Upper bound on k-tuple domination numbers of graphs

Gerard J. Chang*

Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan
Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan
National Center for Theoretical Sciences, Taipei Office

July 1, 2006 (revision June 11, 2007)

Abstract

In a graph G, a vertex is said to dominate itself and all vertices adjacent to it. For a positive integer k, the k-tuple domination number $\gamma_{\times k}(G)$ of G is the minimum size of a subset D of $V(G)$ such that every vertex in G is dominated by at least k vertices in D. To generalize/improve known upper bounds for the k-tuple domination number, this paper establishes that for any positive integer k and any graph G of n vertices and minimum degree δ:

$$\gamma_{\times k}(G) \leq \frac{\ln(\delta - k + 2) + \ln \tilde{d}_{k-1} + 1}{\delta - k + 2} n,$$

where $\tilde{d}_m = \frac{1}{n} \sum_{i=1}^{n} \binom{d_i + 1}{m}$ with d_i the degree of the ith vertex of G.

Keywords. Domination, k-tuple domination, probability.

The concept of domination in graph theory is a natural model for many location problems in operations research. In a graph G, a closed neighbor of a vertex v is either v itself or a vertex adjacent to v. A vertex v is said to dominate all of its closed neighbors. A

*Email: gjchang@math.ntu.edu.tw. Supported in part by the National Science Council under grant NSC94-2115-M002-015.
A dominating set of G is a subset D of $V(G)$ such that every vertex in $V(G)$ is dominated by at least one vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. Domination and its variations have been extensively studied in the literature, see [3, 8, 9].

Among the variations of domination, the k-tuple domination was introduced in [6], also see [8, page 189]. For a fixed positive integer k, a k-tuple dominating set of a graph G is a subset D of $V(G)$ such that every vertex in $V(G)$ is dominated by at least k vertices of D. The k-tuple domination number $\gamma_{\times k}(G)$ of G is the minimum cardinality of a k-tuple dominating set of G. For the case when G has no k-tuple dominating set, $\gamma_{\times k}(G)$ is defined to be ∞. Notice that 1-tuple domination is the usual domination, 2-tuple domination was called double domination in [6], and 3-tuple domination was called triple domination in [15]. While determining the exact value of $\gamma_{\times k}(G)$ for a graph G is not easy, many studies focus on its upper bounds. For other results on k-tuple domination, please see [7, 10, 11, 12, 13].

Suppose G is a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ where vertex v_i is of degree d_i. For any integer m, define

$$\hat{d}_m = \frac{1}{n} \sum_{i=1}^{n} \binom{d_i}{m}$$

and

$$\tilde{d}_m = \hat{d}_m + \hat{d}_{m-1} = \frac{1}{n} \sum_{i=1}^{n} \binom{d_i + 1}{m}.$$

Notice that $\hat{d}_{-1} = 0, \hat{d}_0 = \hat{d}_0 = 1$ and \hat{d}_1 is the average degree of G. We also use δ to denote the minimum degree of G.

Alon and Spencer [1], Arnautov [2] and Payan [14] independently proved the following fundamental result:

$$\gamma_{\times 1}(G) \leq \frac{\ln(\delta + 1) + 1}{\delta + 1} n = \frac{\ln(\delta + 1) + \ln \hat{d}_0 + 1}{\delta + 1} n. \quad (1)$$

Harant and Henning [5] gave an upper bound for the double domination number:

$$\gamma_{\times 2}(G) \leq \frac{\ln \delta + \ln(\hat{d}_1 + 1) + 1}{\delta} n = \frac{\ln \delta + \ln \tilde{d}_1 + 1}{\delta} n. \quad (2)$$

Rautenbach and Volkmann [15] established an upper bound for the triple domination...
number:
\[\gamma_{\times 3}(G) \leq \frac{\ln(\delta - 1) + \ln(\hat{d}_2 + \hat{d}_1) + 1}{\delta - 1} n = \frac{\ln(\delta - 1) + \ln \hat{d}_2 + 1}{\delta - 1} n. \] (3)

Trying to generalize the result, Gagarin and Zverovich [4] proved that for any graph \(G \) with \(3 \leq k \leq \delta + 1 \),
\[\gamma_{\times k}(G) \leq \frac{\ln(\delta - k + 2) + \ln(\sum_{m=1}^{k-1} (k - m)\hat{d}_m - \hat{d}_1) + 1}{\delta - k + 2} n. \]

The purpose of this paper is to establish a better upper bound, which also unifies formulas (1), (2) and (3). We employ the probabilistic approach used in [1, 2, 4, 5, 14, 15]. In particular, the way of randomly generating a \(k \)-tuple dominating set is the same as in [4], while the derivation of the upper bound is simpler and more efficient.

Theorem 1 For any graph \(G \) of minimum degree \(\delta \) with \(1 \leq k \leq \delta + 1 \),
\[\gamma_{\times k}(G) \leq \frac{\ln(\delta - k + 2) + \ln(\sum_{m=1}^{k-1} (k - m)\hat{d}_m - \hat{d}_1) + 1}{\delta - k + 2} n. \]

Proof. Form a set \(A \) by an independent choice of vertices of \(G \), where each vertex is selected with probability \(p \) and \(0 \leq p \leq 1 \). For \(0 \leq m \leq k - 1 \), denote \(B_m \) the set of vertices dominated by exactly \(m \) vertices of \(A \). For each \(B_m \), let \(B'_m \) be a set containing \(k - m \) closed neighbors not in \(A \) for every vertex in \(B_m \). Notice that such closed neighbors exist since \(k \leq \delta + 1 \). It is clear that \(|B'_m| \leq (k - m)|B_m| \). Consider the set
\[D = A \cup \left(\bigcup_{m=0}^{k-1} B'_m \right). \]

Notice that \(D \) is a \(k \)-tuple domination set, since a vertex either is dominated by at least \(k \) vertices in \(A \) or is in some \(B_m \) with \(0 \leq m \leq k - 1 \). For the later case, the vertex is dominated by at least \(k \) vertices in \(A \cup B'_m \). The expectation of \(|D| \) is
\[E(|D|) \leq E(|A|) + \sum_{m=0}^{k-1} E(|B'_m|) \leq E(|A|) + \sum_{m=0}^{k-1} (k - m)E(|B_m|). \]
Notice that we have
\[E(|A|) = \sum_{i=1}^{n} P(v_i \in A) = pn. \]
Also,

\[
E(|B_m|) = \sum_{i=1}^{n} P(v_i \in B_m) = \sum_{i=1}^{n} \binom{d_i + 1}{m} p^m (1 - p)^{d_i + 1 - m} \\
\leq p^m (1 - p)^{\delta + 1 - m} \sum_{i=1}^{n} \binom{d_i + 1}{m} = p^m (1 - p)^{\delta + 1 - m} \tilde{d}_m n,
\]

Then,

\[
E(|D|)/n \leq p + \sum_{m=0}^{k-1} (k - m) p^m (1 - p)^{\delta + 1 - m} \tilde{d}_m \\
= p + (1 - p)^{\delta - k + 2} \sum_{m=0}^{k-1} (k - m) p^m (1 - p)^{k - 1 - m} \tilde{d}_m.
\]

For \(0 \leq m \leq k - 1\), we have

\[
\binom{k - 1}{m} \binom{d_i + 1}{k - 1} = \binom{d_i + 1}{m} \binom{d_i + 1 - m}{d_i + 2 - k} \geq \binom{d_i + 1}{m} (d_i + 1 - m) \geq \binom{d_i + 1}{m} (k - m).
\]

Notice that the last two inequalities follow from the fact that \(d_i + 1 \geq \delta + 1 \geq k\). Summing up the inequality above for all \(i\) gives \((k - m) \tilde{d}_m \leq \binom{k - 1}{m} \tilde{d}_{k-1}\). This, together with the inequality \((1 - p)^{\delta - k + 2} \leq e^{-(\delta - k + 2)p}\), gives that

\[
E(|D|)/n \leq p + e^{-(\delta - k + 2)p} \tilde{d}_{k-1} \sum_{m=0}^{k-1} \binom{k - 1}{m} p^m (1 - p)^{k - 1 - m} = p + e^{-(\delta - k + 2)p} \tilde{d}_{k-1}.
\]

Choosing \(p = \frac{\ln(\delta - k + 2) + \ln \tilde{d}_{k-1}}{\delta - k + 2}\) gives that \(E(|D|)\) and hence \(\gamma_{\times k}(G)\) is upper bounded by \(\frac{\ln(\delta - k + 2) + \ln \tilde{d}_{k-1} + 1}{\delta - k + 2}\) as desired. \(\square\)

Acknowledgements. The author thanks the referee for many constructive suggestions.

References

