be given
by f(Cv) = {pi(v)}, where Cv denote the component corresponding to the vertex v. Also for
each edge e let Ce denote the corresponding component. Then from the exact sequence of
sheaves

0→ OC →
⊕
v

OCv ⊕
⊕
e

OCe →
⊕
(v,e)

Ox(v,e) → 0

where the summation for the right term are taken over all adjacent pairs of vertices and
edges, and x(v,e) is the intersection of Cv and Ce, tensoring f∗F we have the long exact
sequence:

0→ H0(C, f∗F)→
⊕

vH
0(Cv, f∗F)⊕

⊕
eH

0(Ce, f∗F)→
⊕

v(F|pi(v)
)⊕deg(v)

→ H1(C, f∗F)→
⊕

vH
1(Cv, f∗F)⊕

⊕
eH

1(Ce, f∗F)→ 0

(4.3)

where we use the case F = TPr. In this case, H1(Ce, f∗F) all vanish, and H1(Cv, f∗F) =
H1(Cv,OCv) ⊗ F|pi(v)

has no fixed part since H1(Cv,OCv) is a fixed bundle, but F|pi(v)
is a

trivial bundle with action weight λi − λj for all j 6= i. Also F|pi(v)
has no fixed part as it is

the tangent space of pi(v). Thus H1(C, f∗F) has no fixed part and the claim is proved.

5. MULTIPLE COVER FORMULAS

In this section we stated the result of Faber and Pandharipande for higher genus and
r = 1, as well as our results which give different and more direct proofs of Lee, Lin and
Wang’s results in the higher dimensional case.

Theorem 1 [5] Let g ≥ 1. Consider the moduli M̄g,0(P1, d) and a normal bundleO(−1)⊕
O(−1) on P1. Let f be the map from the universal curve Ūg,0(P1, d) to P1, π be the projection
from the universal curve to the moduli. Then∫

[M̄g,0(P1,d)]vir

e(R1π∗f
∗(O(−1)⊕O(−1)) =

|B2g|d2g−3

2g · (2g − 2)!

where e() denote the Euler class.

Theorem 2 [7] Consider the moduli M̄1,0(Pr, d) and a normal bundle O(−1)⊕r+1 on Pr.
Let f be the map from the universal curve Ū1,0(Pr, d) to Pr, π be the projection from the
universal curve to the moduli. Then∫

[M̄1,0(P1,d)]vir

e(R1π∗f
∗(O(−1)⊕r+1)) = (−1)(r+1)d r + 1

24d

Theorem 3 Consider the moduli M̄0,n(Pr, d) and a normal bundle O(−1)⊕r+1 on Pr. Let
f, π be similar. Let e1, ..., en : M̄0,n(Pr, d) → Pr be the evaluation maps. Let l1, ..., ln be such
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that l1 + ... + ln = 2r + n − 2. Let u(l1, ..., ln) be the coefficient of αrβr in
∏n
k=1(αlk − βlk) ·

(α− β)2−n. Then

∫
[M̄0,n(Pr,d)]vir

e(R1π∗f
∗(O(−1)⊕r+1))

n∏
i=1

e∗i (h
li) = (−1)(r+1)(d−1)+1u(l1, ..., ln)

2
dn−3

where h is the hyperplane class in A1(Pr).

Theorem 3 was proved in [8] without knowing the exact value of the universal constant.
Our extended result gives the first explicit formula of the constant and our proof is much
more elementary in nature (without using mirror transformations).

The general idea is that when the bundle is large (has dimension larger than the space Pr)
then we may greatly simplify the combinatorics that appears in the summation over graphs
for localization. In particular, one may easily reach the result that the number is a monomial
in d (possibly negative power).

The reason we use the term ”normal bundle” to coin O(−1)⊕r+1 is because we are think-
ing the problem as counting the cover formula for Pr the vector bundle O(−1)⊕r+1, which
looks like a Calabi-Yau space. Note that Pr is rigid (i.e. no deformation) in the bundle. Let
E denote the bundle. Then the moduli M̄g,0(E, d) has expected dimension (dimE − 3)(g −
1) +KE · d = (dimE − 3)(g − 1).

When we introduce marked points for the Gromov-Witten invariant (as in theorem 3)
and give constraints that some marked point must be mapped to some class, because of
the divisor equation, we obtain new information only if the class is of codimension two
or higher. In that case, M̄g,n(E, d) ∩ e∗1(h1)...e∗n(hn) has dimension (dimE − 3)(g − 1) −∑

(codim hi − 1), where hi > 1. Since dimE = 2r + 1, the only non-trivial case with
marked points are g = 0, and when g > 1 we must have r = 1, that’s the case for Faber-
Pandharipande [5].

6. DIRECT LOCALIZATION TOWARD THE PROOF

Below we give the proof of our result, namely theorem 2 and 3.

Proof of theorem 2 The bundle O(−1) can be considered as the tautological bundle on
Pr. In that case, we have an equivariant G action on the bundle, with the weight of the
vector space O(−1)|pi equal to −λi. We have r + 1 pieces of O(−1), which we will called
the 0-th, ..., r-th piece. We interpret the k-th piece (which we will denote by O(−1)k) as the
tensor product of the tautological bundle with a trivial bundle with equivariant weight λk.
In this way,O(−1)k|pi has weight λk−λi. The key point is that the k-th piece has zero weight
at pk.

Applying the localization formula in this setting, we observe that all graph that has more
than one edges gives zero contribution. The reason is that, for such a graph there must
be a vertex which has degree larger than or equal to two. Consider the exact sequence
(4.3) with F = O(−1)⊕r+1. According to the last result of the last paragraph, for each
vertex the third term in (4.3) always produces deg(v) zeroes, one of them cancels out with
H0(Cv, f∗F) = H0(Cv,OCv)⊗F|pi(v)

= F|pi(v)
. Thus when the degree ≥ 2, the contribution

vanishes.

Since we are considering genus 1 case, the graph must be an edge with degree number d,
connecting two vertices of genus 1 and 0. Let Γi,j denote the graph for which the genus 1
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component are mapped to pi and the genus zero vertex (in fact a point) are mapped to pj .
The contribution is ∫

MΓi,j

e([H1(C, f∗O(−1)⊕r+1)])
e(Nvir

Γi,j
)

Let e and v denote the only edge and the genus 1 component, respectively, then for F =
O(−1)⊕r+1, by (4.3), the facts thatH0(C, f∗F) = 0 and that each vertex has degree 1, one has
e([H1(C, f∗F)]) = e([H1(Cv, f∗F)])e([H1(Ce, f∗F)]). Here H1(Cv, f∗F) = H1(Cv,OCv) ⊗
F|pi and thus

e([H1(Cv, f∗F)]) =
r∏

k=0

(−λ+ λk − λi)

where λ is the Euler class of the Hodge bundle on M̄1,1, the fiber of which is the global sec-
tions of the dualizing sheaf on the curve. On the other hand, H1(Ce, f∗F) = H0(Ce, f∗F∗⊗
ΩCe)∗. Let q0, q1 be the points on Ce with f(q0) = pi and f(q1) = pj , respectively. At q0

and q1, the k-th piece of f∗F∗ has induces weight λi−λk
d and λj−λk

d , while the space of global
sections of TCe has induced weights λi−λj

d ,
λj−λi

d , 0. Thus one computes

e([H1(Ce, f∗F)]) =
r∏

k=0

ηλk−λi,λk−λj

where ηa,b =
∏d−1
t=1

ta+(d−t)b
d . For the term e(Nvir

Γi,j
), let F = TPr and recall from (4.1) and

(4.2) that

1
e(Nvir

Γi,j
)

=
e(Aut(C)m)e(H1(C, f∗F)m)
e(Def(C)m)e(H0(C, f∗F)m)

where Em denote the moving part of the bundle E. Aut(C) is a rank two bundle on
the fixed locus, which splits into a fixed part consisting of the (infinitesimal) automorphism
fixing both q0 and q1, and a moving part consisting of the automorphism for which the
only fixed point on Ce is q0. The fixed part is not considered in the computation and the
contribution of the moving part is the induced weight of the tangent space of q1, which is
λj−λi

d .

For Def(C), the deformation of the genus 1 curve is fixed by G and thus give no contri-
bution. Thus e(Def(C)) is equal to the contribution of the deformation resolving the node
Ce ∩ Cv, thus

e(Def(C)) = e(TCe|q0)− ψ =
λi − λj
d

− ψ

where ψ is the Euler class of the cotangent bundle of the marked point on M̄1,1. For the
other two terms, we similarly uses (4.3), obtaining (for F = TPr)

e([H1(Cv, f∗F)]) =
∏
k 6=i

(−λ+ λi − λk)

and

e([H0(Ce, f∗F)]) = η̃λi−λj ,λj−λi
·
∏
k 6=i,j

η̃λi−λk,λj−λk
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where η̃a,b =
∏d
t=0

ta+(d−t)b
d . Note that there is a zero in η̃λi−λj ,λj−λi

, which should be
discarded (as it is not in the moving part). Now we have

∫
[M̄1,0(P1,d)]vir

e(R1π∗f
∗(O(−1)⊕r+1)) =

∑
i 6=j

1
|A|

∫
MΓi,j

e([H1(C, f∗O(−1)⊕r+1)])
e(Nvir

Γi,j
)

=
∑
i 6=j

d−1λj − λi
d

∫
M̄1,1

∏r
k=0(−λ+ λk − λi)

∏
k 6=i(−λ+ λi − λk)

(λi − λj − ψ)/d
· −1(r+1)(d−1)

σiσj

where σi :=
∏
k 6=i(λi − λk) comes from the cancellation of e([H1(Ce, f∗O(−1)⊕r+1)]) and

e([H0(Ce, f∗TPr)]). We have λ2 = 0 since M̄1,1 has dimension only 1. Also since after
cancellation, there is still a λ in the numerator, the ψ in the denominator has no effect due to
dimension reason. Thus the above summation is equal to

∑
i 6=j

−1r+(r+1)(d−1)

d

σ2
i

σiσj

∫
M̄1,1

λ =
−1r+(r+1)(d−1)

∫
M̄1,1

λ

d

∑
i 6=j

σi
σj

Now λ = δ0
12 , where δ0 is the boundary divisor of M̄1,1, since δ0 corresponds to a weight 12

modular function while λ corresponds to a weight 1 modular function. And
∫
M̄1,1

δ0 = 1/2
because of the Z/2-automorphism for genus 1 curve. Moreover

∑r
i=0

1
σi

= 0, which is the
equality for degree r coefficient of Lagrange interpolation for the constant function 1 at
{λ0, ..., λr}. Thus

∑
i 6=j

σi
σj

= −(r + 1) and we obtain the answer −1(r+1)d r+1
24d .

Proof of theorem 3 We use the same equivariant setting for O(−1)r+1, e.g. O(−1)k|pi

has weight λk − λi. For the same reason, this equivariant setting makes the contribution of
all graphs zero except for those having only one edge. For those graphs, we have a choice
of two points {pi, pj}, such that the image of Ce is the line connecting pi and pj . Here Ce
denotes the non-contracted component as before.

Since the vertices have genus zero,H1(Cv,OCv) = 0 and consequently the term e([H1(C, f∗O(−1)⊕r+1)])
is simply equal to e([H1(Ce, f∗O(−1)⊕r+1)]) =

∏r
k=0 ηλk−λi,λk−λj

.

Let {1, ..., n} denotes the set of marked points. We have {1, ..., n} = N1 t N2, where N1

and N2 denote the set of marked points mapped to pi and pj , respectively. We temporarily
assumes |N1|, |N2| ≥ 2, the corresponding moduli MΓ = M̄0,|N1|+1 × M̄0,|N2|+1. In such
case, Aut(C) contains only one fixed part, and e(Def(C)m) = (λi−λj

d − ψ1)(λj−λi

d − ψ2),
where ψ1 and ψ2 are the pull-back of the ψ class from M̄0,|N1|+1 and M̄0,|N2|+1, respectively,
corresponding to the extra marked point.

And H1(Cv, f∗TPr) = 0 as above. Also as before,

e([H0(Ce, f∗F)]) = η̃λi−λj ,λj−λi
·
∏
k 6=i,j

η̃λi−λk,λj−λk

one zero that appears in the η̃ term in the above formula is to be ignored, since we are
computing the moving part. Finally, if the k-th marked point is mapped to pi, then e∗k(h) =
λi. Thus the contribution of the graph is

(−1)(r+1)(d−1)

d

∫
M̄0,|N1|+1

1
λi−λj

d − ψ
·
∫
M̄0,|N2|+1

1
λj−λi

d − ψ
·
∏
k∈N1

λlki
∏
k∈N2

λlkj
σiσj

.
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And we have∫
M̄0,|N1|+1

1
λi−λj

d − ψ
=
(
λi − λj
d

)1−|N1| ∫
M̄0,|N1|+1

ψ|N1|−2 =
(
λi − λj
d

)1−|N1|

Thus the contribution is

(6.0) (−1)(r+1)(d−1)+1−|N2|dn−3(λi − λj)2−n
∏
k∈N1

λlki
∏
k∈N2

λlkj
σiσj

Now, an interesting fact is that (6) still holds when |N1| ≤ 1 (similar for N2). When
|N1| = 1, then the integral aboutN1 does not appear since the corresponding vertex must be
contracted to a point. Replacing it by 1, the formula is unchanged. When |N1| = 0, not only
that the integral does not appear, but there is an extra term λi−λj

d from e(Aut(C)m). Thus
the result is unchanged. Thus (6) always holds.

Summing over all partition N1 tN2 and then over all pairs {i, j}, we have

∫
[M̄0,n(Pr,d)]vir

e(R1π∗f
∗(O(−1)⊕r+1))

n∏
i=1

e∗i (h
li) = (−1)(r+1)(d−1)

∑
0≤i<j≤r

−dn−3

∏n
k=1(λlki − λ

lk
j )

σiσj(λi − λj)n−2

Now let p(α, β) =
∏n
k=1(αlk − βlk) · (α− β)2−n, which is a polynomial of degree 2r since

l1 + ...+ ln = 2r + n− 2. There is a polynomial p̃(α, β), such that degα p̃ ≤ r, degβ p̃ ≤ r and

p̃ = p− q1

r∏
k=0

(α− λk)− q2

r∏
k=0

(β − λk)

for some polynomial q1, q2 in α, β of degree r − 1. We may now apply Lagrange interpo-
lation on p̃, obtaining

p̃ =
r∑
i=0

r∑
j=0

p̃(λi, λj)
∏
k 6=i(α− λk)

∏
l 6=j(α− λl)

σiσj
.

Moreover, one observes that p̃(λi, λj) = p(λi, λj), p(λi, λi) = 0 and the coefficient of αrβr
in p̃ is equal to that in p. Thus the coefficient of αrβr in p(α, β) is equal to

2
∑

0≤i<j≤r

∏n
k=1(λlki − λ

lk
j )

σiσj(λi − λj)n−2

and the theorem is obviously obtained.
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