The First

NCTS Summer School on Algebraic Geometry

July 19 - 30, 1999

Professor H'el`ene Esnault University of Essen

(Notes by Chin-Lung Wang)

Lecture I -7/19, p.1

Motivation for Chern—Simons/Cheeger—Simons Theory

Lecture II -7/23, p.9

Weil Homomorphisms

Lecture III -7/26, p.16

Cohomology of Cheeger—Simons Differential Characters

Lecture IV -7/29, p.25

Riemann-Roch for Rank One Irregular Connections on Curves

```
P. 1
```

NCTS Summer School in Aly. - Geom. Prof. H. Esnault. Lecture I. 7/19 at Academia Sinica chem - Simon / Cheeger - Simon Theory O. Motivation: E: Vector bundly Cn(E) H2m (x, Z) Betti X mfd (topological) HOR (x) Le Kham 0,80 analytic H& (x, n) Deligne (-Beilinson) algebraic (Hn(x) Chow gromps Supplementary structure on E: -> ticher han. class of E connection $\nabla: E \xrightarrow{k-linear} N \otimes E$ N' 1- forms (C∞, analytic, alg) st. Lerbnitz rule. convature: D2: E -> 2'&E: O-linear In particular, ∇ flat \longleftrightarrow $\nabla^2 = 0$ topologically (E, V) flat () local system analytically (E, V) E= { e (E , De = 0 }

→ H'(×, GLr(C)) pointed set r=rkE:

P. 2 r=1: example of nicher invariant $H'(x, GL_1(C)) = qp = Hom(H_1(x, \mathbb{Z}), C^{\times})$ > Hom (T,(x), Cx) = dimacters of T(x,x) = set of chem- Simon invariants classical chem - Simon theory: $r = 1 : H'(X, C^X) \longrightarrow H^{2n-j}(X, C/Z(n))$ boundary C/II (2#i) (2TTi)" Callit 1. $H^{2n}(\times, \mathbb{Z}(n))$ $H^2(X, \mathbb{Z}(1))$ top chem class

Want good behavior in families, compatible with innerse images (so. coh. theory).

torsion classes

tefect of compatible with direct images is the

- Kiemann-Roch Theorem -

Sotup: f: X -> S morphism, proper f v.b.

in order to take direct image, need to know still in the same category.

f: proper, Granert & Rif cohenent 5, X smooth (Hilbert) & I resol. Via V.b. s. Grothendick Riemann-Roch

 $Ch(Rf_*E) = F(f, chE)$ $\bigoplus CH^n(S) \otimes Q \longrightarrow \bigoplus H^{2n}(X,n) \otimes Q \longrightarrow \bigoplus H^{2n}(X,Z) \otimes Q$

Mone pricially:

F(f, chE) = 2 pieces of information $f_*(Td(f)) \odot ch(E))$ Todd class

direct image & CH(X) & Q (trave)

for (E, V), like classe which behave "correctly" in alq. morphism.

1st anology (Delique)

X smooth ame f, $\beta = Spec Fq$ $\rho: \pi_{1}(x) \longrightarrow GL(1, \rho_{k})$, $rk \in 1$ (scal system) $\text{Rf}_{*}(\rho) = H(\bar{x}, \rho) \in K_{0}(q_{k}) = \frac{1}{2} \text{ V.S. } / q_{k} \frac{1}{2} / \frac{1}{2} \text{ Let } H(x, \rho)$ Let $H(x, \rho) = \frac{1}{2} - \frac{1}{2} + \frac{1}{2$

becomes a $t_1(\mathbb{F}_q)$ module $\mathrm{Gal}(\overline{\mathbb{F}_q}/\overline{\mathbb{F}_q}) \cong \mathbb{Z} \ni \mathrm{Frob}.$

give $f_{Im}: \pi_{I}(F_{q}) \longrightarrow GL(I, Qe)$ (Let H(X, P))

Theorem: (Deligne) (motivation) PIm = Fr(f, P) (of shape of Grothendick =-Trp divisor of a menomorphic section of w = sheat of 1-form $=-\int_{x}(u(\Omega^{1}) \cup P)$ $CH^{1}(x) \in Hom(\pi_{1}(x), Aut(Q_{1}))$

geometry if me starts with D

H'(x,p) ~ Z(H) i Rif* (nx/s » E) defined by unneution relative de Rham coh.

comes a Gal (Fg/Fg) ~ who, sheaf with a action Gauß-Main Com.

Wants:

ch (ZH)i "GM", Ganf Main unnertion) = F1f, U(E,V))

Another motioation from topology:

D-modules: X smooth/k

ex. (E, V) flat connection, E - 1/8 E

 $D \leftrightarrow A = \text{matrix of } 1 - \text{forms} = \sum A_i \, dx_i$ (alg.) Unoice of vour. X_i

T locally given by ∂x_i , $\langle \partial x_i, dx_j \rangle = \delta_{ij}$. ∂x_i acts on $e_j \in E$ by $\partial x_i (e_j) = A$ action of \mathcal{D} : $\partial_{x_i} \partial x_j = \partial x_i \partial x_i$.

D Hat - action of D on E.

I more complicated examples:

D. U → X open smooth (E, D) flat on U → J* (E, D) = D-mod on X

② Z → X closed imbedding

(E,∇) com. on Z → ix(E,∇).

f: X -> S proper morphism

 $M: \mathcal{P}$ -module on $X \longrightarrow Rf_X M$ defined as \mathcal{P} -modules on X

 \rightarrow R.R. Question $ch(Rf_*M) = F(f, chM)$

Problem: One need a good theory of char clarage of D-modules. Don't have this yet!

If D-module comevian (F, V) do have this P. 6 / also for $j_*(E, \nabla)$ in particular, on U(C); (E, D)/U local system Chen - Simon Chieger H24-1 2nd Motivation (CD): Theorem (Bismut - Lott, Bismut) f: X - S pry/c smooth To local system ch(v) + H2n-) (x, C/Z(i)) ch (Rf v) = F(f, ch v). Want thin f: X -> S pri smorth, (E, D) Hat com which should have the four of Delique in # theory Classes: * I good classes in group of "alg- differential characters" olg. cyles Chem-Simon, Cheegers ⊕ CH(x) * explicit understanding of those classes at

generic point of X (w. S. Bloch).

RR: gemal RR tem:

- for repulse connection (half "flat)
r=1, pece of classes detected at generic point of var.
r=2 : Loose some information
- for irregular connections

for rk 1 iv. com. - formula

 $ch(Rf\nabla) = F(f, ch\nabla)$

(should give swan conductor in # theory)
Higher rk: -> hew invariant -> conjecture.

Recall of Chem Classes (after Beilinson / Kazhdan, unpublished)

Chern - Weil homomorphism:

G = GL(r,C), g = M(rxr,C)

 $\omega = \bigoplus \omega_n : \bigoplus S^n(g^*)^G \longrightarrow \bigoplus H_{pR}^{2n}(BG,C) = H^{2n}(BG,C)$ Gads on g via adjoint rep'n

p H wr(p)

is an isomorphism.

Atiyah class of a vector bundle.

torsor, exact obstruction to the existence of a wonnection on a V.b. $E \in H'(X, \Omega' \otimes End E)$

& locally & connection by beclaring a given local basis as a flat basis.

 u_{i} le_{i}); u_{j} le_{j}) $\nabla_{i} - \nabla_{j} : E \longrightarrow \mathcal{N} \otimes E \qquad \in H'(\times, \mathcal{N}' \otimes E \wedge d E)$

(3) 2nd way to think of it:

X × X > $\Delta^{(1)}$ 1st infil nod of Δ obtain g(E) = sleaf of principal part of Eque $o \rightarrow \Omega' \otimes E \longrightarrow g(E) \rightarrow E \longrightarrow o$ $Ext!(E, \Omega' \otimes E) = H!(X, \Omega' \otimes End E)$.

(8) let P TT x be principal G-bundle asso. to E

GL(r)

has a G-action

Atiyah extension:

 $o \to \mathcal{N}_X \to \mathcal{T}_X(\mathcal{R}_p)^G \to End E \to o$ we will use this to define chem classes.

to be continued.

```
P. 9
Prof. H. Esnault, Lecture II 7/23
Weil homomorphism à le B-K:
Atiyah extension of a V.b. E/X
P: P -> X principal 6-bundle, G=GL(r)
                                                 g = Lie G = Mrar (C)
O -> PX -> DX,E -> EndE -> O
              (P* Pp) 6: 6-im form in principal (undle
BK - differential graded algebra (DGA) > lx
                      d: \mathcal{O}_{X} \cong \mathcal{L}_{X,E} \longrightarrow \mathcal{L}_{X,E}
\Omega_{X/E} = \bigoplus_{a+b=n} \Omega_{X,E}^{a,b} \supset \Omega_{X,E}^{n,o} \supset \Omega_{X}^{n}
 Ωx, E := Λα-b Ωx, E ⊗ Sb End E
         \Omega_{X,E}^{a,b}

\Omega_{X,E}^{a+1,b}

\Omega_{X,E}^{a+1,b}

\Omega_{X,E}^{a+1,b}

\Omega_{X,E}^{a+1,b}

\Omega_{X,E}^{a+1,b}
 ω<sub>1</sub> Λ · · · Λ ω<sub>a-L</sub> ⊗ Ψ, · · · Υ<sub>b</sub> → Σ (η) <sup>1</sup> ω<sub>1</sub> Λ · · · ω<sub>2</sub> Λ · · · ω<sub>a-b</sub>
                                          · ( [ m wj. ) 41 ... 46
 (d')= (d")2=0, d'd"=d"d', d=d+d"
          (six,d) - (sub complex
 is a filtered quasi-isomorphism (punely algely):
  (\Omega_{X}^{7P}, d) \longrightarrow (F^{P}\Omega_{X,E}) = \bigoplus_{asan algebra} \Omega_{X,E}^{a,b}
  Hodge filtration
```

$$\mathcal{L}_{n} : \mathcal{L}_{n} \longrightarrow \mathcal{L}_{n+1} : \mathcal{L}_{n+1} : \mathcal{L}_{n} \longrightarrow \mathcal{L}_{n+1} : \mathcal{L}_{n} : \mathcal{L}_{n+1} : \mathcal{L}_{n} : \mathcal$$

 $\Omega_{X/E}^{1} = \text{Ker } \Omega_{X/E}^{1} \longrightarrow \text{EndE}$ $\Omega_{X/E}^{1} = \Lambda^{\circ} \Omega_{X/E}^{1} \otimes S^{\text{EndE}} \cong \text{EndE}.$

Weil homomorphism:

Apply for the lef. of $\Omega^{a,b}$ to
the classfying simplicial scheme (space) of
puncipal C-bundles together with its
universal G-bundle. EG \rightarrow BG.

top: top. space M is a BG up to some dim N

if O ⊋ G prin. bundle EG → BG, EG untractible

P = X * BG EG → EG

e) + P→X, xmfd, dimX ≤ N, the above diagram exists.

To do this algebraically, we need to replace alg. V. by simplicial schemes.

P. 11 Algebraically, BG exists (with 0 and @ without bounds on dim X) in the category of simplicial (schene) varieties. ie. X. simplicial variety is a contractariant functor (Hodge III) (∆') → {schemes}; n → Xn Satisfiles obvins relations on dimaps: Xuti - Xn (n+2 such maps) Short F: a uniplex of sheaves n +> Fn: upx of sheaves on Xn st. Fn+1 + 2,* Fn topological realization of X.: (mfd)

LL Xn × \(\D^n \): \(\times \D^{n+1} \times \D^n \) eg. C.TC Simplicial Sheaf (X/C for simplicity) H(X., Simplicial sheat K, T) = H(top reali, a, T) BG: G×G = G Gl+1 = freger ful
maps

Get $G \times G \longrightarrow G$ fright thans. $G \times G \longrightarrow G$ $G \times G \longrightarrow G$

BK: Stigat class can be extended to simplical cat. (*) 0 -> Sign -> Sign -> End Enn -> 0

X, E "g*

Koszul umplex:

(*) - residution of M' D'X = DX follows

0 -> DX -> [NDX, E -> N"-12X, E & G* -> 1 n-2 n'x, E & S2g* -> ... -> Sng* -> 0

in general; in particular on BG

a unnecting morphism.

H°(X, S"g*) - → H"(X, xx)

X=BG (Sng* speck)G

 $X_1 \xrightarrow{0.2} X_0$; $G \times G \xrightarrow{9} G$

im. poly. /k

F, - S, Fo what's Ho?

Prop: BG (G=GL(-))

H"(x, nx) H_{bR}^{2n} (x = BG) H, (X V, V,)

Hi (BG, 12BG) = 0 for itj.

cor: wan. hom. (5°9*) 0 ~ H"(BG, 1°BG) 2 HpR (BG)

lu fact, for k=C,G(C): Def'": (S"×5*) = Ker(S"g") → H2"(BG(C), C) $\rightarrow H^{2n}(BG(C), \mathbb{C}/\mathbb{Z}(n))$ H DR (BG) ~ H 2 M (BG (€), €)

Ruk: Up to now, mostly and the for alg. sp 6 up to a-tersion (stirlel - whitney class) n ~ Tr M" (-, Newton lass). done. [

Chern-Simms (classical Theory):

firstly, chem character via Chem-Weil theory. question (CS): P - x principal 6-budlo

find? functional + good property for products in the following:

P*E2 Drop (canonical trivialization) (E, V), Pn -in polynomial $d? = P_n(\nabla, \nabla, \dots, \nabla) \in H^o(P, \Omega_{\infty}^{2h}, \mathcal{L})$ losed 2? (H°(P, 2001).

Auswer, Let $F(A) = dA - A^2 = \nabla^2$ $T\Gamma_n = n \prod_{n} \Gamma_n(A, F(tA), \dots, F(tA)) dt$ trans gression h - 1

ex. n=1, [(M) = Tr M

 $T\Gamma_{i} = \int_{0}^{1} \Gamma_{i}(A) dt = \int_{0}^{1} (Tr A) dt = Tr A$ $Tr(dA) = d Tr A, \Gamma_{i}(\nabla^{2}) = d T\Gamma_{i}, \Gamma_{r}(dA - A^{2}).$

 $\Gamma_2 = Tr M^2$:

 $TP_2 = 2 \int_0^1 Tr(A, F(tA)) dt$

 $= 2 \int_0^1 \left[t \operatorname{Tr} A dA - t^2 \left(\operatorname{Tr} A^3 \right) \right] dt$

 $= 2\left(\frac{1}{2}\operatorname{Tr}AdA\right) - \frac{2}{3}\left(\operatorname{Tr}A^{3}\right) = \operatorname{Tr}AdA - \frac{2}{3}\operatorname{Tr}A^{3}.$

Easy to check this is the answer.

Summary: $\Gamma_n = \text{inv. poly.}$ $(E, \nabla) \longrightarrow H^{\circ}(P, \Omega_{\infty})$

 $d(T \Gamma_n) = \Gamma_n(\nabla^2)$.

If I'm hus zero periodo (E (5"g") ~)

 \rightarrow elass of $\Gamma_n(\nabla^2) \in H^{2n}(\times, \mathbb{C}/\mathbb{Z}(n))$

- 7 chain 4 t & m-1 (x, C/Z(n)) st.

TPn - p* u = coboundary.

Auswer: $\nabla^2 = 0 \rightarrow \Gamma_n \in H^0(P, \Omega_{\infty}^{2n-1}, \alpha)$

[Pn] E H 2 n-1 (P)

→ [[n] E H2n-1 (P, c/I[n)) well- Ufined m X.

 $\operatorname{Pef}: \operatorname{class} \ H^{2n-1}\left(\times, \operatorname{C/Z}(n)\right) \to \operatorname{Ln}\left(\operatorname{E}_{1}\nabla\right) = \operatorname{Ln}\left(\mathfrak{V}\right).$

does not line algebraically.

P.15

cheeger - Simono: (really the beginning of new notions) differential branacters, cohomology theory. X: Co mfd: $H^{2n}(X, \mathbb{Z}(n) \to \Omega_{\infty}^{\circ} \to \Omega_{\infty}^{1} \to \cdots \to \Omega_{\infty}^{2n-1})$ $\uparrow \qquad \uparrow \qquad \qquad \text{one } \nabla^2 = 0. \text{ then wo}$ $CS(E,\nabla; \nabla^2 = 0) \qquad \uparrow \text{ nm } CS.$ Ancestor of Delique-Beilinson Coh. ~78.

```
P. 16
Purf. Esnault. Lecture III. 7/26
   wh. of Cheeger-Simms (diff. characters). Ct
   H2n(x, Z(n) + 0 0 d lo + ... + so )
                                     ker (H°(x, 12m, d)→
  H2n-1 (x, ¢/Z(n1)
                                      H^{2n}(X, \mathbb{C}/\mathbb{Z}(n)) \rightarrow 0
    0
         c.s. c_{\alpha}((E_{7}\nabla)) \longrightarrow c_{\alpha}(\nabla_{7}^{2}\cdots, \nabla_{2}^{2})
                                        C.W.
  in case C_{1}(\nabla^{2}, \dots, \nabla^{2}) = 0.
  Argument roughly:
  I classifying space of (E, D) (dim X & ..., rk E & ...)
  - univ. case, also class bying space for bundles M
  > H2P-1 (M, Z) = 0.
  - diff haracter = diff form
  -> chen-Weil form
  → pull tack. Ime. []
  Weil Homomorphism:
                sn(y*) c - Hor (BG) = Hor(x)
 but S^{n}(g^{*})^{G} \longrightarrow S^{n}(g^{*}_{Enn}) = \Omega_{BG,En,n}^{n,n}
          # 7
       Cu, G Cn-1, ...
                                         2 ny, = s' & S" (gr ).
```

P. 17 Here Beilmson: 2a,6:= 12-6 2x, E & Sbg* obtains (sng*) G - 2(x,E), e -> c(Fnx,E)[2n] Windules: (Sng*) G TFT HpR (x) Beilinson: Weil wh. (dep. on E) andytic theory $U_{\varepsilon}(n) := une \left(\mathbb{Z}(n) \oplus \left(S^{n} g^{*} \right)^{\varepsilon} [-2n] \xrightarrow{2 \oplus \omega} \Omega x, \varepsilon \right) [-1]$ \longrightarrow $H^{2n}(UE(n)) \longrightarrow \ker \{H^{o}(X,(S^{n}g*)^{G}) \oplus H^{2n}(Z(n))$ (+2n-1(c/Z(n)) 4 (L(E) -> H2h (IX,E)} and (E) 4(E) ... in particular, on (B6) .. given V on E, \rightarrow Split six \rightarrow six, E € R'X,E $\sigma_{x} \longrightarrow \sigma_{x,E}^{l} \longrightarrow \Lambda^{2} \sigma_{x,E}^{l} \oplus \sigma_{E}^{x} \longrightarrow \cdots$ $|\zeta|$ $|\zeta|$ $|\zeta|$ $o_{\times} \longrightarrow a_{\times}' \longrightarrow a_{\times}' \longrightarrow$ $\nabla^2 = 0 \iff \text{filtered } \underline{9}. \text{ is } m.$

 $\nabla^2 = 0 \iff \text{Filtered } \perp$. $\exists \nabla \iff \text{Split } \text{f. is.} \quad \text{$\mathbb{A}_{X} \longrightarrow \mathbb{A}_{X}, E}$ $\exists \nabla, \nabla^2 = 0 \iff \text{Split } \text{filtered } \text{q. is.}$

∃ D , 4(E) UE(n) H2n(cone (Z(n) & F" --- , 1×,E)[-1]) cheeger - Simons diff. char.

chem - Simons dill forms: (2n-1) - Liff form on principal 6mell, √

Algebraization - alg. ditt. chan:

X/speck, charte=0:

AD"(x):=HT (x, Kn -> DX d ... d , 2n-1)

alg. ditt forms Eventually: Kn Zaniski sheaf of Milnor K-theory

 $f: field: K_n^M(F) = \frac{F^* \otimes Z \otimes \cdots \otimes F^*}{(\cdots \times \otimes \cdots \otimes (1-x) \otimes \cdots)}$ or local ring

x + Kx - fi}

 $K_n = Im \ K_n^M(0) \longrightarrow K_n^M(k(x))$ additive sp.

for X smooth, CH'(x) = H'(x, Kn)

K, = Ux - 1 hag s!

KM(0) - n < d log $K_{n}^{*}(0) \longrightarrow K_{n}^{M}(k(x))$

(cf. Gubber's result. all char. are torsion)

using this kind of ideas:

For X/α , flat bundle (E, ∇) , $\nabla^2 = 0$

H2n-1 (x, c/Z(1)) H2n(x,Z) C^{\times} $K_{\circ}(C)$ $K_{\circ}(C)$ $K^{2n}(\times, \mathbb{Z}) \otimes K_{\circ}(C)$ $h^{2n-1}(X,\mathbb{Z}) \otimes K_{1}(\mathbb{C})$

-> H24-2 (X,Z) & K2(C) mod torsion

 $H^{2N-p}(X,\mathbb{Z})\otimes K_{p}^{M}(C)$ $p \leq n$ H" (X/Z) & K M (C). __, conjectures

while AD umplicated.

simpler part:

npler part: η Ab"(x) \longrightarrow Ab"(Speck(x)) = $\frac{\Omega^{2} \eta^{-1}}{J \Omega^{2\eta-2}} \qquad n \ge 2$ $\frac{\Omega \eta^{\prime}}{J \log k(x)^{\chi}} \qquad n = 1$

S. Bloch: Close at generic pt binen by TP egin à le Chem-Simons (EID) alg, turnalized by Zaniski whening of X

V -> matrix of 1- forms A, compute that

TP(A) -TP(9A5-1+dgg-1) closed m U g-in an U

locally exact. 1 >> 2. locally dlog exact n=1 → TP(A) € H° (X, 124-1/ 122-2) n > 2 EH (x, 21/d log 0x) 4-1 1 29/1 log k(x)

class at genic pt - just like

CH (x) - Gnilliths (x)

ulation ~ n by by lp! Infamution; I parameter before ation

THEOREM: (Bloch, -):

f: X -> & projective morphism / sperk, chark=0 X, S smooth, d= dimf = dim X - dim S, smooth / speck(s), y= rel. NCD=f-1(E)+Z with & NCD in S.

6iver D: E - sx (logy) & E with unditions:

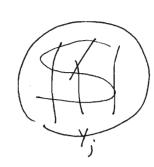
 $\Omega_{k(x)}^{2} \longrightarrow \Omega_{k(x)/s}^{2}$ $\Omega_s^2 \otimes k(x) \longrightarrow x \longrightarrow \Omega_s^1 \otimes \Omega_s^1 k(s)/s$ assure $\nabla^2 : E \rightarrow f^* \Omega_S^2(\log \Sigma) \otimes E$ n n'x (logy) (undition for the existence of a bank-Main com.) dasses Wn = class at generic pt associated to Pn (M) = Tr M" Then

I. Wn (EA) i Rf* (Dx/s (Losy) &E, Vx/s), 6M cmu.) = (+) df* [cd (2x/s (log Y), resz) · wn (E, D)], n > 2.

II. n=1: true if & Q, but also true / Z y uplace (E, D) by (f-(rkE)O, DE(rkE)d).

O LHS: wh. sheaf Rifx 2x/s logy & E not loc. free (TPH) extends to who sheaves with connections.

@ KHS: the product ".":



(f,v)/Z

yeles sike
multi-serious with weff.

take reprof (d(xx/s(1694)) does not untain Y; then $(E,\nabla)|_{S}$ that not befined. Instead of this section S ",

CHd(x) = Hd(x, Kd) + Hd(x, Kd → ⊕ Kd |4, → ⊕, Kd | 7, ny;

if write $CH^d(X,Z) = HI^d(X,K_d \to \oplus K_{d|Y_1},\to \cdots)$ thun ger paining

f* (CHd(X,Z). { chem-Simms wh. })

3) In Previous leut. R.R.:

$$f: X \rightarrow S$$
 $ch(Rf * E)$, $ob(S)$
 $f: X \rightarrow S$ $ch(Rf * E)$, $ob(S)$
 $f: X \rightarrow S$ $ch(Rf * E)$, $ob(S)$

the thim is of this shape.

- · LHS dependo on X, U f , S, (E, D) lu
- · RHS is OK: CS classes are reconguized on Sper k(x), in particular on U. information of $Cd(x_{1/3}^{1/3}(\log y), res_{2}) \in CH^{d}(x, Z)$

depends only on (x, v)

~ RHS egin is of Grothen Lieck type

ON THE PROOF:

- O feduction to case $X = IP^{1} \times S \longrightarrow S$ and $S = fon field (S \sim Speck(S)) =: K$ X > Y horizontal divisor, modulo torsion $Y \in IP(K), \Sigma Yi, Yi \wedge atil Point of the base.$
- @ Reduction to the case: to allow more general whereit sheares with this type of womerims.

 need deal with tersion no torsion in E.

3) Boils down to the following kind of eg'ns \neq higher trace formula in Milnor's K-theory: $N \Rightarrow \delta \gg r \gg 1$: Let $A_i \neq 0$ Log
Log $(z-a_i)$ - $(\delta+1)$ $\frac{dz}{z} = \frac{f(z)}{z} \frac{dz}{z}$

res_{ai} $w = res_{\infty} w = 1$, F has avots βi .

key lemma: $\sum d \log (\beta, -\alpha,) \wedge \cdots \wedge d \log (\beta; -\alpha;)$ = $\sum_{i=1}^{n} (-\alpha_i)^{i-1} d \log f(\alpha_i) \wedge d \log (\alpha_i, -\alpha_i) \wedge \cdots$

ndlog((s; -a;) n... ndlog (aj.-ar)
this eq'n ↔ R.R.

To be untinued.

Prof. H. Esnault Lecture IV 7/29

p. 25

RR Thm for nk 1 irregular connections on curves Deligne (~73)

 $U \subseteq X$ smooth alg $V \cdot /C$ open to cal system on U : $V_{\ell} \longleftrightarrow \ell : T_{\ell}(U) \longrightarrow GL(N,C)$

How to extend to all X?

Analytic way: (Riemann-Hilbert wrrespondences)

 $V_{pc} \stackrel{1-1}{\longleftrightarrow} (E, \nabla)$ and. ∇ flat connection $V_{pc} \stackrel{1-1}{\longleftrightarrow} (E = C_{an} \otimes_{\mathbb{C}} V_{pc}, d \otimes \Lambda)$

Solution of system of differential equations.

ET (E, T). Require strong topology.

(E, V) and underlies an algebraic structure:

 $((Ealg, \nabla alg)) \otimes O_{XZar} O_{Xan} = (E, \nabla)$ ana.

but (Ealg, Valg) not unique! many choices.

Yes, if me requires Valg at ∞ (= X-U)

has mly logarithmic polos, then

(Ealg, Valg) is unique!

Related to commertion with regular singularities at to

ie. I extension of [Ealg, Valg):

Ealy, Valg: Ealy → si (log ∞) & Ealy
aly. verter budle on X.

"top" () " reg. sing!" unnertions are controlled by topology.

for irregular singularities, invariants of connections are only partly untrolled by topology.

Rank 1 case:

 $X \longrightarrow Spec K = S$ (L, ∇) commertion, $U/K \subset X \supset D = X - U$ K = function field/g char k = 0. $take \ \overline{L} \longrightarrow S\overline{X}(*D) \otimes \overline{L}$ an extension. $D = \sum Di \text{ Lefined oner } K$.

Vx/s: I - Six/s (*D) & I rank 1 sheaf

mi = smallest ni EN st.

 $\nabla_{x/s}: \overline{L} \rightarrow \Omega_{x/s} (\Sigma_{n_i} D_i) \otimes \overline{L}$, but not $\emptyset = \Omega_{x/s} ((n_{i-1}) D_i + \Sigma_{i} D_j) \otimes \overline{L}$ call $w = \Omega_{x/s} \cdot have$

Vx/s: L→ ω(∑niDi) » L

Recall: (L, V) (u + H'(U, U× dlog) SU)

$$([, \nabla)]_{\mathcal{A}} \leftarrow [(0, 0) \longrightarrow \Omega_{\mathcal{A}})$$

$$([, \nabla)]_{\mathcal{A}} \leftarrow [(\times, 0^{\times} \longrightarrow \Omega_{\mathcal{A}}^{'}(*D))$$

· want to make *D more precise, call p-1 (w(D)).

o -> f* 25 (*D) -> 2/x (*D) ->> 2x/s (*D)

relative unnextion.

Assume: $\nabla^2: \overline{L} \to f^* \Omega_S^2(*D) \otimes \overline{L}$ (vertically) eg. ∇ flat.

⇒ lu fait, $\nabla: \overline{L} \to \Omega_X^1(\log D)(D-D) \otimes \overline{L}$ computations ⇒ $(\overline{L}, \overline{\nabla}) \in H^1(X, O^X \to \Omega_X^1(\log D)(D-D))$

R.R: 4 Cx - Speck = S (L,V) m u, V2 ...

Kat Z: take $(\overline{L}, \overline{r})$ as before with extra undition that

a ··· if V with pole everywhere along D.

Gauf-Manin Connections = ?

$$f^* \mathcal{L}_S \otimes \overline{L}(\varnothing - D) \longrightarrow \mathcal{L}_X (\log D)(\varnothing - D) \longrightarrow \omega(\varnothing) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \hookrightarrow \mathcal{L}_X (\log D) (\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes \omega(\varnothing - D) \otimes \overline{L}$$

$$f^* \mathcal{L}_S \otimes \omega(\varnothing - D) \otimes \overline{L} \otimes$$

want to compute:

EH'(Speck, Ox - D'S) = D'K/dgKx

Know already: thm: O Regular case (no sing.) $f: X \xrightarrow{\leftarrow} S$ (let) -1 = $f_{*}(Y(w) \cdot Y(w))$ in Pic(K) $H'(X, O^{*} \rightarrow X^{1})$ product into $H^{2}(X, X_{2} \rightarrow X_{X}^{2})$.

```
P. 29
  then to H2(x, K2 -> f* n's & w)
                   I Tr
n's / d log ox
  @ oregular (ie. logarionthmic) singularities:
    (\det)^{-1} = f_{*}(u(\omega(D)) \cdot u(\overline{L}, \overline{\nabla}))
                         Piclx, D) x H1 (x, 0x xx (log D))
                      1 generalized facobians of Serre.
     { (M.5) | S: 0' ~ Mo}
    HI(X,0x >> Ox)
     ulw(D)); res: OD ~~ wol, = Os
UX - Up product we have
   Tr

vox - xx(o)
                       Ka - + R/S & WX/S
  3 Irregular conse:
       Pic (x, 8) * H'(x, 0x , 1 (log D) (8-D))

mot D. in order to pair.
      ? med har lass 4(I, \(\bar{\tau}\))
        here.
       like 4[w], (4(D), res), but now ...
     Need new idea.
```

Leibnitz
$$\rightarrow \omega(D) \times \overline{L}$$

Leibnitz $\rightarrow \omega(D) \times \overline{L}$

frimth $\omega(D) \times \overline{L} = \omega_D \times \overline{L}_{1D}$
 $\rightarrow \omega_D \text{ einear map.}$

PP $\nabla_{X/S} : \overline{L}_{1D} \xrightarrow{\sim} \omega_D \times \overline{L}_D ; \quad \omega_D \xrightarrow{\sim} \omega_D .$

the class is:

 $u(\omega(S), pp \nabla_{X/S}) ! \quad \text{Now can with down}$
 $ThEOREM : (S.Bloch, -) :$
 $(det)^{-1} = f_* (u(\omega(S), pp \nabla_{X/S}) \cdot u(\overline{L}, \overline{Y})).$

More precisely, $\exists \text{ upp product} + frace $j : u \hookrightarrow X$
 $fic(c, S) \times H'(X, j \times C^X \rightarrow \Omega'(\log D)(S - D))$$

Some Comments:

2,K/9

o Reg. Sing. Case: then D = 8. 4 (w(D), PP Px/s) + Pic(x,D) - to day 4 (w(D), resp) + Pic (X,D) - tuesday global geometry (Atigal lass) => 2 RHS are the same. @ Another firmulation:

on Pich(x, D) + sperial K point:

N = 29-2 + Emi = leg w (8)

a (w(D), PP Tx/() some ware of \$\overline{\nabla}\$

formulation:

$$X-IDI \xrightarrow{\alpha} Pic'(x, \mathcal{D})$$

Similarly for PicN (x, D) ...

Def " o mariant relative rank 1 unnertion, ie.

$$G \times G \xrightarrow{\mu} G$$
 $G \times G \xrightarrow{\mu} G$
 $G \times G \xrightarrow{\mu} G$
 $G \times G \xrightarrow{\mu} G$
 $G \times G \xrightarrow{\mu} G$

@ absolute m. ale 1 connection

- Same by + triviality along o- section.

Prop: Via dt:

(1,1) avrespudhuce between

inv. vk 1 com

rel:
kbs:
lvk1)

 $L \rightarrow \mathcal{N}(\mathcal{D}) \otimes L$ $L \rightarrow \mathcal{N}(log D)(\mathcal{D}-D) \otimes L$

Vert Hor Vert.

In particular, via d^* , $(L_1 \nabla)$ thought of as a rk 1 vertical wars. on $P: c^N(c, \vartheta)$. Then RHS $(\overline{L}, \overline{\Upsilon})$ | special point.

One word about the purof.

Invariant unnerim

New R.R. Hum:

 $Pic^{N}(x, \delta)$ (M, δ) $Pic^{N}(x)$ M

b=g-(w(x)) = torsor under of (= TTGa * TTGm)
(LID) on B.

d+ B, B = "exact form".

Kontsevich: Companing in some casts:

DR wh Wat d+df p. fexaur p

Higgs wh () If II sim are the same.

"K'S thm" were out to the diff. form

though the pf has nothing to do with Kontsevich.

(3) Further Comment: (Higher rank case.)

Assume (E, V) irregular on UCX - S, r=rkE>1

(E, ♥): PP Vx/s: ED → WD & ED (Polar part)

det PP $\nabla_{x/s}$: (let E) | $\int_{0}^{\infty} \omega_{p}^{r} \otimes | dut \overline{E} | | g$ 5'1 see, \exists ex. for which

(det) + fx (4 w(&), pp det V). 4 det (E, D)!

(this is what we have For Dilog sing.) END

Need again new ideas. (in programs).