The First

NCTS Summer School on Algebraic Geometry

July 19 - 30, 1999

Professor Yujiro Kawamata Tokyo University

(Notes by Chin-Lung Wang)

Lecture I - 7/19, p.1

Algebraic Fiber Spaces

Lecture II -7/23, p.11

Hodge Theory for Algebraic Fiber Spaces

Lecture III -7/26, p.20

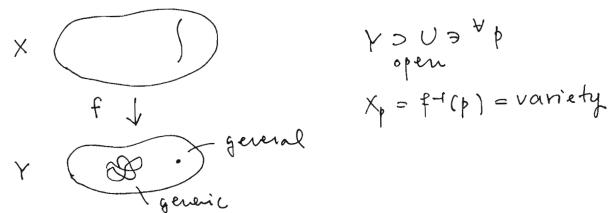
Adjunction Theory

Lecture IV -7/29, p.29

Fano Manifolds

NCTS Summer School in Algebraic Geometry (1999) Prof. Yujiro Kawamata Leuture I. 7/19 at Academia Sinica

* Algebraic Fiber Spaces, overview complex algebraic vanietrés reduced, ineducible, timite type scheme / & Pelatine situation: alg. fiber space morphism $t: X \longrightarrow X$ X, -> 1 generic point generic fiber / C(Y) = nat / function field of Y $C(Y) \subset K$ (alg. closed) eg. $K = \overline{C(Y)}$ Xy geometric generic fiber Def: f alg-fiber space ⇒ general fiber are alg. V. /K



morphism

lfor complete

Varieties)

alg. fiber space

normalization

(simplest singularitie)

covering with

ramification

closed immersion

We ususider only alg. fiser space.

fiser small \Rightarrow no degeneration

good model of alg. f. space \Rightarrow untropped degeneration

Very important example:

Elliptic surface (Kodaira theory)

 $f: X \to Y$ dim X = 2, dim Y = 1

Xp generic fiber = elliptic cume

god model (X, Y smooth, no (-1) cure

good model for a variety = smooth

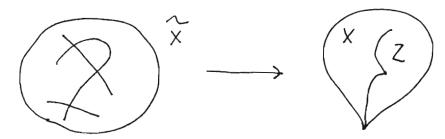
ZCX, X var. Z= closed subset

Theorem: $\exists \mu: \widehat{\chi} \to X$ binational morphism $\bigcup_{i} \sum_{j} U \text{ open}$

 χ smooth, $\chi = \mu^{-1}(Z) = normal crossing divisor <math>(\chi, \chi)$ smooth pair.

locally (x, 2) looks like (x, union of cov.)
hyperplanes

x1 x2 ... xy = 0

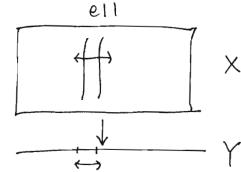


This is "binational geometry" since

$$C(x) \subseteq C(\hat{x})$$
.

For elliptic surface

O moduli for general tibers



J: Y-> P' 1803, J function

- positivity of unvature (Griffiths)

Degenerate fibers (singular fibers)
usmpletely classified by Kodaira

G)-cumes: CCX, C=P1, NG/X=0(7)

~> worknautible to a smooth point

such aures

One typical case:

$$f^* x = x^2 y$$

$$\chi = 0 \rightarrow c_1$$

$$y=0 \rightarrow C_5$$

Scheme - theoretic

Xp = general fiber = smooth elliptic cume. 5 : monodromy H'(Xpt,Z) = ZOZ this can be unstructed by 7/2 Z $E_0/G \cong \mathbb{P}^1, \quad \mathbb{C}^2 \left\{ \begin{array}{c} S \longrightarrow -J \\ t' \longrightarrow -T \end{array} \right.$ degenerte files -> { monodromy multiple fiber & - moduli point multiple fiber: Fi = m Fo, Fo elliptic m EIN, multiplicities ∞-modeli J(po) = ∞ Fi = 1 nodal IP1, X chain of IP1's Kodairas canonical bundle formula:

$$K_{X} = f^{*}(K_{Y} + positive Q - divisor Q)$$
 $D = \sum_{i} a_{i} p_{i}$, $f^{-1}(p_{i})$ singular fiber, $a_{i} \in Q + positive Q$
 $a = \frac{1}{2}$
 $a = \frac{m-1}{m}$

K = canonical divisor

= div (differential n-form) = Eni Di

Di: codim I sub. V. n; order of o w .

Example:
$$X = C \xrightarrow{\mu} C = Y$$
, $t \to t^m = S$

 $K_{X} = div (\mu * ds) = div (mt^{m-1} dt) = (m-1) P_0 + K_{Y}$ so $K_{X} = \mu * K_{Y} + (m-1) P_0$

More Examples:

○ Albanese fiber Space

X smooth complete vanishy

H°(X, R!) = fhol. 1-forms 3 ≠ 0 9-dr'm

→ X → A stein factorization

aby.

finite

f. space.

Siem factorization

dim A = 9, A abelian V.

② Litaka Fiber space $H^{o}(x, mK) = \frac{1}{2}m - \frac{1}{2}le$ canonical forms $\frac{1}{2} \neq 0$ $\frac{1}{2}m - \frac{1}{2}m - \frac{1}{2}m$

$$\times \longrightarrow (\omega_0(x): \omega_1(x): \cdots : \omega_{p_{m-1}}(x))$$

X....> IPPm-1 ratil map

bi-natil

X'

Morphism: Pmk m-canonical map.

 $\max(\dim \mathbb{Z}_{mK}(x)) = K(x)$ Kodaira dimension maximal dim is attained at m

$$X' \xrightarrow{\text{Stein}} S \times (X) = \dim Y$$

Litaka

fiber

 $X' \xrightarrow{\text{Stein}} S \times (X) = \dim Y$

Both examples are constructed using differential forms. Now another extreme:

3) Mori fiber space:

assume Kx is not nef:

leg K/c - K.C < 0 3C cume on X

→ I wontraction associated to an extremal ray $f: X \to Y$. alg. Liber space (including birational morphism)

@ Moduli spar de universal family

U - G(n, m)

universal Grassmannian

E - M moduli of stable cumes

U - Hilb etc.

Twistor space for Hyper Kähler manifold
 X: upt Kähler mfd, 2n-dim
 C≅ H°(X, Λ²) → ω hol. 2-form
 Λ°ω = nowhere vanishing 2n-form
 g: Kähler metric
 (X, g, ω) → X f pl family of HK mfds
 for previous algebraic examples (alg-fiber space)
 we always have "positivity". For this enabytic
 case, it is folse:

 $\chi = \chi \times S^2$ (c^w) $f: Smooth morphism of <math>\psi \times manifoldo$ $f \times \omega \times /p1 := f \times O(K_X - f \times K_{p1}) = O(-n)$, h > 0

weak semi-stable model

Cf. variety = resolution to smooth model

binational morphism

fiber space alteration

Abramovich - Karn

= binatil morphism + fimite wering.

case: dimY=1:

Semi-stable: \ X, Y Smooth, all fibers are \\ \frac{\text{Yeduced}}{\text{Veduced}} normal crossing div. \\ \div(\f*t) = D_1 + D_2 + \div(\f*t) \\
UDi NCD. \ eg. \frac{1}{2} not.

General Case:

 $X,Y \text{ smooth }, Y \ni E \text{ NCD } x \in X$ $X \ni D$ $X \in X, y = f(x) \in Y, \text{ local Goor.} y \in Y$ $X_1 \dots X_n, y_1, \dots, y_m$

 $D = \operatorname{div}(x_1 \dots x_5) = D_1 + \dots + D_5 \text{ at } \times E = \operatorname{div}(y_1 \dots y_t) = E_1 + \dots + E_t \text{ at } Y$ $f^* E_i = D_{j_{i-1}+1} + \dots + D_{j_i} ;$

locally product of s.s. with dim Y=1.
This is called semi-stable model which is while the which is while the exist, but not proved yet.

Rmk: the necessity to use alteration is already clear even in dim=1, eg. prev. example.

Weakly semi-stable model: X: only Gorenstein quotient singularities $X \xrightarrow{\pi} X$ (local covering) Smooth II G: Finite gp X/G χ : wor. χ_1, \dots, χ_n (Cx)" = {x1...xn +o} mult op str. of 3tG, $3=\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$; α_i roots of unity \hat{X} , Y smooth, YDE, \hat{X} D \hat{D} , NCD, $\hat{f} = f_0 \pi$ x EX, y E f(x) EY, local war. XI... X4, y,... Ym $\widetilde{D} = \operatorname{div}(x_1 \cdots x_s) = D_1 + \cdots + D_s$ at x $\widetilde{\chi} \supset \widehat{\lambda}$ $\hat{f} \left(\begin{array}{c} \downarrow & \downarrow \\ \times > D \\ \downarrow & \downarrow \end{array} \right)$ E = div (y1 ... yt) = E1 + ... + Et at & $\widetilde{f}^* E_i = \widetilde{D}_{f_{i-1}+1} + \cdots + \widetilde{D}_{f_i}$ $E_1 \longrightarrow \widetilde{D_1} + \widetilde{P_2}$, $E_2 \longrightarrow \widetilde{D_3} + \widetilde{D_4}$ etc.. YDE Now the condition reads: f* Ei = Dkv-1+1 + ... + Dki is a reduced divisor, quitient of NCD. If dim Y = 1:

s.s. reduction theorem (Mumford et. al) in Book: Toroidal Embeddings I

By Hironaka, X, Y smooth, fiber normal crossing but not reduced f*y = \(\text{n: pi, n: et\)

1. C.m (ni) = m

$$(y')^m = y$$
 $x \leftarrow x \cdot y' = weakly s.s. model$
 $y = TT x_i^n i$
 $y = (y')^m$

Real Blow up.

X to Xre f w.s.s. I fre = topologically locally trivial Y + Y're (real analytic map) eg. (C,0) smooth pair +- Cre

9=eis (5) 5'x1R70 > (0, r) Litterent from blow-up of real alg. V.

geneal case is product of this.

$$(\mathcal{C}', +) = (\mathcal{C}, 0) \times (\mathcal{C}, 0)$$

 $(\mathcal{C}')^{re} = \mathcal{C}^{re} \times \mathcal{C}^{re}$ etc...
 $(\mathcal{X}G)^{re} = \mathcal{X}^{re}/G$

 $((X,D)/G)^{re} = (X,D)^{re}/G + free quotient!$

will use this approch to algebraic case to to adjunction theory ...

Hodge Theory for algebraic Fiber Spaces 7/23 weakly semi-stable model f: 2 -> 5 = smooth

Vaf, Jijing Jm 6*f* yi = xi-1+1 xi-1+2 ... xi.

A quotient sing (=) cM)

f has reduced tibers

Real Blow-Up:

$$fre \xrightarrow{\pi} \chi$$

$$fre \xrightarrow{\pi} \chi$$

fre topologically fre foodogically

fre foodby trivial family

Sre - 5

MONODROMY:

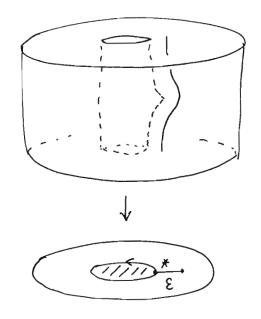
$$T(S^{re}*) \longrightarrow Aut(H^{p}(X_{*}^{re}, \mathbb{Z})) * \in S^{re}$$

Xre = fre -1 (s), se Sre

Simplest examples:

$$\begin{cases}
3 = x_1 x_2 \\
 \begin{cases}
3
\end{cases} = \begin{cases}
x_1 \mid \cdot \mid x_2 \mid
\end{cases}$$





now for real 6 how up, can take &= 0. This makes things easier. Will pure:

- · locally unipotent monodromy
- · globally semi-simple

Rffre Zzre local system over sre

O Smooth fiber X of f: X → S

$$\begin{array}{c} \mathbb{C}_{\mathsf{X}} & \xrightarrow{\sim} & \mathfrak{D}_{\mathsf{X}} \\ \mathbb{U} \\ \mathbb{Z}_{\mathsf{X}} \end{array}$$

 $C_X \xrightarrow{q.i.} \Omega_X$ Stupid filtration:

as uniglexes

for alx of o ... of = 12 [-n] o (shifted by n)
filtered complex > spectral sequence

$$E_{l}^{P,Q} = H^{P+Q}(x, Gr_{F}^{P}) \Rightarrow H^{P+Q}(x, \Omega_{X}^{1})$$

$$H^{P,Q} := H^{Q}(x, \Omega_{X}^{P}) \qquad \Omega_{X}^{P}[-P]$$

$$H^{P+Q}(x, \Omega_{X}^{P}) \qquad \Omega_{X}^{P}[-P]$$

The degenerate at E_1 arbitrary int. N o Hodge standard on $H^{m}(x,C) = \bigoplus_{p+q=m} H^{p,q}$

Th. HP, 2 = Hq,P (this does not follow from leg. at E,).

2 Variation of Holge Structures

 $f: X \longrightarrow S$ relative situation U = U $f: X \longrightarrow S$ Smooth

fo: ±0 → So Smooth

 $f^{-1} O_{S_0} \xrightarrow{\sim} \Omega_{\star o}/s_0 = O_{\star o} \longrightarrow \Omega_{\star o}/s_0 \longrightarrow \cdots$

E, = R, fox 12 to/so > R, to fox Cxo & Os.

degenerate at E1

FP+8 locally free

力の方1つ…

holo. subbundles.

Hm(xre, Z): mixed Hodge structure

X smooth projective DD NCD

 $X_0 = X \setminus D$, $j: X_0 \subset X$

Deligne: $H^{m}(X_{0}, \mathbb{Z})$ shenf of hol. forms with whomological mixed Hodge complex: 11 was poles

 $ej_{*}C_{X_{0}} \xrightarrow{q.i.} j_{*}\Omega_{X_{0}} \xleftarrow{\sim} \Omega_{X}(log D)$

Though LHS and RHS has no linear connection. but in the derived category, they are equal.

Canonical filtration

$$Rj_*C_{X_0} \xrightarrow{\gamma} j_*\Omega_{X_0} \xleftarrow{\gamma} \Omega_X(log D)$$
 $W = cano$.

 $cano = W$
 $cano = F$

W: weight filtration = cano filt = filtration according

to the order of

(can be proved) log poles

Fi: Hodge Piltnation

eg. X (may apply usual Hodge)

$$X[0] = X$$

$$X[1] = X$$

$$\begin{cases} E_{1}^{P,Q} = H^{Q}(X, \Omega^{P}(\log D)) \Rightarrow H^{P+Q}(X_{0}, C) \\ \text{deg.} \end{cases}$$

$$\begin{cases} E_{1}^{P,Q} = H^{P+Q}(X, G_{1}^{W}) \Rightarrow H^{P+Q}(X_{0}, C) \\ \text{deg.} \end{cases}$$

P. 15 on Hm(xre, II) mixed Hodge structure

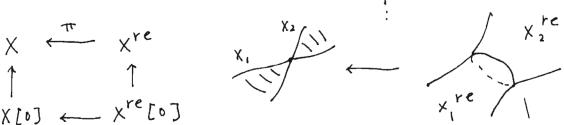
via whomological mixed Hodge complex

I - level: 0 - Zxre - Zxre [0] - Zxre [1] -... X = f-1(*) = X1 U X2 U ... irred. wup generalized normal crossing variety

X[0] = 11 xj. rel. b-up Xre[0] K Standard maps X[1] = II Xij of wdim 1 teal Xre[1] = II(xjen xire)

X[2] = II Xijk wdim 2 real + Xre[2]

X[0] < xre[0]



Wn = (T < n RT x Q xre[o]) -> T (n+1) RT x Q xre[i] → T≤n+2 (RT* Qxre[2]) →···

Grn = RnTx Q xre[0] [-n] @ Rn+1 Q xre[1] [-n-2] @ Rnt2 t1 * Q xre[2] [-n-4] + ...

C-level:

RTX Cxre \simeq , RTXM \leftarrow $\Omega_{\dot{X}}(\log)$ val str. $x = rei\theta$ [$d\theta$, $\frac{dr}{r}$, $\log r$] can also be

[$d\theta$, $\frac{dr}{r}$, $\log r$] defined algebra.

 $\Omega_{\chi}(\log)$ $\chi = U = U/G$, take $\Omega_{U}(\log) = \Omega_{U}(\log)G$ $\Omega_{S}(\log)$ - the usual is locally tree because the action is diagol. and $\frac{d\chi}{\chi}$ is inv.

 $\Omega_{\times}/S(\log) = \Omega_{\times}'(\log)/f * \Omega_{S}'(\log)$ for free. $\Omega_{\times}'(\log) = \Omega_{\times}'/S(\log) \otimes O_{\times}$

9et

Ω; (log) → Ω; (log) ⊗ O_{X[0]} → Ω; (log) ⊗ O_{X[1]} →···

Another Mayer-Vietnis (= weight filt)

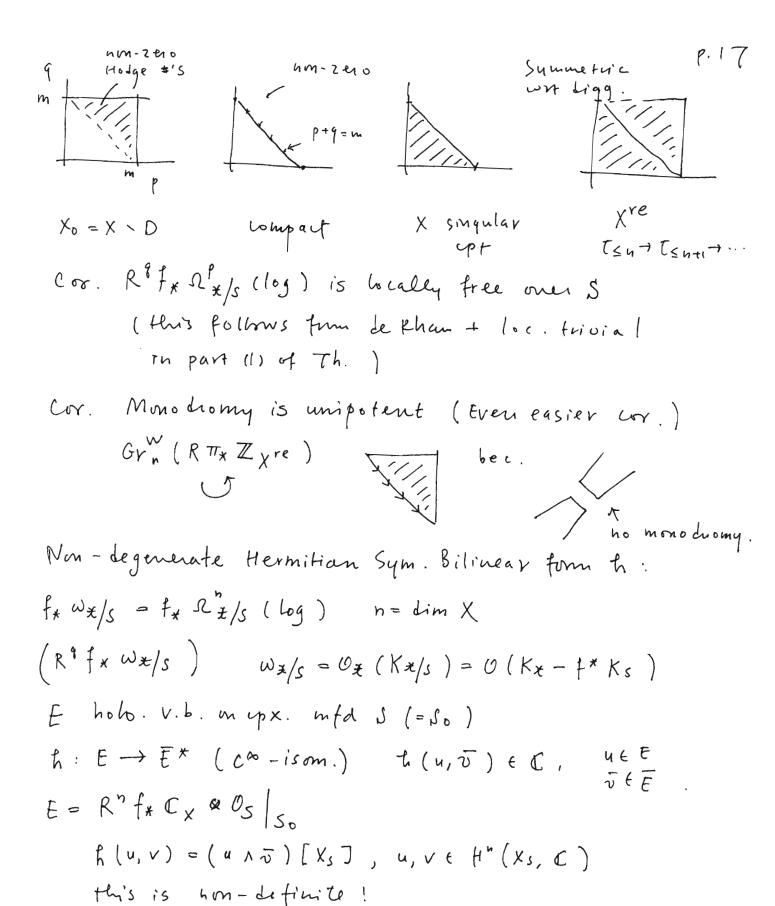
Th. O $E_1^{P.S} = H^9(X, \Omega^p(\log)) \Rightarrow H^{p+q}(X^{re}, \mathbb{C})$ Legenerate at E_1 .

② Ep. 9 = HP+8 (x, Gr-1 (RT+Qxre)) ⇒ HP+8 (xre q)

degenerate at E2.

Hodge numbers:

Grn $H^{m}(X_{0},C) = \bigoplus_{p+q=m+n} H^{p,q}$, $H^{p,q} = H^{g,p}$ ie. $Gr_{F}^{p}(Gr_{n}^{W}H^{m}(Y,C)) = H^{p,q}$, p+1=n+min general.



```
P.18
D wonnertion = hold h + d: E -> Po(E)
(B = D.D convature: (1,1) form with value in Hom (E, E)
    4 = 1 Trav ( = 0 = 0 = (- log det h)
for o -> f i + E - G -> o exact
second fund. form b = P Di & Po (Hom (FIG))
lemma: to non-deg on E, to/F non-deg →
   h_F(\Theta_F(u), v) = h_E(\Theta_E(u), v) - h_G(b(u), b(v)).
pf is by direct computation.
Theorem: (Griffiths)
     f * W */s | ( ° C R " f * € × Ø os | s °
   > OF is semi-positive (pos, semi-definite)
ef: O infinitesimal period relation:
         D(FP) C [ [ [FP-1)
         F°=E > F' > F' > ... > F" = F > 0
   FP dZ, n... ndZ, ndZp+1 n...
                (p,9), p+9=n
        dZ, m> dZ, + & dZ, + ---
        dZp+1 ~> dZp+1 + & dZβ +····
   wedge + the fact " 2"=0"
```

P. 19

1) Riemann-Hodge bilinear relation dim X = 2n

Ker $(H^{n-q}(X,C) \xrightarrow{\Lambda^q[L]} H^{n+\delta}(X,C) \xrightarrow{[L]} H^{p+q+1}(X,C))$

=: $H_{\delta}^{n-\delta}(x,c)$ F"($H^{n}(x,c)$) $\subset H_{\delta}^{n}(x,c)$ H°(x,Ω^{n})

 $(-1)^{\frac{n(n-1)}{2}} + g(\sqrt{-1})^n h(H_0^{p,g}, H_0^{p,g}) \gg 0$ important part: $(p,g) \rightarrow (p+1,g-1)$ change sign $F^n \longleftrightarrow (f^{n-1} \cap H_0) / F^n \quad \text{sign-change}.$

Now Griffiths' of tollows easily.

Fi = Fn

E flat > DE = 0

and ho, ht. diff sign. []

Th: fx Wx/s is a numerically seni-positive vector bundle.

To be untinued

For Leuter 3: Adjunction theory Leuter 4: Fano Manifoldo. Prof. Yujiro Kawamata

Lecture III. Aljunction Theory

First we need to finish lect. IL:

Def: X proj. V. E: locally free sheaf

P(E) proj. bundle over X: $\pi: P(E) \to X$ O(1) tauto logical quotient line bundle of π^*E E is "numerically semi-positive" \Leftrightarrow O(1) ref. ie. $\forall c \in P(E)$, $(O(1), c) \geqslant 0$.

Th. f: X -> Y alg. file sp. X, Y smooth
Yo CY, Y-Yo = E normal crossing divisor

fo = f (f-1(yo) smooth
Xo = f-1(yo), n = dim X - dim Y.

Assume: local monodromies of Rⁿ⁺⁸ fx Zxo
and E are unipotent

> R f * W X/Y is num. semi-positive.

Rmk: This is binational invariant for X
but not for Y.

t, 1 x K, t

in fact X has covenstein quatient sing. is oK. just like in smooth case. and f weakly s.s. ⇒ X tovenstein canonical. Fo = R& Fo * Wxo/y. has a pos. dufinite metric with semi-positive anoarme, Fo = 7/4. => 10(1) | T (Yo) has a metric with s.p. amounte. (singular hermitian methic Def: Singular hermitian metur h: L line sundle

on a variety Y, locally on Y, h = e to To: Co-metric, & weight function & L'

general filer of F = hol. n-forms & $h(\alpha, \alpha) = * \int_{X_{y}} \alpha \wedge \alpha$

h grows at the order of llogy 1", 4 ~ log log 14 1

is another form (= do (- log h) As a distribution (0 = 00 (- logh) + 00 9 and 1st chem form: $q = \frac{\sqrt{-1}}{2\pi} \oplus$

there is no boundary untribution to @:

A = A ab.c + A sing absolute unti.

In general, non-unip mododromy > Dsing = 0. smu Bab. c is s. p. A is s.p. !

Remark: There is an algebraic proof the to Kollár via vanishing theorem. which is easier but more tricky. (after the existence of the analytic pf).

Adjunction Theory:

Q-divisors: $D = \mathcal{E} \stackrel{\cdot}{d_i} \stackrel{\cdot}{D_j}$, $\stackrel{\cdot}{d_j} \in \mathbb{Q}$, $\stackrel{\cdot}{D_j}$ prime $\stackrel{\cdot}{d_i} \stackrel{\cdot}{V}$ wf \iff $(D,C) > 0 \ \forall \ \text{curve}$ A ample \mathbb{Q} -div \iff $\exists m>0 \ \text{st.}$ mA very ample

A ample } > A + D ample
D nef } (eg. Nakai criterian)

wef divisor is a limit of ample Livisors:

EA + D ample E > 0, $\lim_{E \to 0} (EA + D) = D$. Sometimes it will be important to wasider also R-divisor $E \downarrow D_j$, $d_j \in IR$.

Remark: Scmi-ample

=> metric semi-positive => nef
other tirections are false

semi-ample (=> 3 m>>0, [mp] free.

Correction: lu Kodaira's formula

Ks ~ +* (Kc+0)

K can div is defined only up to linear equiv \sim $\omega = O(K)$, $A \sim_{\mathcal{C}} B \iff mA \sim mB$, $\exists m > 0$.

In this way, sheaf theoretic expression P. 23 is strunger than div. notation. Theory of Singularities: Surface care: Zariski decomposition (in his book) (really the starting point of all MMT) X: Sm. pm. Smfare, Det. div. 240; 1; EN => D=P+N as Q-divisors, uniquely st. p: mt Q-diV, N ef. Q-diV = Inj Nj st. 0 (N) = 0 Y) @ [(N; Nk)]j,k rogative definite. the pf is a simple linear algebra. But its truth will implies many unjeumes. eg. MMP. (in higher dim) Connection with minimal models: X sm. proj. sonf. K=0

X sm. proj. surf. K > 0

f: untraction of (4) unues

X min minimal model

 $K_X = f^* K_{Xmin} + N$ is the Z - de comp. $K = a : CC X_{min} (K_{Xmin} \cdot C) = 0 \iff C (-2) comp$

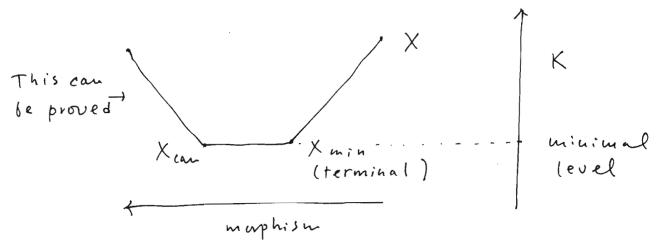
Xmin (Artin's national singularities)

I untraction of (-2) comes

X can (animical model (Munford)

no can. ring is finitely, generated.

K X can ample, g* Kx can = Kx min



This picture is also true for higher dimensions!

may compare: d*Kx, ≥ β*Kx2

X min (Kx min (broder sense: categorical sense in terms of maphisms)

Xmin (minimal terminal (norrow sense)

Question: For a fixed binat' (K>0) class,
there exists only a finite humber (up to isom.)

of minimal models?

For dim 3, general type finiteness is proved but for C-Y, it is still unknown.

Adjunction Formula:

X sm. variety , D sm. divisor

 $K_X + D \mid_D = K_D$

log n-terms - (n-1) forms

log Pair: (X,B) X normal V. B ef. Q-div X sm. proj. surface, B n.c.d. (wif 1) (X B) open surface Delign's approach Fawamata's approach is really look at the pair: if m(K+B) effective ± m>0

 $K_X + B = P + N = f^*(K_{Xer} + B_{et}) + N$ Supp N is contracted, $X \xrightarrow{f} X_{lt}$ Grament Artin (national singularities), Xet projective. $B \longrightarrow B_{lt} = f_* B$ reduced.

(Xlt, Blt) has singularities classified by and quotient sing. + Standard divisor

ex.

Bet quotient.

Def: (X,B) X normal, B ef. Q-div D Kx+B Q Contier. ie. 7 m>0, m(Kx+B) is contier div (pull back can be defined).

det (livisorial): ej < 1 \te; exceptional, ej \in 1

pet (purely): alt and Ej with ej = 1 are disjoint.

Rmk: In 2-dim case Munford Defines the intersection theory in all cases, hence condi O is not needed. but for higher dim, M. Reid impose it. So that one may pull back etc. and define int. theory.

pef. X normal

o Kx Q-Curtier

Q μ: y→ x resol. μ* Kx = Ky + E, E = Σ c; E; x terminal ⇔ ej < 0 (sing in ter. min. model) x (ano ⇔ ej ≤ 0 (sing in min model in broder sense)

ter \Rightarrow (an \Rightarrow klt \Rightarrow plt \Rightarrow dlt \Rightarrow lc $\beta = 0$

Thm: (X,B) det => X has only national sing. freme Cohen-Macanlay.

Rmk: le may not be CM, eg, une over abelian sunt.

p. 27 Th. X normal proj. (X,B) ket L Coutier div. St. L-(Kx+B) nef & big => HP(X, L)=0 ∀p>0 Also, ket \(\sigma \sum_2^2 \) analytically. (X,B), $m(K+B) \leftarrow L$ line bundle (rational m-ple h-form) Slocally My 919 < 00 easily from definition by calculating in the resolution. Ruk: the finiteness is false for dit and also the above vanishing thm is wring. (x,B), µ: y → X log resol. B= ∑bjBj, o < bj < 1 $\mu^*(K_X + B) = K_Y + E$, $E = \sum e_j \cdot E_j$ consider the sheaf: multiplier ideal sheaf. $I = \mu * o(\lceil -f + 7 \rceil)$ Ex. (x, B) ket = 1-E+7 >0 = I=0 lu general, under assurption in B, get I C UX With I, would make things L2: I & O(L) shert of L' sections Th: X normal proj. (X, B) pair Lautier, L-(K+B) big & net.

→ HP(X, I Ø O(LI) = 0 Y p > 0.

- Def: (x, B) (.c. (non ket), call E; place of 1c sing \iff e' = 1 $\mu(E'_j)$ center of 1c sing.
- Prop: Y X for E; a place of 1.c. sing.

 Ej M[Ej] = Wj . If Wj is minimal center

 De alg. fiber space, Wj normal.
- Purp: W1, W2 centers of Ic. Then Wan irred.

 ump of W1 1 W2 > W center of Ic.

 so has the notion of minimal center.
- Rmk: schene structure comld be defined by 0/I.
 so lc. → Spec (0/I) is reduced.
- Th. (X, B°) ket, X projective, $B > B^{\circ}$, (X, B) lc. $x \in X$, W min center for (X, B) through x. Hample, E > 0
- > K+B+EH|W ~ KW+BW Ket.
- This is the Main Result (very non-trivial), which generalizes " K + D| = K b " via residue.
- This appears in many intermedeate steps in induction eg. + rational + boundedness of mult. etc.

To be writinued.

Fano Manifolds

Defined by Iskovskih: X proj. smoth, -Kx ample and by him: classification of Fano 3-folds

ex). i) quartic 3-told: Bir(x) = Aut(x)

2) P^3 : Bir (P^2) very large >> but (x)

existence of a good member in [-K],

75€/-K/, S= K3 Surface

and use knowledge of & to classly X.

Mukai: use CEI(-K)/s 1: canonical curve

Ladder: CCSCX (Fujita's idea)

Kawamata's study of good member

- study of linear system

Oef: (XB) log Fano variety

(1) X projective

(2) (X,B) ket

(3) -(K+B) ample

This is the "cornect" category for study.

Recall: Bose Point Free Theorem;

X proj, (X, B) ket, D contier div on X assume O D not O D-(K+B) nef & big (ample)

=> ± mo>o st. [md] free + mp mo

(X,B), R: extremal ray \Rightarrow D satisfic undi (1), (2) $(D.C)=0 \Leftrightarrow [G] \in R$

 $\Rightarrow X \xrightarrow{\Psi} Y \text{ contraction of } R \text{ (alg. fiber sp.)}$ $\Psi(G) = \text{pt} \Leftrightarrow (D,G) = 0$

And (K+B not wf > IR).

variety \xrightarrow{MMP} { minimal model:

ie. K+B nef, or

Mori fiber spare:

ie. f: X -> Y contr. of R

dim X > dim Y

for 7 \(Y_1, B_1 \) is log Fano.

For minimal model:

X — Y: "binegular" Iitaka fiber space m(K+B) this is the abundance conjecture: ± m>0 st. [m(K+B)] free.

For original BFF Thm. The problem now is:

effective bound mo, or a "weaker-stronger":

Problem: (X,B) ket, D ref, D-(K+B) ample

? > 101 \div \partial ?

Remark: It is equiv. to assume just big bruf

Remark: It is equiv. to use une just big bruf (exercise). Fano index := r (largest) st.

-(K+B) ~ R r H, H Cautier ample, r f R

Truth of Prob > 1H1 & Ø, which is very strong!

(Kawamata wish a counterexample for the prob.)

Rmk: r ≤ h+1 (n = dim X):

 $P(t) = X(x, tH) \text{ poly of order } n, t \in \mathbb{Z}$ $HP(x, tH) = 0 \qquad \begin{cases} P > 0 \\ t > -r \end{cases}$ t + -(k+B) = (t+r) + H $H^{0}(x, tH) = 0 \qquad , t < 0 \qquad , \text{ hence}$ $X(x, tH) = 0 \text{ for } t = -1, -2, ---, -(n+1) \Rightarrow$ $-(n+1) > -r \Rightarrow \text{ contradiction } , \text{ so } r \leq n+1$ and equality $\Rightarrow X \cong P^{h}, B = 0$.

| Non-Vanishing |D| # \$ Riemam-Roch formula | Shape of general element = adjunction theorem | \$ \in |D|

Th: (Ambro; Heris): (x, B) log-Fano - (X+B)~ rH, r>n-3 > H°(x, H) + 0.

Th: (Kawamata): $\dim X=2$, (X,B) ket, D ref Cartier, D-(K+B) ample $\Rightarrow f^{\circ}(X,D) \neq 0$.

Th: (-): (X,B), Das in Prob.

Prob istrue if Dample > Prob. true in general.

explaination: (reduction) \$: x - mol Y alg. fiber spare D m >> 0, E Cartier ample, D = 9*E (BPF +hm) Ho(D) + 0 ↔ Ho(E) + 0 JB'mY, (Y,B') ket > → semi.posi thm. E-(KY+B') ample > → semi.posi thm. Cor: v(x,D)=K(x,D) & 2 > Problem (too). So it is very Litticult to find wunter examples (can me find in toxic varieties ?) Prof of 7hm 1 (Ambro): d=H">0, b=H"-1 B>0 p(t) = x(tH) $= \frac{t^n H^n}{n!} - \frac{t^{n-1} H^{n-1} K}{2(n-1)!} + \cdots + 1$ $= \frac{d}{h!} t^{n} + \frac{rd+b}{2(n-1)!} t^{n-1} + \cdots + 1$ $= \frac{d}{n!}(t+1)...(t+h-3)(t^3+At^2+Bt+\frac{n(n-1)(n-2)}{d})$ $A = \frac{n(n-r+s)}{3} - 3 + \frac{bn}{3}$

0 \((4)^n \rangle (-n+2) = -1 + \frac{d}{n(n-1)} \left((n-2)^2 - A(n-2) + B \) [4] "H" (X, (-n+2) H) (call it Pn-2)

then $P(1) = n-1 + P_{n-2} + \frac{d(n-r+3)+b}{2} > 0$!

Rmk: this is first done by Alexeev for thease r>n-4. (already very dever)

In Prob. D-(k+B) ample $\Rightarrow H^{p}(x,D) = 0 \ \forall p > 0 \ So \ h^{o}(x,p) = \chi(x,D)$ which is numerical! That's one regson why
the prob. may be possible.

Th. $f: X \rightarrow G = cume$, alg. liber space (X,B) ket, D contier on X, $P \sim_{Q} K_{X/G} + B$ $\Rightarrow f_{*}o(0)$ s.p. (log version, via covering tech.)

Proof of thm 2 (Kawamata):
may assume X smooth (min. resol.)

 $R.R. \quad \chi(D) = \frac{1}{2}D(B+H) + \chi(0x)$

 $\chi(O_X) \gg 0 \Rightarrow \begin{cases} D \equiv 0 & \sim X(0) = 1 \\ D(B+H) > 0; oK. \end{cases}$

 $x(o_X) = 1 - 9 < 0$, $x \xrightarrow{f} C$, g(a) = 9generically p' - b male

f* 0 (D- + * Kc) s.p.

(andi. satisfied since:

(D-F*Kc)~ Kx/c+B+H, H~B Small.)

Df-wf > Df-generated. ie.

f* f* 0(D) ->> 0(D)

 $f^*f_* \circ (D - f^*K_C) \longrightarrow \circ (D - f^*K_C)$ S.p.

S.p.

$$(D-f^*K_c)(B+H) \geqslant 0$$

$$D(B+H) = 2g-2, \text{ leg } K_c = 2g-2$$

$$\Rightarrow \text{ untradiction. } \square$$

General member of linear system:

Thm (Ambro): (X,B) log-Fano, r>h-3, YE | H | general member (since know + &), A (X, B+Y) plt.

ie. $\mu: Z \to X$: $\mu*(K_X + B + Y) = K_Z + \mu_* B + \mu_* Y + \Sigma e_j E_j$ $\forall e_j < 1$

Kx + B + Y | Y = KY + BY, BY = B | Y Sme Y (mier div.

RHS | mx Y = K mx Y + [] mx Y wen < 1
ie. (Y, BY) text.

- (Ky+By) ~ Q (r-1) H/y, hence 3 ladder, may proceed...

Theorem (Kawamata): Jim X = 4 X canonical Govenstein, -K ~ D Cantier ample

 \Rightarrow 0 $h^{\circ}(x,p) \neq 0$

- O Y ∈ ID | gen. → (X, Y) Pet (~) Y (an. Govenstein)
- Q Po(D/A) + 0
- @ ZEIDLY (> 1Y,Z) PRT
- O X smooth & Y smooth.

-rH + CH + EH

dim W ≥ 3 , n > 4 , r > 1 r-c-€ > 0 : (W, BW) is log Fano

so Ho(W, Hw) to by non vanishing result proud betwee (Ambro, Kawamata).

get *: because WCBs [H! (Bertini's thm)

H°(X,H) → H°(W,H) → H'(X, IW & O(H)) = 0 by perturbation, multiplier = IW (W is only center)

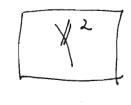
So * . D.

Finally let's prome the adjunction theorem:

Th. $f: X \longrightarrow Y$ alg. T. space, X, Y smooth $f_0: X_0 \longrightarrow Y_0$ $Y-Y_0$ NC=E, $X_0=f^{-1}(Y_0)$ $f^{-1}(E) \cup Supp B NC. (X,B) Sub ket$ (UM < 1) B may be non-ef.

Oy -> fx 0x (T-BT) surjective over Yo K+B~Qf*(Ky+L), L: Q-Cantier B'= [x, B+f*(E-B')) lc > L-B' nef. (eall M=L-B', and ∆=B' later) ex. f semi-stuble ⇒ B'=0.

(& B = 0)



So B' is something like how much need to do to the semi stable reduction case.

Proof: Semi-stable case: log version of s.p. thm. general case: by covering

Th. Y proj. Sm. E NCD = Sing Ej mje N (j=1...N), then

> IT: X - Y finite Galois, X smooth T* Ej = mj Ej, Ej reduced and [Ej NC.

ie. bocally via covering is the semi-stable care with a Mitimal term B'. (wrreution term)

B' +> eigenvalues of monodromy! (rk/case) for V.b. case still don't know the formulation.

Proof of adjunction thm:

f to for esol of W.

f: alg. liber space.

 $\mu^*(K+B) \sim_{\mathcal{Q}} K_Y + E + F$; well F < 1 $\mu^*(K+B)|_{E} \sim_{\mathcal{Q}} K_E + F|_{E}$ ample $\delta^*(K+B+\epsilon H|_{\mathcal{W}}) \sim_{\mathcal{Q}} K_V + (M+\epsilon \delta^*H-\epsilon' q) + \Delta + \epsilon' Q$ this formula films from positivity result.

Q: 6-exceptional eff, $0<\text{E}'<<\infty$ So K+B+EHIW is telt. A.

Remark: If wdim W=2, then & is not necessary.

Neason: good moduli theory for S curves with

g=0 with marked pts. In this case f: 1

is good and in fact M is semi-ample.

Finally, Fujita's conjecture (this is the source of all these l.c. center business).

Fujita Conjecture: X sm. proj. din = n. Hample

> Kx+mH free: m>n+1 very auple: m>n+2.

still upen!

I dea of proving this:

Lample, $L^n > n^n$ (eg. L = (n+1)H)

fix $x \in X$, R.R. $\exists D \in INL \mid mult_x D > N \cdot n$ mult $\frac{P}{N(1+\alpha)} = : n$, (x,B) not telt at x.

1.c. threshold C & 1:

(x, cB) properly l.c at X.

W minimal center.

Suppose x isolated pt of W

> H°(x,K+L) →> H°(x,K+L|W) → H'(IW ⊗ O(K+L))

> |K+L| free at X.

In this approach, it is necessary to extend fujita's wanj. to singular varieties:

Corect Version:

(X,B) ket, $x \in X$ $Y \xrightarrow{\mu} X$, $\mu^*(K+B) = Ky + \Sigma e_j E_j$. minimal log discrepancy

o := min { 1-ej: | μ(Ej) = {x} for all } > 0

resolution:

V W > x, sub. v. thr x of dim = d Ld W > od if free at x. and "maybe" Ld W > (6+1) d if very ample at x.

- · Surface case ?
- . Toric case ?

Partial result on surface:

Kawach - Masek: L2> mult (x,x) 62 mg R.R.
