The First

NCTS Summer School on Algebraic Geometry

July 19 – 30, 1999

Professor Eckart Viehweg University of Essen

(Notes by Chin-Lung Wang)

Lecture I – 7/19, p.1

Safarevich Conjecture, Moduli, and Kodaira–Spencer Maps

Lecture II – 7/23, p.9

Construction of Moduli

Lecture III – 7/27, p.17

Positivity of Sheaves

Lecture IV – 7/30, p.26

Solutions to the Safarevich Problem

Let
$$F = general fiber. s = \#S$$
 if $B cume P^2$
 $F cume , g = g(F) , B cume , S c B finite .
(I). $\# [Isom. closes of smooth non-iso-trivial
families of cume / Bo of genue $3 \le \infty$
Del: $f: X \to B$ iso trivial \iff
 $X = \overline{k(B)} \sim F \times \overline{k(S)}$ and binatel.
 $binatel (make tense for chigher dimension)$
(II). $IF \ge g(B) - 2 + s \le 0$, then there are no non-iso trivial families
 $(B,S) \ddagger (P, S_0, \infty_3) \ddagger (Ellipt. ø)$
Parshin (G?) $S = \emptyset$
Arakelov Engeneral p
Problem: what about if dim $F \ge 1$.
Assumption 1) F should be a minimal model
 $2)$ consider $f: X \to B$ (proj) with a polarization
 L ie. L inv. sheof, $f - angle$.
 $Otherwoise, \ddagger families of K3 surface, $X \to P^1$
"twistor space". but this is non-algebraic.
 $Faitings: (83)$ (I) is NDT true:
For (8,S) fixed, there exists pos. dim families$$$

of abelian varieties / B-S.

Setter:
$$\omega_{X/B} = O(K_X - f_{XB}^*)$$

 $= \omega_X \otimes f^* \omega_B^{-1}$, $\omega_X = \Lambda^{\max} \Omega_X$
f: $X \to B$ families of polenized minimal models
of Kodaira dim $K(F) \neq 0$.
 $\omega_X \otimes f_{XB} = f_{-nef}$.
 $\omega_X \otimes f_{XB} = f_{-nef}$.
 $\omega_X \otimes f_{XB} = f_{-nef}$.
 $(1 = \chi((\chi|F)^Y))$ the hilbert phynemial
 $(1 = \chi_{XB}) = \chi((\chi|F)^Y)$ the hilbert phynemial
 $(1 = \chi_{XB}) = \chi(\chi_{XB}) = \chi(\chi_$

Ex. Mum ford,

$$f = M_{g}$$
, $3 = 2$
 $M_{g}(k) = \{C/k \mid c \text{ pwj stable curve of gens } 3/2$
ie. C reduced i-dim'l sing, are
 $5t = W_{c}$ ample.
 $5 = t_{1}(c, U_{c})$.
 $1 = t_{1}(c, U_{c})$.

2) [Kollár, shephed Barron. Mexeev] P.6
There exists a definition of stable surface,
and a proj moduli space of stable surface,
unpatituing
$$M_h^* = moduli of surface, r[
general Syst.
3) [Kavec]:
MMP (dim+1) $\Rightarrow \exists$ "stable convocally polarized
 $n-fold$ "
Again Addendum true:
it. $\lambda_V \iff det (f \otimes W_K^*))$ is cuple on M_n , $v \ge 2$.
Very optimistic interpretation of (I).
find universal family atter a cover
 $Y_0 \xrightarrow{finit} M_h^* = Y - Y_0$ NCD
 $\hat{N} = 2y'(\log D) = sheaf of diff forms$
 $Y \longrightarrow M_h$ with log poles along D.
so cally $D = Z(x_1 \cdots x_s)$
 $\Omega'_y(\log D) = (\frac{dx_1}{x_1}, \cdots, \frac{dx_n}{x_s}, \frac{dx_{s+1}}{x_s}, \frac{dx_{s+1}}{x_s}, \frac{dx_n}{y} \otimes y$
 $sy'(\log D) = (\frac{dx_1}{x_1}, \cdots, \frac{dx_n}{x_s})$
 $M_f = So (deg S)$
many think its the amplements of $\Omega'_y(\log D)$
but this may not be true in general since we
toke a reversing, and is outside somewhere??
 $M_f = \bigoplus H \longrightarrow S^a(E), \subseteq over Y_0$.$$

Remark: Hope two for My,
$$3 \ge 2$$

In general; open ploblems: Me compatitived module:
scheme (of can. polarized varieties), Min smooth part
 $y = D \xrightarrow{finite} M_{h}^{\circ} \xrightarrow{2} \det(II'_{y}(Iog D))$
 $\gamma \xrightarrow{2} M_{h}$ $\Rightarrow wy(D)$
 $p \xrightarrow{2} M_{h}$ $wy(D)$
 $p \xrightarrow{2} M_{h}$ $minimal$ modules $m \xrightarrow{2} N_{h} \xrightarrow{2} N_{h}$
 $p \xrightarrow{2} Now standows (B) (D(B), $M_{h}, M_{h}^{\circ})) \in Hom(B, M_{h})$
 $M \xrightarrow{2} M_{h}$ $M \xrightarrow{2} M_{h}$ $fimite type$ $p \xrightarrow{2} M_{h}$
 $p \xrightarrow{2} M_{h}$ $fimite type$ $p \xrightarrow{2} M_{h}$
 $p \xrightarrow{2} (B, B_{0}) \xrightarrow{2} (M_{h}, M_{h}^{\circ}), induced by$
 $T = \begin{cases} \varphi: (B, B_{0}) \xrightarrow{2} (M_{h}, M_{h}^{\circ}), induced by$
 $f: X \rightarrow B^{\circ} \in M_{h}(P) \xrightarrow{2} /\underline{\omega}$. $\square$$

§ 2. Diff forms and Kodaira - Spencer map.
EX. X elliptic Surface
$$P_{1}^{P_{1}}$$

f: X \rightarrow B non-isotrivial, $\exists B \rightarrow M_{1}$
 $p_{1}^{P_{1}}$ finite U
 $\downarrow finite M_{1}^{O} = A^{1}$
 $\psi_{X/B} = f^{*} \oplus, \quad \bigoplus \neq c$ (Kodaira's formula)
 $U_{S}(f_{*} \ \omega_{X/B}^{*}) > c$.
consider: $c \rightarrow f^{*} \Omega_{B}^{*}(\log s) \rightarrow \Omega_{X}^{*}(\log f^{+}S) \rightarrow \Omega_{X/S}^{*}(\log g^{-1}S)) \rightarrow c$
 $exact sequence of Vector bundles$.
 $c \rightarrow T_{X/B}(-f^{+}(s)) \rightarrow T_{X}^{*}(-f^{+}S) \rightarrow f_{B}^{*}(-S) \rightarrow c$
 $T_{S}^{*}(-S) \xrightarrow{\to} R^{+}f_{*} T_{X/B}(-f^{-1}(s)) \rightarrow c$
 $U_{S}(f_{*} \ \omega_{X/B}^{*}) \leftarrow c = f^{+} c = f^{+}(s)$
 $U = f^{*} c = f^{+} f_{*} f_{$

First Victoriery Lecture II.
$$\frac{1}{2}$$
 (999) P.9
F. X-2 B families of comes.
Surface of general type
or. can. polarized manifolds.
Need diff forms & K-S Map:
positivity properties for $\frac{1}{4} \otimes \frac{1}{2} \otimes \frac{1}{$

Ex. Mh (k) bounded.

Def: X Q-Govensteni,
$$w_X^{V3}$$
 mentille P.10
some $v \gg 0$, X semi-log can.sing.
(i) X sutisfies Serve's condition S_2
ii) X NCO in Codim 1
iii) \forall f: $Y \rightarrow X$, Y normal Q-Govenstein
 $w_Y^{V3} = f^* w_X^{V3} \otimes O(Ea;Ei) a_i > -r$.
Def: Stable n-folds:
connected proj n-dimil X
* semi-log-can.sing.
* smoothable
* w_X^{V3} ample, (invertible)
 $M_h(h) = f X: X stable n-fold, Hills pdy = h f
 $M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold, Hills pdy = h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n-fold h f
M_h(h) = f X: X stable n f
M_h(h) = f X: X stable n f
M_h(h) = f X: X stable n f
M_h(h) = f X: X stable$$

Apply weakly s.s. alteration
$$\chi' \longrightarrow H'$$
 fill
Need to hand
 $y = \operatorname{Paij}(\bigoplus f'_{\star} \otimes^{\operatorname{tr} g'}_{\star H'})$ $\chi \longrightarrow H$
finite
 $y = \operatorname{Paij}(\bigoplus f'_{\star} \otimes^{\operatorname{tr} g'}_{\star H'})$ $\chi \longrightarrow H$
fund to be finitely perended.
 $f \oplus f'_{\star} \otimes^{\operatorname{tr} g'}_{\star L_{c}}/c$
werd Sin-kawamata's them on
invariance of plunigene. Π .
Cor. There exists a Hilbert scheme H and
universal family $f: \chi \longrightarrow H \in M_{h}(H)$
together with
 $\chi \longrightarrow f(f_{\star} \otimes^{\operatorname{tr} g}_{\star H}) \cong f^{\operatorname{hr} H'}$.
I lee (old): $r \gg o$
 $\int \otimes_{\chi}^{(r)} \int X \longrightarrow f^{\operatorname{h}(r)}$. $\forall x \in M_{h}(K)$
 \Rightarrow subvarieties of bornded degree (\leftrightarrow h) $\cong f^{\circ}$
and parametrized by Hilb(\cdot , h) $\oplus g \longrightarrow Hilb$.
 \rightarrow mid locally deserve.
 $K \longrightarrow f' \otimes M f_{\star} \otimes^{(r)}_{\chi/H} \cong \bigoplus^{\operatorname{h}(V)}_{\chi/H} \otimes M M$
 $\chi \longrightarrow Grass(\dots)$, which is payietime.

& ample sheaf is of the form

$$\lambda_{1} := \det \left(\frac{1}{4} \times W_{\pi}^{*}/H \right)$$

$$\lambda_{\nu\mu}^{\alpha} \otimes \lambda_{\nu}^{-\beta} \propto \beta \in \mathbb{N} \quad \text{will do} : \Box$$
c). "stable reduction"

$$\frac{1}{2} \left(\frac{1}{8} \right) \qquad \frac{1}{2} \left(\frac{1}{8} \right) \left$$

_ . _ _ _

Proof: Assume
$$H/G$$
 exists
 $\Rightarrow H/G = M_h$
Pef: H 9. Proj. G red. Linear alg. gp
 $\pi: H \rightarrow Z = H/G$ geom. quotient
 $\Rightarrow 1) \pi$ imparible with G-action
 $z) O_Z = (\pi_A O_H)^G$
 $z) W_i CH G - inv closed $\Rightarrow \pi(W_i)$ closed, $i=1,2$
 $w_i \cap W_2 = \phi \Rightarrow \pi(W_i) \cap \pi(W_2) = \phi$
 $\psi = \pi^{-1}(w)$ me G-orbit.
Cor. I_s^{0} H/G geom. quotient exists $\Rightarrow H/G \cong M_h$.
 $Pf: glueng: g: g \to T$
 $g_* W_{3/T}^{0} |_H \Rightarrow \bigoplus O_U$ in an openset.$

Pf is a simple construction:

$$g \neq y$$
 1) true by definition
 $f = 2$ true in hbd of $Px^{-1}(G_X)$
 V_X Now me glueing:
 $Px_{X} \neq V_Y$
 $V_X \neq V_Y$
 $V_Y \neq V$

$$\exists \ g: \forall j \to Z \ \text{sr. } \forall z_0 \in Z$$

$$j \ z_0 Z \ [z_0] \ z_0 \ z_$$

		To	be	continned	
	, 			·····	•
	·				
,					

Prof. Vieloweg Lecture III
$$7/27$$

Positivity of Sheaves
 $f: X \rightarrow B: unne \quad K(F) = \dim F$
 $g: g \rightarrow Z \in M_h(Z)$
 $f_* \ \omega_{X/B} \ f_{VV} = 1 \ already in Kowamata's lecture.
 $E \ loc. gree on Y$
 $Y \ puper, E \ num. s.p. (nef) \iff \forall T: C \rightarrow Y$
 $\forall T^*E \rightarrow L \rightarrow 0, \ deg L \geqslant 0.$
 $Y \ and it hang, E \ s.p. (W.p.) \iff \forall T: Y' \rightarrow Y$
 $\forall th' \ ample \ inv \ m Y', \forall a > 0$
 $f_* \ W_X \ n.s.p. if \ mendiomy \ are unipotent$
 $(B-Bo \ NCD, B \ smooth)$
 $with ont minodromy \ condition, \ raw \ only \ say$
 $\exists E \ C \ S^2(f_* \ W_X \ B), E \ num. s.p.$
But for B \ unle, this $G \iff f_* \ W_X \ n.s.p.$
Main Reference: Mori: Boutoin '85 (general)
for B \ unle : Esnam(C, -, Compositio '76
also: Bedulev, -, (preprint))$

Starting Point:
Theorem (Fujita):
$$f: X \to B^{1}$$
 family of manifoldo
 $\Rightarrow f_{X} \omega_{X/g} \quad n.s.p. X, B unsingular.
The possible proof using elg. method:
 $p_{f:} Kollar's vanishing:
X projective mfd, & semi-ample on X
D ef. st. $H^{\circ}(X, \xi^{\vee}(-D)) \neq 0$ for some $\nu > 0$
 $\Rightarrow Hi(X, & @ \omega_{X}(D)) \rightarrow H^{i}(D, & @ \omega_{D}) \forall i$.
Take $\& = f^{*} \otimes_{B} (pt)$, $D = F = ...fiber, get$
 $H^{\circ}(X, & & \omega_{X}(F)) \rightarrow H^{\circ}(F, & & \omega_{P})$
 \parallel
 $H^{\circ}(B, (f_{X} & & \omega_{X}) \otimes o(p)) \Rightarrow f_{X}(& & & \omega_{X}) \otimes & & (p)$
 $ie \cdot f_{X} \omega_{X/g} \otimes \omega_{B} \otimes & & (p) is globelly generated.$
Now $\chi r = X \cdot B \dots \times B \times f^{r}$, B
 $rish. - & f = f^{(r)} (r) = (\bigotimes f_{X} & \omega_{X/B}) \otimes \omega_{B} (2p)$
 $\int oven some open sort f^{Y} (f_{X} & & \omega_{X/B}) \otimes & & (p)$
 $\longrightarrow S^{Y}(f_{X} & & \omega_{X/B}) \otimes & & (p)$
Now B time $\Rightarrow f_{X} \omega_{X/B} & & ...p$.$$

•

Same proof works except the last step.
and due sing, occurs in the resolution map.
Theorem (Kawamata): dim
$$B \geqslant 1$$

 $f: X \rightarrow B$ family of manifolds, X, B unsingular
 $B-B_0$ NCD, $\Rightarrow f_* \otimes x/B$ n.s.p.
for $f: X \rightarrow B \in M_n(B)$.
Recall Multiplier ideals:
X mfa, $D \geqslant 0$ of div, $N \in N$, $T: X \rightarrow X$ st.
 $T^*D : NCD$.
 $\omega_X \{-\frac{D}{N}\} = T_* \omega_{X'} \left(-\left[\frac{T^*D}{N}\right]\right)$
 $\left(=\omega_X(1-\frac{D}{N}T)\right)$ in Kawamata's notation
A). independent of T
2). " $\int^{N} = 0(-D)$ " $\Rightarrow \int \otimes \omega_X \{\frac{-D}{N}\}$ theo similar
properties as ω_X (eg. vanishing)
Reason: a) $R^{i}T_* \omega_{X'} \left(-\left[\frac{D'}{N}\right]\right) = 0$
b) $\exists updic covering Y: Z' \rightarrow X'$ St.
 $Y* \omega_{Z'} \longrightarrow \int \otimes \omega_{X'} (f[\frac{D}{N}])$ a factor. (split)
Cor. J inv. $m X$, $J^N = \omega_X(D)$
 $\Rightarrow f_* \left(\omega_{X'B} \{-\frac{D}{N}\} \otimes L\right) = (*)$ n.s.p.
for B curve.
Reason: (*) $\rightleftharpoons f_* \omega_{Z'/B}$.

0 10

P. 2 1 Same true if $\chi' \longrightarrow \chi$ fil G: B' - B finite cover f* wx'/B' - mer sme 6* f* wx/B you set Some may take coner to make "p<v+1" number < 1. then done [] Main Prob. For general B: D near signlar fiber would be very bad! main ingredients for above Pf: · cyclic wher . · product. Next cor. (weak stability) the for aboithany maphism and ard, vaniety, but again we only Leal with semi-angle fiber case: and B ame. Assure that fx wx/B to (V ≥ 2) Equivalently: *) f* wx/B ample 6) det (f * w × /B) ample c) $\exists \eta, \alpha > 0$: $o(\eta p) \hookrightarrow \bigotimes^{2} (f_* \omega_{x/B})$ A) + 6) + C), a = rk (f* wx/B) For () = a). replace B by some finite cover ~> 1>>0.

$$\begin{array}{c} \chi^{\perp} = \chi^{\perp}_{B} & \longrightarrow B \\ & \downarrow \\ & \chi^{(n)} \\ M = \int^{\pi} \bigotimes_{P} \bigotimes_{P_{1}^{(n)}} & \bigcup_{X/B} \\ & \chi^{(n)} \\ M = \int^{\pi} \bigotimes_{P_{1}^{(n)}} & \bigcup_{X/B} \\ & \chi^{(n)} \\ M = \int^{\pi} \bigotimes_{P_{1}^{(n)}} & \bigcup_{X/B} \\ & \downarrow \\ & \chi^{(n)} \\ & M = \int^{\pi} \bigotimes_{P_{1}^{(n)}} & \bigcup_{X/B} \\ & \chi^{(n)} \\ & \chi^{$$

Oh general fiber : P. 23 $W_{FL}\left\{-\frac{D(v-1)+T'(v-1)}{v(N+1)}\right\} \simeq W_{FL}$ for N >> 0 (1-N)>0, $\left[\frac{(v-1)(v-N)}{v(n+1)}\right]>1$ (may) chose) this is the place to play, see below here $(*) \subseteq f_{*}^{(\alpha)} \omega_{X^{(\alpha)}/k}^{(\alpha)} (-F^{d})$ i mer the general fiber and we are dime. [] Mone l'recise (will be needed later for Shaf. wij (B) and (II)): Cor. $r(v) = d = rank (f_* \omega_{x/B}), e(\omega_F) = e(v)$ $\Rightarrow \int \frac{r(v)}{(f_* \omega_{x/B})} \otimes \det(f_* \omega_{x/B})^{-1} \quad n.s.p.$ (quite precise numbers!) Mainly because:

$$e(M_{Friv}) = e(\omega_{F})$$
. EXERCISE.

Rem. & Cor: Thm: Assume f: X → B is semi-stable, Then f isothioial ⇔ deg [det (f* w^Y_{X/B})]=0 ∀ v≥0 If K(F) >0, either F general type (Kollár/Viehweg) or F hao minimal model F' and wF' semi-ample (Kawamata).

Crv.
$$f: X \rightarrow B$$
, f as in them.
 $0: Y \rightarrow X$ communit
 $S \bigvee f$
 B
 S isotrivial $\Rightarrow f$ isotrivial.
 $f: W_{YB} \leq S_X W_{YB}$.
Recently, Mike-Hwang trave similar result
of this car for formeline of famo varieties.
To finish the bis uncirce of semi-positivity, we need
 S strong Positivity:
 $Y \xrightarrow{T} Z = S \in M_{B}(Z)$
 $Y \xrightarrow{T} Z = S \in M_{B}(Z)$
 $Y \xrightarrow{T} H$
 $E_Y := S_X W_{B/Z}^Y$ semi-positive (n.s.p if Z proper)
The proof is Very hard (if Z not proper)
which does not follow from address discussion.
(Most book in moduli spent 1/2 to do this!)
Proof: If Z proper a solare to come
(Some true numerical criterion)
 $X \xrightarrow{I} = S_X W_{B/Z}$
 $f \in M_{B}(B)$
 $f_X W_B = S_X W_{B/Z} |_B$ n.s.p !
 $g \in Z$
 $(a little chasting : should be w(VJ !))$.

P. 25 Theorem: $\lambda_{1} := det \left(g_{*} \; \omega_{Y/Z} \right)$ ∃ α, β, M >> O ST. λ^α_{ru} ⊗ λ_μ^β ample Z. If Z proper, Z 1 >>0 st. Ivu ample. a) similar to GIT 6) observed by Kollar via Numerical criteria (which is simpler) Will explain 1st pf a) here: let $\xi = \xi_v = g_* \omega_{y/z}^v$ $P = P(\Theta' \xi') \xrightarrow{\pi} Z \Rightarrow \pi^* \Theta' \xi' \longrightarrow O(1)$ \oplus $\pi^*(\xi' \otimes dut(\xi))$ Ar-13 = zno (dets) $U(-r)(D) = \pi * \det \xi$ $m \quad V = P - D, \quad \bigoplus^{V} U(-1) |_{V} = \frac{1}{V} \frac{\pi^{*} \xi}{V} |_{V} = (*)$ 0 + 0 = 0: $\pi^* \operatorname{let}(\Sigma)^{r-1} o(D)$ is (h.) s.p. Next time will see @ + Rmk = Thm. To be conti

Prof. Eckart Vielweg Leuture IV 7/30. P. 26 $V \longrightarrow Z \xrightarrow{y} \in M_h(Z)$ Recall. finite p HSPM plucker embedding Howing H, may reconstruct V via shishadri's method Having Zi may clas reconstruct V: $V \subseteq IP = IP \left(\bigoplus^{r} \xi^{v}_{v} \right), \quad P = IP - V$ $\mathcal{E}_{v} = \mathcal{G}_{\star} \omega_{y/z}^{v}$ semi. pos. $\lambda_{v} = \det \mathcal{E}_{v}$ (3) $\mathcal{O}_{p}(D) \otimes \pi^{*} \lambda_{v}^{v-1}$ semi. pos. $\textcircled{} 0 \underset{P}{\longrightarrow} 0_{P}(D) = 0_{P}(r) \otimes \pi^{*} \lambda_{v}$ Cor. If L inv. m Z & T*2 ⊗ Up(Δ) ample $\Delta 7 |D|, \Rightarrow L ample.$ I dea of pt (simple exercise, in fact): $H^{\circ}(\mathbb{P}, \pi^{*}(\mathbb{L}^{1})(\mathbb{I} \wedge \mathbb{I}) \longrightarrow H^{\circ}(\mathbb{P}_{p}, \pi^{*}\mathbb{L}^{1} \otimes \mathcal{O}(\mathbb{I} \wedge \mathbb{I}))$ \uparrow ⇒ 6.p.F. $H^{\circ}(Z, L^{1}) \longrightarrow H^{\circ}(P, \cdots) = k$ similarly for sep. 2 pts. tangents etc. "

§ Shafarev: ch Problem:
Up to now,
A). Mh exists,
$$\lambda_{V}$$
 ample
B). f: $X \rightarrow B$ non-isotrivial, F surface (cump)
of general type, or can polarized mfd.
 $\Rightarrow \deg f_{*} \omega_{X/B}^{V} > 0$ ($v \ge 2$, $f_{*} \omega_{X/B}^{V} \neq 0$)
(for $n > 2$ use MMP to do bounded neas)
c) $S^{r(v)e(v)}(f_{*} \omega_{X/B}^{V}) \otimes N^{-1}$ ample for
 $\deg N < \deg (f_{*} \omega_{X/B}^{V}) \otimes N^{-1}$ ample for
 $\deg N < \deg (f_{*} \omega_{X/B}^{V})$. $r(v) = rk f_{*} \omega_{X/B}^{V}$.
Today, remains to shaw
Theorem (Bedulev, -); F general type, assume
 $\widehat{\mathbb{E}} | \omega_{F1}^{V}| : F \longrightarrow P^{-1}$ has at most 1-dim'l fibers
 $(v \gg 0) \otimes non-isotrivial$
 $s = \# S$, f smooth over $B_0 = B - S$.
a) (Migliorini, Kovacs, Qi Zhang) $\leftrightarrow (II)$
 $Z \Im (B) - 2 + S = \deg W_B(S) > 0$
b) f seni-stable:
 $n (2 \Im (B) - 2 + S) \cdot v \cdot e(v) \cdot r(v) \gg \deg (f_{*} \omega_{X/B}^{*})$
c) f not semi-stable \longrightarrow

Proof: a) If <0, all points to S
dig
$$W_{B}(S) = 0$$
 ~, f smooth / $E_{K^{*}}$
so may assume f sum -stable (via conversing)
there a) is a special case of 6).
b). Assume bound does not hold:
we property c). $A = W_{B}(S)^{n}$,
 $S^{er}(f_{X} W_{X/B}^{V}) \otimes A^{-erv}$ ample
 $A = W_{B}(S)^{n-m}$, $m \ge 0$ is even better.
 $\Rightarrow W_{X/B} \otimes f^{e}A$ is 1- dimple wrt. $X_{0} = f^{-1}(B_{0})$
Def: I_{inv}/X , proj. $X_{0} \le X$, $\Gamma = X - X_{0}$,
i) I_{is} semi-ample wrt. $X_{0} \ll f^{r}$ sum $\eta > 0$
 $i_{j} : h^{s}(X, I^{1}) \otimes O_{X} \longrightarrow I^{1}$ sum $m X_{0}$.
ii) Y_{i} 1-ample wrt. $X_{0} \iff f^{o}$ sum η in i)
the induced map $\phi_{1} : X_{0} \longrightarrow V \le P(H^{o}(X, X^{1}))$
(induced by i_{1}) is proper, binational, R
dim $f_{1}^{-1}(v) \le 1$, $v \in V$
 T_{D} is is old notation, new notation
 Σ_{1}^{r} , $0 \rightarrow f^{*} W_{B}(S) \rightarrow A_{X}^{r}(P) \rightarrow A_{X/B}^{r}(P) \rightarrow 0$
 $w_{X/B}^{r}$

want to show to but even if use Torelli them + KS theory, still can not would it.

Actual way to prove this : via vanishing thm:

- L 1-ample, Assure V in ii) allows projective morphism V ~ W , Watting, then
- $\exists blowing up t: X' \rightarrow X centers in \Gamma' \\ such that \Gamma' = T*P NCD. \\ \exists o \leq \Sigma \leq M\Gamma' with$

$$H^{1}(X', \Omega_{X'}^{P} < \Gamma' > \otimes C^{*} \mathcal{L}^{-1} \otimes \mathcal{O}_{X'}(\Sigma_{1}) = 0, p+q < \dim X$$

Rmk: If Lample. this is Nakano-Akizuki-Kodaira. (see eg. LN H. Esnault, -, DMV-Lecture notes). $\Sigma_m := \Lambda^m \Sigma_{ij}$, tautological sequence

$$\begin{array}{c} 0 \longrightarrow f^{\prime \star} \, \omega_{\beta}(s) \otimes \, \Omega_{\chi^{\prime} \Gamma}^{m-j} \longrightarrow \, \Omega_{\chi^{\prime}}^{m} (\tau^{\prime}) \longrightarrow \, \Omega_{\chi^{\prime} \beta}^{m} (\tau^{\prime}) \longrightarrow \, 0 \\ \Sigma_{m}^{*} \otimes t^{\star} \mathcal{L}^{-1}(\Sigma) : \qquad H^{n-m} \left(\, M_{idd}(e \, term \,) = 0 \right) \\ H^{n-m} \left(\, \Omega_{\chi^{\prime} \chi^{\prime} \beta}^{m-j} (\tau^{\prime}) \otimes t^{\star} \mathcal{L}^{-1}(\Sigma) \right) \hookrightarrow H^{n-m+i} \left(\, \Omega_{\chi^{\prime} \beta}^{m-j} (\tau^{\prime}) \right) \\ \otimes \, t^{\star} \mathcal{L}^{-1} \otimes f^{\star} \, \omega_{\beta}(S) \right)$$

choose
$$L_{m} = W_{X/B} \otimes f^{*}W_{B}(s)^{n-m}$$

(and $L_{m-1}^{-1}(\Sigma) = \tau^{*}L_{m}^{-1}(\Sigma) \otimes f^{*}W_{B}(S)$.
 $M=0: H^{n}(\tau^{*}L_{0}^{-1}(\Sigma)) = 0$ by iteration of inclusion
 UI
 $M=n: H^{0}(\mathcal{L}_{X/B}^{*}(P') \otimes \tau^{*}W_{A}^{-1} \otimes \mathcal{O}(\Sigma)) \neq 0$
 $\mathcal{L}_{X/B}^{*}(P') = since f: X \rightarrow B$
 $\mathcal{L}_{X/B}^{*}(P') = since f: X \rightarrow B$
 $I =$

c.d.
$$(X - D) = \dim X$$
 if $X - D$ affine
or if $\exists X - D \xrightarrow{\mathbb{P}} W$, $\Xi^{-1}(W) \in I$
 $\overleftarrow{\Phi} = F^{-1}(W) \in I$
 $\forall f = X - D \xrightarrow{\mathbb{P}} W$, $\Xi^{-1}(W) \in I$
 $\forall f = X - D \xrightarrow{\mathbb{P}} W$, $\Xi^{-1}(W) \in I$
 $\forall f = X - D \xrightarrow{\mathbb{P}} W$, $\Xi^{-1}(W) \in I$
 $\exists f = X - D \xrightarrow{\mathbb{P}} W$, $\Xi^{-1}(E)$ globally generated
 $Way as me that $[\Xi I = P' = (\Xi * P) \operatorname{red}$. and
 $\eta \notin \operatorname{multiplicitie}$, as in Kawamata's talk,
cur be achieved by perturbation a little bit.
 $\operatorname{Ludwed}: X' \longrightarrow Z \supset V$ over V fiber dim ≤ 1
 $\ni D = H + \Sigma$, satisfies the assurption, $X - D \rightarrow V - V \wedge H$.
 $\Rightarrow get Vanishing for$
 $\Re_X^{-1}(H + P') \supset \Re_X^{-1}(H + P') \rightarrow \Re_H^{-1}(P'|_H) \supset \to 0$
 $+ \operatorname{induction}$ on dimensions. μ .
Final Remarks:
 $\operatorname{ut} T'_{X/B}(P') \rightarrow T'_X(P') \rightarrow f^{+}T_B^{-1}(S) \rightarrow 0$
 $T_B^{-1}(S) \rightarrow R^{+1}_{F}T'_{X/B}(P')$
not get use 1-dim Bibler.$

for moduli schend $B \rightarrow M_{h}, X = X$ p. 33 univ. family finite should get Tirs> ~ R'f* Tx/B (T') dualize: Rⁿ⁻¹ f_{*} (2×1/B (T) × W×/B) ~ 2B (s) For n=1 (family of curves): f* W×/B ~ n'B <S> ample (at least proven for comes) fx wx/B nef & A C N° (fx wx/B) ample over B-s So may say \$* w'x/B ample wrt (B-S). ⇒ scB(s) ample wrt (B-s) ⇒ B-S ≠ E (elliptic curve) or k× Muy this be general situation for n > 2 Problem: Positivities for Sim < Mh - Mh > for larger class of moduli. Remark: Simh < Mh - Mh > ? semi- positive for $(Y, Y_{o}) \in (M_{h}, M_{h}^{o}) \xrightarrow{\gamma} \Omega_{y}^{d'my} \langle Y - Y_{o} \rangle$ anyle wit yo END.