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Chapter 1

First-Order Single Differential
Equations

1.1 What is mathematical modeling?

In science, we explore and understand our real world by observations, collecting data, finding rules
inside or among them, and eventually, we want to explore the truth behind and to apply it to predict
the future. This is how we build up our scientific knowledge. The above rules are usually in
terms of mathematics. They are called mathematical models. One important such models is the
ordinary differential equations. It describes relations between variables and their derivatives. Such
models appear everywhere. For instance, population dynamics in ecology and biology, mechanics
of particles in physics, chemical reaction in chemistry, economics, etc.

As an example, an important data set is Tycho Brache’s planetary motion data collected in 16th
century. This data set leads Kepler’s discovery of his three laws of planetary motion and the birth of
Newton’s mechanics and Calculus. The Newton law of motion is in terms of differential equation.
Now-a-day, we have many advance tools to collect data and powerful computer tools to analyze
them. It is therefore important to learn the theory of ordinary differential equation, an important
tool for mathematical modeling and a basic language of science.

In this course, I will mainly focus on, but not limited to, two important classes of mathematical
models by ordinary differential equations:

• population dynamics in biology

• dynamics in classical mechanics.

The first one studies behaviors of population of species. It can also be applied to economics,
chemical reactions, etc. The second one include many important examples such as harmonic oscil-
lators, pendulum, Kepler problems, electric circuits, etc. Basic physical laws such as growth laws,
conservation laws, etc. for modeling will be introduced.

The goal of this lecture is to guide students to learn

(i) how to do mathematical modeling,
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(ii) how to solve the corresponding differential equations,

(iii) how to interpret the solutions, and

(iv) how to develop general theory.

1.2 Relaxation and Equilibria

The most simplest and important example which can be modeled by ODE is a relaxation process.
The system starts from some state and eventual reaches an equilibrium state. Such process is called
a relaxation process. We use the following two examples to explain this relaxation process.

A falling object A object falling down from hight y0. Let v(t) be its velocity at time t. According
to Newton’s law,

dv

dt
= −g, (1.1)

where g is the gravitation constant. Usually the object experiences friction. The sign of the friction
force should be opposite to the acceleration. If we treat the object as a particle, then this friction
should also depend the speed of the object. The simplest friction model is −αv. Adding this
frictional force, the complete model becomes

dv

dt
= −g − αv, (1.2)

where α is the frictional coefficient, which may depend on other physical parameters, for instance,
the surface area of the object.

Cooling/Heating of an object An object is taken out of refrigerator to defrost. Let y(t) be its
temperature at time t. Let the room temperature be K and the initial temperature of the object is
y0. To model the cooling/heating process, we first notice that if the object has temperature K, then
there is no variation of the object’s temperature with the environment. Thus, the rate change of y is
proportional to the difference between y(t) and K. The simplest case is

dy(t)

dt
= −α(y(t)−K). (1.3)

Here, α is a conductivity coefficient. It depends on the object. Sands has larger conductivity than
water. This model is indeed called Newton’s law of cooling/heating.

As you can see that these two models are mathematically identical. We can use one theory to
cover them. This will be discussed below.
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Methods and tools to solve the relaxation equation Let us solve the ODE by Calculus as the
follows. The technique is called separation of variables. In this technique, The terms with same
variable are moved to the same side. After that, we can integrate both sides. See the procedure
below.

dy

dt
= −α(y −K).

dy

y −K
= −αdt

We integrate both sides to get
log |y −K| = −αt+ C.

Here, C is an integration constant.

|y −K| = eC · e−αt

y(t)−K = ±eC · e−αt

y(t)−K = C1e
−αt,

where C1 = ±eC is also a constant.
Alternatively, we can interpret the above procedure as a change-of-variable of integration, see

below.
1

y −K
dy

dt
= −α

We integrate both sides in t, use the change-of-variable y′(t)dt = dy to get∫
y′

y −K
dt =

∫
dy

y −K
= −

∫
αdt

log |y −K| = −αt+ C.

Now, we plug the initial condition: y(0) = y0. We then get C1 = y0 −K and

y(t) = K + (y0 −K)e−αt. (1.4)

We observe that y(t) ≡ K if y0 = K. Furthermore, y(t) → K as t → ∞ for any initial datum y0.
We call suchK a stable equilibrium. In the example of the heating/cooling problem, this means that
the temperature y(t) will eventually relax to the room temperatureK. In the falling object example,
the velocity v(t) will approach a termination velocity K = −g/α. For any time 0 < t < ∞, in
fact, y(t) is a linear interpolation between y0 and K. That is,

y(t) = e−αty0 + (1− e−αt)K.

The time to reach half way (i.e. (y0 +K)/2) is a typical time of this relaxation process. We denote
it by thf . It satisfies

K + (y0 −K)e−αthf =
1

2
(y0 +K).
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e−αthf =
1

2
.

This yields thf = log 2/α. We thus interpret 1/α as the relaxation time. The solution y(t) relaxes
to its stable equilibrium K at time scale 1/α.

What we can learn from these two examples is that the ODE model of the form

dy

dt
= α(K − y)

can be used to model a system that tends to a constant state (equilibrium) in O(1) time. Mathemat-
ically, the system tends to its equilibrium exponential fast with difference like e−αt.

Using mathematical software There are many mathematical software which can solve ODEs.
We shall use Maple in this class. Let us type the following commands in Maple. To use the tool
of differential equations, we need to include it by typing

> with(DEtools):

> with(plots):

> Deq:= diff(y(t),t) = r*(K-y(t));

Deq := d
dt y(t) = r (K − y(t))

> dfieldplot(subs(r=0.5,K=5,Deq),y(t),t=-5..5,y=-2..7,arrows=slim):
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In this example, we plot arrows at every grid points on the t-y plane to represent the vector field
(1, f(y)). The ODE solution is a curve (t, y(t)) on this plane such that its tangent (1, y′(t)) is the
vector field (1, f(y(t)).

Homeworks

1. A dead body is found at 6:30 AM with temperature 18◦. At 7:30 AM, the body temperature is
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16◦. Suppose the surrounding temperature is 15◦ and the alive people’s temperature is about
37◦. Use Newton’s cooling/heating law to estimate the dead time.

2. Consider y′ = −a(y − K)2 with a > 0 and y(0) = y0 > K, find its solution. Will the
solution tends to K as t→∞? At what speed?

3. If the system is y′ = −a
√
|y −K| with a > 0 and y(0) > K, can the solution approach to

K? at finite time? at what speed?

4. y′ = (y − y0)(y1 − y)

5. y′ = r(y − y0)(y − y1)(y − y2)

6. y′ = (y − y0)2(y1 − y)

7. y′ = r tanh(y)

1.3 Modeling population dynamics of single species

Simple population growth model Let y(t) be the population (say European population in U.S.)
at time t. The census data are from 1790-2000 (every 10 years). We can build a model based on the
following hypothesis:

dy

dt
= births − deaths + migration. (1.5)

It is natural to assume that the births and the deaths are propotition to the population. Let us neglect
the migration for the moment. In terms of mathematical equations, this reads

dy

dt
= ry (1.6)

where r is called the net growth rate, which is the natural growth rate minus the death rate. We
should have r > 0 if the population is growing. We can set the initial value

y(0) = y0, (1.7)

the population at year 1790. With (1.6) and (1.7), we can find its solution

y(t) = y0e
rt.

We can find the growth rate r by fitting the data, say the census at year 1800. This yields that
r = 0.03067. We find it fits very well until 1820. From then on, the discrepancy becomes larger
and larger. It suggests that

• the growth rate r is treated as a constant is only valid local in time;

• environmental limitation is not taken into account.
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Logistic population model The above population model was proposed by Malthus (1766-1834),
an economist and a mathematician. One criticism of the simple growth model is that it does not take
the limit of environment into consideration. With this consideration, we should expect that there is
a environmental carrying capacity K such that

• when y < K, the rate y′ > 0,

• when y > K, the rate y′ < 0.

A simple model with these considerations is the follows:

y′ = ry
(

1− y

K

)
. (1.8)

This is called the logistic population model. It was suggested by the Belgien mathematician Pierre
Verhulst (1838). It is a nonlinear equation. There is another interpretation for the nonlinear term
ry2/K. Namely, y2 represents the rate of pair-interaction. The coefficient r/K is the rate of this
interaction to the change of y. The minus sign simply means that the pair-interaction decreases the
population growth due to a competition of resource.

Exact solutions for the logistic equation We can solve this equation by the method of separation
of variable.

y′(t)

y(1− y/K)
= r.

Integrating in t yields ∫
y′(t)

y(1− y/K)
dt = rt+ C.

By change-variable formula for integration, we have∫
1

y(1− y/K)
dy = rt+ C.

This yields ∫ (
1

y
+

1

K − y

)
dy = rt+ C

log

∣∣∣∣ y

K − y

∣∣∣∣ = rt+ C.∣∣∣∣ y

K − y

∣∣∣∣ =
1

C1e−rt
.

Here C1 = e−C is another constant. When 0 < y < K, we get

y

K − y
=

1

C1e−rt
.
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This yields

y =
K

1 + C1e−rt
.

When y < 0 or y > K, we get
y

K − y
= − 1

C1e−rt
.

This gives

y =
K

1− C1e−rt
.

When t = 0, we require y(0) = y0. We find that in both cases, C1 = |1−K/y0|. Thus, the solution
is

y(t) =

{
K

1−C1e−rt y0 < 0 or y0 > K

K
1+C1e−rt 0 < y0 < K

and y(t) ≡ 0 if y(0) = 0, y(t) ≡ K if y(0) = K.

Remarks.

1. We observe that

• for initial y0 with y0 > 0, we have y(t)→ K;

• the states y ≡ 0 and y(t) ≡ K are constant solutions.

These constant solutions are called the equilibrium states. Any solution with initial state near
K will approach to K as t tends to infinity. We call K a stable equilibrium. On the other
hand, if the initial state is a small perturbation of the 0 state, it will leave off the zero state and
never come back. We call 0 an unstable equilibrium.

2. When y0 < 0, the corresponding C1 > 1, we observe that the solution y(t) → −∞ as
t→ t∗1−, where

1− C1e
−rt∗1 = 0.

We call the solution blows up at finite time. This solution has no ecological meaning.

3. When y0 > K, the corresponding 0 < C1 < 1 and y(t) → +∞ as t → t∗2+, where
1− C1e

−rt∗2 = 0.

Qualitative analysis for the logistic equation We can analyze the properties (equilibrium, stabil-
ity, asymptotic behaviors) of solutions of the logistic equation by the phase portrait analysis. First,
let us notice two important facts:

• For any point (t0, y0), there is a solution y(·) passing through (t0, y0). In other words, y(t0) =
y0.

• No more than one solution can pass through (t0, y0).
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These are the existence and uniqueness theorems of the ODE. Let us accept this fact for the moment.
Next, we can use the equilibria to classify our general solutions.

• The first step is to find all equilibria of this system. Let us denote the right-hand side of (1.8)
by f(y), i.e.

f(y) = ry
(

1− y

K

)
.

An equilibrium is a constant solution y(t) ≡ ȳ, where f(ȳ) = 0. In our case, the equilibria
are y(t) ≡ 0 and y(t) ≡ K.

• The second step is to classify all other solutions. On the t-y plane, we first draw the above two
constant solutions. Now, by the uniqueness theorem, no solution can pass through these two
constant solution. Therefore, the y-space (it is one dimension in the present case) is naturally
partitioned into three regions:

I1 = (−∞, 0), I2 = (0,K), I3 = (K,∞).

If y(0) ∈ I`, then the corresponding y(t) stays in I` for all t.

• The third step is to characterize all solutions in each regions. For any solution in I2, we
claim that y(t) → K as t → ∞. From f(y) > 0 in I2, we can conclude that y(·) is strictly
increasing in I2. We claim that y(t) → K as t → ∞ for any solution in region I2. Indeed,
y(t) is increasing and has an upper bound K. By the monotone convergence property of R,
y(t) has a limit as t tends to infinity. Let us call this limit ȳ. We claim that ȳ = K. If not,
ȳ must be in (0,K) and hence f(ȳ) > 0. By the continuity of f , there must be an ε > 0
and a neighborhood (ỹ, ȳ) such that f(y) > ε for all y ∈ [ỹ, ȳ). Since limt→∞ y(t) = ȳ
monotonically, there must be a t0 such that ỹ ≤ y(t) < ȳ for t ≥ t0. In this region, the
corresponding y′(t) = f(y(t)) ≥ ε. Hence y(t) ≥ y(t0) + ε(t − t0) for all t ≥ t0. This
contradicts to y(t) being bounded. Hence, we get y(t) → K as t → ∞. Similarly, for
solution y(·) ∈ I3, y(t)→ K as t→∞.

• Using the same argument, we can show that for solution in I1 ∪ I2, y(t) → 0 as t → −∞.
This means that 0 is unstable. Indeed, for y(0) < 0, we have f(y) < 0. This implies y(·) is
decreasing for t > 0. If y(t) has a low bound, then y(t) will have a limit and this limit ȳ < 0
and must be a zero of f . This is a contradiction. Hence y(t) has no low bound.

To summarize, we have the following theorem.

Theorem 1.1. All solutions of (1.8) are classified into the follows.

1. equilibria: y(t) ≡ 0 and y(t) ≡ K;

2. If y(0) ∈ I1 ∪ I2, then limt→−∞ y(t) = 0;

3. If y(0) ∈ I2 ∪ I3, then limt→∞ y(t) = K.

The biological interpretation is the follows.
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• If y(0) < K, then y(t) will increase to a saturated population K as t→∞.

• If y(0) > K, , then y(t) will decrease to the saturated population K as t→∞.

• y(t) ≡ K is the stable equilibrium, whereas y(t) ≡ 0 is an unstable equilibrium.

Maple Practice Below, we demonstrate some Maple commands to learn how to solve plot the
solutions.

> with(plots):
> with(DEtools):

> DiffEq := diff(y(t),t)=r*y(t)*(1-y(t)/K);

DiffEq := d
dt y(t) = r y(t) (1− y(t)

K
)

> dfieldplot(subs(r=0.1,K=5,DiffEq),y(t),t=-5..5,y=-2..7,arrows=slim,co
> lor=y/7);
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> fig1 := DEplot(subs(r=0.1,K=5,DiffEq),y(t),
> t=-50..50,[[y(0)=1]],y=-2..7,stepsize=.05,arrows=none,linecolour=red):
> fig2 := DEplot(subs(r=0.1,K=5,DiffEq),y(t),
> t=-50..50,[[y(0)=2]],y=-2..7,stepsize=.05,arrows=none,linecolour=blue)
> :
> fig3 := DEplot(subs(r=0.1,K=5,DiffEq),y(t),
> t=-50..50,[[y(0)=6]],y=-2..7,stepsize=.05,arrows=none,linecolour=green
> ):
> fig4 := DEplot(subs(r=0.1,K=5,DiffEq),y(t),
> t=-50..50,[[y(0)=-1]],y=-2..7,stepsize=.05,arrows=none,linecolour=blac
> k):

> display({fig1,fig2,fig3,fig4});
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Logistic population model with harvesting Suppose migration is considered. Let e be the mi-
gration rate. We should modify the model by

y′ = ry
(

1− y

K

)
− ey. (1.9)

The migration rate e can be positive (migrate out) or negative (migrate in).
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This model is often accepted in ecology for harvesting a renewable resources such as shrimps,
fishes, plants, etc. In this case, e > 0 is the harvesting rate which measures the harvesting effort.
The quantity ey is the amount of harvesting per unit time. It is called the harvesting yield per unit
time.

This harvesting model is still a logistic equation

y′ = (r − e)y
(

1− ry

(r − e)K

)
(1.10)

with new growth rate r − e. The new equilibrium is

Kh = K
(

1− e

r

)
,

which is the sustained population. Two cases:

• When e < r, we have 0 < Kh < K. This means that the saturated population Kh decreases
due to harvesting.

• When e > r, then the species will be extinct due to over-harvesting. Indeed, you can check
that y(t) ≡ 0 is the stable equilibrium and y(t) ≡ Kh is the unstable equilibrium now.

The quantity Y (e) = eKh(e) is called the sustained harvesting yield. It is the maximal amount of
harvesting from this environment if the harvest yield rate is e. An ecological goal is to maximize
this sustained harvesting yield at minimal harvesting effort. That is, maxe Y (e). We see that the
maximum occurs at e = r/2. The corresponding sustained harvesting yield is

Y
(r

2

)
=
r

2

K

2
=
rK

4
.

There is another way to model harvesting of natural resources. We may use harvesting amount
C instead of the harvesting rate e as our parameter. The model now reads

y′ = ry
(

1− y

K

)
− C := fC(y). (1.11)

The equilibrium (i.e. fC(y) = 0) occurs at fC(y) = 0. On the C-y plane, fC(y) = 0 is a parabola.
For C ≤ rK/4, there are two solutions for fC(y) = 0:

y± =
K

2
±
√
K2

4
− CK

r
.

For C > rK/4, there is no real solution. For C < rK/4, we can draw arrows on the intervals
(−∞, y−), (y−, y+), (y+,∞) to indicate the sign of fC in that interval. We conclude that y+ is a
stable equilibrium. We rename it Kh.

To have sustained resource, we need Kh > 0. That is,

Kh :=
K

2
+

√
K2

4
− CK

r
> 0.
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So the maximal harvesting to maintain Kh > 0 is

C =
rK

4
.

For C > rK/4, y(t)→ 0 as t increases to some t∗.
The solution for y′ = ry(1− y

K )− C with y(0) = y0 is

y(t) =
1

2

(
K +

∆

r
tanh(

∆

2K
(t+ C0))

)
where

∆ =
√
rK(rK − 4C), C0 =

2K

∆
arctanh(

r

∆
(2y0 −K)).

In additional to the constraint C ≤ rK/4, we should also require y(0) > 0. Otherwise, there would
be no harvesting at all. This would give another constraint on C. You may find it by yourself.

Homeworks

1. Solve the Gompertz equation for population growth

y′ = ry ln(K/y).

What are the equilibria? What are the asymptotic behaviors.

2. Solve the equation
y′ = αy(1− y2).

and discuss stability of its equilibria and the asymptotic behaviors of the solution at large
time.

Abstract logistic population models We can use the following abstract model

y′ = f(y) (1.12)

to study the issues of equilibria and their stability. Here, the function f depends on y only. Such
systems with f being independent of t are called autonomous systems. We consider the initial datum

y(0) = y0. (1.13)

Following the example of the logistic model, let us assume that f(y) has the following qualitative
properties:

• f(y0) = f(y1) = 0,

• f(y) > 0 for y0 < y < y1,

• f(y) < 0 for y < y0, or y > y1,
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First, there are two equilibrium solutions:

y(t) ≡ y0, y(t) ≡ y1.

For general solutions, we integrate the equation

dy

f(y)
= dt.

On the right, we integrate in t from 0 to t. On the left, with the change of variable: t → y(t), we
get the integration domain of y is from y0 to y, and We arrive at

Φ(y)− Φ(y0) = t

where Φ(y) =
∫
dy/f(y). From the properties of f , we obtain that

Φ(y) :

{
decreasing, for y > y1, y < y0

increasing, for y0 < y < y1,

Therefore, the function is invertible in each of the three regions: (−∞, y0), (y0, y1), and (y1,∞).
The solution y(t) with initial datum is precisely the inversion of Φ with Φ(y0) = 0.

A bistable model We consider the autonomous equation

y′ = f(y),

where f(y) has three zeros y1 < y2 < y3. Assume the sign of f is f(y) > 0 for y < y1, y2 < y <
y3, and f(y) > 0 for y1 < y < y2, y > y3. In this case, for y(t) with initial data y(0) satisfying
y(0) < y2, we have y(t) → y1 as t → ∞. If y(0) > y1, then y(t) → y3 as t → ∞. The states y1

and y3 are the two stable states. Such a model is called a bistable model. It is usually used to model
phase field of some material. A simple model is f(y) = y(1− y)(1/2− y).

Maple tool: phase line analysis Use Maple to draw the function f(y). The y-axis is partition
into regions where f(y) > 0 or f(y) < 0. Those y∗ such that f(y∗) = 0 are the equilibria. An
equilibrium y∗ is stable if f is increasing near y∗ and unstable if f is decreasing there.

Asymptotic behaviors and convergent rates Let us focus to an autonomous system which has
only one equilibrium, say ȳ = 0. That is, the rate function f(0) = 0. Let us consider two cases:
f(y) = −αy and f(y) = −βy2 with y(0) > 0. We need minus to have y ≡ 0 a stable equilibrium.

• Case 1: y′ = f(y) = −αy. In this case, we have seen that the solution is

y(t) = y(0)e−αt

We see that the solution tends to its equilibrium 0 exponentially fast. The physical meaning
of 1/α is the time that the difference of solution from its equilibrium is reduced by a fixed
factor (e−1). We say the convergent rate to its equilibrium to be O(e−αt).
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• Case 2: y′ = f(y) = −βy2. In this case,

y(t) =
1

1/y(0) + βt
.

We observe that y(t)→ 0 as t→∞ with rate O(1/t).

Homeworks

1. Construct an ODE so that y(t) = (1 + t) is its asymptotic solution with convergent rate e−2t.

2. Construct an ODE so that y(t) = (1 + t) is its asymptotic solution with convergent rate t−1.

3. Search for ”bistability” in Wikipedia

1.4 Techniques to solve single first-order equations

1.4.1 Linear first-order equation

The linear first-order equation has the form:

y′ = a(t)y + b(t). (1.14)

The term b(t) is called the source term, or the inhomogeneous term, whereas the part

y′ = a(t)y

is called its homogeneous part. We first solve the homogeneous equation. We separate t and y and
get

y′

y
= a(t).

The left-hand side (LHS) is d log y(t)/dt. We integrate it and get∫
d log y(t)

dt
dt =

∫
a(t) dt.

This yields
log y(t) = A(t) + C1, or y(t) = CeA(t),

where A′(t) = a(t), and C or C1 is a constant. We may choose A(0) = 0. That is, A(t) =∫ t
0 a(s) ds. The constant C is y0 if we require y(0) = y0. We conclude that the solution is

y(t) = y(0)e
∫ t
0 a(s) ds.

Next, we study the inhomogeneous equation. We will introduce two methods.
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Method of Variation of Constant We guess our solution to have the form

y(t) = C(t)eA(t).

Plugging it into (1.14), we obtain

C ′(t)eA(t) + a(t)C(t)eA(t) = a(t)C(t)eA(t) + b(t).

This yields
C ′(t) = b(t)e−A(t).

Hence the solution is

C(t) = C(0) +

∫ t

0
b(s)e−A(s) ds.

By plugging the initial datum, we obtain C(0) = y(0). Hence, the general solution is given by

y(t) = y(0)eA(t) +

∫ t

0
b(s)e−A(s)+A(t) ds.

The idea behind the variation of constant is that the ansatz (i.e. the solution form that we guess)

y(t) = C(t)eA(t)

has the property:
y′(t) = C(t)A′(t)eA(t) + C ′(t)eA(t).

In a short time, if C remains nearly unchanged, eA(t) behaves like solutions of y′ = A′(t)y. By
allowing C(t) varying, the C ′(t) term can take care contribution of the source b(t) pumping into
the system.

It is important to notice that the integrand b(s)eA(t)−A(s) is the solution of y′ = a(t)y for s < t
with y(s) = b(s). This means that the source term b(s) generates a solution b(s)eA(t)−A(s) at time
s. The total contribution of the source term from time 0 to t is the accumulation of these solutions,
i.e.

∫ t
0 b(s)e

A(t)−A(s) ds. This is called the Duhamel principle. As a real world example, you
imagine a tank with nutrition and bacteria. Suppose the growth of the bacteria satisfies y′ = 2y, i.e.
the population doubles per unit time. Suppose we also fill in b(s) amount of bacteria at time s for
0 < s < t. The bacteria b(s) entering the tank at time s grows to b(s)e2(t−s) at time t. Thus, the
total amount of the bacteria population filled-in and grow from time 0 to t is∫ t

0
b(s)e2(t−s) ds.

This together with the grow of the initial population y(0) give the total population at time t to be

y(0)e2t +

∫ t

0
b(s)e2(t−s) ds.
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Method of Integration Factor Alternatively, we may multiply the equation

y′ − a(s)y = b(s)

by e−A(s) on both sides. Then the left-hand side is

e−A(s)(y′ − a(s)y) = e−A(s)(y′ −A′(s)y) =
d

ds

(
e−A(s)y(s)

)
.

Thus, we get
d

ds

(
e−A(s)y(s)

)
= e−A(s)b(s).

Since the left-hand side is a total differential, we can integrate it once to get

e−A(t)y(t)− e−A(0)y(0) =

∫ t

0

d

ds

(
e−A(s)y(s)

)
ds =

∫ t

0
e−A(s)b(s) ds.

From A(0) = 0, we get

e−A(t)y(t) = y(0) +

∫ t

0
e−A(s)b(s) ds.

Hence

y(t) = eA(t)y(0) +

∫ t

0
eA(t)−A(s)b(s) ds.

The quantity e−A(s) is used to make the left-hand side of y − a(s)y to be a total differential. This
quantity is called an integration factor. We shall give thorough discussion in the next section.

Example. Consider

y′ +
2

t
y = t− 1.

Let

A(t) = −
∫

2 dt

t
= ln t−2

and e−A(t) = t2. By multiplying e−A(t) on both sides, we obtain

t2y′ + 2ty =
d

dt
(t2y) = t2(t− 1).

Integrating in t, we get

t2y =
t4

4
− t3

3
+ C.

Hence,

y(t) =
t2

4
− t

3
+
C

t2
.
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Homeworks Solve the following equations

1. y′ + y = te−t

2. y′ + 2ty = te−t
2

3. t3y′ + 4t2y = e−t, y(−1) = 0, y < 0.

4. Consider the initial value problem

y′ + y = 1 + cos 2t, y(0) = 0.

Find the solution and discuss the solution behavior for large t.

5. Find the solutions of
y′ + ay = be−λt

and discuss their large time behaviors.

1.4.2 Separation of variables

We can write the ODE
dy

dt
= f(t, y)

in this differential form:
dy − f(t, y)dt = 0.

A general differential 1-form looks like

M(t, y)dt+N(t, y)dy = 0. (1.15)

This is called the Pfaffian equation. Suppose the functions M(t, y) and N(t, y) in (1.15) are sepa-
rable, that is

M(t, y) = f1(t)f2(y),

N(t, y) = g1(t)g2(y),

Dividing (1.15) by f2(y)g1(t), then the Pfaffian equation (1.15) becomes

f1(t)

g1(t)
dt+

g2(y)

f2(y)
dy = 0.

We can integrate it to obtain an integral φ:

ψ(t, y) :=

∫
f1(t)

g1(t)
dt+

∫
g2(y)

f2(y)
dy.

Then ψ(t, y) = constant defines a solution implicitly. In this example, 1/(f2(y)g1(t)) is called an
integration factor, which makes the Pfaffian equation become a total differential and thus integrable.
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Homework

1. y′ = t/y2. Ans: y3/3 = t2/2 + C, or

y(t) =

(
3t2

2
+ k

)1/3

.

2. (x2 + 1)(y2 − 1) dx+ xy dy = 0. The answer is

y2 = 1 + C
e−x

2

x2
.

3. y′ = t2/(1− y2). Ans.: −t3 + 3y − y3 = const.

4. y′ = (4x− x3)/(4 + y3). Ans. y4 + 16y + x4 − 8x2 = const.

5. y′ = 3x2+4x+2
2(y−1) . Ans. y2 − 2y = x3 + 2x2 + 2x+ 3.

6. y′ = y(−1/2+x/4)
x(2−y/2) . This equation is arisen from predator-prey model.

1.4.3 Other special classes that are solvable

Bernoulli equation Bernoulli equation has the form

y′ = a(t)y + b(t)yn (1.16)

Divide both sides by y−n, we obtain

y−ny′ = a(t)y−n+1 + b(t).

Or
1

1− n
(
y1−n)′ = a(t)y1−n + b(t)

This suggests the following change of variable:

z = y1−n.

Then
z′ = (1− n)a(t)z + (1− n)b(t) (1.17)

which can be solved.

Homeworks (Courant and John, Vol. II, pp. 690) Solve the following equations

1. xy′ + y = y2 log x

2. xy2(xy′ + y) = a2

3. (1− x2)y′ − xy = axy2.
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* Riccati equation (Courant and John, Vol. II, pp. 690) The Riccati equation reads

y′ = P (x)y2 +Q(x)y +R(x) (1.18)

It can be transformed into a linear equation if we know a particular solution y = y1(x). We introduce
the new unknown

u =
1

y − y1
.

* Homeworks Courant and John, Vol. II, pp. 690, Exercises 4–8. Use the above substitution to
solve the following equations.

1. y′ − x2y2 + x4 − 1 = 0 that possesses a particular solution y1 = x.

2. Show that if two solutions, y1(x) and y2(x), of Riccati’s equation are known, then the general
solution is given by

y − y1 = c(y − y2) exp[

∫
P (y2 − y1) dx],

where c is an arbitrary constant.

3. Find the general solution of

y′ − y tanx = y2 cosx− 1

cosx
,

which has solutions of the form a cosn x.

1.5 Vector Fields and Family of Curves

In this section, I will provide geometric view of first order equation, which is, family of plane curves.
They can be generated by vector fields or by first order ODEs.

1.5.1 Vector Fields

A vector field V(x, y) = (u(x, y), v(x, y)) on a domain Ω ⊂ R2 is a mapping Ω → R2. For
instance, V(x, y) = (−y, x) is a vector fields on the plane, while V(x, y) = (−y, x)/(x2 + y2)
is a vector field defined on R2 \ {0}. A curve (x(τ), y(τ)) with parameter τ ∈ (a, b) is called an
integral curve of the vector field V = (u(x, y), v(x, y)) if its tangent is parallel to the vector field
V along this curve, that is, [

dx/dτ
dy/dτ

]
‖
[
u(x(τ), y(τ))
v(x(τ), y(τ))

]
for all τ.

From this definition, the integral curves of the two vector fields V = (−y, x) and V = (−y, x)/(x2+
y2) are identical because they are parallel to each other at every points on R2 \ {0}.
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A general single first-order differential equation y′(x) = f(x, y) induces a vector field V(x, y) :=
(1, f(x, y)) on the plane. Conversely, given vector field V(x, y) = (u(x, y), v(x, y)) on the plane,
a curve {(x, y(x))|x ∈ I} is an integral curve of V if its tangent[

1
dy/dx

]
‖
[
u(x, y)
v(x, y)

]
.

This is equivalent to
dy

dx
=
v(x, y)

u(x, y)
, (1.19)

provided u(x, y) 6= 0. Thus the integral curves of V(x, y) = (u(x, y), v(x, y)) satisfy the single
first-order ODE (1.19).

Integral of a vector field A function ψ : Ω → R is called an integral of the vector field V(x, y)
if its level sets {(x, y)|ψ(x, y) = C} for all C, are integral curves of V(x, y). This definition is
equivalent to

∇ψ ·V = 0. (1.20)

This is because along any integral curve (x(τ), y(τ)), we have ψ(x(τ), y(τ)) = C.We differentiate
it in τ and using (ẋ, ẏ) ‖ V to obtain (1.20). Conversely, if (x(·), y(·)) is an integral curve, then
along this curve, we have (ẋ, ẏ) = σV for some scalar function σ. Thus,

d

dτ
ψ(x(τ), y(τ)) = ψxẋ+ ψyẏ = ∇ψ · (σV) = 0.

Thus, ψ(x(·), y(·)) is a constant.

Example Consider the vector V = (−y, x)/r2, where r2 = x2 + y2. Its integral curves satisfy

(dx, dy) ‖ (−y, x).

Its ODE form is
y′ = −x/y.

Using the technique of separation of variable, we get

xdx+ ydy = 0,

Integrating it, we obtain
x2 + y2 = C.

Thus, the function ψ(x, y) = x2 + y2 is an integral of the vector field (−y, x)/r2.
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Integration factor To find an integral ψ of a vector field V(x, y) = (u(x, y), v(x, y)) in a domain
Ω ⊂ R2, from (1.20), we see that this is equivalent to

∇ψ ‖ (−v, u),

or
∇ψ = µ(−v, u)

for some function µ(x, y). Such function µ is called an integration factor. Let us denote −µv by P
and µu by Q. With µ, then we can obtain ψ by the line integral

ψ(x, y) :=

∫ (x,y)

(x0,y0)
P (x, y)dx+Q(x, y)dy

along any path from (x0, y0) to (x, y) in Ω. This line integral should be independent of paths,
otherwise, ψ is not well-defined. But this is equivalent to that the line integral is 0 along any closed
curve. Let us choose the closed curve to be the boundary of an arbitrary simply connected domain
D ⊂ Ω. From Green’s theorem∫

∂D
P (x, y)dx+Q(x, y)dy =

∫
D

(Qx − Py) dx dy = 0.

Since D is arbitrary, we get
Qx − Py ≡ 0 in Ω.

This is
(µu)x + (µv)y = 0 in Ω.

This is a partial differential equation (PDE) for the integration factor µ. There are some PDE
technique (called method of characteristics) to find µ, at least, locally. This means that under very
mind condition, any vector field is locally integrable up to an integration factor. However, we shall
not go into this topics here. We shall just give some examples instead. Once µ is obtained, we
obtain an integral ψ of V.

Examples

1. Consider the linear equation
y′ = 2y + t. (1.21)

We claim that µ = e−2t is an integration factor. In fact, the equation can be rewritten as

dy − 2ydt = tdt.

We multiply both sides by µ = e−2t to get

e−2t(dy − 2ydt) = te−2t dt (1.22)
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The left-hand side (LHS) is a total differential:

e−2t(dy − 2ydt) = d(e−2ty)

The right-hand side (RHS) is also a total differential:

te−2t dt = d

∫
te−2t dt

and ∫
te−2t dt = −1

2

∫
tde−2t = −1

2
te−2t +

1

2

∫
e−2t dt = −1

2
te−2t − 1

4
e−2t + C.

Hence, (1.22) can be expressed as

d

(
e−2ty +

1

2
te−2t +

1

4
e−2t

)
= 0.

Thus, ψ := e−2ty + 1
2 te
−2t + 1

4e
−2t an integral of (1.21).

2. In the linear equation (1.14)
y′ = a(t)y + b(t),

we multiply (1.14) by µ(t) = e−A(t) where A′(t) = a(t), we obtain

e−A(t)y′ −A′(t)e−A(t)y = e−A(t)b(t)

d

dt

(
e−A(t)y

)
= e−A(t)b(t).

We can then integrate this formula in t to obtain the solution for (1.14). In this method,
µ = e−A(t) is an integration factor and

ψ = e−A(t)y −
∫
e−A(t)b(t) dt

is an integral.

Notice that the integration factor and the integral are not unique. Suppose ψ is an integral and µ
is the corresponding integration factor. Consider a composition function

φ(x, y) := h(ψ(x, y)),

where h(·) : R→ R is any smooth function with h′ 6= 0. Then

dφ = h′dψ = h′µ (−vdx+ udy) = 0.

Hence, φ is another integral with a new integration factor h′(ψ(x, y))µ(x, y).
Certainly, if both φ and ψ are integrals of (1.15), which means that their level sets represent the

same integral curves. Thus, there is an one-to-one correspondence between the level sets of ψ and
φ:

ψ(x, y) = C1 if and only if φ(x, y) = C2.

Two functions φ and ψ with this property is called functional dependent. If we define a function
h which maps:C1 7→ C2, then φ(x, y) = h(ψ(x, y)). Thus, any two integrals of V are functional
dependent.
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Stream functions of velocity fields In fluid mechanics, V(x, y) is the velocity field, while its
integral ψ(x, y) represents stream function, and the level sets ψ(x, y) = C are the stream lines.

Find the stream functions of the velocity field

V = (u, v) =

(
y2 − x2

(x2 + y2)2
,

2xy

(x2 + y2)2

)
.

This is the velocity field of a potential flow around a unit circular cylinder. In this example, the
ODE the stream function satisfies

dy

dx
=
y2 − x2

2xy
.

Let us define a homogeneous variable: η = y/x. We use x and η as the new variables. We have
dy = d(xη) = ηdx+ xdη, or dy/dx = η + xdη/dx. Plug this into the equation, we get

η + x
dη

dx
=
y2 − x2

2xy
=

y2

x2
− 1

2 yx
=
η2 − 1

2η
.

x
dη

dx
=
η2 − 1

2η
− η = −1 + η2

2η
.

Separating variables, we get
2η

1 + η2
dη +

dx

x
= 0.

Integrating this,
ln(1 + η2) + ln |x| = C

The level sets are

|x|+ y2

|x|
= C.

In this example, we introduces an important technique for ODE of the form:

dy

dx
=
v(x, y)

u(x, y)
,

where u and v are homogeneous functions of degree n. Following Leibnitz’s method, we define a
homogeneous variable η = y/x. We use x and η as our new variables. We have dy = d(xη) =
x dη + η dx. From homogeneity, we have u(x, xη) = xnu(1, η) and v(x, xη) = xnv(1, η). The
equation becomes

(−v(1, η) + ηu(1, η)) dx+ xu(1, η)dη = 0.

We can use method of separation of variables:
dη

R(η)
+
dx

x
= 0,

where

R(η) = η − v(1, η)

u(1, η)
.

The solution is ∫
dη

R(η)
+ log |x| = C.
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Remark Vector fields are arisen in natural world, for examples, fluid mechanics and electromag-
netism. In two dimensional incompressible flow, the velocity V(x, y) = (u(x, y), v(x, y)) satisfies
the incompressibility condition

∇ ·V = 0.

If in addition,
∇×V = 0,

such flows are called irrotational flows. An incompressible and irrotational flow is called a potential
flow. For two dimensional potential flow, the functions

φ(x, y) := −
∫ (x,y)

udx+ vdy, ψ(x, y) :=

∫ (x,y)

−vdx+ udy

are called its velocity potential and stream function. They are orthogonal to each other.

Homeworks : Solve the equations

1. y′ = x+y
x−y . Ans. arctan v − 1

2 log(1 + v2) = log |x|+ C.

2. y′ = x2+xy+y2

x2
.

3. y′ = − x2

x2+y2

1.5.2 Family of curves and Orthogonal trajectories

We have seen that general solutions of a first-order ODE form a family of curves on the plane.
Conversely, we will show that a family of curves on the plane satisfy a first-order ODE. This is a
geometric picture of first-order ODEs. Let us start from the following examples.

1. The family of exponential curves y = Ce−αx satisfies y′ = αy. In fact, we differentiate
them in x and get y′ = −αCe−αx. Then we eliminate C from these two equations to get the
equation y′ = αy.

2. Consider the family of quadratic curves y = (x − C)2. We differentiate it in x and obtain
y′ = 2(x − C). We eliminate C from both equations and get

√
y = (x − C) = y′/2. Thus,

this family of quadratic curves satisfies y′ = 2
√
y.

3. The family y = K/(1 − C1e
−rt) satisfies y′ = ry(1 − y/K). This is left for you as an

exercise.

4. Consider the concentric circles: x2 +y2 = C. We differentiate it in x and obtain 2x+2yy′ =
0. This gives y′ = −x/y.
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5. The family of confocal ellipses can be expressed as

x2

a2
+
y2

b2
= 1 with a2 − b2 = c2 fixed.

We look for the ODE that these confocal ellipses satisfy and their orthogonal trajectories.
Without loss of generality, let us assume the foci are (±1, 0), i.e. c = 1. The family of these
confocal ellipses is

x2

a2
+

y2

a2 − 1
= 1, a > 1. (1.23)

Let us differentiate this equation in x and obtain

x

a2
+

yy′

a2 − 1
= 0. (1.24)

We eliminate a from the above two equations to obtain an ODE as the follows. From (1.24),
we get

a2 =
x

yy′ + x
.

Plug this into (1.23), we obtain

x2

x
yy′+x

+
y2

−yy′
yy′+x

= 1.

After rearrangement, we get

xy

(
y′ − 1

y′

)
+ x2 − y2 = 1.

This is the ODE for the confocal ellipses.

We summarize the above procedure below. A family of plane curves can be expressed as

ψ(x, y) = C (level set representation),

or
Ψ(x, y, C) = 0 (implicit representation). (1.25)

In the former representation, we can differentiate it in x and obtain

ψx(x, y) + ψyy
′ = 0.

This is a first order ODE
y′ = −ψy(x, y)/ψx(x, y)

that this family of curves satisfies. In the latter representation, we differentiate (1.25) in x and obtain

Ψx(x, y, C) + Ψy(x, y, C)y′ = 0. (1.26)

We use (1.25), (1.26) to eliminate C and obtain an equation F (x, y, y′) = 0 . This is the ODE for
this family of curves.
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Remarks A family of curves Ψ(x, y, C) = 0 can also be represented as ψ(x, y) = C. This is
valid locally under the condition ΨC(x0, y0, C0) 6= 0. This is called the implicit function theorem,
which will be used very often in this course.

Theorem 1.2 (Implicit Function Theorem). Suppose F is a continuous differentiable function and
F (x0, y0, z0) = 0. If Fz(x0, y0, z0) 6= 0, then there exist a neighbor U of (x0, y0), a neighborhood
V of z0 and a continuous differentiable function f : U → V such that

F (x, y, f(x, y)) = 0.

The function z = f(x, y) is obtained by solving F (x, y, z) = 0 for z ∼ z0. A simple example is
F (x, y, z) = x2+y2+z2−1 = 0. We can solve this equation for z and obtain z = ±

√
1− x2 − y2.

Suppose F (x0, y0, z0) = 0. Then we choose the solution z =
√

1− x2 − y2 if z0 > 0, and
z = −

√
1− x2 − y2 if z0 < 0. If z0 = 0, Fz(x0, y0, z0) = 0, we cannot apply the implicit

function theorem for this case.

Orthogonal Trajectories In geometry and physics, we encounter problems of constructing or-
thogonal curvilinear coordinate systems. For instance, polar coordinate system is an orthogonal
system. In this example, suppose we are given one family of concentric circles: x2 + y2 − C = 0.
We ask how to construct another family of curves which are orthogonal to these curves. In general,
suppose we are given a family of curves which is represented by Ψ(x, y, C) = 0, we look for their
orthogonal trajectories. The method to find orthogonal trajectories is very simple. First, we find the
ODE: F (x, y, y′) = 0 that this family of curves satisfies. Next, we replace y′ by −1/y′ in this ODE
(i.e. F (x, y,−1/y′) = 0). This is the ODE for the orthogonal trajectories. Finally, we solve this
ODE to get the orthogonal trajectories.

In the example of concentric circles, the tangent of concentric circles is y′ = −x/y. So, its
normal should satisfy −1/y′ = −x/y. The general solutions of this equation are y/x = C. This is
the family of the orthogonal trajectories of the concentric circles.

In the example of confocal ellipses, the corresponding ODE is

xy

(
y′ − 1

y′

)
+ x2 − y2 = 1.

Their orthogonal trajectories satisfy the ODE with y′ replaced by −1/y′. This leads to the same
equation. The general solutions have the same form (1.23). We notice that when 0 < a < 1, these
curves are confocal hyperbolas:

x2

a2
− y2

1− a2
= 1, 0 < a < 1, (1.27)

which are the orthogonal trajectories of the confocal ellipses.

1.5.3 *Envelop.

Given a family of curves Ψ(x, y, C) = 0. The degenerate part ΨC(x, y, C) = 0 and Ψ(x, y, C) = 0
forms an envelop of this family of curves. The envelop is tangent to each member of the family and
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it is composed of all these tangent points. The envelop appears in geometric optics, called caustics.
As an example, consider the following family of straight lines:

x

C
+

y

1− C
− 1 = 0

One can express it as
Ψ(x, y, C) := C2 + (−x+ y − 1)C + x = 0.

The envelop is determined by Ψ(x, y, C) = 0,ΨC(x, y, C) = 0, which are{
C2 + (−x+ y − 1)C + x = 0
2C + (−x+ y − 1) = 0.

This is a curve. We can also solve (x, y) in terms of C, which give the representation of this envelop
in parametric form:

x = C2

y = (C − 1)2

We can eliminate C and get
y = (

√
x− 1)2 = x+ 1− 2

√
x.

This is the explicit form of the envelop. Moving x+ 1 to the left-hand side, taking square, we get

(y − x− 1)2 = 4x.

This is the implicit form of the envelop.
Next, we explain why the envelop of a family of curves Ψ(x, y, C) = 0 is given by{

Ψ(x, y, C) = 0
ΨC(x, y, C) = 0.

Since the envelop is composed of all tangent points, it can be parameterized by the parameter C.
Thus, we may write the envelop in parametric form as (x(C), y(C)). It satisfies

Ψ(x(C), y(C), C) = 0,

because the tangent point (x(C), y(C)) lies on the curve Ψ(x, y, C) = 0. Differentiate this equation
in C, we obtain

Ψx(x(C), y(C), C)x′(C) + Ψy(x(C), y(C), C)y′(C) + ΨC(x(C), y(C), C) = 0,

Since the tangent of this envelop, (x′(C), y′(C)), is tangent to the curve Ψ(x, y, C) = 0 as well, we
obtain

Ψx(x(C), y(C), C)x′(C) + Ψy(x(C), y(C), C)y′(C) = 0.

Thus, we get
ΨC(x(C), y(C), C) = 0.

Given a family of curves, it may not have envelop at all. Confocal ellipses, confocal hyperbolas
have no envelop. Below are some examples that possess envelops.
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• The family of curve y = (x− C)2 has envelop y(x) ≡ 0.

• Consider the cycles:
(x− cos θ)2 + (y − sin θ)2 = R2.

The parameter θ running in [0, 2π). You can show that its envelop is again a circle.

Homeworks

1. Find the orthogonal trajectories of family of parabolas with common vertex and common
tangent at the common vertex:

y = cx2, c ∈ R.

2. Find the orthogonal trajectories of the family of parabola y2 = 4c(x+ c).

3. *The potential of an electric dipole is

Vdip(r, θ) =
p cos θ

4πε0r2

Here, (r, θ, φ) is the spherical coordinate system, ε0 is the dielectric coefficient in vacuum, p
is the dipole moment. The equipotential forms a family of curves. The electric field line is
their orthogonal trajectories. Find these orthogonal trajectories.

1.5.4 *An example from thermodynamics – existence of entropy

Consider a thermodynamic system: a container with fixed amount of gases inside and having one
free end (a piston) which allows volume change. The basic thermodynamic variables are the volume
V , the pressure p, the internal energy e, and the temperature T . In order to have a thermo system to
exchange energy with external world, we will also introduce a thermo variable S, called the entropy,
which will be defined below. These five variables V, p, e, T, S are not independent. There are two
constitutive relations plus the first law of thermodynamics relate them. The last one is a differential
relation. Finally, they are only two independent thermo variables. Below, we introduce the simplest
constitutive relations: the ideal gas law and the linear constitutive law.

The ideal gas law is
pV = RT,

where R is called the universal gas constant. For so-called polytropic gases, the internal energy is
linearly proportional to the temperature T , i.e.

e = cvT

where cv is called the specific heat at constant volume. It means that the amount of energy you need
to add to the system at constant volume to gain one degree increase of temperature.

In order to have energy exchange with external world, we introduce the notion “entropy” below.
First, we can change the volume V of the system by moving the piston. If the process is moved
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slowly, we imagine that the system has no energy exchange with external environment except the
work that we apply to it through the piston. Such a process is called an adiabatic process (no heat
exchange with the external world). In such a process, by the conservation of energy,

de = −pdV,

where −pdV is the work we apply to the system. This is a Pfaffian equation. Using the ideal gas
law and the assumption of polytropic gas, we get

cv
R

(pdV + V dp) = −pdV.

This gives (
1 +

cv
R

)
pdV +

cv
R
V dp = 0.

We divide both sides by cv/R, we get

γpdV + V dp = 0,

where

γ :=
1 + cv

R
cv
R

,

is called the gas constant. This Pfaffian equation can be integrated by using the technique of sepa-
ration of variable:

γdV

V
+
dp

p
= 0.

Thus, we get
ln p+ γ lnV = C

Hence,
pV γ

is a constant. This means that each adiabatic process keeps pV γ invariant (the integral of an adia-
batic process). The quantity pV γ labels a thermo state of the system. It is called an entropy. Notice
that any function of pV γ is also invariant under an adiabatic process. The one which has 1/T as an
integration factor for the Pfaffian equation de+ pdV = 0 is called the physical entropy. That is

TdS = de+ pdV.

This leads to

dS =
1

T
(de+ pdV )

=
R

pV

(cv
R

(pdV + V dp) + pdV
)

= cv

(
γ
dV

V
+
dp

p

)
= cvd ln(pV γ)

= dcv ln(pV γ)
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Thus, the physical entropy
S = cv ln(pV γ).

In conclusion, the first law of thermodynamics is

de = TdS − pdV. (1.28)

This means that the change of internal energy can be due to the heat TdS exchange with external
world and the work −pdV exerted from outside. For ideal polytropic gases, using the ideal gas
law and the constitutive relation, plus the first law of thermodynamics, we can choose p, V as
independent variables and express

T =
pV

R
, e =

cv
R
pV, S = cv ln(pV γ).

*Homework

1. Express thermo variables in terms of e, V for ideal polytropic gases..

1.6 Existence and Uniqueness

In this section, we shall state but without proof the existence and uniqueness theorems. We also
give examples and counter-examples regarding to the existence and uniqueness. Finally, we give
application of these fundamental theorems.

Existence

Theorem 1.3 (Local existence theorem). Suppose f(t, y) is continuous in a neighborhood of (t0, y0).
Then the initial value problem

y′(t) = f(t, y),

y(t0) = y0

has a solution y(·) existing on a small interval (t0 − ε, t0 + ε) for some small number ε > 0.

This theorem states that there exists an interval (may be small) where a solution does exist. The
solution may not exist for all t. Let us see the following example.

Examples Consider the initial value problem

y′ = y2

y(0) = y0

By the method of separation of variable,

dy

y2
= dt
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y0

dy

y2
= t

−y−1 + y−1
0 = t

y(t) =
y0

1− ty0
.

When y0 < 0, the solution does exist in (1/y0,∞). But when y0 > 0, the solution can only exist in
(−∞, 1/y0). The solution blows up when t→ 1/t0:

lim
t→1/y0

y(t) =∞.

The maximal interval of existence is (−∞, 1/y0) when y0 > 0 and is (1/y0,∞) when y0 < 0.
In the local existence theorem, it only states that the solution exists in a small region. If the

solution does have a limit at the end, say t1, of this interval, we can solve the equation again to
extend this function. One can show that this extended function also satisfies the differential equation
at t1 and beyond. Eventually, we can find the maximal interval of existence. If the solution remains
bounded whenever it exists, then we can always find globally exists if y(·) stays bounded whenever
it exists. We have the following corollary.

Corollary 1.1. Consider the ODE: y′ = f(t, y). Suppose f(t, y) is continuous on R × R and
assume a solution stays bounded as long as it exists, then this solution exists for all time.

Proof. Suppose the maximal interval of existence is (t0, t1). The assumption that y(t) remains
bounded in (t0, t1) plus f(t, y) is continuous imply that limt→t1 y(t) exists (why?). Then we can
extend y(·) beyond t1 by the local existence theorem. This contradicts to the hypothesis that (t0, t1)
is the maximal interval of existence.

Homeworks Find the maximal interval of existence for the problems below.

1. y′ = 1 + y2, y(0) = y0

2. y′ = y3, y(0) = y0

3. y′ = ey, y(0) = y0

4. y′ = y ln y, y(0) = y0 > 0.

Uniqueness

Theorem 1.4 (Uniqueness). Assume that f and ∂f/∂y are continuous in a small neighborhood of
(t0, y0). Suppose y1(t) and y2(t) are two solutions that solve the initial value problem

y′ = f(t, y), y(t0) = y0

on an interval (t0 − ε, t0 + ε) for some ε > 0. Then

y1(t) = y2(t), for all t ∈ (t0 − ε, t0 + ε).

In other word, no two solutions can pass through the same point in the t-y plane.



1.6. EXISTENCE AND UNIQUENESS 35

Application 1. Reduce high order equation to first-order system The above existence and
uniqueness theorems also hold for general first-order ODE system:

y′ = f(t,y)

where f : R × Rn → Rn is a Lipschitz function. This means that: given initial data (t0,y0) ∈
R × Rn, there exists a unique solution y : (t0 − ε, t0 + ε) → Rn with y(t0) = y0. This theorem
can be applied to high-order equations too. Indeed, any high-order equation can be transformed to
an equivalent first-order system. Namely, the general n-th order equation

y(n) = f(t, y, y′, · · · , y(n−1)) (1.29)

is equivalent to the following system
y1′ = y2

y2′ = y3

...
yn′ = f(t, y1, y2, · · · , yn)

(1.30)

We need n conditions to determine a unique solution for the first-order system (1.30). Likely, we
need n conditions to determine a unique solution for the nth-order differential equations (1.29).

Application 2 Let us apply the existence and uniqueness to the qualitative study of the autonomous
system in one dimension. For instance, let consider a smooth f(y) which has the property (i) the
only zeros of f are 0 and K, (ii) f(y) > 0 for 0 < y < K. The logistic model: y′ = f(y) :=
ry(1 − y/K), is one such example. The constant states 0 and K naturally partition the domain R
into three regions: I1 = (−∞, 0), I2 = (0,K) and I3 = (K,∞). By the uniqueness theorem,
no solution can cross these two constant states. Thus, starting y(0) ∈ (0,K), the trajectory y(t)
stays in (0,K) for all t because it cannot cross these two constant solutions. So, the solution stays
bounded and thus exists for all time. The limit limt→∞ y(t) must exist because the function y(·)
monotonically increases and stays bounded above. Let us call limt→∞ y(t) = ȳ ∈ [0,K]. Then

lim
t→∞

y′(t) = lim
t→∞

f(y(t)) = f(ȳ).

We claim that f(ȳ) = 0. Suppose not, then we have f(ȳ) > 0 because f(y) > 0 for y ∈ (0,K).
We choose ε > 0 so that f(ȳ)−ε > 0. With this ε, there existsM > 0 such that f(y(t)) > f(ȳ)−ε
for all t > M . Thus,

y(t)− y(M) =

∫ t

M
f(y(s)) ds > (f(ȳ)− ε)(t−M)→∞ as t→∞.

This is a contradiction. Thus, we get f(ȳ) = 0. But the only constant states are 0 and K. It has
to be K because 0 < y(0) < y(t) for all t > 0. This shows that when y(0) ∈ (0,K), we have
y(t) → K as t → ∞. This is asymptotic stability result. We will see more applications of the
uniqueness theorem in the subsequent chapters.
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Remarks.

1. The initial value problem may not have a unique solution. Let us see the following problem:

y′ = 2y1/2, y(0) = 0

By the method of separation of variable,

dy

2
√
y

= dt,

√
y = t− C

With the initial condition y(0) = 0, we get C = 0. Hence

y(t) = t2

is a solution. On the other hand, we know y(t) ≡ 0 is also a solution. We should be careful
here. The portion y(t) = t2 for t < 0 is not a solution because y′ < 0 for t < 0. This portion
does not satisfy the equation y′ = 2

√
y > 0. Therefore, one solution is

y(t) =

{
0 for −∞ < t < 0
t2 for t ≥ 0.

We have known that y(t) ≡ 0 is another solution. In fact, there are infinite many solutions
passing through (0, 0):

y(t) =

{
0 for −∞ < t < C
(t− C)2 for t ≥ C,

with parameter C ≥ 0 being arbitrary.

It is important to notice two things. (1) The ODE associated with the family of parabolas
y = (t − C)2 is y′2 = 4y, see the subsection 1.5.2. It contains two branches: y′ = ±2

√
y.

The solutions also contain two branches. The branch y = (t−C)2, t ≥ C satisfies y′ = 2
√
y,

while the branch y = (t − C)2, t ≤ C satisfies y′ = −2
√
y. (2) The curve y(t) ≡ 0 is the

envelop of both families of parabolas.

2. You can find non-uniqueness examples easily from the envelop of a family of curves. In fact,
suppose the family of curve Ψ(x, y, C) = 0 is the solution of some ODE: F (x, y, y′) = 0.
Suppose ((x(C), y(C)) is the envelop of this family of curves. Then at C, both Ψ(x, y, C) =
0 and the envelop (x(C), y(C)) are the solution curves of the ODE: F (x, y, y′) = 0 at
(x(C), y(C)).

3. For vector field V(x, y) = (u(x, y), v(x, y)), its integral curves do not intersect if V 6= 0.
More precisely, if (u(x0, y0), v(x0, y0)) 6= (0, 0), then the integral curve through (x0, y0) is
unique. To show this, if u(x0, y0) 6= 0, then the integral curve of (u, v) satisfies

dy

dx
=
v(x, y)

u(x, y)
= f(x, y).



1.7. *NUMERICAL METHODS: FIRST ORDER DIFFERENCE EQUATIONS 37

The function f(x, y) is well-defined in a neighborhood of (x0, y0) because u(x0, y0) 6= 0.
By the uniqueness theorem, the solution y(x) of y′ = f(x, y) with y(x0) = y0 is unique.
Therefore, the integral curve is unique there. If on the other hand, u(x0, y0) = 0, then
v(x0, y0) 6= 0, we solve

dx

dy
=
u(x, y)

v(x, y)

instead.

However, the integral curves can “intersect” at those critical points where V(x, y) = (0, 0).
For instance, the integral curves of V(x, y) = (−x,−y) point to (0, 0). The integral curve of
V = (−x, y) are xy = C. As C = 0, the corresponding integral curve is x = 0 or y = 0.
They intersect at (0, 0).

4. In the example of application 2, we cannot obtain the rate of convergence for y(t) → K as
t → ∞. However, if we know that f ′(K) 6= 0 (in fact, f ′(K) < 0), then we can get that
y(t)→ K at exponential rate. This means that

|y(t)−K| ≤ Cef ′(K)t

as t → ∞. A concrete is the logistic model, where f(y) = ry(1 − y/K) and f ′(K) = −r.
For y ∼ K, the Taylor expansion of f gives f(y) ∼ −r(y −K). The equation y′ = f(y) ∼
−r(y −K) leads to y(t) ∼ O(1)e−rt.

On the other hand, if f ′(K) = 0, then f(y) is of high order near y = K. In this case, we can
not have exponential convergence, as you can see from this simple example: y′ = (y −K)2

with y(0) < K.

1.7 *Numerical Methods: First Order Difference Equations

1.7.1 Euler method

Consider the first order equation
y′ = f(t, y).

If the solution is smooth (this is what we would expect), we may approximate the derivative y′(t)
by a finite difference

y′(t) ∼ y(t+ h)− y(t)

h
.

Thus, we choose a time step size h. Let us denote t0 + nh = tn and t0 is the initial time. We shall
approximate y(tn) by yn. For tn < t < tn+1, y(t) is approximated by a linear function. Thus, we
approximate y′ = f(t, y) by

yn+1 − yn

h
= f(tn, yn). (1.31)

This is called the Euler method. It approximates the solution by piecewise linear function. The
approximate solution yn+1 can be computed from yn. If we refine the mesh size h, we would
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expect the solution get closer to the true solution. To be more precise, let us fix any time t. Let
us divide [0, t] into n subintervals evenly. Let h = t/n be the step size. We use Euler method to
construct yn. The convergence at t means that yn → y(t) as n → ∞ (with nh = t fixed, hence
h→ 0).

Homework

1. Use Euler method to compute the solution for the differential equation

y′ = ay

where a is a constant. Find the condition on h such that the sequence yn so constructed
converges as n→∞ and nh = t is fixed.

1.7.2 First-order difference equation

This subsection is a computer project to study the discrete logistic map:

yn+1 = ρyn

(
1− yn

k

)
. (1.32)

It is derived from the Euler method for the logistic equation.

yn+1 − yn
h

= ryn

(
1− yn

K

)
,

with ρ = 1 + rh and k = K(1 + rh)/rh. We use the following normalization: xn = yn/k to get

xn+1 = ρxn(1− xn) := F (xn). (1.33)

This mapping (F : xn 7→ xn+1) is called the logistic map. The project is to study the behaviors of
this logistic map by computer simulations.

Iterative map In general, we consider a function F : R→ R. The mapping

xn+1 = F (xn), n = 0, 1, 2, · · · ,

is called an iterative map. We denote the composition F ◦ F by F 2.
A point x∗ is called a fixed point (or an equilibrium) of the iterative map F if it satisfies

F (x∗) = x∗

A fixed point x∗ is called stable if we start the iterative map from any x0 close to x∗, the sequence
{Fn(x0)} converges to x∗. A fixed point x∗ is called unstable if we start the iterative map from any
x0 arbitrarily close to x∗, the sequence {Fn(x0)} cannot converge to x∗. The goal here is to study
the behavior (stable, unstable) of a fixed point as we vary the parameter ρ.
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1. Find the condition on ρ such that the logistic map F maps [0, 1] into [0, 1].

2. For ρ = 0.5, 1.5, 2.5 find the region of x0 in [0, 1] so that limn→∞ F
nx0 converges. Such

region is called the region of contraction. It means that any point inside will be contract to a
fixed point.

3. A point x is called a period n point if Fn(x) = x but Fm(x) 6= x for all 0 < m < n. Find
the set of period 2 points.

1.8 Historical Note

You can find the figures below from Wikipedia.

Data, modeling

• Tycho Brahe (1546-1601)

• Galileo Galilei (1564-1642)

• Johannes Kepler (1571-1630)

Calculus and Numerical Method

• Isaac Newton (1642-1726)

• Leonhard Euler (1707-1783)

Population model

• Thomas Malthus (1766-1834)

• Pierre Verhulst (1804-1849)
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Chapter 2

Second Order Linear Equations

In this chapter, we study linear second-order equations of the form:

ay′′ + by′ + cy = f(t), (2.1)

with constant coefficients and a 6= 0. We shall investigate the model of linear oscillator in great
detail. It is a fundamental model in physics. We shall use spring-mass system and the electric
circuit system as examples.

2.1 Models for linear oscillators

2.1.1 The spring-mass system

Consider a mass attached to a spring in one dimension. Let y be its location, and let y = 0 be its
position at rest. The motion of the mass is governed by Newton’s force law:

my′′ = F.

There are three kinds of forces the mass may be exerted.

• Restoration force. As the mass moves to y, it is exerted a restoration force by the spring.
The simplest form of the restoration force is based on Hook’s law: this restoration force is
linearly proportional to y with reverse direction. That is,

Fr = −ky

where k is called the spring constant. The minus sign indicates that the force is opposite to
the direction of the mass motion.

• Friction force. The friction force is proportional to the velocity with opposite direction. That
is

Ff = −γy′,

where γ is called the damping (or friction) coefficient.

41



42 CHAPTER 2. SECOND ORDER LINEAR EQUATIONS

• External force. The mass may be exerted by the gravitational force, or some other external
force modeled by f(t).

The Newton’s law of motion then gives

my′′ = −γy′ − ky + f(t). (2.2)

2.1.2 Electric circuit system

Consider a circuit which consists of an inductor, a resistor, a capacitor and a battery. Suppose the
wire is uniform in width. In this case, we may assume the current between each component is uni-
form (i.e. it is independent of the position). This is a good approximation when the electromagnetic
wave length is much larger than the wire length. Through each component, the rate of change of
charge (i.e. current I(t) := dQ(t)/dt) should be the same. This is the law of conservation of
charge, one of the Kirkohoff law in the circuit theory. When the electric current passing through
these components, there is a potential difference on the two ends of each components. Namely, the
potential difference through each component is

• resistor ∆Vr = RI:
A resister is a dielectric material. It is used to reduce current flow, to lower voltage levels
within circuits. The potential difference between the two ends of a resistance induces an
electric field E. It drives electrons in the resistance move at current I . The Ohm law states
that I is proportional to E and hence ∆Vr = Ed = αId, where d is the length of the
resistance.

• capacitor ∆Vc = Q/C:
A typical capacitor is a pair of parallel plates with equal charges and opposite signature. There
is an electric field E induced by the charges on the two plates. By Gauss law, εEA = Q,
where A is the area of the plate and ε is the dielectric coefficient. It is clear that the more
charges on the plates, the higher the electric field. The potential difference on the two plates
is ∆V = Ed, where d is the distance between the two plates. Hence,

∆Vc = Ed =
d

εA
Q =

Q

C
.

Capacitor is used to store charges or energy within circuits.

• inductor ∆Vi = LdIdt .
An inductance is a solenoid. By the Amperè law, the current on a circular wire induces a
magnetic field mainly through the disk that the circle surrounds. The time-varying current
(i.e. dI/dt) induces a time-varying magnetic field. By the Farady law, this time-varying
magnetic field induces an electric field E which can move (electromotive force) the charges
in the wire, called induced current. The magnitude of E is proportional to dI/dt. Thus,
there is a linear relation between the potential drop ∆V (which is Ed, d is the length of the
inductance) and dI/dt.
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The constants R,C,L are called the resistance, conductance and inductance, respectively. From
another Kirkohoff law (conservation of energy), we have

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = f(t) (2.3)

where f(t) is the external potential from the battery.
We notice there is an analogy between mechanical oscillators and electrical oscillators.

2.2 Methods to solve homogeneous equations

We rewrite the above linear oscillator equation in an abstract form:

ay′′ + by′ + cy = f(t), (2.4)

where a 6= 0, b, c are constants. We are allowed a, b, c ∈ C. We should prescribe initial data:

y(0) = y0, y
′(0) = y1 (2.5)

for physical consideration. We may express (2.4) in an operator form:

L(D)y = f, (2.6)

where
L(D) = aD2 + bD + c, D =

d

dt
.

The term f is called the source term.

2.2.1 Homogeneous equations (complex case)

Equation (2.4) without source term is called a homogeneous equation:

L(D)y := ay′′ + by′ + cy = 0. (2.7)

We try a solution of the form y(t) = eλt (called an ansatz) for the homogeneous equation. Plug this
ansatz into the homogeneous equation. We obtain

L(D)
(
eλt
)

= L(λ)eλt =
(
aλ2 + bλ+ c

)
eλt = 0.

This leads to
aλ2 + bλ+ c = 0.

This polynomial equation is called the characteristic equation of (2.4). Let λ1, λ2 be its two roots
(possible complex roots). There are two cases:

• Case 1: λ1 6= λ2 . In this case, we have found two solutions y1(t) = eλ1t and y2(t) = eλ2t.
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• Case 2: λ1 = λ2. In this case, we can check y1(t) = eλ1t and y2(t) = teλ1t are two solutions.
Let me explain why teλ1t is a solution. Indeed, from λ1 being the double root of L(λ) = 0,
we have L(λ1) = 0, and L′(λ1) = 0. By plugging teλ1t into the equation (2.7), we obtain

L

(
d

dt

)(
teλ1t

)
= L(λ1)

(
teλ1t

)
+ L′(λ1)

(
eλ1t

)
= 0.

Another way to understand the appearance of the solution teλ1t is by taking the limiting pro-
cess: λ2 → λ1. The double root of λ1 can be viewed as the limit process of two distinguishing
roots λ2 and λ1 with λ2 → λ1. When λ2 6= λ1, the function (eλ2t − eλ1t)/(λ2 − λ1) is a
solution. As λ2 → λ1, the limit

lim
λ2→λ1

eλ2t − eλ1t

λ2 − λ1
= teλ1t

is also a solution of L(D)y = 0, with λ1 becoming a double root of L(λ) = 0.

Fundamental solutions (complex case) The solutions

y1(t) = eλ1t

y2(t) =

{
eλ2t if λ2 6= λ1

teλ1t if λ2 = λ1

(2.8)

are called the fundamental solutions of (2.7). We claim that they have the following properties:

1. linearity: any of their linear combination C1y1 + C2y2 is a solution;

2. independence: y1 and y2 are linear independent;

3. any complex-valued solution of (2.7) can be expressed as C1y1 + C2y2 for some coefficients
C1, C2 ∈ C.

We call the solution set
S0 := {C1y1(·) + C2y2(·)|C1, C2 ∈ C}

the solution space of (2.7). It is a two dimensional vector space over the complex field C.
Let us prove these claims below.

1. Linearity In fact,

L

(
d

dt

)
(C1y1 + C2y2) = C1L

(
d

dt

)
y1 + C2L

(
d

dt

)
y2 = 0,

because the operator L(D) is linear.
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2. Independence and Wronskian We shall show that if y(t) := C1y1(t) + C2y2(t) = 0 for
t ∈ R, then C1 = C2 = 0.
In fact, if y(t) ≡ 0, then y(t0) = 0 and y′(t0) = 0 at some point t0.

Next, we write the second order equation (2.7) as a 2× 2 system of first order equations:[
y
y′

]′
=

[
0 1

− c
a − b

a

] [
y
y′

]
(2.9)

From the existence and uniqueness theorem, any solution of (2.9) is uniquely determined by
(y(t0), y′(t0)). We have known that y(·) = C1y1(·) + C2y2(·) is a solution. Plug it into the
initial condition, we obtain two equations for C1 and C2:

y1(t0)C1 + y2(t0)C2 = y(t0) = 0

y′1(t0)C1 + y′2(t0)C2 = y′(t0) = 0

The two coefficients C1 and C2 can be uniquely determined by y(t0) and y′(t0) if and only if
the determinant

W (y1, y2)(t0) :=

∣∣∣∣ y1(t0) y2(t0)
y′1(t0) y′2(t0)

∣∣∣∣ 6= 0 (2.10)

We call this determinant the Wronskian of y1 and y2 at t0. Plug (2.8) into (2.10), we get

W (y1, y2)(t0) =

{
(λ2 − λ1)e(λ1+λ2)t0 when λ1 6= λ2

e2λ1t0 when λ1 = λ2

We see this Wronskian is never zero for any t0. Hence C1 = 0 and C2 = 0. We conclude that
y1(·) and y2(·) are linearly independent.

3. Solution representation Suppose ỹ is a solution, we claim that there are constants C1 and
C2 such that ỹ = C1y1 + c2y2. In fact, the initial data (ỹ(0), ỹ′(0)) determines a unique pair
of C1 and C2 such that

y1(0)C1 + y2(0)C2 = ỹ(0)

y′1(0)C1 + y′2(0)C2 = ỹ′(0).

This is due to the fact that the WronskianW (y1, y2)(0) 6= 0. With these C1, C2, the solutions
y(t) = C1y1(t) + C2y2(t) and ỹ(t) have identical data at t = 0. By the uniqueness theorem,
ỹ(·) = y(·) = C1y1(·) + C2y2(·).

2.2.2 Homogeneous equation (real case)

In many applications, the equation

L(D)y = ay′′ + by′ + c = 0 (2.11)

has real coefficients, i.e. a 6= 0, b, c ∈ R. Here, D denotes for d/dt. The above complex-value
theory is still applicable with small modification to produce real-valued solutions. Let us list two
basic facts.
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1. If y(·) is a complex-valued solution of (2.11), so are its real part Re(y(·)) and imaginary part
Im(y(·)). This is due to the linearity of L(D)y and the fact that a, b, c ∈ R.

2. The roots of the characteristic equation L(λ) = 0 are complex conjugate.

Below, we shall construct two independent real-valued solutions and show that the solution space is
a two-dimensional vector space over R. To show these, there are three cases.

• Case 1. λ1 6= λ2 and real. A general solution for the homogeneous equation has the form

y(t) = C1y1(t) + C2y2(t),

where
y1(t) := eλ1t, y2(t) := eλ2t.

The constants C1 and C2 are determined by the initial condition (2.5):

C1 + C2 = y(0)

λ1C1 + λ2C2 = y′(0).

From λ1 6= λ2, we see that C1 and C2 can be solved uniquely.

• Case 2. λ1 6= λ2 and complex. In this case, they are conjugate to each other. Let us denote
λ1 = α+ iω and λ2 = α− iω. We have found two solutions

y1(t) = Re(eλ1t) = eαt cosωt

y2(t) = Im(eλ1t) = eαt sinωt

A general solution of the form

y(t) = C1y1(t) + C2y2(t),

satisfying the initial condition (2.5) leads to

y(0) = C1

y′(0) = C1α+ C2ω.

The constants C1 and C2 can be solved uniquely because we have ω 6= 0 in this case.

• Case 3. λ1 = λ2 ∈ R. In this case,

y1(t) := eλ1t and y2(t) := teλ1t

are two independent solutions. So, general solution has the form C1y1(t) + C2y2(t). The
constants C1 and C2 are determined by the initial data: to

C1 = y(0)

λ1C1 + C2 = y′(0).

In the above three cases, the functions {y1(·), y2(·)} form a basis of the solution space.
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Homeworks.

1. Consider the ODE: ay′′+ by′+ cy = 0, with a, b, c being real. Suppose y(t) = y1(t)+ iy2(t)
be a complex solution.

(a) Show that both its real part y1 and imaginary part y2 are solutions too.
(b) Show any linear combination of y1 and y2 is also a solution.

2. Let λ = α+iω. Find the WronskiansW (eλt, eλ̄t),W (eαt cosωt, eαt sinωt) andW (eλt, teλt).

3. Solve the initial value problem y′′ − y′ − 2y = 0 , y(0) = α, y′(0) = 2. Then find α so that
the solution approaches zero as t→∞.

4. Consider the ODE
y′′ − (2α− 1)y′ + α(α− 1)y = 0.

(a) Determine the values of α for which all solutions tend to zero as t→∞.
(b) Determine the values of α for which all solutions become unbounded as t→∞.

2.3 Methods to solve Inhomogeneous equations

Now, we study the inhomogeneous equation with general forcing term f :

ay′′ + by′ + cy = f(t).

We may abbreviate it by an operator notation:

L (D) [y] = f,

where L(s) = as2 + bs+ c. From the theory for homogeneous equations, we know that we can find
two independent solutions. Let y1(·) and y2(·) be a pair of such fundamental solutions:

L (D) [yi] = 0, i = 1, 2.

Suppose yp(·) is a special solution of (2.4). This means that

L(D)[yp] = f.

In this case, yp+C1y1 +C2y2 is also a special solution for any constantsC1 andC2. This is because
the linearity of the equation. Namely,

L[yp + C1y1 + C2y2] = L[yp] + C1L[y1] + L[y2] = f + 0 + 0.

From the existence and uniqueness of ODEs, we know that the solution set depends on two param-
eters. We can conclude that the solution set S to (2.4) is S = yp + S0, where S0 is the solution
space corresponding to the homogeneous equation. In other words, the solution set of (2.4) is an
affine space. The choice of the special solution yp is not unique. If yq is another special solution,
then any solution represented by y = yp + z with z ∈ S0 can also be represented as y = yq + w
with w = yp − yq + z ∈ S0. Thus, it suffices to find just one special solution.

We introduce two methods to find a special solution. In later chapter, we will further introduce
the method of Laplace transform to find special solutions.



48 CHAPTER 2. SECOND ORDER LINEAR EQUATIONS

2.3.1 Method of underdetermined coefficients

Suppose λ1 and λ2 are the two roots of the characteristic equation L(λ) = 0. Suppose the source
term is of the form:

tkeλt.

Then we can use the following method of underdetermined coefficient to find a special solution. We
use the following examples to explain.

• Case: λ 6= λ1 and λ 6= λ2. We try a special solution of the form

yp(t) = (akt
k + ak−1t

k−1 + · · ·+ a0)eλt.

• Case: λ = λ1. We try a special solution of the form

yp(t) = t(akt
k + ak−1t

k−1 + · · ·+ a0)eλt.

Plugging this special form into equation, we obtain a polynomial equations. Equating both sides
and we obtain k + 1 linear equations for k + 1 coefficients ak, ..., a0.

Examples

1. Let f(t) = t. We try yp = a1t+ a0. Plug it into the equation, that is, (aD2 + bD+ c)yp = t.
We get

a · 0 + b · (a1) + c · (a1t+ a0) = t.

This yields

ca1 = 1

ba1 + ca0 = 0.

We get that yp = t/c− b/c2 is a special solution.

2. Find a special solution for y′′ − y = te2t. We choose yp(t) = (at + b)e2t. Plug this into the
equation, we get

4(at+ b)e2t + 4ae2t − (at+ b)e2t = te2t

This yields

3a = 1

4b+ 4a− b = 0.

Hence, a = 1/3 and b = −4/9.



2.3. METHODS TO SOLVE INHOMOGENEOUS EQUATIONS 49

3. Let us consider y′′ − y = et as an example. We try yp = atet. We have

y′p = aet + (at)et

y′′p = 2aet + (at)et

The equation y′′ − y = et yields

(at)et + 2aet − (at)et = et.

This gives

a− a = 0

2a = 1

Hence, yp = 1
2 te

t is a special solution.

4. f(t) = tkeαt cos(Ωt), or tkeαt sin(Ωt). In this case, we introduce a complex forcing term

f(t) = tkeλt, λ := α+ iΩ.

The real part of a solution to this complex forcing term is a special solution to the forcing
term tkeαt cos(ωt). For this complex forcing term, it can be reduced to the previous case.

Homework. Find a special solution for the following equations.

1. y′′ − y = tet.

2. y′′ − 2y′ + y = et.

3. y′′ − 2y′ + y = tet.

4. y′′ + 4y = teit.

5. y′′ + y = teit.

6. y′′ + 2y′ + 2y = sin t.

7. y′′ + 2y′ + 2y = e−t sin t.

2.3.2 Method of Variation of Constants

We use variation of constants to solve the inhomogeneous equation (2.4). For simplicity, we may
assume the coefficient a of (2.4) is 1. Suppose y1(·) and y2(·) are two independent solutions of the
homogeneous equation (2.7). First, we write (2.4) in vector form

y′(t) = Ay(t) + f , (2.12)
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where

y(t) =

(
y(t)
y′(t)

)
,A =

(
0 1
−c −b

)
, f(t) =

(
0
f(t)

)
.

We assume a special solution of (2.4) has the form

y(t) = C1(t)y1(t) + C2(t)y2(t), (2.13)

where Ci(t) ∈ C are the coefficients to be determined, and yi satisfies the homogeneous equation:

y′i = Ayi, i = 1, 2,

We can express y in matrix form

y(t) = Φ(t)C(t), C(t) =

(
C1(t)
C2(t)

)
where

Φ(t) :=

(
y1(t) y2(t)
y′1(t) y′2(t)

)
. (2.14)

is the fundamental solution, which satisfies

Φ′(t) = AΦ(t).

We plug this ansatz to (2.12):

Φ′(t)C(t) + Φ(t)C′(t) = AΦ(t)C(t) + f ,

we get
Φ(t)C′(t) = f . (2.15)

This gives us a first-order differential equation for C(t):

C′(t) = Φ−1(t)f(t) = Φ−1(t)

(
0
f(t)

)
. (2.16)

By integrating (2.16), taking C(0) = 0, we obtain

C(t) =

∫ t

0
Φ(s)−1

(
0

f(s)

)
ds

=

∫ t

0

1

W (y1, y2)(s)

(
y′2(s) −y2(s)
−y′1(s) y1(s)

)(
0

f(s)

)
ds

=

(
C1(0)
C2(0)

)
+

∫ t

0

1

W (y1, y2)(s)

(
−y2(s)f(s)
y1(s)f(s)

)
ds

This gives
yp(t) = Φ(t)C(t).
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The yp(t) component reads

yp(t) = −y1(t)

∫ t

0

y2(s)f(s)

W (y1, y2)(s)
ds+ y2(t)

∫ t

0

y1(s)f(s)

W (y1, y2)(s)
ds. (2.17)

The general solution y(t) has the form

yp(t) + c1y1(t) + c2y2(t),

where c1, c2 are constants.

Examples

1. Solve the equation
y′′ − y = f(t)

with initial data
y(0) = 0, y′(0) = 0.

Answer. The homogeneous equation y′′ − y = 0 has fundamental solutions y1(t) = e−t and
y2(t) = et. The corresponding Wronskian

W (y1, y2)(t) =

∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ =

∣∣∣∣ e−t et

−e−t et

∣∣∣∣ = 2.

Thus, the special solution

yp(t) = −e−t
∫ t

0

esf(s)

2
ds+ et

∫ t

0

e−sf(s)

2
ds

=

∫ t

0
sinh(t− s)f(s) ds

You may check this special solution satisfies the initial conditions y(0) = y′(0) = 0.

2. Find a particular solution of
y′′ + y = csc t

for t near π/2.

Answer. The fundamental solutions corresponding to the homogeneous equation is

y1(t) = cos t, y2(t) = sin t.

The Wronskian W (y1, y2)(t) = 1. A special solution is given by

yp(t) = −y1(t)

∫ t

π/2

y2(s)f(s)

W (y1, y2)(s)
ds+ y2(t)

∫ t

π/2

y1(s)f(s)

W (y1, y2)(s)
ds

= − cos t

∫ t

π/2
sin(s) csc(s) ds+ sin t

∫ t

π/2
cos(s) csc(s) ds

= −(t− π/2) cos t+ sin t · ln sin t.
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Homeworks.

1. Find the solution of y′′ − y = f with y(0) = y′(0) = 0.

2. Find the solution of y′′ − y = f with y(0) = y(π) = 0.

3. Find the solution of y′′ + 2y′ + y = f with y(0) = y′(0) = 0.

4. Find the solution of y′′ − 2αy′ + α2y + ω2y = f with y(0) = y′(0) = 0.

2.4 Linear oscillators

2.4.1 Harmonic oscillators

To understand the physical meaning of the solutions of the linear oscillation systems, let us first
consider the case when there is no damping term (i.e. friction or resistance). That is

L (D) y = a
d2y

dt2
+ cy = 0. (2.18)

We call such system a harmonic oscillator or free oscillator. The corresponding characteristic equa-
tion aλ2 + c = 0 has two characteristic roots

λ1 = −i
√
c

a
, λ2 = i

√
c

a
,

which are pure imaginary due to both a, c > 0 in a harmonic oscillator. Let us denote

ω0 =

√
c

a
(2.19)

Then the general solution for (2.18) is

C1e
−iω0t + C2e

iω0t.

Its real part forms the real solution of (2.18). It has the form

y(t) = B1 cosω0t+B2 sinω0t,

where Bi are real. We may further simplify it as

y(t) = A cos(ω0t+ θ0) (2.20)

where
A =

√
B2

1 +B2
2 , cos(θ0) = B1/A, sin(θ0) = −B2/A,

A is called the amplitude and θ0 is the initial phase. They are related to the initial data y0 and y1 by

y0 = A cos(θ0), y1 = ω0A cos(θ0).
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This motion is called harmonic oscillation or free oscillation. It is important to note that through a
transformation:

y = cos θ

the ODE (2.18) is converted to a linear motion with constant speed:

d2θ

dt2
= 0,

dθ

dt
= ω0 (2.21)

Its solution solution is given by θ(t) = θ0 + ω0t. So it can be viewed as a circular motion with
constant angular speed.

2.4.2 Damping

In this section, we consider (2.4) with damping term:

ay′′ + by′ + cy = 0.

The coefficient b > 0. We recall that the homogeneous equation has two independent solutions eλ1t

and eλ2t, where

λ1 =
−b+

√
b2 − 4ac

2a
, λ2 =

−b−
√
b2 − 4ac

2a
,

are the two roots of the characteristic equation aλ2 + bλ + c = 0. We have the following cases:
∆ = b2 − 4ac < 0,= 0 or > 0.

Case 1. damped free oscillation When b2 − 4ac < 0, we rewrite

λ1 = −α+ iω, λ2 = −α− iω,

where α = b/2a > 0, ω =
√

4ac− b2/2a > 0. Then two independent solutions are

y1(t) = e−αt cos(ωt), y2(t) = e−αt sin(ωt).

So, the general solutions for the homogeneous equation oscillate (the damper is not so strong and
the oscillation is still maintained), but their amplitudes damp to zero exponentially fast at rate b/2a.
The relaxation time is τ := 2a/b. Thus, the smaller b is (weeker damper), the longer the relaxation
time is. But, as long as b > 0, the solution decays to zero eventually.

In the spring-mass system, a = m, b = γ, c = k. The free oscillation frequency is ω2
0 = k/m.

The effective oscillation yi = e−(γ/2m)teiωt has frequency ω =
√

4mk − γ2/2m <
√
k/m = ω0.

Thus, the damping slows down the oscillation frequency. The frequency ω is called the quasifre-
quency.

Case 2. Critical damping When b2 − 4ac = 0, the eigenvalue λ1 = −b/2a is a double root. In
additional to the solution y1(t) = eλ1t, we can check

y2(t) = teλ1t

is another solution. You may check that this solution still decays to zero as t → ∞. Certainly it is
slower than y1(t). A concrete example is y′′ + 2y′ + y = 0.
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Case 3. Overdamping When b2 − 4ac ≥ 0, λi are real and negative. The two independent
solutions

yi(t) = eλit → 0, as t→∞, i = 1, 2.

We call this is overdamping. It means that the damper is too strong so that the solution has no
oscillation at all and decays to 0 exponentially fast. The decay rate is O(e−αt), where α = b/2a.
The quantity 1/α is called the relaxation time. As a concrete example, consider y′′ + 3y′ + y = 0.
One eigenvalue is λ1 = −3/2 +

√
5/2. The other is λ2 = −3/2 −

√
5/2. We see the solution

y1(t) = eλt decays slower than y2(t) := eλ2t.

Homeworks.

1. Consider the ODE my′′ + γy′ + ky = 0 with γ > 0. Show that the energy defined by

E(t) :=
m

2
y′(t)

2
+

1

2
ky(t)2

satisfies E′(t) ≤ 0.

2. Consider the ODE my′′ + γy′ + ky = 0 with y(0) = y0, y′(0) = v, γ > 0. Express
the solution in the form y(t) = R exp(−γt/2m) cos(ω0t − δ) and determine R in terms of
m, γ, k, y0 and v explicitly.

3. Consider the ODE y′′ + αy′ + ω2
0y = 0 with α, ω > 0. In the critical case (α = 2ω0), there

is a solution y∗(t) = te−ω0t. When α < 2ω0, construct a solution yα such that yα → y∗ as
α→ 2ω0.

4. There are many interesting resonance phenomena in nature, search into websites with key
word “resonance”.

2.4.3 Forcing and Resonance

In this section, we study forced vibrations. We will study two cases: free vibration with periodic
forcing and damped vibration with periodic forcing.

Free vibration with periodic forcing Let us consider the free vibration with a periodic forcing

y′′ + ω2
0y = F0 cos(Ωt).

We have two subcases.
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Case 1. Ω 6= ω0 .
It is reasonable to guess that there is a special solution which is synchronized with the periodic

external forcing. Thus, we try a special solution of the form C cos(Ωt). By plugging into the
equation, we can find the coefficient C = F0/(a(Ω2 − ω2

0)). Thus, the function

yp(t) =
F0

a(Ω2 − ω2
0)

cos(Ωt)

is a special solution. Let us still abbreviate F0/(Ω
2 − ω2

0) by C. The general solution can be
expressed as

y(t) = C cos(Ωt) +A cos(ω0t) +B sin(ω0t)

= C cos((ωl − ωh)t) +A cos((ωl + ωh)t) +B sin((ωl + ωh)t)

= C (cos(ωlt) cos(ωht) + sin(ωlt) sin(ωht))

+A (cos(ωlt) cos(ωht)− sin(ωlt) sin(ωht))

+B (sin(ωlt) cos(ωht) + cos(ωlt) sin(ωht))

= [(C +A) cos(ωlt) +B sin(ωlt)] cos(ωht)

+ [B cos(ωlt) + (C −A) sin(ωlt)] sin(ωht)

= Ã cos(ωlt− Ω1) cos(ωht) + B̃ cos(ωlt− Ω2) sin(ωht),

where

ωh =
ω0 + Ω

2
, ωl =

ω0 − Ω

2

indicate low and high frequencies, respectively; and

(C +A,B) = Ã(cos(Ω1), sin(Ω1)), (C −A,B) = B̃(cos(Ω2), sin(Ω2)).

Let us take the case when Ω ∼ ω0. In this case,

C =
F0

a(Ω2 − ω2
0)

is very large, and hence Ã is very large. We concentrate on the solution y(t) = Ã cos(ωlt −
Ω1) cos(ωht). In this solution, we may view Ã cos(ωlt−Ω1) as the amplitude of the high frequency
wave cos(ωht). This amplitude itself is a low frequency wave, which is the envelope of the solution
y(t). We call it the modulation wave. This phenomenon occurs in acoustics when two tuning forks
of nearly equal frequency are sound simultaneously.

Case 2. Ω = ω0 .
In this case, we try a special solution of this form:

yp = Ct cos(ω0t) +Dt sin(ω0t).
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By plugging into the equation, we find a special solution

yp = Rt sin(ω0t), R :=
F0

2aω0

The general solution is
y(t) = R t sin(ω0t) +A cos(ω0t+ θ0) (2.22)

The amplitude of this solution increases linearly in time. Such a phenomenon is called resonance.

Damped vibrations with periodic forcing We consider a damped vibration system with periodic
forcing:

y′′ + by′ + cy = F0 cos(Ωt).

To find a special solution for the inhomogeneous equation, we try

yp = C cos(Ωt) +D sin(Ωt).

By plugging into the equation, we find

− Ω2(C cos(Ωt) +D sin(Ωt)) + bΩ(−C sin(Ωt) +D cos(Ωt))

+ c(C cos(Ωt) +D sin(Ωt)) = F0 cos(Ωt).

This yields

−Ω2C + bΩD + cC = F0

−Ω2D − bΩC + cD = 0

This solves C and D:
C = (c− Ω2)F0/∆, D = bΩF0/∆,

where
∆ = (c− Ω2)2 + b2Ω2.

Notice that ∆ 6= 0 whenever there is a damping. Let

A :=
√
C2 +D2 =

F0

∆
, Ω0 = arctan

(
−bΩ
c− Ω2

)
.

Then

yp = C cos(Ωt) +D sin(Ωt)

= A cos(Ω0) cos(Ωt)−A sin(Ω0) sin(Ωt)

= A cos(Ωt+ Ω0)

Thus, a special solution is again a cosine function with amplitude A and initial phase Ω0. The
general solution is

y(t) = A cos(Ωt+ Ω0) + C1y1(t) + C2y2(t).

Notice that y(t) → A cos(Ωt + Ω0) as t → ∞ because both y1(t) and y2(t) tend to 0 as t → ∞.
We call the solution A cos(Ωt+ Ω0) the steady-state solution or the forced response. This solution
synchronized with the external periodic forcing.
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Remarks.

• We notice that the amplitude A has maximum when Ω = ω0 :=
√
c, that is, the external

forcing has the same period as the internal period ω0.

• We also notice thatA→∞ only when b = 0 (no damping) and c = Ω2. This is the resonance
case. Otherwise, there is no resonance. In other word, general solutions approach the forced
responsed solution, even in the case of resonance with damping.

Homework.

Find a special solution for the following equations

1. Compute the general solution of the given equation.

(a) y′′ + 4y = 3 cos 2t.

(b) y′′ + 9y = sin t+ sin 2t+ sin 3t.

(c) y′′ + 4y = cos2 t.

2. Solve the initial value problem y′′ + 4y = 3 cos 2t+ cos t, y(0) = 2, y′(0) = 1.

3. Consider the ODE y′′ + ω2
0y = cosωt with ω ∼ ω0, say ω = ω0 + ∆ω. For each ∆ω,

find a particular solution of this equation so that its limit approaches the resonant solution as
∆ω → 0.

2.5 2× 2 linear systems

Second-order ODE can be reduced to a 2×2 first-order system A general high-order ODE can
be reduced to a system of first-order equations by introducing high derivatives as new unknowns.
For example, the linear second-order ODE

ay′′ + by′ + cy = f (2.23)

can be rewritten as {
y′ = v
av′ = −bv − cy + f

(2.24)

If (y, v) is a solution of this first-order system (2.24), then from av′ = −bv − cy + f , we get v′ is
continuous. From first equation, we have y′′ = v′. Hence, y ∈ C2. Combining the two equations
of (2.24), we conclude that y satisfies ay′′ + by′ + cy = f . Conversely, if y satisfies (2.23), then y
is twice differentiable. Let us name y′ = v. Then v′ = y′′. From (2.23), av′+ bv+ cy = f . Hence,
these two equations are equivalent.

In the LRC circuit system, we have Kirchhoff voltage law which states the sums of potential
drops along a closed cycle is zero. If the loop consists of an inductor (Vi = LI ′), a resistor (Vr =
IR) and a capacitor (Vc = Q/C). The equation is

LI ′ + IR+Q/C = f.
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Here, f is the potential drop from battery. If we introduce a new variable V for the potential drop
across the capacitor, call it V , we have V = Q/C. Let us differentiate it in t and get CV ′ = I .
Then, we obtain two equations for I and V :{

LI ′ +RI + V = f
CV ′ − I = 0.

This is equivalent to the second order equation

LQ′′ +RQ′ +Q/C = f.

Solution space In this subsection, we shall study general solutions of 2 × 2 linear homogeneous
equations

y′ = Ay (2.25)

where

y =

(
y1

y2

)
, A =

(
a11 a12

a21 a22

)
and the stability of its critical state 0. First we notice that the solution space is linear space because if
y(·) and z(·) are solutions, so is their linear combination ay(·)+ bz(·). To determine the dimension
of the solution space, we notice that all solutions are uniquely determined by their initial data (the
existence and uniqueness theorem),

y(0) = y0 ∈ C2.

Thus, there is a 1-1 correspondence between C2 and the solution space S0 by the mapping: y(0) 7→
y(·).

Theorem 2.1. The solution space S0 for equation (2.25) is a two-dimensional vector space.

2.5.1 Independence and Wronskian

In the solution space S0, two solutions y1 and y2 are called independent if C1y1(t) +C2y2(t) = 0
implies C1 = C2 = 0. This definition is for all t, but based on the uniqueness theorem, we only
need to check this condition at just one point. We have the following theorem.

Theorem 2.2. Suppose y1 and y2 are solutions of (2.25). If y1(t0) and y2(t0) are independent in
R2 (C2), then y1(t) and y2(t) are independent in R2 (C2) for all t.

Proof. Let t1 be a point lying in the maximal interval of existence containing t0. Suppose y1(t1)
and y2(t1) are linearly dependent, then there exist constants C1 and C2 such that

C1y1(t1) + C2y2(t1) = 0.

Let y = C1y1 + C2y2. Notice that both y and the zero constant solution have the same value at
t1. By the uniqueness theorem, y ≡ 0 on the maximal interval of existence containing t1, hence,
containg t0. This contradicts to y1(t0) and y2(t0) being independent.
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Definition 2.1. Given any two solutions y1 and y2, we the Wronskian

W (y1,y2)(t) = det(y1(t),y2(t)) =

∣∣∣∣ y1,1 y2,1

y1,2 y2,2

∣∣∣∣ (2.26)

The Wronskian is used to test the independence of y1 and y2.

Theorem 2.3. Let y1 and y2 be two solutions of (2.25). Let us abbreviate the WronskianW (y1,y2)(t)
by W (t). We have

(i)
dW

dt
= (trA)W

(ii) W (t0) 6= 0 for some t0 if and only if W (t) 6= 0 for all t.

Proof. Let Y = (y1,y2). Then we have

Y′ = AY.

The Wronskian W (t) is detY(t). We differentiate W in t, We get

W ′ = y′1,1y2,2 − y′1,2y2,1 − y′2,1y1,2 + y′2,2y1,1

=
∑
k

(a1,kyk,1y2,2 − a1,kyk,2y2,1 − a2,kyk,1y1,2 + a2,kyk,2y1,1)

= (a1,1 + a2,2)(y1,1y2,2 − y1,2y2,1)

= tr(A)W

Since W (t) = W (t0) exp(tr(A)(t− t0)), we see that W (t0) 6= 0 if and only if W (t) 6= 0.

Remark This theorem is also true for n × n system. Namely, if Y′(t) = AY(t), and W (t) =
detY(t), then

W ′(t) = (trA)W (t).

You can try to prove this theorem by using the determinant formula

detY =
∑
i

yijCij ,
∑
k

ykjCij = 0 if i 6= k,

where Cij is called the cofactor of Y, which is (−1)i+jdet(Yij), and Yij is the (n− 1)× (n− 1)
matrix obtained by eliminating the ith row and jth column from Y.
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2.5.2 Finding the fundamental solutions and Phase Portrait

In this subsection, we look for find two independent solutions for the homogeneous equation

y′(t) = Ay(t).

We try a solution of the form y(t) = eλtv, where v ∈ C2 is a constant vector. Plugging into (2.25),
we get

λveλt = Aveλt.

We find that y(t) = eλtv is a solution of (2.25) if and only if

Av = λv. (2.27)

That is, λ is the eigenvalue and v is the corresponding eigenvector. The eigenvalue λ satisfies the
following characteristic equation

det (λI−A) = 0.

In two dimensions, this is
λ2 − Tλ+D = 0,

where
T = a+ d, D = ad− bc

are the trace and determinant of A, respectively. The eigenvalues are

λ1 =
T +
√
T 2 − 4D

2
, λ2 =

T −
√
T 2 − 4D

2
.

There are three cases for the eigenvalues:

• Case 1: T 2 − 4D > 0. Then λ1 6= λ2 and are real.

• Case 2: T 2 − 4D < 0. Then λ1, λ2 and are complex conjugate.

• Case 3: T 2 − 4D = 0. Then λ1 is a double root.

Case 1. Both λ1 and λ2 are real

Suppose the two corresponding real eigenvectors are v1 and v2.

1. Finding fundamental solutions The corresponding two independent solutions are

y1 = eλ1tv1, y2 = eλ2tv2.

A general solution has the form

y(t) = C1y1(t) + C2y2(t)
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Let us denote the fundamental solutions by a matrix

Φ(t) = [y1(t),y2(t)],

and the solution y(·) can be expressed as

y(t) = Φ(t)C, C =

(
C1

C2

)
.

If the initial data is y0, then
y(0) = Φ(0)C = y0.

We get
C = Φ−1(0)y0.

Thus, general solution is

y(t) = Φ(t)Φ−1(0)y0 = C1e
λ1tv1 + C2e

λ2tv2. (2.28)

2. Phase Portrait In the solution expression (2.28), we may call

y(t) = η1(t)v1 + η2(t)v2,

where
η1(t) = C1e

λ1t, η2(t) = C2e
λ2t.

By taking ln, we can eliminate t from η1 and η2 to get an implicit expression for this trajec-
tories:

1

λ1
ln |η1| =

1

λ2
ln |η2|+ C,

where C is a constant depending on C1, C2. We can also express them as

|η2|1/λ2 = C |η1|1/λ1

where C is another constant. From this, we can draw a family of solution trajectories. For
instant, if λ1 = −1, λ2 = 1, then the solution curves are

|η2| = C|η1|−1.

These are hyperbolae. We will see more examples below.

3. Stability of the 0 state The 0 state is an equilibrium (i.e. a constant state solution). Its
behavior is determined by the sign of the eigenvalues λ1, λ2:

• λ1, λ2 < 0: all solutions tend to 0 as t → ∞. We call 0 state a sink. It is a stable
equilibrium.

• λ1, λ2 > 0: all solutions tend to infinity as t → ∞. In fact, all solutions tend to the 0
state as t→ −∞. We call 0 state a source. It is an unstable equilibrium.
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• λ1 · λ2 < 0. Let us take λ1 < 0 and λ2 > 0 as an example for explanation. A general
solution has the form

y(t) = C1e
λ1tv1 + C2e

λ2tv2.

We have three cases:

– If y(0) ∈ Ms := {γv1, γ ∈ R}, then the corresponding C2 = 0, and y(t)→ 0 as
t→∞. We call the lineMs a stable manifold.

– If y(0) ∈ Mu := {γv2, γ ∈ R}, then the corresponding C1 = 0 and y(t) → 0 as
t→ −∞. We call the lineMu an unstable manifold.

– For any other y0, the corresponding y(t) has the following asymptotics:

y(t)→ v1-axis, as t→ −∞,

y(t)→ v2-axis, as t→ +∞.

That is, all solutions approach the stable manifold as t → ∞ and the unstable
manifold as t→ −∞.

The 0 state is the intersection of the stable and unstable manifolds. It is called a saddle
point.

• λ1 = 0 and λ2 6= 0. In this case, a general solution has the form:

y(t) = C1v1 + C2e
λ2tv2.

The equilibrium {ȳ|Aȳ = 0} is a line: {C1v1|C1 ∈ R}.
– If λ2 < 0, then all solutions approach C1v1. This means that the line C1v1 is a

stable line.
– If λ2 > 0, then all solutions leave C1v1. This means that the line C1v1 is an

unstable line.

Examples

1. Consider

y′ = Ay, A =

(
1 1
4 1

)
.

The corresponding characteristic equation is

det (λI−A) = (λ− 1)2 − 4 = 0.

Hence, the two eigenvalues are
λ1 = 3, λ2 = −1.

The eigenvector v1 corresponding to λ1 = 3 satisfies

(A− λ1I)v1 = 0.
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This gives

v1 =

(
1
2

)
.

Similarly, the eigenvector corresponding to λ2 = −1 is

v2 =

(
1
−2

)
.

A general solution has the form

y(t) = C1e
3tv1 + C2e

−tv2.

2. Consider

y′ = Ay, A =

(
8 −11
6 −9

)
.

The eigenvalues of A are roots of the characteristic equation det (λI −A) = 0. This yields
two eigenvalues λ1 = −3 and λ2 = 2. The corresponding eigenvectors satisfy (A− λi)vi =
0. For v1, we have (

8 + 3 −11
6 −9 + 3

)(
x
y

)
=

(
0
0

)
.

This yields

v1 =

(
1
1

)
.

Similarly, we obtain

v2 =

(
11
6

)
.

The general solution is
y(t) = C1e

−3tv1 + C2e
2tv2.

The line in the direction of v1 is a stable manifold, whereas the line in v2 direction is a
unstable manifold. The origin is a saddle point.

3. Consider

y′ = Ay, A =

(
1 2
2 4

)
.

The eigenvalues of A are λ1 = 0 and λ2 = −5. The corresponding eigenvectors are

v1 =

(
2
−1

)
, v2 =

(
1
2

)
.

The general solutions are y(t) = C1v1 + C2e
−5tv2. All solutions approach the line C1v1.
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Case 2. λi are complex conjugate.

λ1 = α+ iω, λ2 = α− iω.

Since A is real-valued, the corresponding eigenvectors are also complex conjugate:

w1 = u + iv, w2 = u− iv.

We have two independent complex-valued solutions: z1 = eλ1tw1 and z2 = eλ2tw2.

1. Finding real fundamental solutions Since our equation (2.25) has real coefficients, its real-
valued solution can be obtained by taking the real part (or pure imaginary part ) of the complex
solution. In fact, suppose z(t) = x(t) + iy(t) is a complex solution of the real-value ODE
(2.25). Then

d

dt
(x(t) + iy(t)) = A (x(t) + iy(t)) .

By taking the real part and the imaginary part, using the fact that A is real, we obtain

dx

dt
= Ax(t),

dy

dt
= Ay(t)

Hence, both the real part and the imaginary part of z(t) satisfy the equation.

Now, let us take the real part and the imaginary part of one of the above solution:

z1(t) =
(
eαt(cosωt+ i sinωt)

)
(u + iv)

Its real part and imaginary part are respectively

y1(t) = eαt (cosωtu− sinωtv)

y2(t) = eαt (sinωtu + cosωtv) .

The other solution z2 is the complex conjugate of z1. We will get the same real solutions
from taking the real and imaginary parts of z2.

You may wonder now whether u and v are independent. Indeed, if v = cu for some c ∈ R,
then

A(u + iv) = λ1(u + iv)

gives
A(1 + ic)u = λ1(1 + ic)u

Au = λ1u = (α+ iω)u

This yields
Au = αu, and ωu = 0,

because A is real. This implies ω = 0 if u 6= 0. This contradicts to that the eigenvalue λ1

has nontrivial imaginary part. This shows that u and v are independent.

From the independence of u and v, we conclude that y1 and y2 are also independent, and
they constitute a basis in the solution space S0.
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2. Phase portrait A general solution is given by

y(t) = C1y1(t) + C2y2(t)

= C1e
αt (cosωtu− sinωtv) + C2e

αt (sinωtu + cosωtv)

= eαt ((C1 cosωt+ C2 sinωt)u + (C2 cosωt− C1 sinωt)v)

= Aeαt (cos(ωt− ω0)u + sin(ωt− ω0)v) ,

where (C1, C2) = A(cosω0, sinω0).

• When α = 0, these are circles (ellipses);

• When α 6= 0, the trajectories are spirals.

3. Stability of the 0 state. There are three cases for the structure of the solutions.

• α = 0: The eigenvalues are pure imaginary. All solutions are ellipses.

• α < 0: The solution are spirals and tend to 0 as t→∞. The 0 state is a spiral sink.

• α > 0: The solution are spirals and tend to 0 as t→ −∞. The 0 state is a spiral source.

Example

1. Consider the matrix

A =

(
2 1
−4 −1

)
,

The characteristic equation is det(λI−A) = λ2−λ−2 = 0. The roots are λ1 = (1+i
√

7)/2
and λ2 = (1− i

√
7)/2. The corresponding eigenvectors are

v1 =

(
−2

3− i
√

7

)
:= u + iw, v2 =

(
−2

3 + i
√

7

)
:= u− iw.

u =

(
−2
3

)
, w =

(
0

−
√

7

)
.

We get two complex-valued solutions z1 = eλ1tv1 and z2 = eλ2tv2. The real solutions are
their real parts and imaginary parts. They are

y1 = et/2 (cos(ωt)u− sin(ωt)w) ,

y2 = et/2 (sin(ωt)u + cos(ωt)w) ,

where ω =
√

7/2. The general solutions are spirals leaving from 0. The 0 is an unstable
state.

Case 3. λ1 = λ2 are real and there is only one eigenvector.

Let us see some examples first to get some intuition how to find fundamental solutions.
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Examples

1. Consider the ODE

y′ = Ay, A =

(
r 1
0 r

)
,

where r is a constant. The eigenvalue of A is r and the corresponding eigenvector is

e1 =

(
1
0

)
.

The y2 component satisfies the single equation

y′2 = ry2.

We obtain y2(t) = C2e
rt. By plugging this into the first equation

y′1 = ry1 + C2e
rt,

we find y1(t) = C2te
rt is a special solution. The general solution of y1 is

y1(t) = C2te
rt + C1e

rt.

We can express these general solutions in vector form:

y(t) = C1e
rt

(
1
0

)
+ C2

[
ert
(

0
1

)
+ tert

(
1
0

)]
= C1y1(t) + C2y2(t),

where
y1(t) = erte1, y2(t) = terte1 + erte2.

2. Consider the ODE

y′ = Ay, A =

(
1 −1
1 3

)
.

The characteristic equation

0 = det(λI−A) = (λ− 1)(λ− 3) + 1 = (λ− 2)2.

has a double root λ = 2. The corresponding eigenvector satisfies

(A− 2I)v = 0(
−1 −1
1 1

)(
v1

v2

)
=

(
0
0

)
.
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This yields a solution, called v1:

v1 =

(
1
−1

)
.

This is the only eigenvector. The solution e2tv1 is a solution of the ODE. To find the other
independent solution, we expect that there is a resonant solution te2t in the direction of v1.
Unfortunately, te2tv1 is not a solution unless v1 = 0. Therefore, let us try another kind of
solution

y(t) = te2tv1 + eµtv2,

for some unknown vector v2. We plug it into the equation y′ = Ay to find v2:

y′ = (e2t + 2te2t)v1 + µeµtv2,

we obtain
2v1te

2t + v1e
2t + µeµtv2 = A(v1te

2t + v2e
µt)

Using Av1 = 2v1, we get
v1e

2t + µeµtv2 = Av2e
µt

This should be valid for all t. Hence, we get µ = 2 and

(A− 2I)v2 = v1.

That is (
−1 −1
1 1

)(
v1

v2

)
=

(
1
−1

)
.

This gives v1 + v2 = −1. So,

v2 =

(
0
−1

)
.

is a solution.

Now, we find two solutions

y1 = e2tv1

y2 = te2tv1 + e2tv2.

Now, let us explain general theory.

1. Finding fundamental solutions The double root case can be thought as a limiting case of
two distinguished roots λ1 and λ2 with λ2 → λ1. In this limiting process,

1

λ2 − λ1

(
eλ2tv2(λ2)− eλ1tv1

)
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is a solution for all λ1 and λ2. We fix λ1 and let λ2 → λ1. The eigenvector v2 depends on
λ2. This limiting process is equivalent to differentiate eλtv(λ) in λ at λ1, where v(λ) is the
eigenvector corresponding to λ. This derivative is

d

dλ

(
eλtv(λ)

)
= teλ1tv1 + eλ1t

∂v

∂λ
.

The new vector ∂v
∂λ is denoted by v2. By plugging teλ1tv1 + eλ1tv2 into the equation, we

conclude that v2 should satisfies

(A− λ1I)v2 = v1.

The solvability of v2 comes from the follows. LetNk be the kernel (null space) of (A−λ1I)k,
k = 1, 2. From the definition of Nk, we have the following mapping chain

N2
A−λ1I−→ N1

A−λ1I−→ {0}.

Since v1 is the only eigenvecto, we thus have N1 =< v1 >, the span of v1. In the map
A − λ1I : N2 → N1, the domain space is N2 = R2 from Caley-Hamilton theorem. 1

We have seen that the kernel is N1, which has dimension 1. Therefore the range space has
dimension 1. Here, we use a theorem of linear map: the sum of the dimensions of range
and kernel spaces equals the dimension of the domain space. We conclude that the range
(A− λ1I)N2 has to be N1. Therefore, there exists a v2 ∈ N2 such that

(A− λ1I)v2 = v1.

The matrix A, as represented in the basis v1 and v2, has the form

A[v1,v2] = [v1,v2]

(
λ1 1
0 λ1

)
This is called the Jordan canonical form of A. We can find two solutions from this form:

y1(t) = eλ1tv1,

y2(t) = teλ1tv1 + eλ1tv2

1 The Caley-Hamilton theorem states that A satisfies the matrix equation:

p(A) = 0.

This can be seen from the following argument. Let Q(λ) be the adjugate matrix of A− λI, i.e.

Q(λ) =

(
d− λ −b
−c a− λ

)
=

(
d −b
−c a

)
− λI.

This adjugate matrix commutes with A (check by yourself). Further,

(A− λI)Q(λ) = Q(λ)(A− λI) = p(λ)I.

This is a polynomial in λ with matrix coefficients. The coefficients commute with A. When we plug λ = A, we
immediately get p(A) = 0.



2.5. 2× 2 LINEAR SYSTEMS 69

You can check the Wronskian W [y1,y2](t) 6= 0. Thus, y1 and y2 form a fundamental
solution. The general solution has the form

y(t) = C1y1(t) + C2y2(t).

2. Stability of 0 state The stability of the 0 state (called the critical state) relies on the sign of
λ1. We have

• λ1 < 0: the 0 state is a stable equilibrium.

• λ1 > 0: the 0 state is an unstable equilibrium.

• λ1 = 0: the general solution reads

y(t) = C2tv2 + C1v1,

which tends to∞ as t→∞. Therefore, the 0 state is “unstable.”

Summary of Equilibria We can plot a stability diagram on the plane of the two parameters T
and D, the trace and the determinant of A:

T = a+ d, D = ad− bc.

The eigenvalues of A are

λ1 =
T +
√
T 2 − 4D

2
, λ2 =

T −
√
T 2 − 4D

2
.

Let ∆ := T 2 − 4D. On the T -D plane, the parabola ∆ = 0, the line D = 0 and the line T = 0
partition the plane into the following regions. The status of the origin is as the follows.

• ∆ > 0, D < 0, the origin is a saddle point.

• ∆ > 0, D > 0, T > 0, the origin is an unstable node (source).

• ∆ > 0, D > 0, T < 0, the origin is an stable node (sink).

• ∆ < 0, T < 0, the origin is a stable spiral point.

• ∆ < 0, T > 0, the origin is an unstable spiral point.

• ∆ < 0, T = 0, the origin is an stable center point.

• ∆ = 0, T < 0, the origin is a stable node.

• ∆ = 0, T > 0, the origin is an unstable node.

• ∆ = 0, T = 0, the origin is an unstable node.
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Bifurcations

• The transition from D < 0 to D > 0, the eigenvalues change from opposite sign change
to same sign sign, the origin changes from a saddle to a node. Such transition is called a
saddle-node bifurcation.

• The transition from T < 0 to T > 0 in the regionD > 0, the origin changes from stable spiral
to unstable spiral. At T = 0, the origin is a center. Such transition is called an Andronov-Hopf
bifurcation.

For detailed figure, see http://www.scholarpedia.org/article/Equilibrium#Non-hyperbolic_
Equilibria

Homeworks.

1. Consider A =

(
1 −2
3 −4

)
. Find the exact solution of y′ = Ay and analyze the stability of

0.

2. Consider A =

(
3 6
−1 −2

)
. Find the exact solution of y′ = Ay and analyze the stability

of 0.

3. Consider A =

(
1 i
−i 1

)
. Find the exact solution of y′ = Ay and analyze the stability of

0.

4. Solve the circuit system (
I
V

)′
=

(
−R1

L − 1
L

1
C − 1

CR2

)(
I
V

)
and analyze the stability of the 0 state.

5. B-D, pp. 411: 25, 26, pp. 493: 19.

http://www.scholarpedia.org/article/Equilibrium#Non-hyperbolic_Equilibria
http://www.scholarpedia.org/article/Equilibrium#Non-hyperbolic_Equilibria


Chapter 3

Nonlinear systems in two dimensions

3.1 Three kinds of physical models

We shall introduce three kinds of physical models which are 2× 2 nonlinear dynamical systems.

• Lotka-Velterra system

• Conservative mechanical system

• Dissipative mechanical system

3.1.1 Lotka-Volterra system

Predator-prey model

The populations of a predator and prey exhibit interesting periodic phenomenon. A simple example
is the fox-rabbit system. Let R(t) be the population of rabbit and F (t) the population of fox. The
model proposed by Lotka-Volterra reads

Ṙ = αR− βRF
Ḟ = −γF + δRF.

Here,

• α the growth rate of rabbits,

• γ death rate of foxes,

• RF the interaction rate of rabbits and foxes

• βRF the amount of rabbits being eaten

• δRF the amount of foxes increase from eating rabbits

71
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Examples of numerical values of the parameters are: α = 2, β = 1.2, γ = 1, δ = 0.9.
If we take the environmental constraint into account, the model for the rabbits should be changed

to

Ṙ = αR

(
1− R

K

)
− βRF.

An epidemic model

Consider the spread of a viral epidemic through an isolated population. Let x(t) denote the number
of susceptible people at time t, y(t) the number of infected people. The epidemic model reads

ẋ = 0.0003x− 0.005xy

ẏ = −0.1y + 0.005xy

The first equation means that the birth rate of susceptible people is 0.0003. Susceptible people are
infected through interaction and the infected rate is proportional to xy. The second equation means
that the death rate of infected people is 0.1. The infected rate is the same as that in the first equation.

Competitive Lotka-Volterra equation

This is a model for population dynamics of two species that competing same resource. Let x1 and
x2 are the populations of two species that compete same resources. The model for each species
follows the logistic equation. The competing model reads

ẋ1 = r1x1

(
1− x1

K1

)
− α1x1x2

ẋ2 = r2x2

(
1− x2

K2

)
− α2x1x2

The quantity x1x2 is the interaction rate. It causes decreasing of population of each species due to
competition. These decreasing rates are α1x1x2 and α2x1x2, respectively. Here α1 > 0, α2 > 0.
As an example, we see two types of snails, the left-curling and the right-curling, compete the same
resource. Because they are the same kind of snail, they have the same growth rate and carrying
constant. Let us take r1 = r2 = 1 and K1 = K2 = 1. We take α1 = α2 = a. We will see later that
the structure of the solutions is very different between a < 1 and a > 1. For further study, see
https://en.wikipedia.org/wiki/Competitive_Lotka-Volterra_equations
http://www.scholarpedia.org/article/Predator-prey_model

3.1.2 Conservative mechanical system

The Newton’s mechanics read
mẍ = F (x).

When F has the form
F = −∇V (x).

https://en.wikipedia.org/wiki/Competitive_Lotka-Volterra_equations
http://www.scholarpedia.org/article/Predator-prey_model
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The mechanical system is called conservative. The function V iOS called the potential. Typical
examples are

• Spring-mass system: V (x) = 1
2kx

2;

• Gravitational system: V (x) = − G
|x| ;

• Simple pendulum: the unknown is θ, the equation is

mlθ̈ = −mg sin θ.

The potential V is V (θ) = −g
l cos θ.

• Duffing oscillator: the potential is

V (x) = −δ
2
x2 +

1

4
x4.

The dynamics is described by
ẍ = −∇V (x). (3.1)

• Cubic potential: we consider the same equation (3.1) with

V (x) =
1

2
(−x2 + x3).

These conservative systems conserve energy. We will give more examples in later chapter.

3.1.3 Dissipative systems

In real world, many conservative mechanical systems are to ideal. Physically, there are some friction
which dissipates energy. Here are some examples

• spring-mass system with damping:

ẍ+ γẋ+ ω2x = f

where γ > 0 is the damping coefficient.

• van der pol oscillator:
This is a nonlinear LRC circuit, where the resistance is replaced by a vacuum tube (or a
semiconductor). The I-V relation of a vacuum tube is

V = α

(
I3

3
− I
)
.

Thus, the circuit equation is modified to

L
dI

dt
+
Q

C
+ α

(
I3

3
− I
)

= V (t).
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In terms of I , we get

LÏ + α(I2 − 1)İ +
I

C
= f(t).

The term α(I2 − 1) is a friction term when |I| < 1 and becomes an amplification term when
|I| > 1. http://www.scholarpedia.org/article/Van_der_Pol_oscillator

• Duffing oscillator with damping:

ẍ+ γ−̇δx+ x3 = f(t).

https://en.wikipedia.org/wiki/Duffing_equation. http://www.scholarpedia.
org/article/Duffing_oscillator

3.2 Autonomous systems

We consider general system of the form{
ẋ = f(x, y)
ẏ = g(x, y)

(3.2)

We shall study the initial value problem for this system with initial data (x(t0), y(t0)) = (x0, y0),
where t0 is the starting time. We may write this problem in vector form

ẏ = f(y) (3.3)

y(t0) = y0. (3.4)

First, we have the standard existence and uniqueness theorems.

Theorem 3.1. If f is continuously differentiable, then the initial value problem (3.3) and (3.4) has
a unique solution for t in some small interval (t0 − δ, t0 + δ).

Notice that the vector field f(y) we consider here is independent of t explicitly. Such systems
are called autonomous systems. For autonomous systems, we notice the following things.

• It is enough to study the initial value problems with t0 = 0. For if y(t) is the solution with
y(t0) = y0, then z(t) := y(t− t0) is the solution with z(0) = y0, and y(·) and z(·) trace the
same trajectory on the plane. We call such trajectories the orbits, the y-plane the phase plane.

• Two orbits cannot intersect on the phase plane. This follows from the uniqueness theorem.

• An orbit cannot end in finite region unless its maximum interval of existence goes to infinity.
This means that it is not possible to find a finite time T such that (i) y(·) exists in [0, T ), (ii)
y(·) can not be extended beyond T , and {y(t)|t ∈ [0, T )} stays in finite region. For the limit
limt→T− y(t) must exist and the existence theorem allows us to extend the solution beyond
T . Therefore, we can only have either limt→T− |y(t)| =∞ or T =∞.

http://www.scholarpedia.org/article/Van_der_Pol_oscillator
https://en.wikipedia.org/wiki/Duffing_equation
http://www.scholarpedia.org/article/Duffing_oscillator
http://www.scholarpedia.org/article/Duffing_oscillator


3.3. EQUILIBRIA AND LINEARIZATION 75

Our goal is to characterize the orbital structure on the phase plane. There are some special orbits
which play important roles in the characterization of the whole orbital structure. They are

(i) equilibria,

(ii) periodic orbits,

(iii) equilibria-connecting orbits: heteroclinic orbits, homoclinic orbits.

3.3 Equilibria and linearization

Definition 3.1. A state ȳ is called an equilibrium of (3.3) if f(ȳ) = 0.

The constant function y(t) ≡ ȳ is a solution. We want to study the behaviors of solutions of
(3.3) which take values near ȳ. It is natural to take Taylor expansion of y about ȳ. We have

ẏ = f(y) = f(ȳ) +
∂f

∂y
(ȳ) (y − ȳ) +O(|y − ȳ|2).

Let u = y − ȳ. Then u(t) satisfies
u̇ = Au + g(u), (3.5)

where

A :=
∂f

∂y
(ȳ) , g(u) := f(ȳ + u)− f(ȳ)− ∂f

∂y
(ȳ) u = O(|u|2).

System (3.5) is called the linearized equation (or the perturbed equation) of (3.3) about ȳ. We have
already known the structure of the linear equation

v̇ = Av. (3.6)

Do the orbits of (3.5) and (3.6) look “similar”?

3.3.1 Hyperbolic equilibria

Before answering the question in the last part of the above subsection, let us first study the following
two examples to get feeling about perturbation.

Example 1: linear perturbation problem. We consider the following system

v̇ = Av, A =

(
a b
c d

)
. (3.7)

and its perturbation system
v̇1 = A1v1, (3.8)
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with A1 ∼ A. We ask when do the solutions of (3.8) and (3.7) look similar? The quantitative
behaviors of solutions of (3.7) are determined by the eigenvalues of A. Namely,

λ1 =
1

2

(
T +

√
T 2 − 4D

)
, λ2 =

1

2

(
T −

√
T 2 − 4D

)
.

where T = a+ d and D = ad− bc. It is clear that λi are continuous in T and D, hence in a, b, c, d,
or hence in A. Thus, if we vary A slightly, then the change of λi is also small on the complex plane.

Now suppose
Reλi(A) 6= 0, i = 1, 2. (3.9)

Then this property is still satisfied for those A1 sufficiently close to A.1 The property (3.9) corre-
sponds to that the zero state is a (spiral) source, a (spiral) sink, or a saddle. We conclude that sink,
source and saddle are persistent under small linear perturbation.

Homework.

1. Suppose Reλi(A) 6= 0, i = 1, 2. Let

A1 =

(
a1 b1
c1 d1

)
.

be a perturbation of A. Find the condition on A1 so that

Reλi(A1) 6= 0, i = 1, 2.

Second order perturbation The above structure of trajectories near 0 is still valid for nonlinear
perturbation. Let us consider {

ẋ = r1x
ẏ = r2y + βx2.

(3.10)

The solution for x(t) is
x(t) = x0e

r1t. (3.11)

Plug this into the second equation, we get

ẏ = r2y + βx2
0e

2r1t.

Let us assume r2 6= 2r1 to avoid the resonance situation. Then the general solution for y(t) is

y(t) = Aer2t +Be2r1t.

We plug this into the y-equation and obtain

Ar2e
r2t + 2r1Be

2r1t = r2(Aer2t +Be2r1t) + βx2
0e

2r1t.

1The eigenvalues λi are continuous function in T and D, or equivalently, a, b, c, d. If Reλi 6= 0 for a specific
a, b, c, d, then a small perturbation of a, b, c, d still have nonzero Reλi.
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This yields
2r1B = r2B + βx2

0.

Thus, general solutions of y(t) reads

y(t) = Aer2t +
βx2

0

2r1 − r2
e2r1t. (3.12)

We see that the asymptotic behavior of (x(t), y(t)) is

• When r1 < 0 and r2 < 0, then (x(t), y(t))→ (0, 0) as t→∞. We call (0, 0) a sink.

• When r1 > 0 and r2 > 0, then (x(t), y(t))→ (0, 0) as t→ −∞. We call (0, 0) a source.

• When r1 > 0 and r2 < 0, we have two subcases:

– when x0 = 0, then (x(t), y(t))→ (0, 0) as t→∞,

– when A = 0, then (x(t), y(t))→ (0, 0) as t→ −∞,

The orbit with x0 = 0 is called a stable manifold passing (0, 0), while the orbit with A = 0 a
unstable manifold. We denote the former one by Ms and the latter one by Mu. We call (0, 0)
a saddle point. By eliminate t from (3.11) and (3.12), we can obtain the equations of Ms and
Mu as the follows.

Ms : x = 0,

Mu : y =
β

2r1 − r2
x2.

• When r1 < 0 and r2 > 0, (0, 0) is a saddle point. The stable and unstable manifolds are

Mu : x = 0,

Ms : y =
β

2r1 − r2
x2.

General Theory for Hyperbolic Critical Points Let us go back to the general formulation (3.3).
We have the following definitions.

Definition 3.2. An equilibrium ȳ of (3.3) is called hyperbolic if all eigenvalues of the variation
matrix A := ∂f/∂y(ȳ) have only nonzero real parts.

Definition 3.3. An equilibrium ȳ of (3.3) is called

• a sink if y(t)→ ȳ as t→∞,

• a source if y(t)→ ȳ as t→ −∞,

where y(t) is any solution of (3.3) with y(0) ∼ ȳ.
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Definition 3.4. 1. A curve Ms(ȳ) is called a stable manifold passing through the equilibrium ȳ
if y(t)→ ȳ as t→∞ for any solution y(t) with y(0) ∈Ms(ȳ).

2. A curve Mu(ȳ) is called a unstable manifold passing through the equilibrium ȳ if y(t)→ ȳ
as t→ −∞ for any solution y(t) with y(0) ∈Mu(ȳ).

3. An equilibrium ȳ which is the intersection of a stable manifold and a unstable manifold is
called a saddle point.

Theorem 3.2. Consider the autonomous system (3.3) and its linearization (3.7) about an equilib-
rium. Suppose ȳ is hyperbolic. Then

ȳ is a


source
sink
saddle

 of the nonlinear equation

if and only if

0 is a


source
sink
saddle

 of the linearized equation

In other word, hyperbolicity is persistent under small perturbation.

Remark. The proof of this theorem is beyond the scope of this note, you may read Arnold’s book
for the proof. But if you have learned the existence theorem, then it is a modification of the existence
theorem.
Remark. If an equilibrium ȳ is not hyperbolic, then the perturbation can break the local orbital
structure. Let us see the following example. Consider{

ẋ = y + γ (x2+y2)
2 x

ẏ = −x+ γ (x2+y2)
2 y

When γ = 0, the orbits are circles with center at the origin. To see the effect of perturbation, we
multiply the first equation by x and the second equation by y then add them together. We obtain

ρ̇ = γρ2

where ρ = x2 + y2. The solution of ρ(t) is

ρ(t) =
1

ρ(0)−1 − γt
.

When γ < 0, the solution tends to 0 as t→∞. When γ > 0, the solution tends to zero as t→ −∞.
Moreover, the solution ρ(t) → ∞ as t → ρ(0)−1/γ. Thus, the center becomes a sink if γ < 0 and
a source when γ > 0.
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In fact, we can solve this equation in polar coordinate. Let ρ = x2 + y2, tan θ = y/x. We have
found the equation for ρ. The equation for θ is

θ̇ =
d

dt
tan−1

(y
x

)
=
xẏ − yẋ
x2 + y2

.

Plug the equation ẋ, ẏ into θ equation, we get

θ̇ = −1.

The solutions are spirals.

3.3.2 The equilibria in the competition model

Competition model The two-species competition model reads

ẋ1 = r1x1

(
1− x1

K1

)
− α1x1x2 = f1(x1, x2)

ẋ2 = r2x2

(
1− x2

K2

)
− α2x1x2 = f2(x1, x2).

Equilibria We will study the stability of its equilibria, which are the zeros of

f1(x1, x2) = 0, f2(x1, x2) = 0.

The null line of the vector field in the x-direction are

r1x1

(
1− x1

K1
− x2

L1

)
= 0,

where

L1 =
r1

α1
.

This yields

x1 = 0, 1− x1

K1
− x2

L1
= 0.

They are called the x-nullclines. Similarly, the y-nullclines are

x2 = 0, 1− x2

K2
− x1

L2
= 0,

where L2 = r2
α2

.
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Some biological relevant parameters The quantity L1 = r1/α1 measures the “competitive ca-
pacity” of species 1. The quantity L1 is large means that r1 is large (species 1 has large growth rate)
or α1 is small (it is less sensitive to competition from species 2). Let us define

s1 =
L1

K2
, s2 =

L2

K1
.

The quantity s1 measures the competitive ratio of species 1 relative to the maximal population of
species 2. s1 > 1 means that species 1 is more competitive relative to the maximal population of
species 2.

The intersection of a x-nullcline and a y-nullcline is an equilibrium. We are only interested
in those equilibria in the first quadrant because xi is the population of the i species which is non-
negative. There are four cases.

• Case 1: s1 > 1 and s2 < 1 (species 1 is more competitive)

• Case 2: s1 < 1 and s2 > 1 (species 2 is more competitive)

• Case 3: s1 < 1 and s2 < 1 (both species are not competitive)

• Case 4: s1 > 1 and s2 > 1 (both species are competitive)

In the first two cases, there are three equilibria in the first quadrant:

E0 = (0, 0), E1 = (K1, 0), E2 = (0,K2).

In the last two cases, there are four equilibria:

E0 = (0, 0), E1 = (K1, 0), E2 = (0,K2) and E∗ = (x∗1, x
∗
2),

x∗1 =
1

K2
− 1

L1
1

K1K2
− 1

L1L2

= L2(s1−1)
s1s2−1

x∗2 =
1

K1
− 1

L2
1

K1K2
− 1

L1L2

= L1(s2−1)
s1s2−1 .

Stability The variation matrix ∂f
∂x at (x1, x2) reads

∂f

∂x
(x1, x2) =

 r1

(
1− 2x1

K1
− x2

L1

)
− r1x1

L1

− r2x2
L2

r2

(
1− 2x2

K2
− x1

L2

)  .

We get
∂f

∂x
(0, 0) =

(
r1 0
0 r2

)
,
∂f

∂x
(K1, 0) =

(
−r1 −K1

K2

r1
s1

0 r2(1− 1
s2

)

)
,

∂f

∂x
(0,K2) =

(
r1(1− 1

s1
) 0

− r2K2
L2

−r2

)
,

In all cases, E0 is a unstable node.
After some computation, we can draw the following conclusion.



3.4. PHASE PLANE ANALYSIS 81

Theorem 3.3. In the two-species competition model, the equilibria and their stability are the fol-
lows.

• Case 1: s1 > 1 and s2 < 1: E1 is a stable sink. E2 is unstable saddle.

• Case 2: s1 < 1 and s2 > 1: E2 is a stable sink. E1 is unstable saddle.

• Case 3: s1 < 1 and s2 < 1: E1 and E2 are stable sinks and E∗ is a saddle.

• Case 4: s1 > 1 and s2 > 1: both E1 and E2 are saddles and E∗ is a stable node.

Ecologically, this theorem says that co-existence of two competing species can occur only when
both are competitive.

In the case of the competitive model for the left curling snails and right curling snails, both have
the same parameters r, K and α. Thus, both have the same competitive ratio:

s =
r

αK
.

If s > 1, both would be competitive and they would co-exist. But this is not the case we have found.
Instead, we find only one kind exists now in nature. To give an explanation, we notice that the term
−r/Kx2

1 represents the self competition, while the term −αx1x2 the cross competition. We should
expect that these two competition terms are about the same magnitude. That is, r/K ∼ α. In this
case, s ∼ 1. If the cross competition is slightly stronger than the self competition, we would have
s < 1. This would yield that only one species can survive in long time.
Ref. Clifford Henry Taubes, Modeling Differential Equations in Biology, pp. 23, pp. 73, pp. 81.

Homeworks.

1. Compute the eigenvalues of the variation matrix at E1 and E2.

2. Compute the variation matrix at (x∗, y∗) and its eigenvalues.

3. Justify the statements of this theorem.

3.4 Phase plane analysis

In this section, we shall use Maple to plot the vector field and to find orbits which connect nodes.

Include packages we type
> with(DEtools):
> with(plots):

Define the vector field (f,g) for the competition model
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> f := r[1]*x(t)*(1-x(t)/K[1])-alpha[1]*x(t)*y(t);
> g := r[2]*y(t)*(1-y(t)/K[2])-alpha[2]*x(t)*y(t);

f := r1 x(t) (1− x(t)

K1
)− α1 x(t) y(t)

g := r2 y(t) (1− y(t)

K2
)− α2 x(t) y(t)

Define the following quantities.

> L[1] := r[1]/alpha[1]:
> L[2] := r[2]/alpha[2]:
> s[1] := L[1]/K[2]:
> s[2] := L[2]/K[1]:

The equilibria are those states where $(f,g) = (0,0)$. They are

E 0 = (0,0), E 1 = (K 1,0), E 2 = (0,K 2), E* = (xs,ys), where (xs,ys) are given by

> xs := L[2]*(s[1]-1)/(s[1]*s[2]-1):
> ys := L[1]*(s[2]-1)/(s[1]*s[2]-1):

We have four cases: Case 1: s 1 > 1, s 2 < 1:

> Case1 := {
> r[1] = 3, K[1] = 1, alpha[1] = 1,
> r[2] = 2, K[2] = 2, alpha[2] = 4};
> evalf(subs(Case1,[s[1],s[2]]),3);

Case1 := {r1 = 3, K1 = 1, α1 = 1, r2 = 2, K2 = 2, α2 = 4}
[1.50, 0.500]

Plot the the curves where $(f,g) = (0,0)$:

> fig1 :=
> implicitplot( {
> subs(Case1,x(t)=x1,y(t)=x2,f=0),
> subs(Case1,x(t)=x1,y(t)=x2,g=0) },
> x1=-0.2..1.5,x2=-0.2..3,
> grid=[100,100],color=navy):
> display(fig1,axes=boxed);
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x1
> f1 := subs(Case1,x(t)=x1,y(t)=x2,f):
> g1 := subs(Case1,x(t)=x1,y(t)=x2,g):
> vsign := piecewise(
> 2, f1 > 0 and g1 > 0,
> -2, f1 > 0 and g1 < 0,
> -1, f1 < 0 and g1 < 0,
> 1, f1 < 0 and g1 > 0);
> plot3d(vsign,x1=-0.2..1.5,x2=-0.2..3,axes=frame,grid=[100,100],
> orientation =[-90,0],style=HIDDEN,shading=ZHUE);

–0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
x1

0

0.5

1

1.5

2

2.5

3

x2

Plot the vector field (f,g) for case 1:
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> fig2 := DEplot( subs(Case1,
> [diff(x(t),t)=f,diff(y(t),t)=g]),[x(t),y(t)], t=0..20,
> x=-0.2..1.5,y=-0.2..3,
> arrows=small,title=‘Vector field‘,
> color=subs(Case1,[f/sqrt(fˆ2+gˆ2),g/sqrt(fˆ2+gˆ2),0.1])):
> display({fig1,fig2},axes=boxed);

Vector field
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x1

Find the separametrices. You need to try to find a proper initial data such that it generates a
separametrix.

> fig3 := DEplot( subs(Case1,
> [diff(x(t),t)=f,diff(y(t),t)=g]),[x(t),y(t)],t=0..20,
> [[x(0)=0.01,y(0)=3]],stepsize=0.05,x=-0.2..1.5,y=- 0.2..3,
> color=cyan,arrows=LARGE,dirgrid=[10,10],linecolor=red):
> fig4 := DEplot( subs(Case1,
> [diff(x(t),t)=f,diff(y(t),t)=g]),[x(t),y(t)], t=0..20,
> [[x(0)=-0.01,y(0)=3]],stepsize=0.05,x=-0.2..1.5,y= -0.2..3,
> color=cyan,arrows=LARGE,dirgrid=[10,10],linecolor=blue):
> fig5 := DEplot( subs(Case1,
> [diff(x(t),t)=f,diff(y(t),t)=g]),[x(t),y(t)], t=0..20,
> [[x(0)=0.001,y(0)=1]],stepsize=0.05,x=-0.2..1.5,y=-0.2..3,
> color=cyan,arrows=LARGE,dirgrid=[10,10],linecolor=orange):
> fig6 := DEplot(subs(Case1,
> [diff(x(t),t)=f,diff(y(t),t)=g]),[x(t),y(t)], t=0..20,
> [[x(0)=-0.001,y(0)=1]],stepsize=0.05,x=-0.2..1.5,y=-0.2..3,
> color=cyan,arrows=LARGE,dirgrid=[10,10],linecolor=black):
> display({fig1,fig3,fig4,fig5,fig6},axes=boxed);
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3.5 Periodic solutions

3.5.1 Predator-Prey system

Let x be the population of rabit (prey) and y the population of fox (predator). The equation for this
predator-prey system is

ẋ = ax− αxy := f(x, y)

ẏ = −by + βxy := g(x, y),

where the coefficients a, b, α, β > 0. The equilibria are those points such that f(x, y) = 0 and
g(x, y) = 0. There are two equilibrate:

E0 = (0, 0) and E∗ = (b/β, a/α).

At E0, the linearized equation is
˙δy =

∂F

∂y
(0)δy.

The corresponding variation matrix is

∂F

∂y
(0) =

(
a 0
0 −b

)
.

We get E0 is a saddle point, because one eigenvalue is positive and the other is negative. At E∗, the
linearized matrix is

∂F

∂y
(E∗) =

(
0 −αb/β

αb/β 0

)
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The eigenvalues are pure imaginary. So E∗ is an elliptic equilibrium. Near E∗, the solution is
expected to be a closed trajectories ( a periodic solution). In fact, we can integrate the predator-prey
system as the follows. We notice that

dy

dx
=
y(−b+ βx)

x(a− αy)

is separable. It has the solution:

a ln y − αy + b lnx− βx = C.

When C is the integration constant. The trajectories are closed curves surrounding E∗. Thus, the
solutions are periodic solutions. For further study, see http://www.scholarpedia.org/
article/Predator-prey_model

Homeworks.

1. * How does the period T depend on the coefficients?

3.5.2 van der Pol oscillator

In electric circuit theory, van der Pol proposed a model for electric circuit with vacuum tube, where
I = φ(V ) is a cubic function. Consider a circuit system with the resistor replaced by a device which
obeys a nonlinear Ohm’s law: the potential drop across this device is

∆V = α

(
I3

3
− I
)
, α > 0.

Such a device does appear in vacuum tubes or semiconductors. The corresponding L-C-R circuit
equation becomes

L
dI

dt
+
Q

C
+ α

(
I3

3
− I
)

= V (t). (3.13)

Differentiate in t, we obtain the Van der Pole equation:

L
d2I

dt2
+ α(I2 − 1)

dI

dt
+
I

C
= f(t). (3.14)

where f(t) = V̇ (t) is the applied electric field. The system is dissipative (damping) when I2 > 1
and self current increasing when I2 < 1.

Let x be the current and let us consider a normalized system:

ẍ+ ε(x2 − 1)ẋ+ x = 0.

Through a Liénard transform:

y = x− x3

3
− ẋ

ε

http://www.scholarpedia.org/article/Predator-prey_model
http://www.scholarpedia.org/article/Predator-prey_model
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the van der Pol equation can be expressed as

ẋ = ε(x− x3

3
− y)

ẏ =
x

ε

We can draw the nullclines: f = 0 and g = 0. From the direction field of (f, g), we see that the
field points inwards for large (x, y) and outward for (x, y) near (0, 0). This means that there will be
a limiting circle in between.

As ε >> 1, we can observe that the time scale on x variable is fast whereas it is slow on the
y-variable. That is,

ẋ(t) = O(ε), ẏ(t) = O(1/ε).

On the x− y plane, consider the curve

y = x− x3

3
.

The solution moves fast to the curve y = x − x3

3 . Once it is closed to this curve, it move slowly
along it until it moves to the critical points (±1,±2

3). At which it moves away from the curve fast
and move to the other side of the curve. The solution then periodically moves in this way.

Reference. You may google website on the Van der Pol oscillator on the web site of schol-
arpedia http://www.scholarpedia.org/article/Van_der_Pol_oscillator for
more details.

Homeworks.

1. B-D: pp. 525, 8, 9

2. B-D: pp. 527, 17

3. Plot phase portraits for the four cases in the competitive model in the last subsection.

3.6 Heteroclinic and Homoclinic and orbits

Definition 3.5. One the phase plane, an orbit which connects two equilibrium points is called a
heteroclinic orbit. If the starting and end equilibrium points are the same, the orbit is called a
homoclinic point.

Below, we shall find the homoclinic orbit for the conservative mechanics with cubic potential

ẍ = −∇V (x), V (x) =
1

2

(
−x2 + x3

)
. (3.15)

http://www.scholarpedia.org/article/Van_der_Pol_oscillator
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By multiply this equation by ẋ, we can get

ẍẋ+∇V (x)ẋ = 0.

Using Libniz rule and chain rule, we obtain

d

dt

1

2
ẋ2 +

d

dt
V (x) = 0.

This means that the quantity

H(x, ẋ) :=
1

2
ẋ2 + V (x)

is unchanged along a given orbit. Physically, this is called conservation of energy. The energy is
composed of the kinetic energy 1

2 ẋ
2 and the potential energy V (x). Along an orbit, the energy is

determined by its initial state (x(0), ẋ(0)):

E0 =
1

2
ẋ2(0) + V (x(0)).

The phase plane is the (x, ẋ) plane. The orbit on the phase plane with this energy E0 is

1

2
ẋ2 +

1

2

(
−x2 + x3

)
= E0.

Since (0, 0) is a saddle, this homoclinic orbit (x(t), ẋ(t)) of (3.15) satisfies

x(±∞) = 0, ẋ(±∞) = 0.

This leads to E0 = 0. Using separation of variable, we have

ẋ = ±
√
x2 − x3∫

dx

x
√

1− x
= ±(t+ C)

Since the system is autonomous, we may normalize C = 0. For plus sign, we use the substitution
u =
√

1− x, for minus, we use u = −
√

1− x. We get∫
2u du

(1− u2)u
= t

∫ (
1

1 + u
+

1

1− u

)
= t.

ln

∣∣∣∣1 + u

1− u

∣∣∣∣ = t.∣∣∣∣1 + u

1− u

∣∣∣∣ = et.
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When (1 + u)/(1− u) ≥ 0, we obtain

u =
et − 1

et + 1
= tanh

(
t

2

)
.

This yields

x(t) = 1− u2 = sech2

(
t

2

)
.

When (1 + u)/(1− u) < 0, we have

u =
et + 1

et − 1
= coth

(
t

2

)
.

This yields

x(t) = 1− u2 = −csch2

(
t

2

)
.

This should be the solution on the left-half plane in the phase plane. From

ẋ(t) = sinh−3

(
t

2

)
cosh

(
t

2

){
> for t > 0
< for t < 0

Hence, the branch on the upper plane is the one with t ∈ (0,∞), while the lower branch, t ∈
(−∞, 0).

Homeworks.

1. Use the same method to find the homoclinic orbits for the Duffing equation connecting (0, 0)
to (0, 0). The Duffing equation is

ẍ = −∇V (x), V (x) = −δ
2
x2 +

1

4
x4.

Below, we use Maple to plot the orbits of Duffing equation in the phase plane.
> with(DEtools):
with(plots):

> E := yˆ2/2+xˆ4/4-delta*xˆ2/2;

E :=
1

2
y2 +

1

4
x4 − 1

2
δ x2

Plot the level set for the energy. Due to conservation of energy, these level sets are the orbits.
> contourplot(subs(delta=1,E),x=-2..2,y=-2..2,grid=[80,80],contours
=[-0.3,-0.2,-0.1,0,0.1,0.2,0.3],scaling=CONSTRAINED,labels=[‘s‘,‘s’‘],
title=‘delta=1‘);
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Homework

1. Soliton appears in many physical systems such as water wave, nonlinear optics, etc. In shal-
low water, the soliton is a traveling of the so-called Korteweg and de Vries (KdV) equation

ut + 6uux + uxxx = 0.

A traveling wave of this equation is a solution of the form φ(x− ct). You can plug this φ into
the KdV equation and obtain

−cφ′ + 6φφ′ + φ′′′ = 0.

We can integrate it once and obtain

−cφ+ 3φ2 + φ′′ = C

The constant C depends on the boundary conditions at ±∞. For (bright) soliton, which are
those traveling wave solutions decay fast at x = ±∞ and the corresponding constant C = 0.
Thus, we arrive the ODE

−cφ+ 3φ2 + φ′′ = 0.

with φ(−∞) = φ(∞) = 0. The soliton is a homoclinic orbit on the phase plane (φ, φ̇). Find
close form of φ.

Heteroclinic Orbits We consider the pendulum equation

ẍ = − sinx.
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The equation can be written in the form

ẍ = −V ′(x), V (x) = − cosx.

The system has conservation of energy

d

dt

(
1

2
ẋ2 − cosx

)
= 0.

Thus,
1

2
ẋ2 − cosx = E

The system can also be written
ẋ = p, ṗ = − sinx.

On the phase plane (x, ẋ) or equivalently, (x, p), the critical points are (nπ, 0). The orbit connecting
(−π, 0) to (π, 0) is a heteroclinic orbit. This orbit has energy

E =
1

2
ẋ2 − cosx = 0− cos(π) = 1.

Thus, this heteroclinic orbit on the phase plane (x, ẋ) is determined by

1

2
ẋ2 − cosx = 1.

We can integrate this equation

ẋ2 = 2(1 + cos) = 4 cos2
(x

2

)
.

ẋ = ±2 cos
(x

2

)
.

There are two branches, one is on the upper half plane: ẋ > 0, the other is on the lower half
plane:ẋ < 0. They are symmetric. We only find the upper one. Using separation of variable, we get

dx

2 cos
(
x
2

) = dt

Call y = x/2, we get
dy

cos y
= dt.

Using polar stereographic projection:

u = tan
(y

2

)
,

dy

du
=

2

1 + u2
,

cos y =
1− u2

1 + u2
, sin y =

2u

1 + u2
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We obtain

dt =
dy

cos y
=

2du

1 + u2

1 + u2

1− u2
=

2du

1− u2
.

Integrate this, we get

t = ln

∣∣∣∣1− u1 + u

∣∣∣∣ .
We obtain the same formula as we did for the cubic potential case. You can fill in the rest of the
solution.

Homework The heteroclinic orbit also appears commonly on so-called interface shape function.
An interface shape function is which connect two states a and b by a shape function φ. It satisfies

φ′′ − F ′(φ) = 0.

The function F (a) = F (b) = 0 and has no zero between them. The shape function φ(−∞) = a
and φ(∞) = b, and φ′(±∞) = 0. What kind of condition F should satisfies in order to have a
heteroclinic orbit connecting a to b? Can you integrate it for polynomial type of F with degree than
4?



Chapter 4

Linear Systems with Constant
Coefficients

4.1 Initial value problems for n× n linear systems

A general n× n linear system of differential equation is of the form

y′(t) = Ay(t) + f(t), (4.1)

where

y =


y1

y2

...
yn

 , A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , f =


f1

f2

...
fn

 ,

Its initial value problem is to study (4.1) with initial condition:

y(0) = y0. (4.2)

4.2 Physical Models

4.2.1 Coupled spring-mass systems

Consider a spring-mass system which consists of n masses placed vertically between two walls.
The n masses and the two end walls are connected by n + 1 springs. If all masses are zeros, the
springs are “at rest” states. When the masses are greater than zeros, the springs are elongated due
to the gravitation force. The mass mi moves down yi distance, called the displacement. The goal is
to determine the displacements yi of the masses mi, i = 1, ..., n.

Let us call the spring connecting mi−1 and mi by spring i, i = 1, ..., n+ 1. Suppose the spring
i has spring constant ki. Let us call the downward direction the positive direction.

93
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1. Let me start from the simplest case: n = 1 and no bottom wall. The mass m1 elongates the
spring 1 by a displacement y1. The elongated spring has a restoration force −k1y1 acting on
m1.1 Thus, we have

m1ÿ1 = −k1y1 + f1,

where f1 = m1g, the gravitation force on m1, and g is the gravitation constant.

2. Next, let us consider the case where there is a bottom wall. In this case, both springs 1 and 2
exert forces upward to m1. The balance law becomes

m1ÿ1 = −k1y1 − k2y1 + f1.

3. Let us jump to a slightly more complicated case, say n = 3.

• The displacements
y0 = 0, y4 = 0,

due to the walls are fixed.

• The displacements y1, y2, y3 cause elongations of the springs:

ei = yi − yi−1, i = 1, 2, 3, 4.

The restoration force of spring i is

wi = kiei.

• The force exerted to mi by spring i is −wi = −kiei. In fact, when ei < 0, the spring
is shortened and it pushes downward to mass mi (the sign is positive), hence the force
is −kiei > 0. On the other hand, when ei > 0, the spring is elongated and it pull mi

upward. We still get the force −wi = −kiei < 0.

• Similarly, the force exerted to mi by spring i+ 1 is wi+1 = ki+1ei+1. When ei+1 > 0,
the spring i+ 1 is elongated and it pulls mi downward, the force is wi+1 = ki+1ei+1 >
0. When ki+1 < 0, it pushes mi upward, and the force wi+1 = ki+1ei+1 < 0. In both
cases, the force exerted to mi by spring i+ 1 is wi+1.

• Thus, the equation of motion of mi is

miÿi = wi+1 − wi + fi = ki+1(yi+1 − yi)− ki(yi − yi−1) + fi, i = 1, 2, 3.

Let us express the above equations in matrix form. For n = 4, we get

Mÿ + Ky = f .

1The minus sign is due to the direction of force is upward.
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u1 

m1 
m1 

-c1u1 

m1g 

-c1u1 

m1g 

-c2u1 

Figure 4.1: The left one is a spring without any mass. The middle one is a spring hanging a mass
m1 freely. The right one is a mass m1 with two springs fixed on the ceiling and floor.

where

M =

 m1 0 0
0 m2 0
0 0 m3

 , y =

 y1

y2

y3

 ,

K :=

 k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3 + k4

 , f =

 m1g
m2g
m3g


4.2.2 Coupled Circuit Systems

A circuit system consists of inductors, capacitors and resistors connected by wires. It can be
modeled by a graph G = (V,E), which consists of vertices V = {1, 2, ..., n} and edges E =
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{(1, 2), (1, 3), ...}, say for example. An edge (i, j) ∈ E means that there is an edge connecting
vertices i and j. In the circuit model, the edges are the wires. On each wire, there is an electric
component. The vertices (or called nodes) are those wire junctions. The circuit theory assumes the
current is uniform on each edge, that is, independent of position. Thus, a current Ie is associated
with each edge e. On each edge, there is a potential drop across each component. The potential
drops of inductor, capacitor and resistor are respectively

• inductor: Vi = LdI/dt,

• capacitor: Vc = Q/C, or V ′c = I/C,

• resistor: Vr = IR,

where L, C and R are the inductance, capacitance and resistance. The circuit equations are derived
based on the Kirchhoff laws.

• Kirchhoff’s first law: at each junction, the sum of the currents flowing in is equal to the sum
of currents flowing out.

• Kirchhoff’s second law: the potential differences around any closed loop is zero.

Example Suppose V = {1, 2, 3, 4}, E = {(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}. The component on
each edges are: R12, C34, L41, R24. There are 5 edges, thus, 5 unknowns. We choose the unknowns
to be I12, I23, I34, I41, I24.

The Kirchhoff’s first (charge) laws gives

at node 1 :I41 = I12,

at node 2 :I12 − I23 − I24 = 0,

at node 3 :I23 = I34,

at node 4 :I34 + I24 − I41 = 0.

We eliminate I23 and I41 right away from the charge laws at node1 and 3. There is one redundant
equation because of the cyclic property of this graph. Thus, the only independent condition we need
is the charge law at node 4. Now, we have 3 unknowns: I12, I24 and I34 and one charge law at node
4, which is

I34 + I24 − I12 = 0. (4.3)

The Kirchhoff’s second (voltage) law gives

cycle (1, 2, 4) :V12 + V24 + V41 = 0,

cycle (2, 3, 4) :V23 + V34 + V42 = 0.

The first one gives
R12I12 +R24I24 + L41I

′
12 = 0. (4.4)
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The second one gives
Q34/C34 − I24R24 = 0.

We differentiate this equation and get

I34/C34 − I ′24R24 = 0. (4.5)

We can eliminate I34 and get the following two equations for I12 and I24.{
R12I12 +R24I24 + L41I

′
12 = 0

I12 − I24 − I ′24R24C34 = 0.
(4.6)

Alternatively, we can choose V34 and I12 as our unknowns. In cycle (2, 3, 4), we have

V34 −R24I24 = 0.

This can represent I24 in terms of V34. We use C34V
′

34 = I34 to eliminate I34. Finally, at node 4
and the cycle (1, 2, 4), we have {

C34V
′

34 + V34/R24 − I12 = 0
L41I

′
12 +R12I12 + V34 = 0.

(4.7)

Homeworks

1. In the spring-mass system, suppose we have only two masses m1 and m2. The mass m1 is
hung on the ceiling, the mass m2 is connected to m1 on one end, but is free on the other end.
Write a mathematical model for this case.

2. Write down the two differential equations for the above circuit system.

3. A parallel LRC circuit connects L, R and C in parallel way. Write a graph model and ODE
model for it.

4. B-D pp. 411: 25

5. B-D pp. 411: 26.

4.3 Linearity and solution space

We shall first study the homogeneous equation

y′ = Ay. (4.8)

Since the equation is linear in y, we can see the following linear property of the solutions. Namely,
if y1 and y2 are solutions of (4.8), so does their linear combination: α1y1 + α2y2, where α1, α2

are any two scalar numbers. Therefore, if S0 denotes the set of all solutions of (4.8), then S0 is a
vector space.
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In the case of inhomogeneous equation (4.1), suppose we have already known a particular so-
lution yp, then so is yp + y for any y ∈ S0. On the other hand, suppose z is a solution of the
inhomogeneous equation:

z′ = Az + f

then z − yp satisfies the homogeneous equation (4.8). Hence, z − yp = y for some y ∈ S . We
conclude that the set of all solutions of the inhomogeneous equation (4.1) is the affine space

S = yp + S0.

To determine the dimension of the solution, we notice that all solutions are uniquely determined by
their initial data (the existence and uniqueness theorems),

y(0) = y0 ∈ Cn.

Hence, S0 is n dimensional. We conclude this argument by the following theorem.

Theorem 4.1. The solution space S0 for equation (4.8) is an n-dimensional vector space. The
solution space for equation (4.1) is the affine space yp + S0, where yp is a particular solution of
(4.1).

Fundamental solutions Our goal in this section is to construct a basis {y1, ...,yn} in S0. A
general solution in S0 can be represented as

y(t) =

n∑
i=1

Ciyi(t).

For an initial value problem with y(t0) = y0, the coefficients Ci are determined by the linear
equation

n∑
i=1

yi(t0)Ci = y0.

or
Y(t0)C = y0

where
Y(t) = [y1(t),y2(t), · · · ,yn(t)], C = [C1, · · · , Cn]t.

If y1, · · · ,yn are independent, thenCi can be solved uniquely. Such a set of solutions {y1, · · · ,yn}
is called a fundamental solution of (4.8). So our main task is to find a set of fundamental solutions.

The basic idea is to try the decompose the system into smaller systems which can be solved
easily. We shall learn this through examples first, then develop general theory.
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4.4 Decouping the systems

4.4.1 Linear systems in three dimensions

Consider the 3× 3 linear system
y′ = Ay,

where

y =

 y1

y2

y3

 , A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

We look for three independent solutions of the form eλtv. By plugging this into the equation, we
find that λ and v have to be an eigenvalue and eigenvector of A:

Av = λv.

The eigenvalue satisfies the characteristic equation

det (λI−A) = 0.

This is a third order equation because we have a 3 × 3 system. One of its roots must be real. The
other two roots can be both real or complex conjugate. We label the first one by λ3 and the other
two by λ1 and λ2. The corresponding eigenvectors are denoted by vi, i = 1, 2, 3. It is possible that
λ1 = λ2. In this case, v1 and v2 are the vectors to make A in Jordan block. That is

Av1 = λ1v1

Av2 = λ1v2 + v1

The general solution is
y(t) = C1y1(t) + C2y2(t) + C3y3(t).

The solution y1 and y2 are found exactly the same way as that in two dimension. The solution
y3(t) = eλ3tv3. If λ3 < 0, then the general solution tends to the plane spanned by v1 and v2. Let
us denote this plane by < v1,v2 >. On the other hand, if λ3 > 0, the solution leaves the plane
< v1,v2 >.

Example.

Consider

A =

 0 0.1 0
0 0 0.2

0.4 0 0

 .

The characteristic equation is
λ3 − 0.008 = 0.
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The roots are
λ3 = 0.2, λ1 = 0.2ei2π/3, λ2 = 0.2e−i2π/3.

The eigenvectors are

v3 =

 1/2
1
1

 , v1 =

 −1 + i
√

3

−2− i2
√

3
4

 , v2 =

 −1− i
√

3

−2 + i2
√

3
4

 .

We denote v1 = u1 + iu2 and v2 = u1 − iu2. We also denote λ1 = α+ iω, where α = −0.1 and
ω =
√

0.03. Then the fundamental solutions are

y1(t) = eαt(cos(ωt)u1 − sin(ωt)u2)

y2(t) = eαt(sin(ωt)u1 + cos(ωt)u2)

y3(t) = eλ3tv3

4.4.2 Rotation in three dimensions

An important example for 3 × 3 linear system is the rotation in three dimensions. The governing
equation is

y′(t) = Ω× y

=

 0 −ω3 −ω2

ω3 0 −ω1

ω2 ω1 0

y

We have many examples in the physical world represented with the same equation.

• Top motion in classical mechanics: y is the angular momentum and Ω× y is the torque.

• Dipole motion in a magnetic field: y is the angular momentum which is proportional to the
magnetic dipole

• A particle motion under Coriolis force: y is the velocity and −2Ω× y is the Coriolis force.

• Charge particle motion in magnetic field: y is the velocity. The term Ω×y is a force pointing
to the direction perpendicular to y and Ω. This is the Lorentz force in the motion of a charge
particle in magnetic field Ω.

• Spin motion in magnetic field: y is the spin and Ω is the magnetic field.

We may normalize Ω = ωẑ. In this case, the equation becomes

y1′ = −ωy2

y2′ = ωy1

y3′ = 0
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The solution reads:

y(t) = R(t)y(0),

 cosωt − sinωt 0
sinωt cosωt 0

0 0 1


It is a rotation about the z axis with angular velocity ω.

Motion of a charge particle in constant electric magnetic field The force exerted by a charged
particle is known as the Lorentz force

F = q(E + v ×B)

The motion of the charged particle in this E-M field is governed by

mr̈ = F.

Suppose the EM field is constant with E only in z direction and B in x direction. Then the motion
is on y-z plane if it is so initially. We write the equation in each components:

mÿ = qBż, mz̈ = qE − qBẏ.

Let
ω :=

qB

m
,

the equations are rewritten as

ÿ = ωż, z̈ = ω

(
E

B
− ẏ
)
.

The particle started from zero vecolity has the trajectory

y(t) =
E

ωB
(ωt− sinωt), z(t) =

E

ωB
(1− cosωt).

This is a cycloid.

Homeworks

1. Complete the above calculation for motion of charge particle in electro-magnetic field.

2. Consider the equation

p

(
d

dt

)
y(t) = 0,

where y is scalar. Let us consider

p(s) = (s− 1)3.

Show that
y1(t) = et, y2(t) = tet, y3(t) = t2et.

are three independent solutions.
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3. Solve the system

y′ = Ay,A =

 1 1 1
2 1 −1
−3 2 4

 .

Ref. B-D pp. 429, problem 17.

4.4.3 Decoupling the spring-mass systems

Let us consider a spring-mass system which consists of 3 masses connected by 4 springs. We
assume the masses have equal mass m, the springs have equal spring constant k, and there is no
gravitational force. Let yj be the displacement of mass i. Then the resulting differential equation is

Mÿ + Ky = 0.

where

M = mI, y =

 y1

y2

y3

 , K := k

 2 −1 0
−1 2 −1
0 −1 2


The idea to solve this system is to decouple it. That is, we will try to diagonalize this system. We
find that the eigenvalues of K are λ1 = 2 −

√
2, λ2 = 2, λ3 = 2 +

√
2. The corresponding

eigenvectors are

v1 =

 1/2

1/
√

2
1/2

 , v2 =

 1/
√

2
0

−1/
√

2

 , v3 =

 1/2

−1/
√

2
1/2

 .

Let us take the ansatz

y(t) =
3∑
i=1

Ci(t)vi

Plug this ansatz to the equation, we get

m
3∑
i=1

C̈i(t)vi = kK(
3∑
i=1

Ci(t)vi) = k
3∑
i=1

λiCi(t)vi.

Since v1,v2,v3 are independent, we get

mC̈i(t) = kλiCi(t), i = 1, 2, 3.

The system is decoupled! Their solutions are

Ci(t) = Ai cos

(√
kλi
m
t

)
+Bi sin

(√
kλi
m
t

)
.
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Thus, the general solutions can be expressed as

y(t) =

3∑
i=1

(
Ai cos

(√
kλi
m
t

)
+Bi sin

(√
kλi
m
t

))
vi.

The coefficients Ai, Bi are determined by the initial conditions:

3∑
i=0

Aivi = y(0),
3∑
i=0

√
kλi
m
Bivi = y′(0).

Since v1, v2 and v3 are orthonormal, we can obtain the coefficients easily:

Ai = 〈y(0),vi〉, Bi =

√
kλi
m
〈y(0),vi〉.

Remark It is worth noting that vi can be expressed as

v1 =

 sin(π/4)
sin(π/2)
sin(3π/4)

 , v2 =

 sin(2π/4)
sin(π)

sin(6π/4)

 , v3 =

 sin(3π/4)
sin(6π/4)
sin(9π/4)

 .

Homework Let us consider a spring-mass system consisting of n − 1 masses connecting by n
springs with two ends fixed. We assume the masses have equal mass m, the springs have equal
spring constant k, and there is no gravitational force. Let yj be the displacement of mass i. Then
the resulting differential equation is

Mÿ + Ky = 0.

where

M = mI, y =


y1

y2
...

yn−1

 , K := k


2 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1
0 −1 2


(n−1)×(n−1)

Prove that K can be diagonalized by

v` =


sin(`π/n)
sin(2`π/n)

...
sin((n− 1)`π/n)

 , ` = 1, · · · , n− 1.

What are the corresponding eigenvalues? Find the explicit expression of general solutions.
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4.5 Jordan canonical form

4.5.1 Jordan matrix

In the 2× 2 system y′ = Ay, we have seen that when A has multiple eigenvalue, it may be similar
to a special 2× 2 matrix

V−1AV = J =

(
λ 1
0 λ

)
.

Such matrix is called a Jordan matrix. If we define z = V−1y, then

z′ = Jz,

which can be solved easily. For n × n system y′ = Ay, we also want to transform it to such kind
of system which we can solve easily.

A matrix J is called a Jordan normal form of a matrix A if we can find matrix V such that

AV = VJ,

where

J = Jk1 ⊗ · · · ⊗ Jkp :=


Jk1

Jk2
. . .

Jkp

 , V = [Vk1 ,Vk2 , · · · ,Vkp ].

Jk(λk) =


λk 1

λk 1
. . . . . .

λk 1
λk


k×k

, Vk = [v1
k, · · · ,vkk], k = k1, ..., ks,

s∑
i=1

ki = n.

Here, λki are the eigenvalues of A, vjk ∈ Cn are called the generalized eigenvectors of A, the
matrices Jk are called Jordan blocks of size k of A. The matrix Vk = [v1

k, · · · ,vkk] is an n × k
matrix. We can restrict A to Vk, k = k1, ..., ks as

AVk = A[v1
k, · · · ,vkk] = [v1

k, · · · ,vkk]Jk, k = k1, ..., ks.

For each generalized vector,

(A− λkI)v1
k = 0

(A− λkI)v2
k = v1

k

...

(A− λkI)vkk = vk−1
k , k = k1, ..., ks.
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This implies

(A− λkI) v1
k = 0

(A− λkI)2v2
k = 0

...

(A− λkI)kvkk = 0, k = k1, ..., ks.

We will see later from the construction that the set {vjki} form a basis in Cn. Therefore, V is
invertible, and

A = VJV−1.

We call A is similar to J, and is denoted by A ∼ J.
The matrix Nk := Jk − λkI is called a Nilpotent matrix, which has the form

Nk =


0 1

. . . . . .
0 1

0


k×k

.

It is easy to check that

N2
k =


0 0 1

. . . . . . . . .
0 0 1

0 0
0


k×k

, · · · , ,Nk
k = 0.

Theorem 4.2. Any matrix A over C is similar to a Jordan normal form. The structure of this Jordan
normal form is unique.

Before we develop general theory, let us study some examples first. These examples tell us

• how to find the structure of the Jordan matrix,

• how to find the generalized eigenvectors v1, ...,vn.

We shall consider the case where the characteristic polynomial pA(λ) := det(λI−A) has only one
eigenvalue with multiple multiplicity.

Example Suppose A is a 2 × 2 matrix with double eigenvalue λ. Let N1 = Ker(A − λI) and
N2 = Ker(A− λI)2.

• Determine the structure of the Jordan block. For 2 × 2 matrix, there are only two possible
structures: J1 ⊗ J1, or J2. This can be determined by the dimensions of N1. f dimN1 = 2,
then A must similar to λI (why?).
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• Let us consider the other case: dimN1 = 1. We shall find generalized vectors and transform
A to a Jordan form J2.

1. First, by Caley-Hamilton theorem, dimN2 = 2. We have N1 ⊂ N2. Let us choose any
v2 ∈ N2 \ N1.

2. We define v1 = (A − λI)v2. Then (A − λI)v1 = (A − λI)2v2 = 0. Thus, v1 ∈ N1

and v2 ∈ N2 \ N1. We get that v1 and v2 are independent. Under [v1,v2], the matrix
A is transformed to J2(λ).

You may wonder whether the choice of v1 and v2 is unique? It is clear that the choice of v1 is unique
(up to scalar multiplication) (why?). Otherwise both of them will be independent eigenvectors
corresponding to λ and thus A = λI. How about we choose v̄2 = v2 + βv1. Define v̄1 =
(A−λI)v̄2. We see that (A−λI)v̄1 = (A−λI)2v̄2 = 0. Also, v̄1 and v̄2 are independent. Thus,
both V = [v1,v2] and V̄ = [v̄1, v̄2] can transform A to the same Jordan form. The choice of V is
not unique. You may check that the matrix

V̄ = [v1,v2 + βv1] = [v1,v2]S, S =

(
1 β
0 1

)
.

Then you can double check that
S−1J2S = J2.

From this 2 × 2 system, we conclude that the structure of Jordan is unique, but the choice of the
similarity transform is not unique.

Example Suppose A is a 6 × 6 matrix with only one eigenvalue λ which has multiplicity 6. We
have two tasks:

• Determine the structure of the Jordan form of A;

• Find generalized vectors to transform A to a Jordan form J.

Determine the structure There are many possible Jordan forms corresponding to A. For in-
stance, J6, J1 ⊗ J5, J2 ⊗ J4, J1 ⊗ J2 ⊗ J3, J3 ⊗ J3, etc. Notice that if A ∼ J, then A and J have
the same Jordan block structure. But the structure of a Jordan form J(λ) can be read easily from
the dimensions of the Kernel of (J(λ)− λI)k. Let us call

Nk := Ker((J− λI)k), dk = dimNk.

We define N0 = {0} and d0 = 0. Let us investigate how dk reflects the structure of Jordan blocks.
The kernels Nk have have the following properties:

• Nk−1 ⊂ Nk.

• there exists a number d such that Nd−1 6= Nd but Nd = Nd+1.



4.5. JORDAN CANONICAL FORM 107

• dk − dk−1 is the number of Jordan blocks of size at least k;

• the number of Jordan blocks of size k is mk := (dk − dk−1)− (dk+1 − dk).

Let us explain these statements by the following examples:

1. Suppose J = J1 ⊗ J5. That is

Je1 = λe1 Je2 = λe2

Je3 = λe3 + e2 Je4 = λe4 + e3

Je5 = λe5 + e4 Je6 = λe6 + e5.

Thus,

N1 =< e1, e2 >, N2 =< e1, e2, e3 >

N3 =< e1, e2, e3, e4 >, N4 =< e1, e2, e3, e4, e5 >

N5 =< e1, e2, e3, e4, e5, e6 >= N6

Hence

d0 = 0, d1 = 2, d2 = 3, , d3 = 4, d4 = 5, d5 = d6 = 6.

2. Suppose J = J1 ⊗ J2 ⊗ J3. That is

Je1 = λe1 Je2 = λe2

Je3 = λe3 + e2 Je4 = λe4

Je5 = λe5 + e4 Je6 = λe6 + e5.

Thus,

N1 =< e1, e2, e4 >,

N2 =< e1, e2, e4, e3, e5 >

N3 =< e1, e2, e3, e4, e5, e6 > .

Hence

d0 = 0, d1 = 3, d2 = 5, , d3 = 6.

Given a matrix A with eigenvalue λ with miltiplicity 6, we can read its Jordan block structure from

dk := dimNk, Nk := Ker (A− λI)k.
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Find generalized eigenvectors to transform A to J

1. Suppose d1 = 2, d2 = 3, ..., d5 = 6. This is equivalent to m1 = 1, m2 = · · · = m4 = 0 and
m5 = 1. That is A ∼ J1 ⊗ J5. To find generalized eigenvectors

(A− λI)v1 = 0 (A− λI)v2 = 0

(A− λI)v3 = v2 (A− λI)v4 = v3

(A− λI)v5 = v4 (A− λI)v6 = v5

we see that N1 =< v1,v2 >, N2 =< v1,v2,v3 >, ..., N5 =< v1, ...,v6 >.

(a) We choose v6 ∈ N5 \ N4,
(b) We set

vi = (A− λI)vi+1, i = 5, 4, 3, 2.

(c) You can check that v2 ∈ N1. Since dimN1 = 2, we can find another v1 ∈ N1 which is
independent of v1.

2. Suppose d1 = 3, d2 = 5 and d3 = 6. That ism1 = 2×3−0−5 = 1,m2 = 2×5−3−6 = 1
and m3 = 2×6−5−6 = 1, or A ∼ J1⊗J2⊗J3. We want to find generalized eigenvectors
v1, ...,v6 satisfying

(A− λI)v1 = 0

(A− λI)v2 = 0

(A− λI)v3 = v2

(A− λI)v4 = 0

(A− λI)v5 = v4

(A− λI)v6 = v5

That is

N1 =< v1,v2,v4 >

N2 =< v1,v2,v4,v3,v5 >

N3 =< v1,v2,v4,v3,v5,v6 > .

(a) We start from N1 = Ker(A − λI). From dimN1 = 3, we find three independent
vectors v1,v2,v4 ∈ N1 by solving (A− λI)v = 0.

(b) Next we solve
(A− λI)2v = 0.

The dimension of this solution space N2 is 5 by our assumption. From N1 ⊂ N2, we
choose two independent vectors v3,v5 ∈ N2 \N1 and reset v2 := (A−λI)v3. Finally,
the spaceN3 is the whole space C6. We choose v6 ∈ N3\N2 and reset v5 = (A−λI)v6

and v4 = (A−λI)v5. With these choices of v1, ...,v6, A is transformed to J1⊗J2⊗J3.

As you can see from the construction, the choice of [v1, · · · ,v6] is not unique. But the
structure of the Jordan blocks A ∼ J1 ⊗ J2 ⊗ J3 is unique. (Why?)
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Homework Find V to transform A to its Jordan normal form:

1. A =

 2 2 3
1 1 3
−1 −1 −2

 .

2. A =

 −1 2 −3
7 4 7
−1 −1 2

 .

3. A =

 −2 3 3
2 −2 2
−3 −3 −8

 .

4. A =


1 0 0 0 0
1 −1 0 0 −1
1 −1 0 0 −1
0 0 0 0 −1
−1 1 0 0 1

 .

5. A =



1 0 0 0 0 0
0 0 0 0 −1 1
−1 −1 1 1 −1 1
0 0 0 1 0 0
0 1 0 0 2 0
0 0 0 0 0 1

 .

4.5.2 Outline of Spectral Theory

We assume A is an n× n matrix in Cn.

Theorem 4.3 (Caley-Hamilton). Let pA(λ) := det(λI−A) be the characteristic polynomial of A.
Then pA(A) = 0.

Proof. 1. We use the adjugate matrix property. The adjugate maytrix adj(M) of a matrix M is
defined to be the transpose of the cofactor matrix of M . The i-j entry of the cofactor matrix
Mij is the determinant of the (n − 1) × (n − 1) matrix which eliminate the ith row and jth
column of the matrix M . The adjugate matrix has the following property:

adj(M) ·M = M · adj(M) = det(M)In.

Applying this property to M = λIn −A, we get

(λIn −A) · adj(λI−A) = det(λIn −A)In.
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2. The right-hand side is

det(λIn −A)In =

n∑
i=0

λiciIn.

3. Notice that the matrix adj(λI−A) can be expressed as polynomial in λ of degree (n− 1):

adj(λI−A) =
n−1∑
i=0

Biλ
i.

Thus, the left-hand side is

(λIn −A) · adj(λI−A) =

n−1∑
i=0

(λI−A) ·Biλ
i

= λnBn−1 +
n−1∑
i=1

λi(Bi−1 −ABi)−AB0.

4. By comparing both polynomials, we obtain

In = Bn−1, ciIn = Bi−1 −ABi, 1 ≤ i ≤ n− 1, c0In = −AB0.

5. Multiply the above ith equation by Ai them sum over i from 0 to n, we obtain

n∑
i=0

ciA
i = AnBn−1 +

n−1∑
i=1

Ai(Bi−1 −ABi)−AB0 = 0.

Theorem 4.4. There exists a minimal polynomial pm which is a factor of pA and pm(A) = 0.

Theorem 4.5 (Fundamental Theorem of Algebra). Any polynomial p(λ) over C of degree m can
be factorized as

p(λ) = a
m∏
i=1

(λ− λi)

for some constant a 6= 0 and λ1, ..., λm ∈ C. This factorization is unique.

Definition 4.6. Let A : Cn → Cn. A subspace V ⊂ Cn is called an invariant subspace of the
linear map A if AV ⊂ V .

Definition 4.7. A vector space V is said to be the direct sum of its two subspaces V1 and V2 if for
any v ∈ V there exist two unique vectors vi ∈ Vi, i = 1, 2 such that v = v1 + v2. We denote it by
V = V1 ⊕ V2.
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Remark 4.1. We also use the notation V = V1 + V2 for the property: any v ∈ V can be written as
v = v1 + v2 for some vi ∈ Vi, i = 1, 2. Notice that V = V1 ⊕ V2 if and only if V = V1 + V2 and
V1 ∩ V2 = {0}.

Lemma 4.1. Suppose p and q are two polynomials over C and are relatively prime (i.e. no common
roots). Then there exist two other polynomials a and b such that

ap+ bq = 1.

Lemma 4.2. Suppose p and q are two polynomials over C and are relatively prime (i.e. no common
roots). Let Np := Ker(p(A)), Nq := Ker(q(A)) and Npq := Ker(p(A)q(A)). Then

Npq = Np ⊕Nq.

Proof. From ap+ bq = 1 we get

a(A)p(A) + b(A)q(A) = I.

For any v ∈ Npq, acting the above operator formula to v, we get

v = a(A)p(A)v + b(A)q(A)v := v2 + v1.

We claim that v1 ∈ Np, whereas v2 ∈ Nq. This is because

p(A)v1 = p(A)b(A)q(A)v = b(A)p(A)q(A)v = 0.

Similar argument for proving v2 ∈ Nq. To see this is a direct sum, suppose v ∈ Np ∩Nq. Then

v = a(A)p(A)v + b(A)q(A)v = 0.

Hence Np ∩Nq = {0}.

Corollary 4.2. Suppose a polynomial p is factorized as p = p1 · · · ps with p1, ..., ps are relatively
prime (no common roots). Let Npi := Kerpi(A). Then

Np = Np1 ⊕ · · · ⊕ Nps .

Theorem 4.6 (Spectral Decomposition). Let pm be the minimal polynomial of A. Suppose pm can
be factorized as

pm(λ) =

s∏
i=1

pi(λ) =

s∏
i=1

(λ− λki)
mi

with λki 6= λkj for i 6= j. Let Nki = Ker(A− λkiI)mi . Then

• Nki is invariant under A,

• Cn = Nk1 ⊕ · · · ⊕ Nks .

Important application of spectral decomposition of a matrix is to compute etA, which will be
the fundamental solution of the ODE: y′ = Ay. It is easy to compute etA if A is a diagonal matrix
or a Jordan matrix. Through spectral decomposition, we can compute etA for general A.
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4.6 Fundamental Matrices and exp(tA)

4.6.1 Fundamental matrices

We have seen that the general solution to the initial value problem:

y′(t) = Ay(t), y(0) = y0,

can be express as y(t) = C1y1(t) + · · ·+Cnyn, where y1, ..,yn are n independent solutions. The
matrix Y(t) = [y1(t), · · · ,yn(t)] is called a fundamental matrix. The solution y(t) is expressed as
y(t) = Y(t)C, where C = (C1, ..., Cn)t. By plugging y(t) = Y(t)C into the equation y′ = Ay,
we obtain

Y′C = AYC

This is valid for all C. We conclude that the fundamental matrix satisfies

Y′(t) = AY(t). (4.9)

From y(0) = Y(0)C, we obtain C = Y(0)−1y(0). Thus,

y(t) = Y(t)Y(0)−1y(0).

The matrix Φ(t) := Y(t)Y(0)−1 is still a fundamental matrix and satisfies Φ(0) = I. We shall see
that Φ(t) = exp(tA) in the next section.

Homework

1. Consider an n× n matrix ODE
Y′(t) = AY(t)

Let W (t) = detY(t). Show that

W ′(t) = tr(A)W (t)

where tr(A) :=
∑

i aii.
Hint: (detA)′ =

∑
i,j a

′
ijAij , where Aij is the cofactor of A.

4.6.2 Computing exp(A)

The exponential function is defined as a power series, which involves the concept of norm and limit
in the space of n × n matrices. LetMn = {A|A is an n× n complex-valued matrix}. We define
a norm onMn by

‖A‖ :=

∑
i,j

|aij |2
1/2

.

The norm ‖ · ‖ has the following properties:
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• ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = 0.

• ‖αA‖ = |α|‖A‖ for any α ∈ C.

• ‖A + B‖ ≤ ‖A‖+ ‖B‖.

In addition, the matrix spaceMn is an algebra with the matrix multiplication. It satisfies

• ‖AB‖ ≤ ‖A‖‖B‖.

The proof of the last assertion is the follows.

‖AB‖2 =
∑
i,j

|
∑
k

aikbkj |2

≤
∑
i,j

(
∑
k

|aik|2)(
∑
k

|bkj |2)

=
∑
i

(
∑
k

|aik|2)
∑
j

(
∑
k

|bkj |2)

= ‖A‖2‖B‖2

With this norm, we can talk about theory of convergence. The spaceMn is equivalent to Cn2
. Thus,

it is complete. This means that every Cauchy sequence converges to a point inMn.
Now we define the exponential function inMn as the follows.

exp(A) :=
∞∑
n=0

1

n!
An. (4.10)

Theorem 4.7. The exponential function has the following properties:

• exp(A) is well-defined.

• The function exp(tA) is differentiable and d
dt exp(tA) = A exp(tA).

• exp(0) = I.

Proof. 1. This series converges becauseMn is complete and this series is a Cauchy series:

‖
m∑
n

1

k!
Ak‖ ≤

m∑
n

1

k!
‖A‖k < ε,

if n < m are sufficiently enough.

2. Notice that the series

exp(tA) =

∞∑
n=0

1

n!
tnAn.
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convergence uniformly for t in any bounded set in R. Further, the function exp(tA) is differ-
entiable in t. This is because the series obtained by the term-by-term differentiation

∞∑
n=1

1

(n− 1)!
tn−1An

converges uniformly for t in any bounded set in R. And the derivative of exp(tA) is the
term-by-term differentiation of the original series:

d

dt
exp(tA) =

∞∑
n=1

1

(n− 1)!
tn−1An

=

∞∑
n=1

1

(n− 1)!
tn−1An−1A

= A exp(tA) = exp(tA)A.

We have seen that the fundamental solution Y(t) of the equation y′ = Ay satisfies Y′ = AY.
From the above theorem, we see that exp(tA) is a fundamental solution satisfying exp(0) = I.

Below, we compute exp(tA) for some special A.

1. A =

(
λ1 0
0 λ2

)
. In this case,

An =

(
λn1 0
0 λn2

)
and

exp(tA) =

(
etλ1 0

0 etλ2

)
.

If λ1 and λ2 are complex conjugate and λ1 = α+ iω, then

exp(tA) = eαt
(

cosωt+ i sinωt 0
0 cosωt− i sinωt

)
.

2. A =

(
0 −ω
ω 0

)
. In this case,

A2 =

(
−ω2 0

0 −ω2

)
A3 =

(
0 ω3

−ω3 0

)
A4 =

(
ω4 0
0 ω4

)
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Hence,

exp(tA) =
∑
n

1

n!
tnAn =

(
cosωt − sinωt
sinωt cosωt

)

3. A =

(
λ 1
0 λ

)
. The matrix A = λI + N, where

N =

(
0 1
0 0

)
is called a nilponent matrix. N has the property

N2 = 0.

Thus,
An = (λI + N)n = λnI + nλn−1N

With this,

exp(tA) =
∞∑
n=0

1

n!
tnAn

=
∞∑
n=0

1

n!
tn(λnI + nλn−1N)

= exp(λt)I +

∞∑
n=1

1

(n− 1)!
λn−1tnN

= exp(λt)I + t exp(tλ)N

=

(
eλt teλt

0 eλt

)
For general 2× 2 matrices A, we have seen that there exists a matrix V = [v1,v2] such that

AV = VΛ

where Λ is either diagonal matrix (case 1) or a Jordan matrix (Case 3). Notice that

An = (VΛV−1)n = VΛnV−1

Hence, the corresponding exponential function becomes

exp(tA) =

∞∑
n=0

1

n!
tnAn

=
∞∑
n=0

1

n!
tnVΛnV−1

= V(
∞∑
n=0

1

n!
tnΛn)V−1

= V exp(tΛ)V−1
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Revisit fundamental matrix

1. We recall that a fundamental matrix of y′ = Ay is

Y = [y1, ...,yn],

where y1, ...,yn are independent solutions of y′ = Ay. The relation between Y(t) and
exp(tA) is

Y(t)Y(0)−1 = exp(tA).

This is because any solution can be expressed uniquely by

y(t) =
n∑
i=1

ciyi(t) = Yc.

where c is given by
y(0) = Y(0)c, or c = Y(0)−1.

Thus, y(t) can be represented as

y(t) = Y(t)Y(0)−1y0.

We have also seen that
y(t) = exp(tA)y0.

This is valid for all y0. Thus, exp(tA) = Y(t)Y(0)−1.

2. The fundamental matrix is not unique. If both Y(t) and Z(t) are fundamental matrices of
y′ = Ay, there must be a constant matrix C such that Z(t) = Y(t)C. This follows from the
previous result:

Y(t) = Y(0)−1 = Z(t) = Z(0)−1 = exp(tA).

Thus, C = Y(o)−1Z(0). In particular, exp(tA) is a fundamental matrix.

3. A particular fundamental matrix is

Y(t) = V exp(tΛ).

This is because
V exp(tΛ) = exp(tA)V

and exp(tA) is a fundamental matrix. For 2 × 2 system, in the case of Jordan form, the
fundamental matrix Y(t) is given by

[y1(t),y2(t)] = Y(t) = [v1,v2] exp(tΛ)

= [v1,v2]

(
eλt teλt

0 eλt

)
= [eλtv1, te

λtv1 + eλtv2].

This is identical to the fundamental solution we obtained before.
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Homeworks.

1. Find exp(tJk(λ)) for general k. Here, Jk(λ) is the Jordan matrix of size k.

2. Compute exp(tA) with

A =

 0 −ω3 −ω2

ω3 0 −ω1

ω2 ω1 0


3. B-D, pp. 420: 3,18

4. B-D, pp. 428, 6,17,18

5. Show that if AB = BA, then exp(A + B) = exp(A) exp(B). In particular, use this result
to show exp((t− s)A) = exp(tA) exp(sA)−1.

6. If A 6= B, show that exp(t(A + B))− exp(tA) exp(tB) = O(t2) for small t.

4.6.3 Linear Stability Analysis

Consider the n× n linear system with constant coefficients

y′ = Ay. (4.11)

The state 0 is an equilibrium state of this system.

Definition 4.8. The equilibrium 0 of (4.11) is called stable if for any ε > 0, there exists a δ > 0
such that any solution y(·,y0) starting from y0 with |y0| < δ, we have |y(t)| ≤ ε for all t > 0. It
is called asymptotically stable if it is stable, in addition, there exists a neighborhood |y| < δ such
that any solution y(·,y0) starting from y0 with |y0| < δ, then y(t)→ 0 as t→∞. If, in addition,
|y(t)| ≤ Ce−αt for some positive constantts C and α, we say y(t) converges to 0 at exponential
rate.

Remark. For 2× 2 linear system:

1. The centers are stable, but not asymptotic stable.

2. The sources, spiral sources and saddle points are unstable.

3. The sinks and the spiral sinks are asymptotic stable.

Theorem 4.8. Consider the linear system with constant coefficients:

y′ = Ay.

1. The state 0 is asymptotically stable if and only if all eigenvalues λ(A) satisfyRe(λ(A)) < 0.
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2. The state 0 is stable if and only if all eigenvalues λ(A) are either (i) Re(λ(A)) < 0, or (ii)
Re(λ(A)) = 0 but it is simple.

Proof. 1. Let us decompose the space Cn (or Rn) into the invariant subspaces. The matrix A
is just a Jordan block as restricted to these invariant subspaces. The stability or asymptotic
stability of the state 0 in the whole space Cn (or Rn) is equivalent to that in all invariant
subspaces. Thus, we only need to discuss the case that A is a Jordan block J.

2. For a Jordan block J(λ) of size k, the corresponding fundamental solutions are

v1e
λt, (tv1 + v2)eλt, · · · ,

(
tk−1

(k − 1)!
v1 + · · ·+ vk

)
eλt

where vi are the generalized eigenvectors corresponding to J. If Re(λ) < 0, then tjeλt

decays exponentially fast to 0 for any j ≥ 0. Thus, 0 is asymptotic stable if Re(λ) < 0 for
all eigenvalues λ.

3. Conversely, suppose 0 is asymptotic stable. Since the solutions only have the form tjeλt with
j ≥ 0, and such solution can tend to 0 as t→∞ only whenRe(λ) < 0. Thus 0 is asymptotic
stable only when all eigenvalues satisfy Re(λ) < 0.

4. If there exists a λ such that Re(λ) > 0, then the solution eλtv→∞ as t→∞. The converse
is also true.

5. If there exists a λ such that Re(λ) = 0 and λ is simple, then the corresponding solution is
eλtv, where v is the corresponding eigenvector. Such solution stays bounded.

6. If Re(λ) = 0 and with multiplicity k > 1, then there is a solution of the form teλtv, where
v is a generalized eigenvector. This solution tends to infinity as t tends to infinity. Thus, 0 is
not stable.

4.7 Non-homogeneous Linear Systems

We consider the inhomogeneous linear systems:

y′(t) = Ay(t) + f(t), y(0) = y0. (4.12)

We use variation of parameters to solve this equation. Let Φ(t) = exp(tA) be the fundamental so-
lution for the homogeneous equation. To find a particular solution for the inhomogeneous equation,
we consider

y(t) = Φ(t)u(t).

We plug this into equation. We get

Φ′u + Φu′ = AΦu + f
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Using Φ′ = AΦ, we get
Φu′ = f

Hence, a particular of u is

u(t) =

∫ t

0
Φ(s)−1f(s) ds

Thus a particular solution yp(t) is

yp(t) = Φ(t)

∫ t

0
Φ−1(s)f(s) ds =

∫ t

0
Φ(t)Φ(s)−1f(s) ds

This special solution has 0 initial data. The solution for initial condition y(0) = y0 has the following
expression:

y(t) = Φ(t)y0 +

∫ t

0
Φ(t)Φ(s)−1f(s) ds (4.13)

Notice that the matrix exponential function also satisfies the exponential laws. We can rewrite the
above expression as

y(t) = Φ(t)y0 +

∫ t

0
Φ(t− s)f(s) ds. (4.14)

Homeworks.

1. B-D pp. 439: 11, 12.

2. Consider the example of circuit system in subsection 4.2.2. Now, we add another node, say
5 and edges (1, 5), (5, 2). On edge (1, 5), we add a power supply I(t). Derive the equation,
find its solution formula. (B-D 439, Figure 7.9.1, problem 13)

3. B-D pp. 422: 14.
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Chapter 5

Methods of Laplace Transforms

The method of Laplace transform converts a linear ordinary differential equation with constant
coefficients to an algebraic equation. The core of the this differential equation then lies in the
roots of the corresponding algebraic equation. In applications, the method of Laplace transform is
particular useful to handle general source terms.

5.1 Laplace transform

For function f defined on [0,∞), we define its Laplace transformation by

Lf(s) = F (s) :=

∫ ∞
0

f(t)e−st dt.

L is a linear transformation which maps f to F . For those functions f such that

|f(t)| ≤ Ceαt (5.1)

for some positive constants C and α, the above improper integral converges uniformly and abso-
lutely for complex number s lies in a compact set in {s ∈ C|Re(s) > α}:∫ ∞

0
|f(t)e−st| dt ≤ C

∫ ∞
0

eαte−st dt =
C

s− α
.

Here, we have used that
lim
t→∞

e−(s−α)t = 0

due to Re(s) > α. We call functions with this growth condition (5.1) admissible. Since the in-
tegration allows f being discontinuous, the admissible functions include all piecewise continuous
functions. We summarize the class of these admissible functions are those f such that

1. f is bounded and piecewise continuous functions on [0,∞);

2. there exists an α ∈ R and a constant C > 0 such that |f(t)| ≤ Ceαt for all t ≥ 0.

The image space of the Laplace transform are those (analytic) function F (s) defined on s ∈ C with
Re(s) > α for some α.

121
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5.1.1 Examples

1. When f(t) ≡ 1, L(1) = 1/s.

2. L(eλt) = 1/(s− λ). This is because

L(eλt) =

∫ ∞
0

eλte−st dt =

∫ ∞
0

e−(s−λ)t dt =
1

s− λ
.

Indeed, this is valid for any complex number λ and s ∈ C with Re(s) > λ.

3. When f(t) = tn,

L(tn) =

∫ ∞
0

tne−st dt =
−1

s

∫ ∞
0

tn de−st

=
−1

s
(tne−st)∞0 −

∫ ∞
0

ntn−1e−st dt

=
n

s
L(tn−1) =

n

s

(n− 1)

s
· · · 1

s
L(1) =

n!

sn+1
.

Alternatively,

L(tn) =

∫ ∞
0

tne−st dt =

∫ ∞
0

(− d

ds
)ne−st dt

= (− d

ds
)n
∫ ∞

0
e−st dt = (− d

ds
)n

1

s
=

n!

sn+1

4. L(tneλt) = n!
(s−λ)n+1 . Indeed,

L(tneλt) =

∫ ∞
0

tneλte−st ds =

∫ ∞
0

tne−(s−λ)t ds =
n!

(s− λ)n+1

5. L(cosωt) = s
s2+ω2 , L(sinωt) = ω

s2+ω2 . Indeed,

L(cosωt) =
1

2
L(eiωt + e−iωt) =

1

2
(

1

s− iω
+

1

s+ iω
) =

s

s2 + ω2
.

6. The function

h(t) =

{
1 for t ≥ 0
0 for t < 0

is called the Heaviside function. It has a discontinuity at t = 0 with jump h(0+)−h(0−) = 1.
Its translation h(t− a) has jump at a. The corresponding Laplace transform is

L(h(t− a)) =

∫ ∞
0

h(t− a)e−st dt =

∫ ∞
a

e−st dt = e−asL(1) =
e−as

s
,

for any a ≥ 0.
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7. We shall apply the method of Laplace transform to solve the initial value problem:

y′ + y = t, y(0) = y0.

We apply Laplace transform both sides.

L(y′) =

∫ ∞
0

e−sty′(t) dt = −y(0) + s

∫ ∞
0

e−sty(t) dt

Let us denote Ly = Y . We have

sY − y0 + Y =
1

s2

Hence

Y (s) =
1

s+ 1

(
y0 +

1

s2

)
=

y0

s+ 1
+

1

s2
− 1

s
+

1

s+ 1

Hence
y(t) = y0e

−t + t− 1 + e−t.

5.1.2 Properties of Laplace transform

Let us denote the Laplace transform of f by F . That is, F = Lf .

1. L is linear. This follows from the linearity of integration.

2. L is one-to-one, that is L(f) = 0 implies f = 0. Hence, L−1 exists.
This is indeed not so obvious to prove. I leave it in the homework.

3. Translation: Given f in the admissible class. We set f(t) = 0 for t < 0. Then for any a ≥ 0,
we have

L(f(t− a)) = e−asF (s).

Thus, the term e−as in the s-space represents a translation in the time domain.
On the other hand, a translation on the image space corresponds to a multiplication of an
exponential function:

L−1F (s+ λ) = e−λtf(t).

4. Dilation:

L(f(bt)) =
1

b
F
(s
b

)
, L−1F (bs) =

1

b
f

(
t

b

)
.

5. Differentiation:
L(f ′(t)) = sF (s)− f(0), L−1F ′(s) = −tf(t). (5.2)
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6. Integration:

L
(∫ t

0
f(τ) dτ

)
=
F (s)

s
,L−1

(∫ ∞
s

F (s1) ds1

)
=
f(t)

t
,

7. Convolution:
L(f ∗ g) = L(f) · L(g),

where

(f ∗ g)(t) =

∫ t

0
f(τ)g(t− τ) dτ

Proof.

L(f ∗ g) =

∫ ∞
0

e−st
∫ t

0
f(τ)g(t− τ) dτ dt

=

∫ ∞
0

∫ t

0
e−sτf(τ)e−s(t−τ)g(t− τ) dτ dt

=

∫ ∞
0

dτ

∫ ∞
τ

dt
(
e−sτf(τ)e−s(t−τ)g(t− τ)

)
=

∫ ∞
0

e−sτf(τ) dτ

∫ ∞
0

e−stg(t) dt = L(f)L(g)

Homeworks.

1. B-D, pp. 313: 26,27.

2. Find the Laplace transforms of

(a) cosh(at) (ans. s/(s2 − a2)).

(b) sinh(at), (ans. a/(s2 − a2).)

(c) (−t)nf(t) (ans. F (n)(s).)

3. B-D,pp. 331: 27.28

4. Find the Laplace transforms of

(a) B0(2t)−B0(2t− 1), where B0(t) = 1 for 0 ≤ t < 1 and B0(t) = 0 otherwise.

(b) f(t) =
∑∞

k=0B(2t− k).

(c) Let f0(t) = t(1 − t) for 0 ≤ t < 1 and f0(t) = 0 elsewhere. Let f(t) be the periodic
extension of f0 with period 1. Find Lf0, Lf , Lf ′0 and Lf ′..

5. Prove

L
(∫ t

0
f(τ) dτ

)
=
F (s)

s
,L−1

(∫ ∞
s

F (s1) ds1

)
=
f(t)

t
,
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6. Let f(t) be a period function with period p. Let

f0 =

{
f(t) for 0 < t < p
0 elsewhere.

Let F (s) denote for Lf . Show that

Lf0 = Lf − e−psLf = (1− e−ps)F (s).

7. If g(u) is a continuous function on [0, 1] such that∫ 1

0
g(u)un du = 0 for all n ≥ 0,

show that g(u) ≡ 0.

8. If f is continuous function on [0,∞) and admissible, and Lf = 0. Show that f ≡ 0.
Hint: express s = s0 + n + 1 and make a change of variable u = et in the integral of the
Laplace transform of f .

5.2 Laplace transform for differential equations

5.2.1 General linear equations with constant coefficients

A linear differential equations of order n with constant coefficients has the form:

(anD
n + an−1D

n−1 + · · ·+ a1D + a0)y = f(t), (5.3)

where D = d/dt. We may abbreviate this equation by

P (D)y = f.

For order n equations, We need to assume an 6= 0 and need impose n conditions. The initial value
problem imposes the following conditions:

y(0) = y0, y
′(0) = y1, · · · , y(n−1)(0) = yn−1. (5.4)

When the source term f(t) ≡ 0, the equation

P (D)y = 0 (5.5)

is called the homogeneous equation. The equation (5.3) is called the inhomogeneous equation.
We shall accept that this initial value problem has a unique solution which exists for all time.

Such existence and uniqueness theory is the same as that for the 2× 2 systems of linear equations.
Therefore, we will not repeat here. Instead, we are interested in the cases where the source terms
have discontinuities or impulses. Such problems appear in circuit problems where a power supply is
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only provided in certain period of time, or a hammer punches the mass of a mass-spring system sud-
denly, or a sudden immigration of population in the population dynamics. For linear systems with
constant coefficients, the Laplace transform is a useful tool to get exact solution. The method trans-
fers the linear differential equations with constant coefficients to an algebraic equation, where the
source with discontinuities is easily expressed. The solution is found through solving the algebraic
equation and by the inverse Laplace transform.

5.2.2 Laplace transform applied to differential equations

Given linear differential equation with constant coefficients (5.3):

P (D)y = f,

we perform Laplace transform both sides:

L(P (D)y) = Lf.

We claim that
L(P (D)y) = P (s) · Y (s)− I(s) = F (s), (5.6)

where
Y (s) = (Ly)(s), F (s) = Lf(s),

I(s) =
n∑
i=1

n∑
k=i

aky
(k−i)(0)si−1.

In other words, the function Y (s) of the Laplace transform of y satisfies an algebraic equation.
To show this, we perform

L(Dky) =

∫ ∞
0

Dkye−st dt =

∫ ∞
0

e−st dy(k−1) = −y(k−1)(0) + sL(Dk−1y).

Thus,

L(Dky) = −y(k−1)(0) + sL(Dk−1y)

= −y(k−1)(0) + s
(
−y(k−2)(0) + sL(Dk−2y

)
= (−y(k−1)(0)− sy(k−2)(0)− · · · − sk−1y(0)) + skLy.

Now, P (D) =
∑n

k=0 akD
k, we have

L(P (D)y) =

n∑
k=0

akL(Dky) = −
n∑
k=1

ak

k∑
i=1

y(k−i)(0)si−1 + P (s)Ly.

The equation
P (s) · Y (s)− I(s) = F (s)
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can be solved explicitly with

Y (s) =
F (s) + I(s)

P (s)
.

Let us call

G(t) = L−1

(
1

P (s)

)
(5.7)

called the Green’s function. Then in the case of I(s) ≡ 0, we have

y(t) = L−1

(
1

P (s)
· F (s)

)
= (G ∗ f)(t).

Thus, the solution is the convolution of the Green’s function and the source term.

Example

1. Solve y′′ + 4y′ + 4y = te−2t, y(0) = 1, y′(0) = 1.
Taking Laplace transform, we get

L(Dy) = −y(0) + sY (s)

L(D2y) = −y′(0) + sL(Dy) = −y′(0) + s(−y(0) + sY (s))

Hence,

L[(D2 + 4D + 4)y] = (s2 + 4s+ 4)Y (s)− [y′(0) + sy(0) + 4y(0)]

The Laplace transform of the source term is

L(te−2t) =
1

(s+ 2)2
.

Thus, we get

(s2 + 4s+ 4)Y (s)− [y′(0) + sy(0) + 4y(0)] =
1

(s+ 2)2
,

Y (s) =
1

(s+ 2)2

(
[y′(0) + sy(0) + 4y(0)] +

1

(s+ 2)2

)
=

y(0)

s+ 2
+
y′(0) + 2y(0)

(s+ 2)2
+

1

(s+ 2)4

Thus, its inverse Laplace transform is

y(t) = y(0)e−2t + (y′(0) + 2y(0))te−2t +
1

3!
t3e−2t.
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2. Solve y′′ − y = f(t), y(0) = y′(0) = 0, where

f(t) =

{
t, 0 ≤ t < 1
0, 1 ≤ t <∞

The Laplace transform of f is

F (s) = L(f) =

∫ 1

0
te−st dt =

1

s2
(1− (s+ 1)e−s)

The Laplace transform of the equation gives

(s2 − 1)Y (s) = F (s).

Thus,

Y (s) =
F (s)

s2 − 1
= (

1

s2 − 1
) ·
(
−s+ 1

s2
e−s +

1

s2

)
=

(
− 1

(s− 1)s2

)
e−s +

1

s2(s2 − 1)

=

(
1

s2
+

1

s
− 1

s− 1

)
e−s +

1

2

(
1

s− 1
− 1

s+ 1

)
− 1

s2

The inverse Laplace transform of each term of Y is

L−1

(
1

s2
+

1

s
− 1

s− 1

)
= t+ 1− et

L−1

[(
1

s2
+

1

s
− 1

s− 1

)
e−s
]

= h(t− 1)
(

(t− 1) + 1− e(t−1)
)

L−1

[
1

2

(
1

s− 1
− 1

s+ 1

)
− 1

s2

]
=

1

2
(et − e−t)− t.

Here h(t) is the Heaviside function.

Homeworks.

1. B-D,pp.322: 24,27,36,38.

2. B-D,pp. 338: 21,22
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5.2.3 Generalized functions and Delta function

The delta function δ(t) is used to represent an impulse which is defined to be

δ(t) =

{
∞ for t = 0
0 otherwise.

and
∫ ∞
−∞

δ(t) dt = 1.

The δ-function can be viewed as the limit of the finite impulses

δ(t) = lim
ε→0+

1

ε
B0

(
t

ε

)
where B0(t) = 1 for 0 ≤ t < 1 and B0(t) = 0 otherwise. This limit is taken in the integral sense.
Namely, for any smooth function φ with finite support (i.e. the nonzero domain of φ is bounded),
the meaning of the integral:∫

δ(t)φ(t) dt := lim
ε→0+

∫ ∞
−∞

(
1

ε
B0

(
t

ε

))
φ(t) dt.

Since the latter is φ(0), we therefore define δ to be the generalized function such that∫
δ(t)φ(t) dt = φ(0)

for any smooth function φwith finite support. The function φ here is called a test function. Likewise,
a generalized function is defined how it is used. Namely, it is defined how it acts on smooth test
functions. For instance, the Heaviside function is a generalized function in the sense that∫

h(t)φ(t) dt :=

∫ ∞
0

φ(t) dt.

The function f(t) := a1δ(t− t1) + a2δ(t− t2) is a generalized function. It is defined by∫
f(t)φ(t) dt := a1φ(t1) + a2φ(t2).

All ordinary functions are generalized functions. In particular, all piecewise smooth functions are
generalized functions. For such a function f , it is un-important how f is defined at the jump points.
All it matters is the integral ∫

f(t)φ(t) dt

with test function φ. For piecewise smooth function f , the jump point makes no contribution to the
integration.

One can differentiate a generalized function. The generalized derivative of a generalized func-
tion is again a generalized function in the following sense:∫

Dtf(t)φ(t) dt := −
∫
f(t)φ′(t) dt.
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The right-hand side is well-defined because f is a generalized function. You can check thatDth(t) =
δ(t). If f is a piecewise smooth function having jump at t = a with jump height [f ]a defined by
[f ]a := limt→a+ f(t) − limt→a− f(t). Let f ′(t) be the ordinary derivative of f in the classical
sense. Thus, f ′(t) is defined everywhere except at the jump t = a. This f ′(t) is a piecewise smooth
function and hence it is a generalized function. From the definition of the generalized derivative,
we claim that

(Dtf)(t) = f ′(t) + [f ]aδ(t− a).

To see this, ∫
(Dtf)φdt := −

∫ ∞
−∞

f(t)φ′(t) dt = −(

∫ a

−∞
+

∫ ∞
a

)f(t)φ′(t) dt

These integrals are

−
∫ a

−∞
f(t)φ′(t) dt = −f(a−)φ(a) +

∫ a

−∞
f ′(t)φ(t) dt

−
∫ ∞
a

f(t)φ′(t) dt = f(a+)φ(a) +

∫ ∞
a

f ′(t)φ(t) dt

Hence, ∫
(Dtf)φdt = (f(a+)− f(a−))φ(a) +

∫ ∞
−∞

f ′(t)φ(t) dt

=

∫
([f ]aδ(t− a) + f ′(t))φ(t) dt

You can check that Dtδ is a generalized function. It is defined by∫
(Dtδ)(t)φ(t) dt := −φ′(0).

Let us abbreviate Dtδ by δ′(t) in later usage.
Similarly, one can take indefinite integral of a generalized function.∫ (∫ t

−∞
f(τ) dτ

)
φ(t) dt :=

∫
f(τ)

(∫ ∞
τ

φ(t) dt

)
dτ

for any test function φ such that
∫
φ = 0. The Heaviside function h(t) can be viewed as the integral

of the delta function, namely,

h(t) =

∫ t

0
δ(τ) dτ.

Laplace transform of the delta-functions It is easy to check that

1. Lδ =
∫
δ(t)e−st dt = 1.

2. Lδ′ = s.

3. Lh = 1/s.
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5.2.4 Green’s function

Let us go back to the differential equation:

P (D)y = f.

with initial data y(0), · · · , y(n−1)(0) prescribed. We recall that the Laplace transform of this equa-
tion gives

L(P (D)y) = P (s) · Y (s)− I(s) = F (s) (5.8)

where Y (s) = (Ly)(s), F (s) = Lf(s) and

I(s) =
n∑
i=1

n∑
k=i

aky
(k−i)(0)si−1.

The Green’s function is defined to be

G = L−1

(
1

P (s)

)
. (5.9)

There are two situations that produce Green’s function as its solutions.

• Impulse source: I(s) ≡ 0 and F (s) ≡ 1: That is,

P (D)G(t) = δ(t), G(0) = G′(0) = · · · = G(n−1)(0) = 0.

Taking the Laplace transform on both sides, using

Lδ = 1,

we have P (s)LG = 1, or LG = 1/P (s), or

G = L−1

(
1

P (s)

)
.

The Green’s function corresponds to solution with impulse source and zero initial data.

• Initial impulse: I(s) = 1 and F (s) ≡ 0: That is

P (D)G(t) = 0 for t > 0, G(0) = G′(0) = · · · = 0, G(n−1)(0) =
1

an
.

Remark. Notice that the Green’s functions obtained by the above two methods are identical. In-
deed, let us see the following simplest example. The function eat is the solution (Green’s function)
of both problems:

(i) y′ − ay = δ, y(0) = 0,
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(ii) y′ − ay = 0, y(0) = 1.

Indeed, in the first problem, the equation should be realized for t ∈ R. The corresponding initial
data is y(0−) = 0. While in the second problem, the equation should be understood to be hold for
t > 0 and the initial data understood to be y(0+) = 1. This is classical sense. With this solution
eat, if we define

y(t) =

{
eat t ≥ 0
0 t < 0

then Dty + ay = δ. This means that this extended function is a solution of (i) and the derivative in
(i) should be interpreted as weak derivative.
Examples

1. Suppose P (D) = (D + 1)(D + 2). Then

1

P (s)
=

1

s+ 1
− 1

s+ 2

Hence,
G(t) = e−t − e−2t.

2. If P (D) = (D + 1)2, then

G(t) = L−1

(
1

(s+ 1)2

)
= L−1

((
− d

ds

)
1

(s+ 1)

)
= tL−1

(
1

s+ 1

)
= te−t.

3. Suppose P (D) = (D2 + ω2). Then

G(t) = L−1

(
1

s2 + ω2

)
=

sinωt

ω

In these two examples, we notice that G(0) = 0 but G′(0+) = 1. This is consistent to G′(0−) = 0.
Indeed, G′ has a jump at t = 0 and the generalized derivative of G′ produces the delta function.

Explicit form of the Green’s function

Case 1. Suppose P (s) has n distinct roots λ1, ..., λn. Then

1

P (s)
=

n∑
k=1

Ak
s− λk

, where Ak =
1

P ′(λk)
.

The corresponding Green’s function is

G(t) =
n∑
k=1

Ake
λkt.
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Case 2. When P (s) has multiple roots, say P (s) =
∏`
i=1(s− λi)ki . Then

1

P (s)
=
∑̀
i=1

ki∑
j=1

j−1∑
m=0

Ai,j,ms
m

(s− λi)j
,

It can be shown that (see (5.2))

L−1

(
sm

(s− λi)j

)
=

dm

dtm
L−1

(
1

(s− λi)j

)
.

On the other hand,

L−1

(
1

(s− λi)j

)
= L−1

(
1

j!
(− d

ds
)j
(

1

s− λi

))
=

1

j!
tjL−1

(
1

s− λi

)
=

1

j!
tjeλit.

Thus,

G(t) =
∑̀
i=1

ki∑
j=1

j−1∑
m=0

Ai,j,m
1

j!

dm

dtm

(
tjeλit

)

Representation of solutions in terms of Green’s function

1. Contribution from the source term With the Green’s function, using convolution, one can
express the solution of the equation P (D)y = f with zero initial condition by

y(t) = (G ∗ f)(t) =

∫ t

0
G(t− τ)f(τ) dτ.

A physical interpretation of this is that the source term f(t) can be viewed as

f(t) =

∫ t

0
f(τ)δ(t− τ) dτ

the superposition of delta source δ(t − τ) with weight f(τ). This delta source produces a
solution G(t − τ)f(τ). By the linearity of the equation, we have the solution is also the
superposition of these solution:

y(t) =

∫ t

0
G(t− τ)f(τ) dτ.



134 CHAPTER 5. METHODS OF LAPLACE TRANSFORMS

2. Contribution from the initial data. Next, let us see the case when f ≡ 0 and the initial data
are not zero. We have seen that the contribution of the initial state is

Y (s) =
I(s)

P (s)
, where I(s) =

n∑
i=1

n∑
k=i

aky
(k−i)(0)si−1.

We have seen that L−1(si−1/P (s)) = Di−1L−1(1/P (s)) = Di−1G(t) (5.2). With this, we
can write the general solution as the follows.

Theorem 5.1. The solution to the initial value problem

P (D)y = f

with prescribed y(0), ..., y(n−1) has the following explicit expression:

y(t) = L−1

(
I(s)

P (s)
+
F (s)

P (s)

)
=

n∑
i=1

n∑
k=i

aky
(k−i)(0)G(i−1)(t) + (G ∗ f)(t)

Homeworks.

1. B-D,pp. 344: 1, 10, 14,15,16

2. Prove L(δ(i)) = si.

3. Find the Green’s function for the differential operator P (D) = (D2 + ω2)m.

4. Find the Green’s function for the differential operator P (D) = (D2 − k2)m.

5. Suppose G = L−1(1/P (s)) is the Green’s function. Show that

L−1

(
si

P (s)

)
= Di

tG(t).

6. B-D, pp. 352: 13, 18,19,21,22,23



Chapter 6

Calculus of Variations

6.1 A short story about Calculus of Variations

The development of calculus of variations has a long history. It may goes back to the brachis-
tochrone problem proposed by Johann Bernoulli (1696). This is an ancient Greek problem, which
is to find a path (or a curve) connecting two points A and B with B lower than A such that it takes
minimal time for a ball to roll from A to B under gravity. Hohann Bernoulli used Fermat principle
(light travels path with shortest distance) to prove that the curve for solving the brachistochrone
problem is the cycloid.

Euler (1707-1783) and Lagrange (1736-1813) are two important persons in the development of
the theory of calculus of variations. I quote two paragraphs below from Wiki for you to know some
story of Euler and Lagrange.

“Lagrange was an Italian-French Mathematician and Astronomer. By the age of 18 he was
teaching geometry at the Rotal Artillery School of Turin, where he organized a discussion group
that became the Turin Academy of Sciences. In 1755, Lagrange sent Euler a letter in which he
discussed the Calculus of Variations. Euler was deeply impressed by Lagrange’s work, and he held
back his own work on the subject to let Lagrange publish first.”

“Although Euler and Lagrange never met, when Euler left Berlin for St. Petersburg in 1766, he
recommended that Lagrange succeed him as the director of the Berlin Academy. Over the course
of a long and celebrated career (he would be lionized by Marie Antoinette, and made a count by
Napoleon before his death), Lagrange published a systemization of mechanics using his calculus of
variations, and did significant work on the three-body problem and astronomical perturbations.”

6.2 Problems from Geometry

Geodesic curves Find the shortest path connecting two points A and B on the plane. Let y(x) be
a curve with (a, y(a)) = A and (b, y(b)) = B. The geodesic curve problem is to minimize∫ b

a

√
1 + y′(x)2 dx

135
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among all paths y(·) connecting A to B.

Isoperimetric problem This was an ancient Greek problem. It is to find a closed curve with a
given length enclosing the greatest area. Suppose the curve is described by (x(t), y(t)), 0 ≤ t ≤ T .
We may assume the total length is L. The isoperimetric inequality problem is to

max

{
1

2

∫ T

0
(x(t)ẏ(t)− y(t)ẋ(t)) dt

}
,

subject to ∫ T

0

√
ẋ(t)2 + ẏ(t)2 dt = L.

Its solution is the circle with radius R = L/(2π). Since the circle has the maximal enclosed area
among all closed curves with arc length L, we then get so-called iso-perimetric inequality

4πA ≤ L2.

The equality holds for circles. A geometric proof was given by Steiner (1838). An analytic proof
was given by Weierstrass and by Edler. 1 The proof by Hurwitz (1902) using Fourier method can
also be found in John Hunter and Bruno Nachtergaele’s book, Applied Analysis. In later section,
we shall give an ODE proof.

6.3 Euler-Lagrange Equation

Let us consider the following variational problem:

minJ [y] :=

∫ b

a
F (x, y(x), y′(x)) dx,

subject to the boundary conditions

y(a) = ya, y(b) = yb.

The function F : R× R× R→ R is a smooth function. We call the set

A =
{
y : [a, b]→ R ∈ C1[a, b]|y(a) = ya, y(b) = yb

}
an admissible class. Here, C1[a, b] denotes the set of functions from [a, b] to R which are con-
tinuously differentiable. An element y ∈ A is a path connecting (a, ya) to (b, yb). The mapping
J : A → R is called a functional. It measures the cost of a path. Given a path y ∈ A, we consider
a variation of this path in the direction of v by

y(x, ε) := y(x) + εv(x).

1 You can read a review article by Alan Siegel, A historical review of isoperimetric theorem in 2-D, and its place in
elementary plan geometry . For applications, you may find a book chapter from Fan in .

http://www.cs.nyu.edu/faculty/siegel/SCIAM.pdf
http://www.math.ucsd.edu/~fan/research/cb/ch2.pdf
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Here, v is a C1 function with v(a) = v(b) = 0 in order to have y(·, ε) ∈ A for small ε. Such v is
called a variation. Sometimes, it is denoted by δy. We can plug y(·, ε) into J . Suppose y is a local
minimum of J in A, then for any such variation v, J [y + εv] takes minimum at ε = 0. This leads
to a necessary condition:

d

dε

∣∣∣
ε=0
J [y + εv] = 0.

Let us compute this derivative

d

dε

∣∣∣
ε=0
J [y + εv] =

d

dε

∣∣∣
ε=0

∫ b

a
F (x, y(x) + εv(x), y′(x) + εv′(x)) dx

=

∫ b

a

∂

∂ε

∣∣∣
ε=0

F (x, y(x) + εv(x), y′(x) + εv′(x)) dx

=

∫ b

a
Fy(x, y(x), y′(x))v(x) + Fy′(x, y(x), y′(x))v′(x) dx

It is understood that Fy′ here means the partial derivative w.r.t. the third variable y′. For instance,

suppose F (y, y′) = y2

2 + y′2

2 , then Fy′ = y′.

Theorem 6.1 (Necessary Condition). A necessary condition for y ∈ A to be a local minimum of J
is ∫ b

a
Fy(x, y(x), y′(x))v(x) + Fy′(x, y(x), y′(x))v′(x) dx = 0 (6.1)

for all v ∈ C1[a, b] with v(a) = v(b) = 0.

If the solution y ∈ C2[a, b], then we can take integration by part on the second term to get∫ b

a
Fy′(x, y(x), y′(x))v′(x) dx = −

∫ b

a

d

dx
Fy′(x, y(x), y′(x))v(x) dx.

Here, I have used v(a) = v(b) = 0. Thus, the necessary condition can be rewritten as∫ b

a

(
Fy(x, y(x), y′(x))− d

dx
Fy′(x, y(x), y′(x))

)
v(x) dx = 0

for all v ∈ C1[a, b] with v(a) = v(b) = 0. A fundamental theorem of calculus of variations is the
following theorem.

Theorem 6.2. If f ∈ C[a, b] satisfies ∫ b

a
f(x)v(x) dx = 0

for all v ∈ C∞[a, b] with v(a) = v(b) = 0, then f ≡ 0.



138 CHAPTER 6. CALCULUS OF VARIATIONS

Proof. If f(x0) 6= 0 for some x0 ∈ (a, b) (say f(x0) = C > 0), then there is small neighborhood
(x0 − ε, x0 + ε) such that f(x) > C/2. We can choose v to be a hump such that v(x) = 1 for
|x − x0| ≤ ε/2 and v(x) ≥ 0 and v(x) = 0 for |x − x0| ≥ ε. The test function still satisfies the
boundary constraint if ε is small enough. Using this v, we get∫ b

a
f(x)v(x) dx ≥ Cε

2
> 0.

This contradicts to our assumption. We conclude f(x0) = 0 for all x0 ∈ (a, b). Since f is continu-
ous on [a, b], we also have f(a) = f(b) = 0 by continuity of f .

Thus, we obtain the following stronger necessary condition.

Theorem 6.3. A necessary condition for a local minimum y of J in A ∩ C2 is

δJ
δy

:= Fy(x, y(x), y′(x))− d

dx
Fy′(x, y(x), y′(x)) = 0. (6.2)

Equation 6.2 is called the Euler-Lagrange equation for the minimization problem minJ [y].

Example For the problem of minimizing arc length, the functional is

J [y] =

∫ b

a

√
1 + y′2 dx,

where y(a) = ya, y(b) = yb. The corresponding Euler-Lagrange equation is

d

dx
Fy′ =

d

dx

(
y′√

1 + y′2

)
= 0.

This yields
y′√

1 + y′2
= Const.

Solving y′, we further get
y′ = C (a constant).

Hence y = Cx+D. Applying boundary condition, we get

C =
yb − ya
b− a

, D =
bya − ayb
b− a

.

Thus, the curves with minimal arc length on the plane are straight lines.
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Homework

1. Compute δJ /δy of the following functionals. We will neglect boundary effects if there is
any.

(a) J [y] =
∫ b
a V (x)y(x) dx.

(b) J [y] =
∫ b
a α(x)y′(x) dx.

(c) J [y] =
∫ b
a (α(x)y′(x))2 dx.

(d) J [y] =
∫ b
a

(
−y(x)2

2 + y(x)4

4

)
dx.

(e) J [y] = 1
p

∫ b
a (y′(x))p dx, 1 < p <∞.

(f) J [y] =
∫ b
a (y′′(x))2 dx.

6.4 Problems from Mechanics

Least action principle In classical mechanics, the motion of a particle in R3 is described by

mẍ = −∇V (x) = F (x),

where, V (x) is called a potential and F is called a (conservative) force. This is called Newton’s
mechanics. Typical examples of potentials are the potential V (x) = gxwith uniform force field, the
harmonic potential V (x) = k2

2 |x|
2 for a mass-spring system, the Newtonian potential V (x) = − G

|x|
for solar-planet system, etc. Here, k is the spring constant, G, the gravitation constant.

The Newton mechanics was reformulated by Lagrange (1788) in variational form and was orig-
inally motivated by describing particle motion under constraints. Let us explain this variational
formulation without constraint. First, let us introduce the concept of virtual velocity or variation of
position. Given a path x(t), t0 ≤ t ≤ t1, consider a family of paths

xε(t) := x(t, ε) := x(t) + εv(t), t0 ≤ t ≤ t1,−ε0 < ε < ε0.

Here, v(t) is called a virtual velocity and xε(·) is called a small variation of the path x(·). Some-
times, we denote v(·), the variation of xε(·), by δx. That is, δx := ∂ε|ε=0xε.

Now, Newton’s law of motion can be viewed as

δW = (F −mẍ) · v = 0 for any virtual velocity v.

The term δW is called the total virtual work in the direction v. The term F · v is the virtual work
done by the external force F , while mẍ · v is the work done by the inertia force. The d’Alembert
principle of virtual work states that the virtual work is always zero along physical particle path
under small perturbation v.
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If we integrate it in time from t0 to t1 with fixed v(t0) = v(t1) = 0, then we get

0 =

∫ t1

t0

−mẍ · v −∇V (x) · v dτ

=

∫ t1

t0

mẋ · v̇ −∇V (x) · v dτ

=

∫ t1

t0

∂ε|ε=0

(
1

2
m|ẋε|2 − V (xε)

)
dτ

=
d

dε

∣∣∣
ε=0

∫ t1

t0

L(xε, ẋε) dτ = δS.

Here,

L(x, ẋ) :=
1

2
m|ẋ|2 − V (x),

is called the Lagrangian, and the integral

S[x] :=

∫ t1

t0

L(x(τ), ẋ(τ)) dτ

is called the action. Thus, δS = 0 along a physical path. This is called the Hamilton principle or
the least action principle. You can show that the corresponding Euler-Language equation is exactly
the Newton’s law of motion.

Theorem 6.4. The following formulations are equivalent:

• Newton’s equation of motion mẍ = −V ′(x);

• d’Alembert principle of virtual work:
∫ t1
t0

(mẋ · v̇ − V ′(x)v) dt = 0 for all virtual velocity
v;

• Hamilton’s least action principle: δ
∫ t1
t0

(
m
2 |ẋ|

2 − V (x)
)
dt = 0.

Remarks

1. The meaning of the notation δ. In the path space, we vary x(·) by xε(·). This means that
they are a family of paths. We can express them as x(t, ε). A typical example is x(t, ε) =
x(t) + εv(t). The variation of the path xε simply means

δx(t) =
∂

∂ε
|ε=0x(t, ε).

For the case xε = x + εv, δx = v. Sometimes, we use prime to denote for ∂
∂ε , while dot

denote for ∂
∂t . The two differentiations commute. That is

δẋ = ẋ′ =
d

dt
δx.
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2. When we consider a variation of path xε, the functional S[xε] becomes a function of ε as well:

S(ε) := S[xε] =

∫ t1

t0

L(x(τ, ε), ẋ(τ, ε)) dτ.

We can take differentiation of S w.r.t. ε at ε = 0:

dS

dε
(0) =

d

dε
|ε=0

∫ t1

t0

L(x(τ, ε), ẋ(τ, ε)) dτ

=

∫ t1

t0

(
∂

∂ε
L(x(τ, ε), ẋ(τ, ε))

)
dτ

=

∫ t1

t0

(
Lxx

′ + Lẋẋ
′) dτ

=

∫ t1

t0

(
Lxδx−

d

dτ
Lẋδx

)
dτ

=

∫ t1

t0

δS
δx

(τ)δx(τ) dτ.

Thus, the notation δS
δx is

δS
δx

(t) = Lx(x(t), ẋ(t))− d

dt
Lẋ(x(t), ẋ(t)).

is the variation of S w.r.t. the path x. Sometimes, we write

δS =
δS
δx
· δx.

One advantage of variational formulation – existence of first integral One advantage of this
variational formulation is that it is easy to find some invariants (or so-called integrals) of the system.
One exmple is the existence of the first integral.

Theorem 6.5. When the Lagrangian L(x, ẋ) is independent of t, then the quantity (called the first
integral)

I(x, ẋ) := ẋ · ∂L
∂ẋ
− L(x, ẋ)

is independent of t along physical trajectories.

Proof. We differentiate I(x(·), ẋ(·)) along a physical trajectory x(·):

d

dt
[ẋLẋ − L] = ẍLẋ + ẋ

d

dt
Lẋ − Lxẋ− Lẋẍ

= ẋ

(
d

dt
Lẋ − Lx

)
= 0.
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Remarks.

1. For the Newton mechanics where L(x, ẋ) = 1
2m|ẋ|

2 − V (x), this first integral is indeed the
total energy. Indeed, we obtain

I(x, ẋ) =
1

2
m|ẋ|2 + V (x).

2. In Newton’s equation:
mẍ = −∇V (x),

we multiply both sides by ẋ and obtain

mẍẋ+∇V (x)ẋ = 0.

This can be written as
d

dt

(
1

2
m|ẋ|2 + V (x)

)
= 0.

Thus,
1

2
m|ẋ|2 + V (x) = E.

for some constant E. This is another equivalent derivation, called energy method for New-
ton’s mechanics with conservative force field.

3. If the particle motion is in one dimension, that is, x(·) ∈ R, then the first integral

m

2
ẋ2 + V (x) = E

determines trajectories on the phase plane. Let us see the following example.

(a) Harmonic oscillator: V (x) = k
2x

2. The conservation of energy gives

m

2
ẋ2 +

k

2
x2 = E.

Each fixed E determines an ellipse on the phase plane (x, ẋ). Given an initial state
(x(0), ẋ(0)), it also determines a unique E0 = m

2 ẋ(0)2 + k
2x(0)2. This E0 determines

a trajectory from m
2 ẋ

2 + k
2x

2 = E, which is exactly the trajectory with the initial state
(x(0), ẋ(0)).

(b) Simple pendulum: A simple pendulum has a mass m hanging on a massless rod with
length `. The rod is fixed at one end and the mass m swings at the other end by the
gravitational force, which is mg. Let θ be the angle of the rod and the negative vertical
direction (0,−1). The locus the mass travels is on the circle centered at the fixed end of
the rod. Thus, we have

• mass position: `(sin θ,− cos θ),
• tangential direction of the motion: (cos θ, sin θ)
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• tangential velocity: v = `θ̇,
• tangential acceleration: a = `θ̈,
• the gravitation force: F = mg(0,−1),
• the force in the tangential direction: −mg sin θ.

The Newton’s law of motion gives

m`θ̈ = −mg sin θ.

We eliminate m and get
θ̈ = −g

`
sin θ.

The conservation of energy reads
1

2
θ̇2 − g

`
cos θ = E.

Each E determines a trajectory on the phase plane (θ, θ̇). Here are some special trajec-
tories.
• The stable equilibria: θ = 2nπ, θ̇ = 0. The corresponding E0 = −g

` .
• The unstable equilibria: θ = (2n + 1)π, θ̇ = 0. The corresponding energy is
E1 = g

` .
• The heteroclinic orbit: it connects two neighboring unstable equilibria: it satisfies

1

2
θ̇2 − g

`
cos θ = E1,

but it is not an equilibrium state.
• For E0 < E < E1, the corresponding orbit is a closed curve. For E > E1, the

corresponding is an unbounded orbit.

6.5 Method of Lagrange Multiplier

In variational problems, there are usually accompanied with some constraints. As we have seen that
the iso-perimetric problem. Lagrange introduced auxiliary variable, called the Lagrange multiplier,
to solve these kinds of problems. Below, we use the hanging rope problem to explain the method of
Lagrange multiplier.

Hanging rope problem A rope given by y(x), a ≤ x ≤ b hangs two end points (a, ya) and
(b, yb). Suppose the rope has length ` and density ρ(x). Suppose the rope is in equilibrium, then it
minimizes its potential energy, which is

J [y] =

∫ `

0
ρgy ds =

∫ b

a
ρgy

√
1 + y′2 dx.

The rope is subject to the length constraint

W[y] =

∫ b

a

√
1 + y′2 dx = `.



144 CHAPTER 6. CALCULUS OF VARIATIONS

Method of Lagrange multiplier In dealing with such problems, it is very much like the opti-
mization problems in finite dimensions with constraints. Let us start with two dimensional ex-
amples. Suppose we want to minimize f(x, y) with constraint g(x, y) = 0. The method of La-
grange multiplier states that a necessary condition for (x0, y0) being such a solution is that, if
∇g(x0, y0) 6= 0, then ∇f(x0, y0) ‖ ∇g(x0, y0). This means that there exists a constant λ0 such
that∇f(x0, y0)+λ0∇g(x0, y0) = 0. In other words, (x0, y0, λ0) is an extremum of the unconstraint
function F (x, y, λ) := f(x, y) + λg(x, y). That is, (x0, y0, λ0) solves

∂F

∂x
= 0,

∂F

∂y
= 0,

∂F

∂λ
= 0.

The first two is equivalent to ∇f(x0, y0) ‖ ∇g(x0, y0). The last one is equivalent to the constraint
g(x0, y0) = 0. The advantage is that the new formulation is an unconstrained minimization problem.

For constrained minimization problem in n dimensions, we have same result. Let y = (y1, ..., yn).
f : Rn → R and g : Rn → R. Consider

min f(y) subject to g(y) = 0.

A necessary condition for y0 being such a solution is that, if ∇g(y0) 6= 0, then there exists λ0

such that (y0, λ0) is an extremum of the unconstraint function F (y, λ) := f(y) + λg(y). That is,
(y0, λ0) solves

∂F

∂y
(y0, λ0) = 0,

∂F

∂λ
(y0, λ0) = 0.

For variational problem, we have much the same. Let us consider a variational problem in an
abstract form:

minJ [y] subject to W[y] = 0

in some admissible class A = {y : [a, b] → R|y(a) = ya, y(b) = yb} in some function space. We
approximate this variational problem to a finite dimensional problem. For any large n, we partition
[a, b] into n even subintervals:

xi = a+ i
b− a
n

, i = 0, ..., n.

We approximate y(·) ∈ A by piecewise linear continuous function ỹ with

ỹ(xi) = y(xi), i = 0, ..., n.

The function ỹ ∈ A has an one-to-one correspondence to y := (y1, ..., yn−1) ∈ Rn−1. We approxi-
mate J [y] by J(y) := J [ỹ], andW[y] by W (y) =W[ỹ]. Then the original constrained variational
problem is approximated by a constrained optimization problem in finite dimension. Suppose y0 is
such a solution. According to the method of Lagrange multiplier, if∇W (y0) 6= 0, then there exists
a λ0 such that (y0, λ0) solves the variational problem: J(y) + λW (y).

Notice that the infinite dimensional gradient δW/δy can be approximated by the finite dimen-
sional gradient∇W (y). That is

δW
δy

[y] ≈ δW
δy

[ỹ] =
∂W

∂y
= ∇W (y).

We summarize the above intuitive argument as the following theorem.
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Theorem 6.6. If y0 is an extremum of J [·] subject to the constraintW[y] = 0, and if δW/δy 6= 0,
then there exists a constant λ0 such that (y0, λ0) is an extremum of the functional J [y] + λW[y]
with respect to (y, λ).

*Remark. A more serious proof is the follows.

1. We consider two-parameter variations

z(x) = y(x) + ε1h1(x) + ε2h2(x).

The variation hi should satisfy the boundary conditions: hi(a) = hi(b) = 0 in order to have
z satisfy the boundary conditions: z(a) = ya and z(b) = yb. For arbitrarily chosen such
variations hi, we should also require εi satisfying

W (ε1, ε2) =W[y + ε1h1 + ε2h2] = 0.

On the variational subspaces spanned by hi, i = 1, 2, the functional J becomes

J(ε1, ε2) := J [y + ε1h1 + ε2h2].

Thus the original problem is reduced to

min J(ε1, ε2) subject to W (ε1, ε2) = 0

on this variational subspace. By the method of Lagrange multiplier, there exists a λ such that
an extremum of the original problem solves the unconstraint optimization problem min J +
λW . This leads to three equations

0 =
∂

∂ε1
(J + λW ) =

(
δJ
δy

+ λ
δW
δy

)
· h1

0 =
∂

∂ε2
(J + λW ) =

(
δJ
δy

+ λ
δW
δy

)
· h2

0 =
∂

∂λ
(J + λW ) =W[y]

2. Notice that the Lagrange multiplier λ so chosen, depends on h1 and h2. We want o show that
it is indeed a constant. This is proved below.

3. Since δW/δy(x) 6= 0, we choose x1 where δW/δy(x1) 6= 0. For any x2 ∈ (a, b), we
consider hi = δ(x− xi), i = 1, 2. Here, δ is the Dirac delta function. It has the property: for
any continuous function f , ∫

f(x)δ(x− x0) dx = f(x0).
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By choosing such hi, we obtain that there exists a λ12 such that

δJ
δy

(x1) + λ12
δW
δy

(x1) = 0

δJ
δy

(x2) + λ12
δW
δy

(x2) = 0

In other words, the constant

λ12 = −
δJ
δy (x1)

δW
δy (x1)

.

For any arbitrarily chosen x2, we get the same constant. Thus, λ12 is independent of x2. In
fact, the above formula shows

δJ
δy (x1)

δW
δy (x1)

=

δJ
δy (x2)

δW
δy (x2)

,

for any x2 6= x1. This means that there exists a constant λ such that

δJ
δy

(x) + λ
δW
δy

(x) = 0 for all x ∈ (a, b).

6.6 Examples

6.6.1 The hanging rope problem

Let us go back to investigate the hanging rope problem. By the method of Lagrange multiplier, we
consider the extremum problem of new Lagrangian

L(y, y′, λ) = ρgy

√
1 + y′2 + λ

√
1 + y′2.

The Lagrangian is independent of x, thus it admits the first integral L− y′Ly′ = C, or

(ρgy + λ)

(√
1 + y′2 − y′2√

1 + y′2

)
= C.

Solving for y′ gives

y′ = ± 1

C

√
(ρgy + λ)2 − C2.

Using method of separation of variable, we get

dy√
(ρgy + λ)2 − C2

= ±dx
C
.

Change variable u = ρgy + λ, we get

1

ρg
cosh−1

( u
C

)
= ± x

C
+ C1.
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Hence

y = − λ

ρg
+
C

ρg
cosh

(ρgx
C

+ C2

)
.

The constraints C, C2 and the Lagrange multiplier λ are then determined by the two boundary
conditions and the constraint. The shape of this hanging rope is called a catenary.

6.6.2 Isoperimetric inequality

We recall that the isoperimetric inequality is to find a closed curve with a given length enclosing the
greatest area. Suppose the curve is described by (x(t), y(t)), where t is a parameter on the curve,
0 ≤ t ≤ T . The iso-perimetric problem is to maximize the area

A[x, y] :=
1

2

∫ T

0
(x(s)ẏ(t)− y(t)ẋ(t)) dt

subject to

L[x, y] :=

∫ T

0

√
ẋ(t)2 + ẏ(t)2 dt = 2π.

This is a constrained maximization problem. We use method of Lagrange multiplier, there exists a
constant λ such that the solution satisfies

δ(A− λL) =
1

2

∫ T

0
ẏδx− yδẋ+ xδẏ − ẋδy dt− λ

∫ T

0

ẋδẋ+ ẏδẏ√
ẋ2 + ẏ2

dt

=

∫ T

0
ẏδx− ẋδy dt+ λ

∫ T

0

d

dt

(
ẋ√

ẋ2 + ẏ2

)
δx+

d

dt

(
ẏ√

ẋ2 + ẏ2

)
δy dt

=

∫ T

0

(
ẏ + λ

d

dt

(
ẋ√

ẋ2 + ẏ2

))
δx+

(
−ẋ+ λ

d

dt

(
ẏ√

ẋ2 + ẏ2

))
δy dt = 0.

This is valid for any δx and δy. Thus,

d

dt

(
ẋ√

ẋ2 + ẏ2

)
= − 1

λ
ẏ

d

dt

(
ẏ√

ẋ2 + ẏ2

)
=

1

λ
ẋ.

We claim that this means that the curve (x(·), y(·)) has constant curvature, and such curves must
be circles.

To see this, let us review some plane curve theory. On the curve (x(t), y(t)), we may parametrize
it by the arc length

s =

∫ t

0

√
ẋ(τ)2 + ẏ(τ)2 dτ.
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Since we assume the total arc length is L, we have 0 ≤ s ≤ L. We have ds =
√
ẋ(t)2 + ẏ(t)2dt.

Let us denote the differentiation in s by prime. The tangent and normal of the curve are

t := (x′, y′) =

(
ẋ√

ẋ2 + ẏ2
,

ẏ√
ẋ2 + ẏ2

)
,

n := (−y′, x′) =

(
−ẏ√
ẋ2 + ẏ2

,
ẋ√

ẋ2 + ẏ2

)
.

It is clearly that t ⊥ n, t · t = 1, and n · n = 1. Differentiate t · t = 1 in s, we get dtds ⊥ t = 0.
Since t ⊥ n, we have dt

ds ‖ n. The curvature of a curve K is defined by

dt

ds
= Kn.

This equation, as expressed in terms of the parameter t, reads

1√
ẋ2 + ẏ2

d

dt

(
ẋ√

ẋ2 + ẏ2

)
= K

−ẏ√
ẋ2 + ẏ2

,

1√
ẋ2 + ẏ2

d

dt

(
ẏ√

ẋ2 + ẏ2

)
= K

ẋ√
ẋ2 + ẏ2

.

Comparing this equation and the Euler-Lagrange equation corresponding iso-perimetric inequality
problem, we conclude that K = 1/λ is a constant. The quantity λ = 1/K is called the radius of
curvature.

Let us denote (x′, y′) by (ξ, η). The above equation is

ξ′ = −Kη
η′ = Kξ.

This gives ξ = − sin(Ks), η = cos(Ks). Here, I have normalized (ξ, η) = (0, 1) at s = 0. Notice
that (ξ, η) is a unit vector. From (x′, y′) = (− sin(Ks), cos(Ks)), we get

x(s) = x0 +
1

K
cos(Ks)

y(s) = y0 +
1

K
sin(Ks).

Since the total length of this curve is L, we get

L =
2π

K
.

The area enclosed by the circle is A∗ = π 1
K2 , which has the maximal area among all closed curves

with arc length L. Thus, for any closed curve with arc length L, the enclosed area satisfies

A ≤ A∗ =
1

4π
L2.

This is the iso-perimetric inequality.
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6.6.3 The Brachistochrone

The Brachistochrone problem is to find a curve on which a ball sliding down under gravitation to
a point A(0, 0) to another point B(xb, yb) takes least time. The word “brachistochrone” means
the “the shortest time delay” in Greek. It was one of the oldest problem in Calculus of Variation.
Its solution is a section of a cycloid. This was founded by Leibnitz, L’Hospital, Newton and two
Bernoullis.

Suppose the curve is given by (x(·), y(·)) starts from A = (0, 0). Let s be the arc length of the
curve. We can parametrize this curve by this arc length s, i.e. (x(s), y(s)). The gravitation force
is −mg(0, 1), where m is the mass of the ball and g is the gravitation constant. We project the
force to the tangential direction of the curve, which is (x′(s), y′(s)), and get the tangential force is
−mgy′(s). Thus, the equation of motion (in the tangential direction) is

ms̈ = −mgy′(s).

Here, dot means d/dt, whereas prime means d/ds. We multiply both sides by ṡ, we then find

ms̈ṡ+mgy′(s)ṡ = 0.

which is
d

dt

(
1

2
mṡ2 +mgy

)
= 0.

This gives the conservation of energy

1

2
mṡ2 +mgy(s) = E.

At point A(0, 0), we take s = 0, ṡ = 0 and y(0) = 0. With this normalization, E = 0. Thus, the
conservation of energy gives the speed

v = ṡ =
√
−2gy.

Notice that y ≤ 0 under our consideration. It is more convenient to work on positive y. Thus, we
change y to −y and the y stays positive. The traveling time from A to B is given by

TBA =

∫ s

0

1

v
ds =

∫ s

0

1√
2gy

ds,

where the distance s is not known yet. To find this curve(x(s), y(s)), we now parameterize it by x.
That is, we look for y(x), x ∈ (0, xb). The term ds =

√
dx2 + dy2 =

√
1 + y′(x)2dx. From now

on, the prime means d/dx. Now,

TBA =

∫ s

0

ds√
2gy

=

∫ xb

0

√
1 + y′(x)2

√
2gy

dx.

We may move the constant
√

2g to the left-hand side:

√
2gTBA =

∫ xb

0
F (y, y′) dx :=

∫ xb

0

√
1 + y′2

y
dx.
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The corresponding Euler-Lagrange equation is

d

dx
Fy′ − Fy = 0.

Since the Lagrangian F (y, y′) is independent of x, the first integral exists. We derive it again below.
We multiply this equation by y′, we arrive

0 = (Fy −
d

dx
Fy′)y

′

=

(
d

dx
F − Fy′y′′

)
−
(
d

dx
(Fy′y

′)− Fy′y′′
)

=
d

dx

(
F − Fy′y′

)
.

The quantity F − Fy′y′, the first integral, is a constant. That is,√
1 + y′2

y
− y′2√

y(1 + y′2)
= C.

This leads to
y(1 + y′2) =

1

C2
= A.

After rearrangement, we get
dy

dx
= ±

√
A− y
y

.

There are positive and negative branches. We can choose positive branch, because the other branch
can be obtained by replacing x by −x. Using separation of variable, we get

x =

∫ √
y

A− y
dy.

Taking the substitution

y = A(1− cos θ) = 2A sin2(
θ

2
),

we get

x =

∫ √
y

A− y
dy =

∫ √
sin2 θ

2

1− sin2 θ
2

2A sin
θ

2
cos

θ

2
dθ

= 2A

∫
sin2 θ

2
dθ = A(θ − sin θ) +B.

Here, A, B are constants and can be determined from the boundary conditions. At (x, y) = (0, 0),
we get

0 = y(θa) = 2A sin2 θa ⇒ θa = 0,
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0 = x(θa) = A(θ − sin θ) +B ⇒ B = 0.

At (x, y) = (xb, yb), we solve θb and A from{
xb = A(θb − sin θb)
yb = A(1− cos θb).

Thus, the solution is a cycloid given in parametric form:

x = A(θ − sin θ)

y = A(1− cos θ).

6.6.4 Phase field model

A multi-phase material is a material consisting of more than one phase. For instance, steam water
can have liquid and gas phases. Alloy is made of two or more metallic elements. Two-phase material
can be modeled by so-called phase field model. It characterizes the material property by an order
parameter φ through minimizing an energy functional

E [φ] :=

∫ b

−a

(
ε2

2
φ2
x(x) + F (φ(x))

)
dx.

Here, we assume the domain is [a, b]. The energy
∫ b
a
ε2

2 φ
2
x(x) dx is called kinetic energy. It means

that the variation of φ causes higher energy. The quantity ε is a parameter which measures the length
of transition from one phase to another phase. The second energy

∫ b
a F (φ(x)) dx is called the bulk

energy. One example of the bulk energy is

F (φ) = −δ
2
φ2 +

1

4
φ4.

The Euler-Lagrange equation is

− ε2φxx + F ′(φ) = −ε2φxx − φ+ φ3 = 0. (6.3)

In this phase field model, we are interested in the interface profile which connects the two equilib-
rium phases: ±1. The interface profile satisfies (6.3) for x ∈ R with boundary condition

φ(±∞) = ±1, φ′(±∞) = 0.

On the phase-plane (φ, φ′), you can check that the two equilibria (±1, 0) are saddles. The interface
profile φ is a heteroclinic orbit connecting these two equilibria.

To find the heteroclinic orbit, we use energy method. First, we can rescale x by replacing it by
x′/ε. Then the equation becomes

φx′x′ + φ− φ3 = 0.

Let us denote φx′ by φ′. We multiply both sides by φ′ to get

φ′φ′′ + (φ− φ3)φ′ = 0.
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This can be written as (
1

2
φ′

2
+
φ2

2
− φ4

4

)′
= 0.

Thus,
1

2
φ′

2
+
φ2

2
− φ4

4
= C.

We plug the end conditions: φ(±∞) = ±1 and φ′(±∞) = 0, we get C = 1/4. This leads to

1

2
φ′

2
=

1

4
− φ2

2
+
φ4

4
.

φ′ = ±
√

1

2
− φ2 +

φ4

2
.

dφ

1− φ2
=

1√
2
dx′

We integrate it and get
1

2
ln

∣∣∣∣1 + φ

1− φ

∣∣∣∣ =
1√
2
x′ + C.

We look for φ satisfy −1 < φ < 1. Thus, we get

1 + φ

1− φ
= C1e

√
2x′ .

We can absorb C1 into exponential function:

C1e
√

2x′ = e
√

2(x′−x′0), x0 is a constant.

We solve φ and get

φ(x′) =
e
√

2(x′−x′0) − 1

e
√

2(x′−x′0) + 1
= tanh

(
x′ − x′0√

2

)
.

Or

φ(x) = tanh

(
x− x0√

2ε

)
.

This is the interface shape function connecting two equilibrium phases φ = −1 and φ = +1.

Homeworks

1. Determine the function y(x) which connects two points (x0, y0) and (x1, y1) and has mini-
mum surface of revolution rotating about the x-axis.

2. Solve the Euler-Lagrange corresponding to the functional

J [y] =

∫ 2

1

√
1 + y′2

x
dx, y(1) = 0, y(2) = 1.
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3. Find the general solutions of the Euler-Lagrange corresponding to the functional

J [y] =

∫ b

a
f(x)

√
1 + y′2 dx.

4. Find the extremal of the functional

J [y] =

∫ √
x2 + y2

√
1 + y′2 dx.

5. Consider a water droplet on the table. We are interested in the shape of the droplet and its
contact angle to the table surface. Let us imagine the droplet is two dimensional. Thus, the
shape of the droplet is described by a curve y(x) 0 ≤ x ≤ a with y(0) = y(a) = 0 and
y(x) ≥ 0 for 0 < x < a. We are interested to determine the shape function y(x), the contact
angles tan−1(y′(0)) and tan−1(y′(b)). These quantities are determined by minimizing an
energy functional to be described below. Let us denote the water phase by (1), the air phase
by (0), and the table phase by (2). The energy consists of three parts: the surface energy
between (0) and (1), (1) and (2), (0) and (2). Let us denote the energy per unit length between
two phases (i) and (j) by εij , where 0 ≤ i 6= j ≤ 2. The energy functional is

E = E0,1 + E1,2 + E0,2,

where
E0,1 =

∫ a

0
ε01

√
1 + y′(x)2 dx,

E1,2 =

∫ a

0
ε12 dx = ε12a

E0,2 = ε02(L− a).

Here, we assume the length of table is L and the droplet occupies the region (0, a). This
minimization also subject to an area (volume) constraint: the area of the droplet is fixed:∫ a

0
y(x) dx = A.

Here, ε01, ε02, ε12 are given physical parameters. A and L are also given. The unknowns are
y(·), a, and the contact angles.

(a) Find the Euler-Lagrange equation of this system.

(b) Prove that the shape function is a portion of a circle.

(c) Derive the formula that the contact angles should satisfy.
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Chapter 7

Examples of Nonlinear Systems

There are rich classes of dynamical systems, even in two dimensions. We will introduce

• Hamiltonian systems

• Gradient systems

• Dissipative systems.

7.1 Hamiltonian systems

7.1.1 Motivation

We have seen in the last that a conservative mechanical system:

mẍ = −∇V (x)

has the first integralH = 1
2mẋ

2+V (x), which is invariant for all t. It can be derived by multiplying
the Newton law of motion by ẋ, we get

0 = mẍẋ+∇V (x)ẋ =
d

dt

(
1

2
mẋ2 + V (x)

)
.

From this, we get
1

2
m|ẋ|2 + V (x) = E

for some constant E. When x is a scalar, we can obtain

ẋ = ±
√

2

m
(E − V (x))

Then x(t) can be obtained by method of separation of variable:∫
dx√

2
m(E − V (x))

= ±
∫
dt.

155
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In the derivation above, the quantity H = 1
2m|ẋ|

2 + V (x) plays a key role. We can express H
in a more symmetric way. Define p = mẋ, called momentum. Express

H(x, p) =
p2

2m
+ V (x).

Then Newton’s mechanics is equivalent to{
ẋ = Hp(x, p)
ṗ = −Hx(x, p).

(7.1)

An advantage to express the Newton mechanics in this form is that it is easier to find invariants of
the flow.

Definition 7.1. A quantity f(x, p) is called an invariant of the Hamiltonian flow (7.1) if

d

dt
f(x(t), p(t)) = 0.

From chain rule, we see that f is invariant under the Hamiltonian flow (7.1) if and only if

d

dt
f(x(t), p(t)) = fxHp − fpHx = 0.

Theorem 7.1. If a Hamiltonian H is independent of t, then H is invariant under the corresponding
Hamiltonian flows (7.1).

Remarks

• General Lagrangian mechanics:

δx

∫ t1

t0

L(x1(t), ..., xn(t), ẋ1(t), ..., ẋn(t)) dt = 0

can also be written in the form of Hamiltonian system

ẋi = Hpi(x1, ..., xn, p1, ..., pn),

ṗi = −Hxi(x1, ..., xn, p1, ..., pn).

This will be derived in later section.

• If H is invariant under certain group action, then there are corresponding invariants of the
Hamiltonian flow. For instance, if the flow is in two dimensions, say H(x1, x2, p1, p2). Sup-
pose H is invariant under x1 7→ x1 + c for any c, that is,

H(x1 + c, x2, p1, p2) = H(x1, x2, p1, p2), for any c ∈ R.

An immediate consequence is that

ṗ1 = −Hx1 = 0.

Thus, p1 is an invariant of this Hamiltonian flow. We can eliminate it right away. The system
becomes smaller! We shall come back to this point at the end of this chapter.



7.1. HAMILTONIAN SYSTEMS 157

7.1.2 Trajectories on Phase Plane

A conservative quantity of a time-independent Hamiltonian flow{
ẋ = Hy(x, y)
ẏ = −Hx(x, y)

(7.2)

is the Hamiltonian H itself. That is, along any trajectory (x(t), y(t)) of (7.2), we have

d

dt
H(x(t), y(t)) = Hxẋ+Hyẏ = HxHy +Hy(−Hx) = 0.

In two dimensions, the trajectories of a Hamiltonian system in the phase plane are the level sets of
its Hamiltonian.

Example Some linear and nonlinear oscillators are governed by a restoration potential V . The
equation of motion in Newton’s mechanics is

mẍ = −V ′(x)

where V is a restoration potential. Define the momentum y = mv and the total energy

H(x, y) =
y2

2m
+ V (x),

1. Harmonic oscillator: H(x, y) = 1
2y

2 + k
2x

2.

2. Duffing oscillator: H(x, y) = 1
2y

2 − δ
2x

2 + x4

4 .

3. Cubic potential: H(x, y) = 1
2

(
y2 − x2 + x3

)
.

4. Simple pendulum: H(x, y) = 1
2y

2 − g
l cosx.

You can plot the level sets of H to see the trajectories. In particular, you should pay more attentions
on critical points, homoclinic and heteroclinic orbits.

Example Consider fluid flows in a two dimensional domain Ω. The flow is represented as a
vector field V : Ω→ R2, or in component form: V(x, y) = (u(x, y), v(x, y)). The flow is called a
potential flow if it is incompressible and irrotational . That is

∇ ·V = 0, ∇×V = 0.

In component form, they are

ux + vy = 0, incompressible
vx − uy = 0, irrotational.
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From divergence theorem, the first equation yields that there exists a function called stream function
ψ(x, y) such that

u(x, y) = ψy(x, y), v(x, y) = −ψx(x, y).

Indeed, from this divergence free condition, we can define the stream function ψ(x, y) by the line
integral:

ψ(x, y) =

∫ (x,y)

(−v(x, y)dx+ u(x, y)dy).

1. The starting point of the line integral is not important. What is relevant is the derivatives of
ψ. We can choose any point as our starting point. The corresponding ψ is defined up to a
constant, which disappears after taking differentiation.

2. By the divergence theorem, the integral is independent of path in a simply connected domain.
Hence, ψ is well-defined on simply connected domain. You can check that ψy = u and
ψx = −v. If the domain is not simply connected, the steam function may be a multiple
valued function. We shall not study this case now.

The second equation for the velocity field yields that

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0.

This equation is called a potential equation.
The particle trajectory (which flows with fluid flow) is governed by

ẋ = u(x, y) = ψy(x, y)
ẏ = v(x, y) = −ψx(x, y).

This is a Hamiltonian flow with Hamiltonian ψ(x, y). The theory of potential flow can be analyzed
by complex analysis. You can learn this from text books of complex variable or elementary fluid
mechanics.

Here are two examples for the potential flow: let z = x+ iy

1. ψ(z) = Im(z2) = 2xy,

2. ψ(z) = Im(z + 1/z) = y − y
x2+y2

.

The first one represent a jet. The second is a flow passing a circle .

Example The magnetic field B satisfies divB = 0. For two-dimensional steady magnetic field
B = (u, v), this reads

ux + vy = 0.

The magnetic field lines are the curves which are tangent to B at every points on this line. That is,
it satisfies

ẋ = u(x, y) = ψy(x, y)
ẏ = v(x, y) = −ψx(x, y)

where ψ is the stream function corresponding to the divergent free field B.
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Example Linear hamiltonian flow. If we consider

H(x, y) =
ax2

2
+ bxy +

cy2

2

the corresponding Hamiltonian system is(
ẋ
ẏ

)
=

(
b c
−a −b

)(
x
y

)
(7.3)

7.1.3 Equilibria of a Hamiltonian system

In this subsection, we want to investigate the property of the equilibria of the Hamiltonian flows.
These equilibria are the critical points of the Hamiltonian H .

Definition 7.2. If ∇H(x̄, ȳ) = 0, then (x̄, ȳ) is called a critical point of H . Such a critical point is
said to be non-degenerate if the hessian of H at (x̄, ȳ) (i.e. the matrix d2H(x̄, ȳ)) is non-singular.

Since H is usually convex in y variable in mechanical problems, we may assume that Hyy > 0
at the equilibrium. Notice that this assumption eliminates the possibility of any local maximum of
H .

To study the stability of an equilibrium (x̄, ȳ) of the Hamiltonian system (7.2), we linearize it
around (x̄, ȳ) to get

u̇ = Au,

where A is the Jacobian of the linearized system of (7.2) at an equilibrium (x̄, ȳ)

A =

(
Hyx Hyy

−Hxx −Hxy

)
(x̄,ȳ)

.

Since the trace part T of A is zero, its eigenvalues are

λi = ±1

2

√
H2
yx −HxxHyy|(x̄,ȳ), i = 1, 2.

We have the following possibilities.

• H has minimum at (x̄, ȳ). This is equivalent to HxxHyy − H2
xy > 0 at (x̄, ȳ) because we

already have Hyy > 0 from assumption. This is also equivalent to λi i = 1, 2 are pure
imaginary. Thus, (x̄, ȳ) is a center.

• H has a saddle at (x̄, ȳ). This is equivalent toHxxHyy−H2
xy < 0 at (x̄, ȳ). The corresponding

two eigenvalues are real and with opposite signs. Hence the equilibrium is a saddle.

• H cannot have a local maximum at (x̄, ȳ) because the assumption Hyy > 0.

We summarize it by the following theorem.
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Theorem 7.2. Assuming that (x̄, ȳ) is a non-degenerate critical point of a Hamiltonian H and
assuming Hyy(x̄, ȳ) > 0. Then

1. (x̄, ȳ) is a local minimum of H iff (x̄, ȳ) is a center of the corresponding Hamiltonian flow.

2. (x̄, ȳ) is a saddle of H iff (x̄, ȳ) is a saddle of the corresponding Hamiltonian flow..

The examples we have seen are

1. Simple pendulum: H(x, p) = 1
2p

2 − g
l cosx.

2. Duffing oscillator: H(x, p) = 1
2p

2 − δ
2x

2 + x4

4 .

3. Cubic potential: H(x, p) = 1
2

(
p2 − x2 + x3

)
.

In the case of simple pendulum, (2nπ, 0) are the centers, whereas (2(n + 1)π, 0) are the saddles.
In the case of Duffing oscillator, (±

√
δ, 0) are the centers, while (0, 0) is the saddle. In the last

example, the Hamiltonian system reads

{
ẋ = p
ṗ = x− 3

2x
2.

(7.4)

The state (0, 0) is a saddle, whereas (3/2, 0) is a center.

Below, we use Maple to plot the contour curves the Hamiltonian. These contour curves are
the orbits.

> with(DEtools):
> with(plots):

> E := yˆ2/2+xˆ3/3-delta*xˆ2/2;

E :=
1

2
y2 +

1

3
x3 − 1

2
δ x2

Plot the level set for the energy. Due to conservation of energy, these level sets are the orbits.

> contourplot(subs(delta=1,E),x=-2..2,y=-2..2,grid=[80,80],contours
> =[-0.3,-0.2,-0.1,0,0.1,0.2,0.3],scaling=CONSTRAINED,labels=[‘s‘,‘s’‘],
> title=‘delta=1‘);
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delta=1
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7.2 Gradient Flows

In many applications, we look for a strategy to find a minimum of some energy function or entropy
function. This minimal energy state is called the ground state. One efficient way is to start from
any state then follow the negative gradient direction of the energy function. Such a method is called
the steepest descent method. The corresponding flow is called a (negative ) gradient flow. To be
precise, let us consider an energy function ψ(x, y). We consider the ODE system:{

ẋ = −ψx(x, y)
ẏ = −ψy(x, y).

(7.5)

Along any of such a flow (x(t), y(t)), we have

dψ

dt
(x(t), y(t)) = ψxẋ+ ψyẏ = −(ψ2

x + ψ2
y) < 0,

unless the flow reaches a minimum of ψ.
The gradient flow of ψ is always orthogonal to the Hamiltonian flow of ψ. For if{

ẋ = ψy(x, y)
ẏ = −ψx(x, y)

{
ξ̇ = −ψx(ξ, η)
η̇ = −ψy(ξ, η)

then
ẋ(t) · ξ̇(t) + ẏ(t) · η̇(t) = 0.

Thus, the two flows are orthogonal to each other. We have seen that ψ is an integral of the Hamilto-
nian flow. Suppose φ is an integral of the gradient flow (7.5) (that is, the gradient flows are the level
sets of φ), then the level sets of ψ and φ are orthogonal to each other.
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Example 1. Let ψ = (x2 − y2)/2. Then the gradient flow satisfies{
ẋ = −x
ẏ = +y.

Its solutions are given by x = x0e
−t and y = y0e

t. We can eliminate t to obtain that the function
φ(x, y) := 2xy is an integral. If we view these functions on the complex plane: z = x+ iy, we see
that ψ(z) + iφ(z) = z2.
Example 2. Let ψ(x, y) = (x2 + y2)/2. The gradient flows are given by{

ẋ = −x
ẏ = −y.

Its solutions are given by x = x0e
−t and y = y0e

−t. An integral is φ = tan−1(y/x). On the other
hand, the Hamiltonian flow is given by{

ẋ = ψy = y
ẏ = −ψx = −x

Its solutions are given by x = A sin(t + t0), y = A cos(t + t0). The integral is ψ = (x2 + y2)/2.
In fact, 1

2 ln(x2 + y2) is also an integral of the Hamiltonian flow. The complex valued function
ψ + iφ = ln z.
Example 3. In general, the hamiltonian

ψ(x, y) =
ax2

2
+ bxy +

cy2

2

the corresponding Hamiltonian system is(
ẋ
ẏ

)
=

(
b c
−a −b

)(
x
y

)
The gradient flow is (

ẋ
ẏ

)
= −

(
a b
b c

)(
x
y

)
Find the corresponding integral φ of the gradient flow by yourself.
Example 4. Let

ψ(x, y) =
y2

2
− x2

2
+
x4

4
.

The gradient flow is {
ẋ = −ψx = x− x3

ẏ = −ψy = −y
The trajectory satisfies

dy

dx
=

dy
dt
dx
dt

=
y

−x+ x3
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By the separation of variable
dy

y
=

dx

−x+ x3
,

we get

ln y =

∫
dx

−x+ x3
= − ln |x|+ 1

2
ln |1− x|+ 1

2
ln |1 + x|+ C.

Hence, the solutions are given by

φ(x, y) :=
x2y2

1− x2
= C1.

Remarks.

• We notice that if ψ is an integral of an ODE system, so is the composition function h(ψ(x, y))
for any function h. This is because

d

dt
h(ψ(x(t), y(t)) = h′(ψ)

d

dt
ψ(x(t), y(t)) = 0.

• If (0, 0) is the center of ψ, then (0, 0) is a sink of the corresponding gradient flow.

• If (0, 0) is a saddle of ψ, it is also a saddle of φ.

The properties of a gradient system are shown in the next theorem.

Theorem 7.3. Consider the gradient system{
ẋ = −ψx(x, y)
ẏ = −ψy(x, y)

Assume that the critical points of ψ are isolated and non-degenerate. Then the system has the
following properties.

• The equilibrium is either a souce, a sink, or a saddle. It is impossible to have spiral structure.

• If (x̄, ȳ) is an isolated minimum of ψ, then (x̄, ȳ) is a sink.

• If (x̄, ȳ) is an isolated maximum of ψ, then (x̄, ȳ) is a source.

• If (x̄, ȳ) is an isolated saddle of ψ, then (x̄, ȳ) is a saddle.

To show these, we see that the Jacobian of the linearized equation at (x̄, ȳ) is the Hessian of the
function ψ at (x̄, ȳ): is

−
(
ψxx ψxy
ψxy ψyy

)
Its eigenvalues λi, i = 1, 2 are

−1

2

(
T ±

√
T 2 − 4D

)
,
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where T = ψxx + ψyy, D = ψxxψyy − ψ2
xy. From

T 2 − 4D = (ψxx − ψyy)2 + 4ψ2
xy ≥ 0

we have that the imaginary part of the eigenvalues λi are 0. Hence the equilibrium can only be a
sink, a source or a saddle.

Recall from Calculus that whether the critical point (x̄, ȳ) of ψ is a local maximum, a local min-
imum, or a saddle, is completed determined by λ1, λ2 < 0, λ1, λ2 > 0, or λ1λ2 < 0, respectively.
On the other hand, whether the equilibrium (x̄, ȳ) of (7.5) is a source, a sink, or a saddle, is also
completed determined by the same conditions.

Homeworks.
1. Consider a linear ODE (

ẋ
ẏ

)
=

(
a b
c d

)(
x
y

)
(a) Show that the system is a hamiltonian system if and only if a + d = 0. Find the

corresponding hamiltonian.
(b) Show that the system is a gradient system if and only if b = c, i,e. the matrix is sym-

metric.

7.3 Simple pendulum

Motion on a given curve in a plane A curve (x(s), y(s)) in a plane can be parametrized by its
arc length s. If the curve is prescribed as we have in the case of simple pendulum, then the motion
is described by just a function s(t). By Newton’s law, the motion is governed by

ms̈ = f(s),

where f(s) is the force in the tangential direction of the curve. For instance, suppose the curve is
given by y = y(s), and suppose the force is the uniform garvitational force −mg(0, 1), then the
force in the tangential direction is

f(s) = (
dx

ds
,
dy

ds
) · [−mg(0, 1)] = −mgdy

ds
.

Thus, the equation of motion is

s̈ = −gdy
ds
. (7.6)

For simple pendulum, s = lθ, (x(θ), y(θ)) = (l sin θ,−l cos θ), and
dy

ds
=
dy

dθ

dθ

ds
= −g sin θ

Hence, the equation of motion is
mlθ̈ = −mg sin θ,

or in terms of s,
ms̈ = −mg sin

(s
l

)
.
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7.3.1 global structure of phase plane

We are interested in all possible solutions as a function of its parameters E and t0. The constant
t0 is unimportant. For the system is autonomous, that is its right-hand side F (y) is independent
of t. This implies that if y(t) is a solution, so is y(t − t0) for any t0. The trajectories (y(t), ẏ(t))
and (y(t − t0), ẏ(t − t0)) are the same curve in the phase plane (i.e. y-ẏ plane). So, to study the
trajectory on the phase plane, the relevant parameter is E. We shall take the simple pendulum as a
concrete example for explanation. In this case, V (θ) = − cos(θ)g/l.

As we have seen that
θ̇2

2
+ V (θ) = E, (7.7)

the total conserved energy. We can plot the equal-energy curve on the phase plane.

CE := {(θ, θ̇) | θ̇
2

2
− g

l
cos θ = E} (7.8)

This is the trajectory with energy E. These trajectories can be classified into the follow categories.

1. No trajectory: For E < −g/l, the set {(θ, θ̇)| θ̇22 −
g
l cos θ = E} is empty. Thus, there is no

trajectory with such E.

2. Equilibria: For E = −g/l, the trajectories are isolated points (2nπ, 0), n ∈ Z. These
correspond to equibria, namely they are constant state solutions

θ(t) = 2nπ, for all t.

3. Bounded solutions. For −g/l < E < g/l, the trajectories are bounded closed orbits. Due
to periodicity of the cosine function, we see from (7.8) that (θ, θ̇) is on CE if and only if
(θ + 2nπ, θ̇) is on CE . We may concentrate on the branch of the trajectory lying between
(−π, π), since others are simply duplications of the one in (−π, π) through the mapping
(θ, θ̇) 7→ (θ + 2nπ, θ̇).

For θ ∈ (−π, π), we see that the condition

θ̇2

2
− g

l
cos θ = E

implies
E +

g

l
cos θ ≥ 0,

or
cos θ ≥ −El

g
.

This forces θ can only stay in [−θ1, θ1], where

θ1 = cos−1(−El/g).
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The condition−g/l < E < g/l is equivalent to 0 < θ1 < π. The branch of the trajectory CE
in the region (−π, π) is a closed orbit:

θ̇ =


√

2(E + g
l cos θ) for θ̇ > 0,

−
√

2(E + g
l cos θ) for θ̇ < 0

The solution is bounded in [−θ1, θ1]. The two end states of this orbit are (±θ1, 0), where the
velocity θ̇ = 0 and the corresponding angle θ = θ1, the largest absolute value. The value θ1

is called the amplitude of the pendulum.

We integrate the upper branch of this closed orbit by using the method of separation of vari-
able: ∫ θ

0

dθ√
2(E + g

l cos θ)
=

∫
dt = ±(t− t0)

We may normalize t0 = 0 because the system is autonomous (that is, the right-hand side of
the differential equation is independent of t). Let us denote

t1 :=

∫ θ1

0

dθ√
2(E + g

l cos θ)
.

Let us call

ψ(θ) :=

∫ θ

0

dθ√
2(E + g

l cos θ)
.

Then ψ(θ) is defined for θ ∈ [−θ1, θ1] with range [−t1, t1]. The function ψ is monotonic
increasing (because ψ′(θ) > 0 for θ ∈ (−θ1, θ1)) Hence, its inversion θ(t) = φ(t) is well-
defined for t ∈ [−t1, t1]. This is the solution θ(t) in the upper branch of CE in (−π, π). We
notice that at the end point of this trajectory, θ̇(t1) = 0. Therefore, for t > t1, we can go to
the lower branch smoothly:

−
∫ θ

θ1

dθ√
2(E + g

l cos θ)
= t− t1.

This yields

−
(∫ 0

θ1

+

∫ θ

0

)
dθ√

2(E + g
l cos θ)

= t− t1,

The first integral is t1, whereas the second integral is −ψ(θ). Thus,

ψ(θ) = 2t1 − t.

As θ varies from θ1 to −θ1, 2t1 − t varies from t1 to −t1, or equivalently, t varies from t1 to
3t1. Hence, the solution for t ∈ [t1, 3t1] is

θ(t) := φ(2t1 − t).
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We notice that
θ(t) = φ(2t1 − t) = θ(2t1 − t) for t ∈ [2t1, 3t1]

At t = 3t1, θ(3t1) = −θ1 and θ̇(3t1) = 0. We can continue the time by integrating the upper
branch of CE again. This would give the same orbit. Therefore, we can extend θ periodically
with period T = 2t1 by:

θ(t) = θ(t− 2nT ) for 2nT ≤ t ≤ 2(n+ 1)T.

4. Another equilibria: For E = g/l, the set CE contains isolated equilibria:

{((2n+ 1)π, 0)|n ∈ Z} ⊂ CE = {(θ, θ̇) | θ̇
2

2
− g

l
cos θ = E}

These equilibria are saddle points, which can be seen by linearizing the system at these equi-
libria. The nonlinear system is θ̈+ g

l sin θ = 0. Near the equilibrium ((2n+1)π, 0), we write
the solution (θ, θ̇) = ((2n + 1)π + u, u̇), where (u, u̇) is the perturbation, which is small.
Plug into the equation, we get

ü+
g

l
sin((2n+ 1)π + u) = 0.

For small u, we get the linearized equation

ü− g

l
u ≈ 0.

The characteristic roots of this linearized system are ±
√
g/l. Thus, 0 is a saddle point of the

linearized system.

5. Heteroclinic orbits: We can connect two neighboring saddle points (−π, 0) and (π, 0). This
can be thought as a limit of the above case with E → g/l from below. For E = g/l,

θ̇ = ±
√

2(1 + cos(θ))
g

l
= ±2

√
g

l
cos

(
θ

2

)
.

Using t′ =
√

g
l t, we have

dθ

2dt′
= cos

(
θ

2

)
.

Using the polar stereographic projection:

u = tan

(
θ

4

)
,

dθ

du
=

4

1 + u2
, cos

θ

2
=

1− u2

1 + u2
,

we obtain

dt′ =
2du

1 + u2

1 + u2

1− u2
=

2du

1− u2
.
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Integrate this, we get

t′ = ln

∣∣∣∣1− u1 + u

∣∣∣∣ .
Here, we normalize a constant t′0 = 0, which is just a shift of time. It is nothing to do with
the orbit. Solve u, we obtain

u =
1− et′

1 + et′
= − tanh

(
t′

2

)
.

Since u = tan(θ/4), we get

θ = 4 tan−1

(
tanh

(√
g

4l
t

))
.

This is the orbit connecting (−π, 0) to (π, 0).

6. Unbounded solution: For E > g/l, there are two branches of CE , the upper one (θ̇ > 0)
and the lower one (θ̇ < 0). The upper branch: θ̇ =

√
2(E + cos(θ)g/l) > 0 is defined for all

θ ∈ R. By using the method of separation of variable, we get∫ θ

0

dθ√
2
(
E + g

l cos(θ)
) = t

Let us call the left-hand side of the above equation by ψ(θ). Notice that ψ(θ) is a monotonic
increasing function defined for θ ∈ (−∞,∞), because ψ′(θ) > 1

2(E−g/l) > 0. The range of
ψ is (−∞,∞). Its inversion φ(t) is the solution θ = φ(t). Let

T :=

∫ 2π

0

dθ√
2
(
E + g

l cos(θ)
)

From the periodicity of the cosine function, we have for 2nπ ≤ θ ≤ 2(n+ 1)π,

t = ψ(θ) =

(∫ 2π

0
+ · · ·+

∫ 2nπ

2(n−1)π
+

∫ θ

2nπ

)
dθ√

2
(
E + g

l cos(θ)
)

This yields
t = nT + ψ(θ − 2nπ).

Or
θ(t) = 2nπ + φ(t− nT ), for t ∈ [nT, (n+ 1)T ].
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7.3.2 Period

Let us compute the period for case 3 in the previous subsection. Recall that

T =

∫ θ1

−θ1

dθ√
2
(
E + g

l cos(θ)
) =

√
l

2g

∫ θ1

−θ1

dθ√
El
g + cos(θ)

=

√
l

2g

∫ θ1

−θ1

dθ√
cos(θ)− cos(θ1)

=

√
l

g

∫ θ1

−θ1

dθ√
sin2 θ1

2 − sin2 θ
2

where 0 < θ1 = arccos(−El/g) < π is the amptitude of the pendulum. By the substitution

u =
sin(θ/2)

sin(θ1/2)
,

the above integral becomes

T = 2

√
l

g

∫ 1

−1

du√
(1− u2)(1− k2u2)

(7.9)

where k = sin(θ1/2). This integral is called an elliptic integral. This integral cannot be expressed
as an elementary function. But we can estimate the period by using

1 ≥ 1− k2u2 ≥ 1− k2

for −1 ≤ u ≤ 1 and using
∫ 1
−1 1/

√
1− u2 du = π, the above elliptic integral becomes

2π

√
l

g
≤ T ≤ 2π

√
l

g

(
1

1− k2

)
(7.10)

Homework.

Using Taylor expansion for (1− k2u2)−1/2, expand the elliptic integral

f(k) =

∫ 1

−1

du√
(1− u2)(1− k2u2)

in Taylor series in k for k near 0. You may use Maple to do the integration.

7.4 Cycloidal Pendulum – Tautochrone Problem

7.4.1 The Tautochrone problem

The period of a simple pendulum depends on its amptitude y1
1. A question is that can we design

a pendulum such that its period is independent of its amptitude. An ancient Greek problem called
1Indeed, k = sin(y1/2)
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tautochrone problem answers this question. The tautochrone problem is to find a curve down which
a bead placed anywhere will fall to the bottom in the same amount of time. Thus, such a curve
can provide a pendulum with period independent of its amptitude. The answer is the cycloid. The
cycloidal pendulum oscillates on a cycloid. The equation of a cycloid is{

x = l(θ + π + sin θ).
y = −l(1 + cos θ)

Its arc length is

s =

∫ √
(dx/dθ)2 + (dy/dθ)2 dθ

= l

∫ √
(1 + cos θ)2 + sin2 θ dθ

= 2l

∫
cos

(
θ

2

)
dθ

= 4l sin

(
θ

2

)
.

The force
dy

ds
=
dy

dθ

dθ

ds
=

l sin θ

2l cos
(
θ
2

) = sin

(
θ

2

)
=

s

4l
.

The equation of motion on cycloidal pendulum is

s̈ = − g
4l
s,

a linear equation! Its period is T = 2π
√
l/g, which is independent of the amplitude of the oscilla-

tion.

Which planar curves produce linear oscillators?

The equation of motion on a planar curve is

s̈ = −gdy
ds
.

The question is: what kind of curve produce linear oscillator. In other word, which curve gives
dy/ds = ks. This is an ODE for y(s). Its solution is

y(s) =
k

2
s2.

Since s is the arc length of the curve, we have

x′(s)2 + y′(s)2 = 1.
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Hence, x′(s) = ±
√

1− k2s2. We use the substitution: s = sin(θ/2)/k. Then

y =
k

2
s2 =

1

2k
sin2

(
θ

2

)
=

1

4k
(1− cos θ).

x =

∫ √
1− k2s2 ds =

1

2k

∫
cos2

(
θ

2

)
dθ =

1

4k

∫
(1 + cos θ) dθ =

1

4k
(θ + sin θ) .

Thus, the planar curve that produces linear restoration tangential force is a cycloid.
Ref. http://mathworld.wolfram.com

7.4.2 Construction of a cycloidal pendulum

To construct a cycloidal pendulum 2 , we take l = 1 for explanation. We consider the evolute of the
cycloid

x = π + θ + sin θ, y = −1− cos θ. (7.11)

In geometry, the evolute E of a curve C is the set of all centers of curvature of that curve. On the
other hand, if E is the evolute of C, then C is the involute of E. An involute of a curve E can
be constructed by the following process. We first wrape E by a thread with finite length. One end
of the thread is fixed on E. We then unwrape the thread. The trajectory of the other end as you
unwrape the thread forms the involute of E. We shall show below that the evolute E of a cycloid
C is again a cycloid. With this, we can construct a cycloidal pendulum as follows. We let the mass
P is attached by a thread of length 4 to one of the cusps of the evolute E. Under the tension, the
thread is partly coincide with the evolute and lies along a tangent to E. The mass P then moves on
the cycloid C.

Next, we show that the motion of the mass P lies on the cycloid C. The proof consists of three
parts.

1. The evolute of a cycloid is again a cycloid. Suppose C is expressed by (x(θ), y(θ)). We
recall that the curvature of C at a particular point P = (x(θ), y(θ)) is defined by dα/ds, where
α = arctan(ẏ(θ)/ẋ(θ)) is the inclined angle of the tangent of C and ds =

√
ẋ2 + ẏ2 dθ is the

infinitesimal arc length. Thus, the curvature, as expressed by parameter θ, is given by

κ =
dα

ds
=
dα

dθ

dθ

ds
=

ẋÿ−ẍẏ
ẋ2

1 +
(
ẏ
ẋ

)2

1√
ẋ2 + ẏ2

=
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
.

The center of curvature of C at P = (x, y) is the center of the osculating circle that is tangent to
C at P . Suppose P ′ = (ξ, η) is its coordinate. Then PP ′ is normal to C (the normal (nx, ny) is
(−ẏ, ẋ)/

√
ẋ2 + ẏ2) and the radius of the osculating circle is 1/κ. Thus, the coordinate of the center

2Courant and John’s book, Vol. I, pp. 428.
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of curvature is

ξ = x+
1

κ
nx = x− ẏ ẋ

2 + ẏ2

ẋÿ − ẏẍ
,

η = y +
1

κ
ny = y + ẋ

ẋ2 + ẏ2

ẋÿ − ẏẍ
.

When (x(θ), y(θ)) is given by the cycloid equation (7.11),

x = π + θ + sin θ, y = −1− cos θ, −π ≤ θ ≤ π,

we find that its evolute
ξ = π + θ − sin θ, η = 1 + cos θ, (7.12)

is also a cycloid.

2. The evolute of C is the envelope of its normals. We want to find the tangent of the evolute E
and show it is identical to the normal of C. To see this, we use arc length s as a parameter on C.
With this, the normal (nx, ny) = (−y′, x′) and the curvature κ = x′y′′− y′x′′, where ′ is d/ds. The
evolute is

ξ = x− ρy′, η = y + ρx′, (7.13)

where ρ = 1/κ. Thus, the evolute E is also parametrized by s. Since x′2 +y′2 = 1, we differentiate
it in s to get x′x′′ + y′y′′ = 0. This together with κ = x′y′′ − y′x′′ yield

x′′ = −y′/ρ, = y′′ = x′/ρ.

Differentiating (7.13) in s, we can get the tangent of the evolute E:

ξ′ = x′ − ρy′′ − ρ′y′ = −ρ′y′, η′ = y′ + ρx′′ + ρ′x′ = ρ′x′, (7.14)

Therefore,
ξ′x′ + η′y′ = 0.

This means that the tangent (ξ′, η′) of the evolute at the center of curvature is parallel to the normal
direction (−y′, x′) of the curve C. Since both of them pass through (ξ, η), they are coincide. In
other words, the normal to the curve C is tangent to the evolute E at the center of curvature.

3. The end point of the thread P lies on the cycloid C. We show that the radius of curvature
plus the length of portion on E where the thread is attched to is 4. To see this, we denote the acr
length on the evolute E by σ. The evolute E, as parametrized by the arc length s of C is given by
(7.13). Its arc length σ satisfies(

dσ

ds

)2

= ξ′2 + η′2 = (−ρ′y′)2 + (ρ′x′)2 = ρ′2
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Here, we have used (7.14). Hence, σ′2 = ρ′2. We take s = 0 at θ = π ((x, y) = (π,−2)). We
choose s > 0 when θ > π. We take σ(0) = 0 which corresponds to (ξ, η) = (π, 2). We call this
point A (the cusp of the cycloid E). We also choose σ(s) > 0 for s > 0. Notice that ρ′(s) < 0.
From these normalization, we have

σ′(s) = −ρ′(s).

Now, as the mass moves along C to a point P on C, the center of curvature of C at P is Q which is
on the evolute E. We claim that

length of the arc AQ on E + the length of the straight line PQ = 4.

To see that, the first part above is∫ s

0
σ′ ds = −

∫ s

0
ρ′ ds = ρ(0)− ρ(s).

The second part is simply the radius of curvature ρ(s). Hence the above sum is ρ(0) = 4.

Homework.

1. Given a family of curves Γλ : {(x(t, λ), y(t, λ))|t ∈ R}, a curve E is said to be the envelop
of Γλ if

(a) For each λ, Γλ is tangent to E. Let us denote the tangent point by Pλ¿

(b) The envelop E is made of Pλ with λ ∈ R.

Now consider the family of curves to be the normal of a cycliod C, namely

Γθ = (x(θ) + tnx(θ), y(θ) + tny(θ)),

where (x(θ), y(θ)) is given by (7.11) and (nx, ny) is its normal. Using this definition of
envelop, show that the envelop of Γθ is the cycloid given by (7.12).

7.5 The orbits of planets and stars

7.5.1 Centrally directed force and conservation of angular momentum

The motion of planets or stars can be viewed as a particle moving under a centrally directed field of
force:

F = F (r)êr,

where r is the distance from the star to the center, r is the position vector from the center to the star
and

êr =
r

r
,
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is the unit director. The equation of motion of the star is

r̈ = F (r)êr.

Define the angular momentum L = r× ṙ. We find

dL

dt
= ṙ× ṙ + r× r̈ = F (r)r× êr = 0.

Hence , L is a constant. A function in the state space (r, ṙ) is called an integral if it is unchanged
along any orbits. The integrals can be used to reduce number of unknowns of the system. The
conservation of angular momentum provides us three integrals. Let us write L = Ln where L = |L|
and n is a unit vector. The position vector r and the velocity ṙ always lie on the plane which is
perpendicular to n. This plane is called the orbital plane. We use polar coordinates (r, θ) on this
plane. Thus, by using the integrals n, which has two parameters, we can reduce the number of
unknowns from 6 to 4, that is, from (r, ṙ) to (r, θ, ṙ, θ̇). To find the equation of motion on this
plane, we express

r = rêr = r(cos θ, sin θ).

Define
êθ := (− sin θ, cos θ)

be the unit vector perpendicular to êr. Then a particle motion on a plane with trajectory r(t) has the
following velocity

ṙ = ṙêr + r ˙̂er = ṙêr + rθ̇êθ.

where ṙ is the radial speed and rθ̇ is the circular speed. Here, we have used

˙̂er =
d

dt
(cos θ, sin θ) = θ̇êθ.

The acceleration is

r̈ = r̈êr + ṙ ˙̂er + ṙθ̇êθ + rθ̈êθ + rθ̇ ˙̂eθ

= (r̈ − rθ̇2)êr + (2ṙθ̇ + rθ̈)êθ.

Here, we have used ˙̂eθ = −êr. In this formula, r̈ is the radial acceleration, and −rθ̇2 is the
centripetal acceleration. The term

r(2ṙθ̇ + rθ̈) =
d

dt
(r2θ̇)

is the change of angular momentum. Indeed, the angular momentum is

L = r× ṙ = rêr × (ṙêr + rθ̇êθ) = r2θ̇n.

The equation of motion r̈ = F (r)êr gives

r̈ − rθ̇2 = F (r), (7.15)
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d

dt
(r2θ̇) = 0. (7.16)

These are the two second-order equations for the unknowns (r, θ, ṙ, θ̇). The θ equation (7.16) can
be integrated and gives the conservation of angular momentum

r2θ̇ = constant = L. (7.17)

If we prescribe an L, the trajectory lies on the set

{(r, θ, ṙ, θ̇) | θ̇ = L/r2}.

We may project this set to the (r, θ, ṙ)-space and our unknowns now are reduced to (r, θ, ṙ). The
equations of motion in this space are (7.15) and (7.17).

The integral L can be used to eliminate θ̇ from the first equation. We get

r̈ = F (r) +
L2

r3
, (7.18)

where the second term on the right-hand side is the centrifugal force. Notice that this equation is
independent of θ. Thus, given initial data (r0, θ0, ṙ0) at time t = 0, we can find r(t) and ṙ(t) from
(7.18) by using (r0, ṙ0) only. We can then use r2θ̇ = L to find θ(t):

θ(t) = θ0 +

∫ t

0

L

r(t)2
dt.

The equation (7.18) can be solved by the energy method. We multiply (7.18) by ṙ on both sides
to obtain

d

dt

(
1

2
ṙ2 + Φ(r) +

1

2

L2

r2

)
= 0,

where Φ with Φ′(r) = −F (r) is the potential. We obtain the law of conservation of energy:

1

2
ṙ2 + Φ(r) +

1

2

L2

r2
= constant = E. (7.19)

This energy is another integral. A prescribed energy E defines a surface in the (r, θ, ṙ)-space. Since
the energy 1

2 ṙ
2 + Φ(r) + 1

2
L2

r2
is independent of θ (a consequence of centrally forcing), this energy

surface is a cylinder CE × Rθ, where CE is the curve defined by (7.19) on the phase plane r-ṙ.
The equation of motion with a prescribed energy E is

dr

dt
= ±

√
2(E − Φ(r))− L2

r2
. (7.20)

It is symmetric about the r-axis. Let us suppose that r1 and r2 ( r1 < r2) are two roots of the
right-hand side of the above equation:

2(E − Φ(r))− L2

r2
= 0
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and no other root in between. Then the curve defined by (7.20) is a closed curve connecting (r1, 0)
and (r2, 0). The radial period is defined to be the time the particle travels from (r1, 0) to (r2, 0) and
back. That is,

Tr = 2

∫ r2

r1

dr√
2(E − Φ(r))− L2/r2

.

Next, we shall represent this orbit on the orbital plane (r, θ). From the conservation of angular
momentum

dθ

dt
=
L

r2
6= 0,

we can invert the function θ(t) and use θ as our independent variable instead of the time variable t.
The chain rule gives

d

dt
=
L

r2

d

dθ
.

The equation of motion now reads

L

r2

d

dθ

(
L

r2

dr

dθ

)
− L2

r3
= F (r). (7.21)

The energy equation (7.20) becomes

dr

dθ
= ±r

2

L

√
2(E − Φ(r))− L2

r2
. (7.22)

We can integrate this equation by separation of variable to obtain the trajectory r = r(θ) in the
orbital plane. Sometimes, it is convinient to introduce u = 1/r to simplify the equation (7.21):

d2u

dθ2
+ u = −

F
(

1
u

)
L2u2

. (7.23)

Multiplying du/dθ on both sides, we get the conservation of energy in u variable:

1

2

(
du

dθ

)2

+
u2

2
+

Φ

L2
=

E

L2
. (7.24)

Next, we check the variation of θ as r changes for a radial period. The roots of the right-hand
side of (7.22) are equilibria. From (7.20) and (7.22), we see that dr/dθ = 0 if and only if dr/dt = 0.
Hence these roots are exactly r1 and r2 in (7.20). The orbit r = r(θ) defined by (7.20) must lie
between its two extremals where dr/dθ = 0. That is, the orbit r = r(θ) must lie between the inner
circle r ≡ r1 and the outer circle r ≡ r2. The inner radius r1 is called the pericenter distance,
whereas r2 the apocenter distance.

As the particle travels from pericenter to apocenter and back (i.e. one radial period Tr), the
azimuthal angle θ increases by an amount

∆θ = 2

∫ r2

r1

dθ

dr
dr = 2

∫ r2

r1

L

r2

dt

dr
dr

= 2L

∫ r2

r1

dr

r2
√

2(E − Φ(r))− L2/r2
.
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The azimuthal period is defined as the time that θ varies 2π:

Tθ :=
2π

∆θ
Tr.

In general, 2π/∆θ is not a rational number. Hence, the orbit may not be closed.
Below, we see some concrete examples. We shall find the trajectory of the motion r = r(θ).

Quadratic potential

The potential generated by a homogeneous sphere has the form Φ(r) = 1
2Ω2r2, where Ω is a

constant. The force in Cartesian coordinate is F = −Ω2(x, y). Hence the equation of motion is

ẍ = −Ω2x, ÿ = −Ω2y.

We notice that the x and y components are decoupled. Its solution is

x(t) = a cos(Ωt+ θx), y(t) = b cos(Ωt+ θy). (7.25)

where a, b and θx, θy are constants. The orbits are ellipses.
The energy equation is

1

2
ṙ2 +

Ω2

2
r2 +

1

2

L2

r2
= E.

Its contour curves are bounded and symmetric about r and ṙ axis. The solution is

ṙ = ±
√

2E − Ω2r2 − L2

r2
.

The trajectory intersect ṙ = 0 at r1 and r2, where ri satisfies 2E − Ω2r2 − L2

r2
. This yields

r2
i =

E ±
√
E2 − Ω2L2

Ω2

There are two real roots when E2 > Ω2L2. The above elliptical orbit moves between between r1

and r2. From the solution being an ellipse, we can also get that Tr = Tθ.

Homework.

1. Show that the trajectory defined by (7.25) is an ellipse.

2. * Find the integral

∆θ :=

∫ r2

r1

2L

r2

dr√
2E − Ω2r2 − L2

r2

.
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Kepler potential

The Kepler force is F (r) = −GM/r2, where M is the center mass, G the gravitational constant.
The potential is Φ(r) = −GM/r. From (7.23),

d2u

dθ2
+ u =

GM

L2
.

This yields

u = C cos(θ − θ0) +
GM

L2

where C and θ0 are constants. By plugging this solution into the energy equation (7.24), we obtain

1

2
C2 sin2(θ−θ0)+

1

2
C2 cos2(θ−θ0)+C cos(θ−θ0) ·GM

L2
+
G2M2

2L4
−GM

L2
C cos(θ−θ0) =

E

L2
.

This yields

C =

√
2E −G2M2/L2

L
.

We may assume θ0 = 0. Define

e =
CL2

GM
, a =

L2

GM(1− e2)
,

the eccentricity and the semi-major axis, respectively. The trajectory reads

r =
a(1− e2)

1 + e cos θ
. (7.26)

This is an ellipse. The pericenter distance r1 = a(1 − e), whereas the apocenter distance r2 =
a(1 + e). The periods are

Tr = Tθ = 2π

√
a3

GM
. (7.27)

Homework.

1. Prove (7.27).

A perturbation of Kepler potential

Let us consider the potential

Φ(r) = −GM
(

1

r
+
a

r2

)
.

This potential can be viewed as a perturbation of the Kepler potential. The far field is dominated by
the Kepler potential. However, in the near field, the force is attractive (but stronger) when a > 0
and becomes repulsive when a < 0.
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The equation for this potential in the r-θ plane is

d2u

dθ2
+

(
1− 2GMa

L2

)
u =

GM

L2
,

where u = 1/r. Its general solution is

1

r
= u = C cos

(
θ − θ0

K

)
+
GMK2

L2
,

where

K =

(
1− 2GMa

L2

)−1/2

.

The constant K > 1 for a > 0 and 0 < K < 1 for a < 0. The constant C is related to the energy
E by

E =
1

2

C2L2

K2
− 1

2

(
GMK

L

)2

.

The pericenter and apocenter distances are respectively

r1 =

(
GMK2

L2
+ C

)−1

, r2 =

(
GMK2

L2
− C

)−1

.

The trajectory in u-θ plane is

u =
u1 + u2

2
+

(
u1 − u2

2

)
cos

(
θ − θ0

K

)
.

Here, u1 = 1/r1 and u2 = 1/r2. To plot the trajectory on u-θ plane, we may assume θ0 = 0.
If K is rational, then the orbit is closed. For instance, when K = 1, the trajectory is an ellipse.
When K = 3/2, the particle starts from (u1, 0), travels to (u2, 3/2π), then back to (u1, 3π), then
to (u2, (3 + 3/2)π), finally return to (r1, 6π).

Reference. James Binney and Scott Tremaine, Galactic Dynamics, Princeton University Press,
1987.

Homeworks

1. Consider the Duffing’s equation

s̈ = −y′(s), y(s) = −δs2/2 + s4/4.

(a) Find the equilibria.

(b) Plot the level curve of the energy E on the phase plane s-s′.

(c) Find the period T as a function of E and δ.
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(d) Analyze the stability of the equilibria.

2. Consider the equation

ẍ = −V ′(x), V (x) = −x
2

2
+
x3

3
.

(a) Find the equilibria.

(b) Plot the level curve of the energy E on the phase plane s-s′.

(c) Find the period T as a function of E.

(d) Analyze the stability of the equilibria.

(e) There is a special orbit, called the homoclinic orbit, which starts from the orgin, goes
around a circle, then comes back to the orgin. Find this orbit on the phase plane and try
to find its analytic form.

3. Consider the Kepler problem.

(a) Plot the level curve of E on the phase plane r-ṙ.

(b) Plot the level curve of E on the r-r′ plane, where r′ denotes for dr/dθ.

7.6 General Hamiltonian flows

The above Hamiltonian formulation holds for quite general Lagrange mechanics. Consider the
action

S =

∫
L(x, ẋ) dt,

where L : Rn × Rn → R. The least action principle gives the Euler-Lagrange equation:

d

dt
Lv(x, ẋ) = Lx(x, ẋ).

In mechanical application, L(x,v) is usually a convex function in v. We define the map

p = Lv(x,v)

from Rn → Rn. This mapping is 1-1 and has a unique inverse due to the convexity of L(x, ·). We
multiply the Euler-Lagrange equation by ẋ,

0 = (
d

dt
Lv) · ẋ− Lx · ẋ

=
d

dt
(Lv · ẋ− L)

Therefore, we define
H(x,p) = Lv(x,v) · v − L(x,v), (7.28)
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where v := v(x,p) is the inverse function of p = Lv(x,v). This inversion can be expressed in
terms of H . Namely,

v = Hp(x,p).

To see this, we express
H(x,p) = p · v(x,p)− L(x,v(x,p)).

We differentiate it in p and get

Hp = v + p · vp − Lvvp = v.

We can also compute Hx:

Hx = p · vx(x,p)− Lx(x,v(x,p))− Lv(x,v(x,p))vx(x,p) = −Lx(x,v).

Thus, the Euler-Lagrange equation
d

dt
Lv = Lx (7.29)

now can be expressed as
ṗ = −Hx.

Let us summary the above discussion below.

From Euler-Lagrange equation to Hamiltonian equation We start from the minimal action
principle to get the Euler-Lagrange equation

d

dt
Lv(x, ẋ) = Lx(x, ẋ).

From this, we define the mapping

p := Lv(x,v) and its inverse mapping v = v(x,p),

and the Hamiltonian
H(x,p) := p · v(x,p)− L(x,v(x,p)).

We then get
v(x,p) = Hp(x,p) and ṗ = Hx(x,p).

Now, we claim that if x(·) is a solution of (7.29) then{
ẋ = Hp(x,p)
ṗ = −Hx(x,p)

(7.30)

with p(t) := Lv(x(t), ẋ(t)).
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From Hamiltonian equation to Euler-Lagrange equation If (x(t),p(t)) satisfies (7.30), then
define

v = Hp(x,p) and its inverse map p(x,v),

and the Lagrangian
L(x,v) = v · p(x,v)−H(x,p(x,v)),

Then x(·) satisfies the Euler-Lagrange equation (7.29).

7.6.1 Noether Theorem

Project

1. Write a model for double pendulum. Solve it numerically, analyze it.



Chapter 8

General Theory for ODE in Rn

8.1 Well-postness

8.1.1 Local existence

In this section, we develop general theory for the initial value problem

y′(t) = f(t,y(t)), (8.1)

y(t0) = y0. (8.2)

This includes, the existence, uniqueness, continuous dependence of the initial data. In the next
section, we will develop the general stability theory. This includes the linear stability analysis and
method of Lyapunov function.

We assume that f : R × Rn → Rn is continuous. We are interested in existence of solutions
in a neighborhood of (t0,y0). Let us choose such a neighborhood, say J = [t0 − τ0, t0 + τ0] and
V = {y||y − y0| ≤ R}. Let us denote max{|f(s,y)||(s,y) ∈ J × V } by M .

Definition 8.1. We say that f(s,y) is Lipschitz continuous in y in a neighborhood J × V if there
exists a constant L such that

|f(s,y1)− f(s,y2)| ≤ L|y1 − y2|

for any y1,y2 ∈ V and any s ∈ J .

If f(s,y) is continuously differentiable in y on J × V , then by the mean value theorem, it is
also Lipschitz continuous in y.

Theorem 8.1 (Local Existence, Cauchy-Peano theory). Consider the initial value problem (8.1),
(8.2). Suppose f(t,y) is continuous in (t,y) and Lipschitz continuous in y in a neighborhood of
(t0,y0), then the initial value problem (8.1) and (8.2) has a solution y(·) in [t0− δ, t0 + δ] for some
δ > 0.

Proof. We partition the existence proof into following steps.

183



184 CHAPTER 8. GENERAL THEORY FOR ODE IN RN

1. Convert (8.1) (8.2) into an equivalent integral equation. We can integrate (8.1) in t and obtain

y(t) = y0 +

∫ t

t0

f(s,y(s)) ds. (8.3)

This is an integral equation for y(·). We claim that the initial value problem (8.1) (8.2) is
equivalent to the integral equation (8.3).
We have seen the derivation from (8.1) and (8.2) to (8.3). Conversely, if y(·) is continuous and
satisfies (8.3), then f(·,y(·)) is continuous. Hence,

∫ t
t0

f(s,y(s)) ds is differentiable. By the
Fundamental Theorem of Calculus, we get y′(t) = f(t,y(t)). Hence, y(·) is differentiable
and satisfies (8.1). At t = t0, the integral part of (8.3) is zero. Hence y(t0) = y0.

2. We shall use method of contraction map to solve this integral equation in the function space
C(I), the space of all continuous functions on interval I . First, let me introduce the function
space C(I):

C(I) := {y|y : I → Rn is continuous}.
Here, I = [t0 − δ, t0 + δ] is an interval of existence. The parameter δ ≤ τ0 will be chosen
later. In C(I), we define a norm

‖y‖ = max
t∈I
|y(t)|.

It is a fact that, with this norm, every Cauchy sequence {yn} in C(I) converges to y ∈ C(I).

3. We perform Picard iteration to generate approximate solutions: define

y0(t) ≡ y0

yn+1(t) = Φ(yn)(t) := y0 +

∫ t

t0

f(s,yn(s)) ds, n ≥ 1. (8.4)

We will show that {yn} is a Cauchy in C(I). But, first, we need to show that Φ(y)(t) stay in
V for |t− t0| small enough so that the Lipschitz condition of f can be applied.

4. Let us consider the closed ball

X := {y ∈ C(I)|‖y − y0‖ ≤ R} ⊂ C(I).

We claim that if y ∈ X , then Φ(y) ∈ X , provided δ ≤ R
M . This is because

‖Φ(y)− y0‖ =

∣∣∣∣∫ t

0
f(s,y(s)) ds

∣∣∣∣ ≤ ∫ t

0
|f(s,y(s))| ds ≤Mt ≤ δ.

5. We claim that the sequence {yn} is a Cauchy sequence in C(I), provided δ is small enough.
From (8.4), we have

‖yn+1 − yn‖ = ‖Φ(yn)−Φ(yn−1)‖ ≤
∫ t

t0

|f(s,yn(s))− f(s,yn−1(s))| ds

≤
∫ t

t0

L|yn(s)− yn−1(s)| ds ≤ τL‖yn − yn−1‖
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Here, L is the Lipschitz constant of f in J × U . We choose a constant ρ < 1 and choose δ
such that

δ = min{ ρ
L
,
R

M
}. (8.5)

With this δ, yn ∈ X and

‖ym − yn‖ ≤
m−1∑
k=n

‖yk+1 − yk‖ ≤
m−1∑
n

ρk < ε,

provided n < m are large enough.

6. By the completeness of C(I), yn converges to a function y ∈ C(I). This convergence above
is called uniform convergence. It means

lim
n→∞

max
s∈I
|yn(s)− y(s)| = 0.

This implies that yn(s) → y(s) for every s ∈ I . This also yields that, for every s ∈
I , limn→∞ f(s,yn(s)) = f(s,y(s)), because f is continuous in y. By the continuity of
integration, we then get ∫ t

t0

f(s,yn(s)) ds→
∫ t

t0

f(s,y(s)) ds

for any t ∈ I . By taking limit n→∞ in (8.4), we get that y(·) satisfies the integral equation
(8.3).

8.1.2 Uniqueness

Theorem 8.2. If f(s,y) is Lipschitz continuous in y in a neighborhood of (t0,y0), then the initial
value problem

y′(t) = f(t,y(t)), y(0) = y0

has a unique solution in the region where the solution exists.

Proof. Suppose y1(·) and y2(·) are two solutions. Then Let η(t) := |y2(t)− y1(t)|. 1 We have

η′(t) ≤ |(y2(t)− y1(t))′| ≤ |f(t,y2(t))− f(t,y1(t))|
≤ L|y2(t)− y1(t)| = Lη(t)

1 The norm here can be any norm in Rn. What we need is the triangle inequality which gives

|y1(t)− y2(t)|′ ≤ |y′1(t)− y′2(t)|.

The |y|2 =
√
y21 + · · ·+ y2n has this property.
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We get the following differential inequality

η′(t)− Lη(t) ≤ 0.

Multiplying e−Lt on both sides, we get (
e−Ltη(t)

)′ ≤ 0.

Hence
e−Ltη(t) ≤ η(0).

But η(0) = 0 (because y1(0) = y2(0) = y0) and η(t) = |y1(t) − y2(t)| ≥ 0, we conclude that
η(t) ≡ 0.

If f does not satisfies the Lipschitz condition, then a counter example does exist. Typical counter
example is

y′(t) = 2
√
y, y(0) = 0.

Any function has the form

y(t) =

{
0 t < c
(t− c)2 t ≥ c

with arbitrary c ≥ 0 is a solution.

Homework Let |y| :=
√
y2

1 + · · ·+ y2
n. Let y : R→ Rn be a smooth function. Show that

|y|′ ≤ |y′|.

8.1.3 Continuous dependence on initial data

Let us denote the solution to the ODE

y′ = f(t,y), y(t0) = ξ

by y(t, ξ). We shall show that the solution continuously depends on its initial data ξ. If f is twice
differentiable in y, then y(·, ξ) is also differentiable in ξ.

Theorem 8.3. Under the same assumption of f in the local existence theorem above, the solution
y(t; ξ) of the ODE: y′ = f(t,y), y(t0, ξ) = ξ is a continuous function in ξ in a neighborhood of
y0. That is, the solution y(·, ξ) continuously depends on its initial data ξ.

Proof. The proof is a simple modification of the proof of the local existence theorem.

1. Let us define I = [t0 − δ, t0 + δ] (δ is to be determined later), U = BR/2(y0) and consider

C(I × U) := {y(·)|y : I × U → Rn is continuous},

with the norm
‖y1 − y2‖ := max

(t,ξ)∈I×U
|y1(t, ξ)− y2(t, ξ)|

X = {y ∈ C(I × U)|‖y − y0‖ ≤ R/2}.
Here, y0 denotes for both the constant and the constant function in t with value y0.
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2. We define the Picard iteration to be:

yn+1(t, ξ) := Φ(yn)(t, ξ) := ξ +

∫ t

t0

f(s,yn(s, ξ)) ds,

y0(t, ξ) ≡ ξ,

for (t, ξ) ∈ I × U .

3. We claim that if y ∈ X , then |Φ(y)(t, ξ)− y0| ≤ R. This is because

|Φ(y)− y0| ≤ |ξ − y0|+
∫ t

t0

|f(s,y(s, ξ))| ds ≤ R

2
+Mδ ≤ R

provided δ ≤ R/(2M).

4. The sequence {yn} is a Cauchy sequence in C(I × U) provided δ is small. From (8.4), we
have

‖yn+1 − yn‖ = ‖Φ(yn)−Φ(yn−1)‖ ≤
∫ t

t0

|f(s,yn(s))− f(s,yn−1(s))| ds

≤
∫ t

t0

L|yn(s)− yn−1(s)| ds ≤ τL‖yn − yn−1‖

We choose a constant ρ < 1 and choose δ such that

δ = min{ ρ
L
,
R

2M
}. (8.6)

With this δ, yn ∈ X and

‖ym − yn‖ ≤
m−1∑
k=n

‖yk+1 − yk‖ ≤
m−1∑
n

ρk < ε,

provided n < m are large enough.

5. The sequence {yn} converges to a function y ∈ C(I × U) and satisfies

y(t, ξ) = ξ +

∫ t

t0

f(s,y(s, ξ)) ds

which solves the ODE: y′ = f(t,y), y(t0, ξ) = ξ. Furthermore, y(t, ξ) is continuous in ξ.
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Remark. Given a function y ∈ C(I ×U). For each fixed ξ ∈ U , y(·, ξ) ∈ C(I) for every ξ ∈ U .
Thus, y can be viewed as a function z : U → C(I) defined by z(ξ) = y(·, ξ) ∈ C(I). This function
is indeed a continuous function from U to C(I). This means that if we define

C(U,C(I)) := {w : U → C(I) is continuous.}

equipped with the norm
‖w‖ := max

ξ∈U
‖w(ξ)‖,

then z ∈ C(U,C(I)). This can be proven by the following arguments. Because y ∈ C(I × U), we
have for any ε > 0 small, there exists δ1 > 0 such that

|y(t, ξ1)− y(t, ξ2)| < ε

for all t ∈ I and ξ1, ξ2 ∈ U with |ξ1 − ξ2| < δ1. This δ1 is independent of t because of the uniform
continuity of y on I × U . We can take maximum in t ∈ I , then obtain

‖z(ξ1)− z(ξ2)‖ = ‖y(·, ξ1)− y(·, ξ2)‖ := max
t∈I
|y(t, ξ1)− y(t, ξ2)| ≤ ε.

Thus, z ∈ C(U,C(I)).
Conversely, given a function z ∈ C(U,C(I)), z(ξ) ∈ C(I) for any ξ ∈ U . Thus, we can

associate it with a function y : I × U → Rn defined by y(t, ξ) := z(ξ)(t). This function is indeed
uniformly continuous on I × U . Thus, C(I × U) is the same as the space C(U,C(I)).

Homework

1. Let I be closed interval and U ∈ Rn be a closed ball. Prove that if z ∈ C(U,C(I)), then the
function y(t, ξ) := z(ξ)(t) is uniformly continuous on I × U .

2. *The continuity of y(t, ξ) in ξ can become differentiable if the Jacobian [∂f/∂y](t,y) is
Lipschitz continuous in y. Prove such a result and show that along a solution y(·, ξ), the
Jacobian [∂y(·, ξ)/∂ξ], which is an n× n matrix, satisfies the matrix ODE:

d

dt

[
∂y

∂ξ
(t, ξ)

]
=

[
∂f

∂y
(t,y(t, ξ))

] [
∂y

∂ξ

]
.

3. Show that det
[
∂y
∂ξ (t, ξ)

]
6= 0 if det

[
∂y
∂ξ (0, ξ)

]
6= 0

8.1.4 A priori estimate and global existence

The global existence results are usually followed from so-called a priori estimate plus the local
existence result. Let us recall the a priori estimate for scalar equations.
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Examples of a priori estimates

1. In logistic equation y′ = ry(1 − y/K), if a solution y(·) with 0 < y(0) < K exists, then
it always satisfies 0 < y(t) < K for all t. This is because y(t) ≡ 0 and y(t) ≡ K are two
equilibrium solutions and no solution can cross equilibrium (uniqueness theorem). Such kind
of estimate is called an a priori estimate.

2. In spring-mass model mẍ− kx = 0, if the solution exists, then it always satisfies

1

2
ẋ2 + kx2 = E

for some constant E > 0. This automatically gives boundedness of (x(t), ẋ(t)), as long as it
exists. The estimate is called a priori estimate.

Global existence theorem

Theorem 8.4. Consider y′ = f(t,y). If a solution y(t) stays bounded as long as it exists, then such
a solution exists for all t ∈ R.

Proof. Suppose a solution exists in [0, T ) and cannot be extended. By the assumption of bounded-
ness, the limit y(T−) exists. This is because y(·) is bounded, hence y′(t) = f(t,y(t)) is bounded
and continuous for t ∈ [0, T ). Hence the limit

y(T−) = lim
t→T−

y(0) +

∫ t

0
y′(s) ds

exists. We can extend y(·) from T with the y(T+) = y(T−). By the local existence theorem,
the solution can be extended for a short time. Now, we have a solution on two sides of T with the
same data y(T−), we still need to show that it satisfies the equation at t = T . To see this, on the
right-hand side

lim
t→T+

y′(t) = lim
t→T+

f(t,y(t)) = f(T,y(T−)).

On the left-hand side, we also have

lim
t→T−

y′(t) = lim
t→T−

f(t,y(t)) = f(T,y(T−)).

Therefore y′(t) is continuous at T and y′(T ) = f(T,y(T )). Hence we get the extended solution
also satisfies the equation at T . This is a contradiction.

Below, we give several examples of a priori estimates.
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Example 1 A vector field f(t,y) is said to grow at most linearly as |y| → ∞ if there exist some
positive constants a, b such that

|f(t,y)| ≤ a|y|+ b (8.7)

whenever |y| is large enough.

Theorem 8.5. If f(t,y) is smooth and grows at most linearly as |y| → ∞, then all solutions of
ODE y′ = f(t,y) can be extended to t =∞.

Proof. Suppose a solution exists in [0, T ), we give a priori estimate for this solution. From the grow
condition of f , we have

|y(t)|′ ≤ |y′(t)| ≤ a|y(t)|+ b.

Multiplying e−at on both sides, we get(
e−at|y(t)|

)′ ≤ e−atb.
Integrating t from 0 to T , we obtain

e−aT |y(T )| − |y(0)| ≤
∫ T

0
e−atb dt =

b

a

(
1− eaT

)
.

Hence
|y(T )| ≤ |y(0)|eaT +

b

a
eaT .

Such an estimate is called a priori estimate of solutions. It means that as long as solution exists, it
satisfies the above estimate.

Remarks.

1. We can replace the growth condition by

|f(t,y)| ≤ a(t)|y|+ b(t) (8.8)

where a(t) and b(t) are two positive functions and locally integrable, which means∫
I
a(t) dt,

∫
I
b(t) dt <∞

for any bounded interval I .

2. In the proofs of the uniqueness theorem and the global existence theorem, we use so called
the Gronwall inequality, which is important in the estimate of solutions of ODE.

Lemma 8.1 (Gronwall inequality). If

η′(t) ≤ a(t)η(t) + b(t) (8.9)

then

η(t) ≤ e
∫ t
0 a(s) dsη(0) +

∫ t

0
e
∫ t
s a(τ) dτ b(s) ds (8.10)
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Proof. Let A(t) =
∫ t

0 a(s) ds. We multiply (8.9) by the integration factor e−A(t) to get

e−A(t)η′(t)− a(t)e−A(t)η(t) ≤ e−A(t)b(t).

This gives (
e−A(t)η(t)

)′
≤ e−A(t)b(t).

We rename the independent variable as s then integrate this inequality in s from 0 to t. We get

e−A(t)η(t) ≤ η(0) +

∫ t

0
e−A(s)b(s) ds.

Multiply both sides by eA(t), we get (8.10).

Gronwall inequality can also be used to show that the continuous dependence of solution to its initial
data.

Homework

1. Gronwall inequality in integral form Suppose η(t) satisfies

η(t) ≤ η(0) +

∫ t

0
Lη(s) + b(s) ds

Show that eta(t) satisfies

e−Ltη(t) ≤ η(0) +

∫ t

0
e−L(t−s)b(s) ds.

Hint: Let ζ(t) :=
∫ t

0 η(s) ds. Then ζ(t) satisfies

ζ ′ = ζ ′(0) + Lζ +B(t), B(t) =

∫ t

0
b(s) ds.

Use the differential form of the Gronwall inequality.

2. Generalize the above Gronwall inequality to

η(t) ≤ η(0) +

∫ t

0
a(s)η(s) + b(s) ds.
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Example 2: Lyapunov functional and a priori estimate

Theorem 8.6. Consider the ODE in Rn:

y′ = f(y), y(0) = y0.

Suppose there exists a function Φ such that

(i) ∇Φ(y) · f(y) ≤ 0, and

(ii) Φ(y)→∞ as |y| → ∞.

Then the solution exists on [0,∞).

Proof. Consider Φ(y(t)). It is a non-increasing function because

d

dt
Φ(y(t)) = ∇Φ(y(t)) · f(y(t)) ≤ 0

Thus,
Φ(y(t)) ≤ Φ(y(0))

Since Φ(y)→∞ as y→∞, the set

{y|Φ(y) ≤ Φ(y0)}

is a bounded set. If the maximal existence of interval is [0, T ) with T < ∞, then y(·) is bounded
in [0, T ) and can be extended to T . By the local existence of ODE, we can always extend y(·) to
T + ε. This is a contradiction. Hence T =∞.

As an example, let us consider a damping system

ẍ + γẋ = −V ′(x)

where V is a trap potential, which means that V (x) → ∞ as |x| → ∞. By multiplying ẋ both
sides, we obtain

dE

dt
= −γ|ẋ|2 ≤ 0

Here,

E(t) :=
1

2
|ẋ|2 + V (x)

is the energy. The term γ|ẋ|2 is called the energy dissipation rate. We integrate the above equation
from 0 to t, drop the dissipation term to get

E(t) ≤ E(0), for all t > 0.

This gives a priori estimate of solution

1

2
|ẋ(t)|2 + V (x(t)) ≤ E(0).

This implies both ẋ(t) and x(t) are bounded, because of the property of V .
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Homeworks

1. Suppose η(·) satisfies
η′ ≤ aη + bη2, η ≥ 0,

where a, b are two positive constants. Show that η(t) is bounded for t ≥ 0 if η(0) is small
enough.

2. Consider the equation
y′ = Ay + B(y,y), y(0) = y0.

Here, y ∈ Rn, A is an n × n matrix, B : Rn × Rn → Rn is a bilinear function. Show that
the solution y(t) exists for all t ≥ 0 if |y(0)| is small enough.

8.2 Supplementary

8.2.1 Uniform continuity

Pointwise continuity. The concept of continuity is a local concept. Namely, y is continuous at
t0 means that for any ε > 0 there exists δ > 0 such that |y(t) − y(t0)| < ε as |t − t0| < δ. The
continuity property of y at t0 is measured by the relation δ(ε). The locality here means that δ also
depends on t0. This can be read by the example y = 1/t for t0 ∼ 0. For any ε, in order to have
|1/t− 1/t0| < ε, we can choose δ ≈ εt20 (Check by yourself). Thus, the continuity property of y(t)
for t0 near 0 and 1 is different. The ratio ε/δ is of the same magnitude of y′(t0), in the case when
y(·) is differentiable.

Uniform continuity

Theorem 8.7. When a function y is continuous on a bounded closed interval I , the above local
continuity becomes uniform. Namely, for any ε > 0, there exists a δ > 0 such that |y(t1)−y(t2)| <
ε whenever |t1 − t2| < δ.

Proof. For any ε > 0, any s ∈ I , there exists δ(ε, s) > 0 such that |y(t) − y(s)| < ε whenever
|t− s| < δ(ε, s). Let us consider the open intervals U(s, δ(ε, s)) := (s− δ(ε, s), s+ δ(ε, s)). The
union ∪s∈IU(s, δ(ε, s)) contain I . Since I is closed and bounded, by so called the finite covering
lemma, there exist finite many U(si, δ(ε, si)), i = 1, ..., n such that I ⊂ ∪ni=1U(si, δ(ε, si)). Then
we choose

δ :=
n

min
i=1

δ(ε, si)

then the distances between any pair si and sj must be less than δ. For any t1, t2 ∈ I with |t1− t2| <
δ, Suppose t1 ∈ U(sk, δ(ε, sk)) and t2 ∈ U(sl, δ(ε, sl)), then we must have |sk − sl| < δ.

|y(t1)− y(t2)| ≤ |y(t1)− y(sk)|+ |y(sk)− y(sl)|+ |y(sl)− y(t2)| < 3ε.

This completes the proof.

The key of the proof is the finite covering lemma. It says that a local property can be uniform
through out the whole interval I . This is a key step from local to global.
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8.2.2 C(I) is a normed linear space

If this distance is zero, it implies y1 ≡ y2 in I . Also,

‖ay‖ = |a|‖y‖

for any scalar a. Moreover, we have

‖y1 + y2‖ ≤ ‖y1‖+ ‖y2‖.

If we replace y2 by −y2, it says that the distance between the two functions is less than ‖y1‖ and
‖y2‖. This is exactly the triangular inequality. To show this inequality, we notice that

|y1(t)| ≤ ‖y1‖, |y2(t)| ≤ ‖y2‖, for all t ∈ I

Hence,
|y1(t) + y2(t)| ≤ |y1(t)|+ |y2(t)| ≤ ‖y1‖+ ‖y2‖.

By taking maximal value on the left-hand side for t ∈ I , we obtain

‖y1 + y2‖ ≤ ‖y1‖+ ‖y2‖.

The function space C(I) with the norm ‖ · ‖ is an example of normed linear space.

8.2.3 C(I) is a complete space

A complete normed linear space is called a Banach space.

Definition 8.2. A sequence {yn} is called a Cauchy sequence if for any ε > 0, there exists an N
such that for any m,n ≥ N , we have

‖yn − ym‖ < ε.

Theorem 8.8. Let {yn} be a Cauchy sequence in C(I). Then there exist y ∈ C(I) such that

‖yn − y‖ → 0 as n→∞.

To prove this theorem, we notice that for each t ∈ I , {yn(t)} is a Cauchy sequence in R. Hence,
the limit limn→∞ yn(t) exists. We define

y(t) = lim
n→∞

yn(t) for each t ∈ I.

We need to show that y is continuous and ‖yn − y‖ → 0. To see y is continuous, let t1, t2 ∈ I .
At these two points, limn yn(ti) = y(ti), i = 1, 2. This means that for any ε > 0, there exists an
N > 0 such that

|yn(ti)− y(ti)| < ε, i = 1, 2, for all n ≥ N.
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With this, we can estimate |y(t1)− y(t2)| through the help of yn with n ≥ N . Namely,

|y(t1)− y(t2)| ≤ |y(t1)− yn(t1)|+ |yn(t1)− yn(t2)|+ |yn(t2)− y(t2)|
≤ 2ε+ |yn(t1)− yn(t2)| ≤ 3ε

In the last step, we have used the uniform continuity of yn on I . Hence, y is continuous in I .
Also, from the Cauchy property of yn in C(I), we have for any ε > 0, there exists an N > 0

such that for all n,m > N , we have
‖yn − ym‖ < ε

But this implies that for all t ∈ I , we have

|yn(t)− ym(t)| < ε

Now, we fix n and let m→∞. This yields

|yn(t)− y(t)| ≤ ε

and this holds for n > N . Now we take maximum in t ∈ I . This yields

‖yn − y‖ ≤ ε

Thus, we have shown lim yn = y in C(I).
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Chapter 9

Stability Analysis

9.1 Introduction

In dynamical systems, there are important special solutions such as equilibria, periodic solutions,
etc. It is important to understand their stability. In this chapter, we shall discuss the stability of
equilibria and periodic solutions. The theory consists of local theory and global theory. It includes

• Local stability theory of equilibria

• Global stability theory – Lyapunov theory

• Stability of periodic orbits on the plane.

We shall introduce definitions and examples to guide us to develop theory.

Definition 9.1. An equilibrium ȳ of the ODE ẏ = f(y) is said to be stable if for any ε > 0, there
exists a δ > 0 such that for any solution y(·) with |y(0)− ȳ| < δ, we have |y(t)− ȳ| < ε.

Definition 9.2. An equilibrium ȳ of the ODE ẏ = f(y) is said to be asymptotically stable if it is
stable, and in addition, there exists a δ > 0 such that any solution y(·) with |y(0)− ȳ| < δ satisfies
y(t)→ ȳ as t→∞.

Definition 9.3. An equilibrium ȳ of the ODE ẏ = f(y) is said to be exponentially stable if there
exist an α > 0 and a δ > 0 such that any solution y(·) with |y(0) − ȳ| < δ satisfies y(t) − ȳ =
O(e−αt) as t→∞.

Examples.

• For linear systems, centers are stable whereas sinks and spiral sinks are asymptotically stable.

• For hamiltonian system, the minimum of a hamiltonian H is a stable center. The saddles are
unstable.

• For gradient systems, the sinks are stable while the sources are unstable.

We shall discuss dissipative systems below.

197
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9.2 Damping systems

In this section, we consider dissipative nonlinear oscillators. The dissipation is due to friction. The
friction force is usually a function of velocity. Let us call it b(ẏ). In general, we consider

ÿ = −V ′(y) + b(ẏ), (9.1)

where 0 is the minimum of V , having the lowest potential. The friction force has the property:

b(ẏ) · ẏ < 0 and b(0) = 0.

This means that the direction of the frictional force is in the opposite direction of the velocity and
the friction force is zero if the particle is at rest. Here are some concrete examples of damping.

• Simple pendulum with damping The equation for simple pendulum is

mlθ̈ = −mg sin θ.

A simple damping force is protortional to the angular speed βθ̇, provided the damping comes
from the friction at the fixed point. Here, β > 0. Thus the model for simple pendulum with
friction reads

mlθ̈ = −βθ̇ −mg sin θ. (9.2)

• An active shock absorber In the mass-spring model, the friction force may depend on the ve-
locity nonlinearly, say β(v), say β(v) = v4. Then the corresponding oscillation is nonlinear:

mÿ = −β(ẏ)− ky, β(v) = v4, (9.3)

• V is a general satisfying V (y)→∞ as |y| → ∞.

We can rewrite this damped oscillation system in the following form{
ẋ = p
ṗ = −V ′(x) + b(p)

Let us define the Hamilton (or the energy) H(x, p) = 1/2p2 + V (x). You can check that along any
trajectory (x(t), v(t)),

d

dt
(H(x(t), p(t)) = Hxẋ+Hpṗ = −V ′(x)p+ p(−V ′(x)− b) = bp < 0.

The Hamiltonian H(x(t), p(t)) decreases along any trajectories until p = 0. Such a perturbation
is called a dissipative perturbation. As a result, we can see that (0, 0) becomes asymptotic stable.
Indeed, we shall show in the section of Liapunov function that (x(t), p(t)) → (0, 0) as t → ∞ for
any trajectories. Here, we just show that, from the linear analysis, the center becomes a spiral sink
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for a Hamiltonian system with dissipative perturbation. We shall assume b′(0) 6= 0. The variational
matrix at (0, 0) is (

0 1
−Hxx −Hxp + b′(0)

)
=

(
0 1

−V ′′(0) −b′(0)

)
Its eigenvalues are

λ± = b′(0)± i
√
V ′′(0)

Now, the force b(p) is a friction which means that b(p)p < 0. But b(0) = 0. We get that

0 > b(p)p ∼ b′(0)p · p

Thus, if b′(0) 6= 0, then b′(0) < 0. Hence, (0, 0) becomes a spiral sink.
Let us study the stability of the following damped system:

ÿ = −V ′(y) + b(ẏ), b(ẏ) · ẏ < 0. (9.4)

The following theorem give a sufficient condition for global stability of the equilibrium.

Theorem 9.1. Consider the system (9.4). Suppose V (y)→∞ as |y| → ∞ and V (y) has only one
minimum ȳ. Then any solution y satisfies

y(t)→ ȳ and ẏ(t)→ 0 as t→∞.

Proof. Without loss of generality, we may also assume ȳ = 0 and V (0) = 0. Otherwise, we may
just replace y by y− ȳ and V (y) by V (y)−V (ȳ), which does not alter F (y) in the original problem.

We use energy method: multiplying ẏ on both sides of (9.4), we obtain

ẏÿ = −V ′(y)ẏ − ẏẏ

dE

dt
= −ẏ2, (9.5)

where

E(y, ẏ) :=
ẏ2

2
+ V (y). (9.6)

The strategy is to prove (i) E(t) → 0, and (ii) E(y, ẏ) = 0 if and only if (y, ẏ) = (0, 0), and (iii)
(y(t), ẏ(t))→ (0, 0). We divide the proof into the following steps.

Step 1. From (9.5),E(t) := E(y(t), ẏ(t)) is a decreasing function along any trajectort (y(t), ẏ(t)).
Further, it has lower bound, namely, E(y, ẏ) ≥ 0. we get E(t)↘ α as t→∞ for some number α.
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Step 2. Let us call the limiting set of (y(t), ẏ(t)) by Ω+. That is

Ω+ = {(y, ẏ)|∃tn, tn →∞ s.t. (y(tn), ẏ(tn))→ (y, ẏ)}.

Such a set is called an ω-limit set. We claim that any trajectory (ỹ(·), ˙̃y(·)) with initial data
(ỹ(0), ˙̃y(0)) ∈ Ω+ lies on Ω+ forever. The proof of this claim relies on the continuity theorem on the
initial data. Namely, the solution of an ODE depends on its initial data continuously. Let us accept
this fact. Suppose (ỹ(0), ˙̃y(0)) ∈ Ω+, we want to prove that for any fixed s > 0, (ỹ(s), ˙̃y(s)) ∈ Ω+.
Given fixed s > 0, by the continuous dependence of initial data, we have for any ε > 0, there exists
a δ > 0 such that if |(y1, ẏ1) − (ỹ(0), ˙̃y(0))| < δ, then the solution y(·) with initial data (y1, ẏ1)
is in an ε neighborhood of ỹ(s). Now, since (ỹ(0), ˙̃y(0)) ∈ Ω+, with this δ > 0, there exist tn
such that |(y(tn), ẏ(tn)) − (ỹ(0), ˙̃y(0))| < δ. Let us consider two solutions, one has initial data
(y(tn), ẏ(tn)), the other has initial data (ỹ(0), ˙̃y(0)). By the continuity dependence of the initial
data, we get (y(tn + s), ẏ(tn + s)) − (ỹ(s), ˙̃y(s))| < ε. This yields that ∀ε > 0, there exists an n
such that |(y(tn + s), ẏ(tn + s))− (ỹ(s), ˙̃y(s))| < ε. Thus, (ỹ(s), ˙̃y(s)) ∈ Ω+.

Step 3. We claim that, for any (ỹ(·), ˙̃y(·)) in Ω+, the corresponding energy E(ỹ(s), ˙̃y(s)) = α
for any s ≥ 0. This is because (1) for any fixed s, there exist tn →∞ such that (y(tn + s), ẏ(tn +
s)) → (ỹ(s), ˙̃y(s)) as n → ∞, and (2), from step 1, E(y(t), ẏ(t))↘α as t → ∞. Thus, we get
E(y(tn + s), ẏ(tn + s))→ α for any s. This implies

d

ds
E(ỹ(s), ˙̃y(s)) = 0.

On the other hand, d
dsE(ỹ(s), ˙̃y(s)) = − ˙̃y2(s). Hence, we get ˙̃y(s) ≡ 0. This again implies

ỹ(s) ≡ ŷ for some constant ŷ. Thus, (ŷ, 0) is an equilibrium state of the damping oscillation system
(9.4). However, the only equilibrium state for (9.4) is (0, 0) because V has a unique minimum and
thus the only zero of F := −V ′ is 0. This implies

E(ỹ(s), ˙̃y(s)) = α = 0.

We conclude that
E(y(t), ẏ(t))→ α = 0 as t→∞.

Step 4. From step 3,

E(y(t), ẏ(t)) =
1

2
ẏ(t)2 + V (y(t))→ 0 as t→∞.

and V (y) ≥ 0, we get
ẏ(t)→ 0 and V (y(t))→ 0, as t→∞.

Since 0 is the unique minimum of V , we get that V (y)→ 0 forces y → 0.
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The above method to show global stability is called the Lyapunov method. The energy function
E above is called a Lyapunov function. Thus, the effect of damping (dissipation) is a loss of energy.

In the active shock absorber:

mÿ = −β(ẏ)ẏ − ky, β(v) = v4,

the equilibrium state is (0, 0). From Lyapunov method, we see that this equilibrium is globally
stable.

For the simple pendulum, we see that V (θ) = −g/l cos θ has infinite many minima: θ = 2nπ.
The function E(y, ẏ) has local minima (2nπ, 0). The local minimum (2nπ, 0) sits inside the basin

Bn = {(y, ẏ) |E(y, ẏ) < g/l}.

The equilibrium (2nπ, 0) is the only minimum of E in the basin Bn. Suppose a solution starts from
a state (y(0), ẏ(0)) ∈ Bn, then by using the Lyapunov method, we see that (y(t), ẏ(t))→ (2nπ, 0)
as t→∞.

What will happen if E(0) ≥ g/l initially? From the loss of energy we have E(t) will eventually
go below g/l. Thus, the trajectory will fall into some basin Bn for some n and finally goes to
(2nπ, 0) as t→∞.

Homeworks

1. Plot the phase portrait for the damped simple pendulum (9.2).

2. Consider a simple pendulum of length l with mass m at one end and the other end is attached
to a vibrator. The motion of the vibrator is given by (x0(t), y0(t). Let the angle of the
pendulum to the verticle axis (in counterclockwise direction) is θ(t).

(a) Show that the position of the massm at time t is (x(t), y(t)) = (x0(t)+l sin θ(t), y0(t)−
cos θ(t)).

(b) Find the velocity and acceleration of m.

(c) Suppose the mass is in the uniform gravitational field (0,−mg). Use the Newton’s law
to derive the equation of motion of m.

(d) Suppose (x0(t), y0(t)) is given by (0, α sin(ω0t)). Can you solve this equation?

3. B-D, pp. 502: 22

9.3 Local stability

Theorem 9.2. Consider the nonlinear equation

y′ = f(y)
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Suppose ȳ is an equilibrium of the nonlinear equation, i.e. f(ȳ) = 0. If ȳ is an exponentially stable
equilibrium for the linearized ODE:

y′ = f ′(ȳ)(y − ȳ),

that is
Re(λ(f ′(ȳ))) < 0.

then ȳ is also an exponentially stable equilibrium of the nonlinear squation.

Proof. 1. We start from
u′ = Au + g(u),

We want to show that u(t) → 0 at rate O(e−α
′t) for any 0 < α′ < α. Let us define

v(t) = eα
′tu(t). We want to show that v(t) remains bounded for all t ≥ 0. To show this a

priori estimate, let T be any positive number, assume that v(t) exists on [0, T ]. Let us define

M(T ) := max
t∈[0,T ]

|v(t)|

We want to show that M(T ) remains bounded by a constant induependent of T . If so, then
we can always extend v beyond T (so does u), then the solution v(t) exists for all t ≥ 0 and
remains bounded. The boundedness of v gives the exponential convergence of u(·).

2. Let us denote A + α′I by A′. The function v satisfies

v̇ = (A + α′I)v + eα
′tg(e−αtv)

= A′v + e(α−2α)tO(|v|2)

The eigenvalues of A′ satisfy

Re(λ(A′)) = Re(λ(A)) + α′ < 0.

We write this perturbed equation in integral form:

v(t) = eA
′tv(0) +

∫ t

0
eA
′(t−s)e(α′−2α)sO(|v(s)|2) ds

Taking maximal on the right-hand side, we get

|v(t)| ≤ |v(0)|+
∫ t

0
e−ε(t−s)e−αsM(T )2 ds

≤ |v(0)|+ C

ε
M(T )2.

Here, we have used O(|v|2) ≤ C|v|2 for v in a bounded set. Taking maximum in t on the
left hand side, we get

M(T ) ≤ |v(0)|+ C

ε
M(T )2.

Thus, there exists a δ > 0 such that if |v(0)| ≤ δ, then the above inequality always holds.
This completes the proof.
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9.4 Lyapunov function

We recall that when the perturbation of a hamiltonian system is dissipative, we observe that the
hamiltonian H decreases along any trajectory and eventually reaches a minimum of H . If there is
only one minimum of H , then this minimum must be globally asymptotically stable. That is, every
trajectory tends to this minimum as t → ∞. So, the key idea here is that the globally asymptotic
stability of an equilibrium is resulted from the the decreasing of H . This idea can be generalized to
general systems. The dissipation is measured by so called the Liapunov function Φ, which decreases
along trajectories. More precisely, let consider the general system{

ẋ = f(x, y)
ẏ = g(x, y)

(9.7)

Suppose (0, 0) is an equilibrium of this system. We have the following definition.

Definition 9.4. A C1-function Φ(x, y) is called a Liapunov function for (9.7) if

(i) Φ(0, 0) = 0, Φ(x, y) > 0 for (x, y) 6= (0, 0).

(ii) Φ(x, y)→∞ as |(x, y)| → ∞.

(iii) Φ̇ := Φx(x, y)f(x, y) + Φy(x, y)g(x, y) < 0 for (x, y) 6= (0, 0).

Remark

• Condition (i) says that (0, 0) is the only isolated minimum of Φ.

• Condition (ii) says that the region Φ(x, y) ≤ E is always bounded.

• Condition (iii) implies that along any trajectory

dΦ(x(t), y(t))

dt
< 0, (9.8)

unless it reaches the equilibrium (0, 0). Thus, Φ(x(t), y(t)) is a decreasing function.

Theorem 9.3. Consider the system (9.7). Suppose (0, 0) is its equilibrium. Suppose the system
possesses a Liapunov function Φ, then (0, 0) is globally and asymptotically stable. That is, for any
trajectory, we have

lim
t→∞

(x(t), y(t)) = (0, 0).

Proof. We shall use the extremal value theorem to prove this theorem. The extremal value theorem
states that
a continuous function in a bounded and closed domain in Rn attains its extremal value.
Along any trajectory (x(t), y(t)), we have that Φ(x(t), y(t)) is decreasing (condition (iii)) and
bounded below (condition (i)). Hence it has a limit as t tends to infinity. Suppose limt→∞Φ(x(t), y(t)) =
m > 0. Then the orbit (x(t), y(t)), t ∈ (0,∞) is confined in the region S := {(x, y)|m ≤
Φ(x, y) ≤ Φ(x(0), y(0))}. From condition (ii), this region is bounded and closed. Hence dΦ(x(t), y(t))/dt
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can attain a maximum in this region (by the extremal value theorem). Let us call it α. From (9.8),
we have α < 0. But this implies

Φ(x(t), y(t)) =

∫ t

0

dΦ(x(t), y(t))

dt
dt ≤ αt→ −∞ as t→∞.

This is a contradiction. Hence limt→∞Φ(x(t), y(t)) = 0.
Next, we show (x(t), y(t)) → (0, 0) as t → ∞. Let ρ(t) = x(t)2 + y(t)2. Suppose ρ(t) does

not tend to 0. This means that there exists a sequence tn with tn → ∞ such that ρ(tn) ≥ ρ0 > 0.
Then the region

R := {(x, y)|x2 + y2 ≥ ρ0 and Φ(x, y) ≤ Φ(x(0), y(0))}

is bounded and closed. Hence, by the extremal value theorem again that Φ attains a minimum in
this region. Since Φ > 0 in this region, we have

min
R

Φ(x, y) ≥ β > 0.

and because (x(tn), y(tn)) ∈ R, we obtain

min
tn

Φ(x(tn), y(tn)) ≥ β > 0.

This contradicts to limt→∞Φ(x(t), y(t)) = 0. Hence, x2(t) + y2(t) → 0 as t → ∞. Thus, we
obtain that the global minimum (0, 0) is asymptotically stable.

If the Lyapunov function Φ satisfies additional conditions:

(iv) The condition (iii) is replaced by Φ̇(x, y) ≤ −αΦ(x, y) for some positive constant α for all
(x, y),

(v) Φ ∈ C2 and Φ(x, y) ≥ c(x2 + y2) in a neighborhood of (0, 0).

Theorem 9.4. Under the assumptions (i),(ii),(iv), (v), the state (0, 0) is asymptotically stable and
any solution |(x(t), y(t))| = O(e−αt) as t→∞.

If the Lyapunov only satisfies the following weaker condition, then we can only have stability
result, not asymptotic stability.

Definition 9.5. A C1-function Φ(x, y) is called a (weak) Liapunov function for (9.7) if

(i) Φ(0, 0) = 0, Φ(x, y) ≥ 0 for (x, y) 6= (0, 0).

(ii) Φ(x, y)→∞ as |(x, y)| → ∞.

(iii) Φx(x, y)f(x, y) + Φy(x, y)g(x, y) ≤ 0 for (x, y) 6= (0, 0).

Theorem 9.5. Consider the system (9.7). Suppose (0, 0) is its equilibrium. Suppose the system
possesses a weak Liapunov function Φ, then (0, 0) is stable.
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Example. Damped simple pendulum.

θ̈ =
g

l
sin θ − bθ̇

Here, b > 0 is the damping coefficient. In the form of first order equation, it reads{
ẋ = y
ẏ = g

l sinx− by

We take
Φ(x, y) =

1

2
y2 +

g

l
(1− cosx).

Then
Φ̇ := Φxf + Φyg =

g

l
sin(x)y + y(

g

l
sinx− by) = −by2 < 0.

We see that Φ̇(x, y) = 0 if and only if y = 0. This is weaker than Φ̇(x, y) = 0 if and only
if (x, y) = (0, 0). So, it only satisfies condition of the weak Lyapunov function. Thus, we can
only get a stability result, not asymptotic stability result. However, suppose we consider the linear
problem, say the spring-mass system with a linear damper. We know the solutions decay to (0, 0)
state exponentially fast from explicit solution formula. Such result cannot be obtained via the weak
Lyapunov function. There are two ways to solve this. One is we modify the Lyapunov function.
The other is we provide another linear stability theory based on perturbation theory.

* Lyapunov function for Linear Stable System Consider the linear system

ẋ = Ax.

Suppose A is a stable matrix. That is, Re(λ(A)) ≤ −α for some α > 0. We want to construct a
Lyapunov function of the form Φ(x) = xTPx such that (i) P > 0 and (ii) Φ̇ < 0. We have

Φ̇ = ẋTPx + xTPẋ = xTATPx + xTPAx = xT (ATP + PA)x.

This means that
ATP + PA = −Q < 0.

Theorem 9.6. Suppose Re(λ(A)) ≤ −α for some α > 0. For any Q > 0, there exists a P > 0
such that

ATP + PA = −Q < 0.

Proof. Define

P =

∫ ∞
0

eA
T tQeAt dt.

Then

ATP + PA =

∫ ∞
0

AT eA
T tQeAt + eA

T tQeAtA dt

=

∫ ∞
0

d

dt

(
eA

T tQeAt
)
dt = −Q.
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Remark. We claim that when Re(λ(A)) ≤ −α, then there exists a Q such that

xTQx ≥ αxTPx.

This is equivalent to
Φ̇ ≤ −αΦ,

and leads to
Φ(x(t)) ≤ Φ(x(0))e−αy.

This gives exponential convergence of all solutions to (0, 0). We leave its proof as an exercise.

Homework For the damped spring-mass system

mÿ + γẏ + ky = 0.

Find a Lyapunov function Φ that gives exponential convergence result.

Project Study the damper of Taipei 101.

9.5 Poincaré-Bendixson Theorem

We still focus on two-dimensional systems

y′ = f(y),y(0) = y0 (9.9)

where y ∈ R2. As we mentioned, our goal is to characteristized the whole orbital structure. We
have seen the basic solutions are the equilibria. The second class are the orbits connecting these
equilibria. In particular, we introduce the separatrices and the homoclinic orbits. We have seen in
the damped pendulum that solutions enclosed in separatrices go to a sink time asymptotically. In
this section, we shall see the case that the solution may go to an periodic solution. In other words,
the solution goes to another separatrix. The van de Pol oscillator and the predator-prey system are
two important examples.

Basic notions of dynamical systems We first introduce some basic notions.

• positive orbits and negative orbits. Let us denote by φ(t,y0) the solution to the problem
(9.9). The orbit γ+(y) = {φ(t,y)|t ≥ 0} is the positive orbit through y. Similarly, γ−(y) =
{φ(t,y)|t ≤ 0} and γ(y) = {φ(t,y)| − ∞ < t < ∞} are the negative orbit and the orbit
through y.

• periodic orbits If φ(T,y) = y and φ(t,y) 6= y for all 0 < t < T , we say {φ(t,y)|0 ≤ t <
T} a periodic orbit.
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• ω-limit sets A point p is called an ω (resp. α) point of y if there exists a sequence {tn},
tn →∞ (resp. −∞ ) such that p = limn→∞ φ(tn,y). The collection of all ω (resp. α) limit
point of y is called the ω (resp. α) limit set of y and is denoted by ω(y) (resp. α(y)). One
can show that

ω(y) =
⋂
t≥0

⋃
s≥t

φ(s,y)

Thus, ω(y) represents where the positive γ+(y) ends up.

• Invariant sets A set S is called positive (resp. negative) invariant under φ if φ(t, S) ⊂ S for
all t ≥ 0 (resp. t ≤ 0). A set S is called invariant if S is both positive invariant and negative
invariant. It is easy to see that equilibria and periodic orbits are invariant set. The closure of
an invariant set is invariant.

Theorem 9.7. The sets ω(y) and α(y) are invariant.

Proof. The proof is based on the continuous dependence of the initial data. Suppose p ∈ ω. Thus,
there exists tn → ∞ such that p = limn→∞ φ(tn,y). Consider two solutions: φ(s, p) and φ(s +
tn,y) = φ(s, φ(tn,y)), for any s > 0. The initial data are closed to each other when n is enough.
Thus, by the continuous dependence of the initial data, we get φ(s, p) is closed to φ(s+ tn,y).

Here are some examples of ω-limit sets and periodic solutions.

Example 1 Consider {
ẋ = x+ y − x(x2 + y2)
ẏ = −x+ y − y(x2 + y2).

(9.10)

1. The state (0, 0) is a spiral source. The (0, 0) state is an equilibrium state. The corresponding
linearized equation near (0, 0) is {

ẋ = x+ y
ẏ = −x+ y

whose characteristic roots are λ = 1± i. Thus, (0, 0) is a spiral source.

2. We express this equation in polar coordinate: x = r cos θ, y = r sin θ. We multiply the first
equation by x, the second equation by y, then add, we get

xẋ+ yẏ = x2 + y2 − (x2 + y2)2.

That is
ṙ = r − r3.

3. If we multiply the first equation by y, the second equation by x, then subtract, we get

yẋ− xẏ = x2 + y2.

In polar coordinate, this is
θ̇ = −1.
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4. The solution with initial data (r(0), θ(0)) = (r0, θ0) is

r =
1

1 + ((1/r2
0)− 1)e−2t

θ = −t+ θ0.

We see that

• Solutions with 0 < r0 < 1 converge to r = 1.
• Solutions with r0 > 1 also converge to r = 1.
• r = 1 is an ω-limit set. It is a periodic solution.

Theorem 9.8 (Poincaré-Bendixson). If γ+(y) is contained in a bounded closed subset in R2 and
ω(y) 6= ∅ and does not contain any critical points (i.e. where f(y) = 0), then ω(y) is a periodic
orbit.

Theorem 9.9. The Poincaré-Bendixson theorem states that: if γ+(y) remains bounded, then one of
the follows must be true

• ω(y) is a periodic orbit,

• ω(y) is a critical point.

• ω(y) consists of one or more critical points joined by solution paths (i.e. homoclinic or
heteroclinic orbits).

In all these cases, the ω(y)-limit set is stable in the sense that γ+(y)→ ω(y).

Example 2 Consider the Hamiltonian system

ẋ = Hy

ẏ = −Hx

H(x, y) =
1

2
y2 − 1

2
x2 +

1

4
x4.

The orbits
{(x, y)|H(x, y) = 0}

consists of a critical critical point (0, 0) and two homoclinic orbits.
Now, consider a perturbation of this system by

ẋ = Hy − µHHx

ẏ = −Hx − µHHy

Multiplying first equation by Hx, second equation by Hy, then add. We get

Ḣ = Hxẋ+Hyẏ = −µH(H2
x +H2

y ).

In the case µ > 0, we see thatH(x(t), y(t))→ 0 along any path. Thus, the set Ω = {(x, y)|H(x, y) =
0} is the ω-limit set.
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Homework Plot the orbits for this perturbed Hamiltonian systems.

Example 3. van der Pol oscillator Recall the van der Pol equation (3.14) for triode oscillator:

L
d2I

dt2
+ µ(I2 − 1)

dI

dt
+
I

C
= 0. (9.11)

where µ > 0, I is the current. Let us write it as a 2× 2 system{
ẋ = y
ẏ = −x+ µ(1− x2)y

(9.12)

We shall show this system has a periodic orbit for any µ.

1. When µ = 0, the orbits are circles. They are periodic orbits. The case µ < 0 can be
transformed to the case of µ > 0 by reverting t to −t. Thus, we shall only consider the case
µ > 0.

2. The state (0, 0) is the only equilibrium of this system. Near (0, 0), the linearized equation is

ẋ = y

ẏ = −x+ µy.

The eigenvalues of this linearized system is λ = (µ ±
√
µ2 − 1)/2, which has positive real

part. Therefore, (0, 0) is unstable. It can not lie in the ω-limit set.

3. We shall construct a Jordan curve (i.e. a simple closed curve) C on the plane encircle (0, 0)
such that no orbit can leave C. Then by the Poincaré-Bendixson theorem, there exists a peri-
odic orbit in the interior of the Jordan curve C. I shall refer the proof to a Note of F. Bonetto,
which proof was originally from [Yeh 86]. The idea is that C is composed of piecewise arcs.
Each arc is the orbit of a simple ODE. On which, it is easy to show (by taking the cross
product of two vector fields) that the flow of (9.12) goes inward.

Liénard equation The Liénard equation has the form

ẍ+ f(x)ẋ+ g(x) = 0,

where g is an odd function and f is an even function. It can be changed to a 2 system through the
transform

x = x, y = ẋ+ F (x), F (x) =

∫ x

0
f(x) dx.

The new system becomes {
ẋ = y − F (x)
ẏ = −g(x).

(9.13)
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called the Liénard system. The van der Pol oscillator ẍ + µ(x2 − 1)ẋ + x = 0 is a special case of
the Lienard equation. The corresponding Liénard system is{

ẋ = y − µ(1
3x

3 − x)
ẏ = −x.

The Liénard equation possess a periodic solution under the following assumptions

• g is odd and F is odd;

• g(x) > 0 for x > 0;

• F (x)→∞ as x→∞;

• F (x) has exactly one positive p, F (x) < 0 for 0 < x < p and F (x) > 0 and monotone for
x > p.

The proof of such result is left for a project to you to complete.

Homeworks

1. B-D pp. 556, 13, 15, 16, 17.



Chapter 10

Numerical Methods for Ordinary
Differential Equations

10.1 Design of numerical schemes

We shall solve the initial value problem

y′ = f(t, y), y(0) = y0. (10.1)

numerically. It is to to approximate the solution y(·) by discrete values yn ∼ y(tn) at discrete times
t0 = 0 < t1 < · · · tn]. For simplicity, we take uniform step size h and define tk = kh. At time t,
we expect that as the mesh size h→ 0, the discrete value yn tends to y(t), where nh = t.

A numerical scheme is to produce the discrete values yn from the initial data y0. It is usually
designed as an iterative procedure. Namely, given yn, we want to find yn+1 which is an approxima-
tion of y(tn+1). Such design procedure can be based on approximation of integration, or on Taylor
expansion. Let us explain below.

Integral Approximation Approach By integrating the ODE from tn to tn+1, we get

y(tn+1) = y(tn) +

∫ tn+1

tn
f(t, y(t)) dt

So the strategy is to approximate the integral by a numerical integral

hFh(tn, yn) ≈
∫ tn+1

tn
f(t, y(t)) dt.

Below, we give several popular schemes

• Forward Euler method
yn+1 = yn + hf(tn, yn).

211
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• Backward Euler method,
yn+1 = yn + hf(tn+1, yn+1).

• Runge-Kutta method, based on mid point rule

yn+1 = yn + hf(tn+1/2, yn +
h

2
f(tn, yn))

Here, we approximate ∫ tn+1

tn
f(t, y(t)) dt ≈ hf(tn+1/2, y(tn+1/2))

then approximate

y(tn+1/2) ≈ y(tn) +
h

2
f(tn, y(tn))

• Second-order Runge-Kutta method (RK2): based on trapezoidal rule

y1 = yn + hf(tn, yn),

yn+1 = yn +
1

2
h(f(tn, yn) + f(tn+1, y1))

=
1

2
(y1 + (yn + hf(tn+1, y1))

Finite Difference Approach Alternatively, we can also approximate the ODE by finite difference
methods

• Forward Euler: we approximate y′(tn) by forward finite differencing:

y′(tn) ≈ y(tn+1)− y(tn)

h
.

Then y′(tn) = f(tn, y(tn)) is approximated by

yn+1 − yn

h
= f(tn, yn).

• Backward Euler method: we approximate y′(tn+1) by forward finite differencing:

y′(tn+1) ≈ y(tn+1)− y(tn)

h

in the equation y′(tn+1) = f(tn+1, y(tn+1))
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• Mid point method. We approximate

y′(tn+1/2) = f(tn+1/2, y(tn+1/2))

by
yn+1 − yn

h
= f(tn+1/2, yn+1/2)

where
yn+1/2 = yn +

h

2
f(tn, yn).

• RK2: We approximate
y′(tn+1/2) = f(tn+1/2, y(tn+1/2))

by
yn+1 − yn

h
=

1

2

(
f(tn, yn) + f(tn+1, ȳn+1)

)
where

ȳn+1 = yn + hf(tn, yn).

10.2 Truncation error and orders of accuracy

Truncation error We would like to estimate the error en, which is defined to be

en = y(tn)− yn.

In order to find the equation that en satisfies, we plug the true solution into the finite difference
equation

y(tn+1)− y(tn) = hFh(tn, y(tn)) + hτ(h). (10.2)

The remaining term τ(h) is called the truncation error.

Definition 10.1. The truncation error for the numerical scheme

yn+1 − yn

h
− Fh(tn, yn) = 0 (10.3)

is defined to be

τ(h) :=
y(tn+1)− y(tn)

h
− Fh(tn, y(tn))

where y(t) is a smooth true solution for y′ = f(t, y).

• Forward Euler: For instance, in the forward Euler method, by Taylor expansion,

τ(h) :=
y(tn+1)− y(tn)

h
− f(tn, yn) =

y(tn+1)− y(tn)

h
− y′(tn) = O(h).
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• RK2: We use trapezoidal rule∫ tn+1

tn
f(s, y(s)) ds =

1

2
h(f(tn, y(tn)) + f(tn+1, y(tn+1)) +O(h3).

We do not have y(tn+1), yet we can use y1 obtained by the forward Euler to approximate
y(tn+1). That is, y1 = y(tn) + hf(tn, y(tn)). From (10.2), |y1 − y(tn+1)| = O(h2). Hence,

f(tn+1, y1) = f(tn+1, y(tn+1)) +O(h2).

This yields

y(tn+1) = y(tn) +
1

2
h(f(tn, yn) + f(tn+1, y1)) +O(h3).

Alternatively, we can use Taylor expansion. The numerical field of RK2 is

Fh(t, y) =
1

2
(f(t, y) + f(t+ h, y + hf(t, y))) .

The truncation error is defined to be

τ(h) :=
y(tn+1)− y(tn)

h
− Fh(tn, y(tn)).

We expand the above equation about tn: (we abbreviate y(tn) by yn in the calculation)

y(tn+1)− y(tn)

h
= y′(tn) +

1

2
hy′′(tn) +O(h2).

Fh(tn, y(tn)) :=
1

2
(f(tn, yn) + f(tn + h, yn + hf(tn, yn)))

= f(tn, yn) +
h

2
(ft(t

n, yn) + fy(y
n)f(tn, yn)) +O(h2)

= f(tn, yn) +
h

2

(
ft(t

n, yn) + fy(y
n)y′(tn)

)
+O(h2)

= f(tn, yn) +
h

2
y′′(tn) +O(h2)

By subtracting these two equations, we get τ(h) = O(h2).

Order of accuracy

Definition 10.2. The numerical scheme (10.3) for (10.1) is said of order p if any smooth solution
y(·) of (10.1) satisfies

τ(h) = O(hp) (10.4)
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Thus, forward Euler is first order while RK2 is second order. The quantity

εn(h) := y(tn+1)− y(tn)− hFh(tn, y(tn))

is called the truncation error of the scheme (10.3).
We can estimate the true error |y(tn)− yn| in terms of truncation errors. From

y(tn+1) = y(tn) + hFh(tn, y(tn)) + εn

yn+1 = yn + hFh(tn, yn)

Subtracting two equations, we get

y(tn+1)− yn+1 = (y(tn)− yn) + h(F (tn, y(tn))− F (tn, yn)) + εn

Let us denote the true error by en := |y(tn)− yn| It satisfies

en+1 ≤ en + hLen + |εn| ≤ en + hLen +Mhp+1.

Here we have used the assumption
|en| ≤Mhp+1

for order p schemes. This is a finite difference inequality. We can derive a discrete Gronwall
inequality as below. We have

en ≤ (1 + hL)en−1 +Mhp+1

≤ (1 + hL)2en−2 + ((1 + hL) + 1)Mhp+1

...

≤ (1 + hL)ne0 +

(
n−1∑
k=0

(1 + hL)k

)
Mhp+1

≤ (1 + hL)ne0 +
(1 + hL)n

hL
Mhp+1

≤ (1 + hL)ne0 +
(1 + hL)n

L
Mhp

Now, we fix nh = t, this means that we want to find the true error at t as h → 0. With t fixed, we
have

(1 + nh)n =
(

(1 + hL)1/hL
)Lt
≤ eLt.

Since the initial error e0 = 0, the true error at t is

en ≤MeLthp.

We conclude this analysis by the following theorem.

Theorem 10.1. If the numerical scheme (10.3) is of order p, then the true error at a fixed time is of
order O(hp).
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10.3 High-order schemes

We list a fourth order Runge-Kutta method (RK4). Basically, we use Simpson rule for integration∫ tn+1

tn
f(t, y(t)) dt ≈ h

(
f(tn, y(tn)) + 4f(tn+1/2, y(tn+1/2)) + f(tn+1, y(tn+1)

)
.

The RK4 can be expressed as

k1 = f(t, y)

k2 = f(t+ h/2, y + hk1/2)

k3 = f(t+ h/2, y + hk2/2)

k4 = f(t+ h, y + hk3)

and

F (t, y) =
k1 + 2(k2 + k3) + k4

6
.

One can check that the truncation error by Taylor expansion is O(h5). Hence the RK4 is a fourth
order scheme.
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