
Numerical Partial Differential Equations

(Draft)

I-Liang Chern

National Taiwan University

January 13, 2024

2

Contents

1 Numerical Ordinary Differential Equations 5
1.1 Finite Difference Approximation . 5

1.1.1 Simple examples . 5
1.1.2 General formula for finite difference approximation 7

1.2 Elementary Numerical Methods for Solving ODEs 8
1.2.1 Model equations and some target models 8
1.2.2 Forward Euler method . 9
1.2.3 Backward Euler method . 12
1.2.4 Trapezoidal method . 15
1.2.5 Leap-frog method (midpoint method) 15

1.3 Runge-Kutta methods . 16
1.3.1 RK2 and RK4 . 16
1.3.2 General explicit Runge-Kutta methods 18
1.3.3 Adaptive Runge-Kutta method (Runge-Kutta-Fehlberg method) . . . 19
1.3.4 *Convergence theory, an example . 21
1.3.5 Absolute stability region of RK methods 22

1.4 Multistep methods . 22
1.4.1 Derivation of multistep methods . 22
1.4.2 A formal algebra for multistep methods 25
1.4.3 Examples of multistep methods . 26

1.5 Linear difference equations . 28
1.5.1 Second-order linear difference equation. 28
1.5.2 Linear finite difference equations of order r 29
1.5.3 *System of linear difference equations 30
1.5.4 Stability of linear difference equations 31
1.5.5 *Non-homogeneous linear finite difference equations 33

1.6 *Stability and convergence for multistep methods 33
1.6.1 Zero Stability and Dahlquist equivalence theorem 34
1.6.2 Absolute stability regions of multistep methods 38

2 Finite Difference Methods for Heat Equation 43
2.1 Problem set-up . 43
2.2 Finite Difference Method for 1-D heat equation 45

1

2.2.1 Discretization . 45
2.2.2 Solving the discrete equations . 48
2.2.3 Python codes . 49

2.3 Stability analysis . 49
2.3.1 Maximum norm estimates . 49
2.3.2 Energy method . 51
2.3.3 Entropy method . 52
2.3.4 Von Neumann’s stability Analysis . 53

2.4 * Relaxation of errors . 58
2.5 Boundary conditions . 60

2.5.1 Dirichlet boundary condition . 60
2.5.2 Neumann boundary condition . 62

2.6 Multidimensions and sources . 65
2.6.1 2D heat equation . 65
2.6.2 Splitting method for reaction-diffusion equations 66

3 Spectral methods and Fast Fourier Transform 71
3.1 Fourier series expansion . 71

3.1.1 Definition and basic properties . 71
3.1.2 Basic properties of Fourier series . 73
3.1.3 Regularity and decay: Riemann-Lebesgue lemma 75

3.2 Convergence Theory . 77
3.2.1 Convergence theory for Smooth function 77
3.2.2 L2-Convergence Theory . 78
3.2.3 *BV-Convergence Theory . 81
3.2.4 *Pointwise estimate and Gibbs phenomenon 82
3.2.5 Fourier expansion of real-valued functions 85

3.3 Discrete Fourier Transform . 86
3.3.1 Definition and the inversion formula 86
3.3.2 Approximation issues . 89

3.4 Fast Fourier Transform . 91
3.4.1 The FFT algorithm . 91
3.4.2 Variations of FFT . 93
3.4.3 List of matlab commands regarding FFT 94
3.4.4 Solving the heat equation on torus 95

3.5 Orthogonal Polynomials and the corresponding discrete transform 96
3.5.1 Orthogonal polynomials . 96
3.5.2 Gaussian quadrature for numerical integration 97

3.6 Legendre polynomials and Legendre Transform 99
3.6.1 Legendre polynomials . 99

3.7 Discrete Legendre transform . 103
3.7.1 Gauss-Legendre quadrature method 103
3.7.2 Legendre-Lobetto quadrature method 107

2

3.8 Spectral methods . 108
3.8.1 Introduction . 108
3.8.2 Legendre-Galerkin method . 111
3.8.3 Legendre collocation method . 115

3.9 Spectral element methods . 115

4 Finite Difference Methods for the Poisson Equations 117
4.1 Discrete Laplacian in two dimensions . 117

4.1.1 Discretization methods . 117
4.1.2 The 9-point discrete Laplacian . 118

4.2 Stability of the discrete Laplacian . 119
4.2.1 Fourier method . 119
4.2.2 Energy method . 120

4.3 Solving the Poisson equation . 123
4.4 Multigrid method . 123

5 Finite Difference Methods For Linear Hyperbolic Equations 125
5.1 Linear hyperbolic equations . 125

5.1.1 Linear advection equation . 125
5.1.2 Linear hyperbolic systems of equations 127
5.1.3 *Linear symmetric hyperbolic systems in multi-dimensions 130

5.2 Finite difference methods for linear advection equation 132
5.2.1 Design procedure . 132
5.2.2 Courant-Friedrichs-Levy condition 133
5.2.3 Consistency and Truncation Errors 134
5.2.4 Upwinding and numerical diffusion 135
5.2.5 Modified equations . 138
5.2.6 Lax’s equivalence theorem . 142
5.2.7 Stability analysis . 143

5.3 Finite difference schemes for linear hyperbolic systems with constant coefficients145
5.3.1 Some design techniques . 145
5.3.2 *Stability analysis . 146

5.4 *Finite difference methods for linear hyperbolic systems with variable coeffi-
cients . 149

6 Hyperbolic Conservation Laws 153
6.1 Scalar conservation laws . 153

6.1.1 Physical models . 153
6.1.2 Basic theory . 155
6.1.3 Entropy conditions . 158
6.1.4 *Riemann problems for non-convex fluxes 161
6.1.5 *Uniqueness and Existence . 162

6.2 Systems of Hyperbolic Conservation Laws 163

3

6.2.1 Hyperbolicity . 163
6.2.2 Elementary waves and Riemann problems 164
6.2.3 Gas dynamics . 169
6.2.4 Riemann Problems for Gas Dynamics 173

7 Finite Difference/ Finite Volume Methods for Hyperbolic Conservation
Laws 183
7.1 General theory of finite difference methods for hyperbolic conservation laws . 183

7.1.1 Some problems in FD schemes for conservation laws 183
7.1.2 Conservative schemes . 185
7.1.3 Monotone schemes and entropy-satisfying schemes 187

7.2 Flux limiter methods . 194
7.2.1 Total Variation Diminishing (TVD) 195
7.2.2 Examples of limiters ϕ(θ) . 197
7.2.3 Extensions . 198

7.3 Higher-order Godunov methods . 199
7.3.1 Piecewise-linear reconstruction (MUSCL reconstruction) 199
7.3.2 Approximate Riemann Solvers . 203

7.4 ENO/WENO schemes . 205
7.4.1 Reconstruction for smooth functions 205
7.4.2 ENO approximation . 207
7.4.3 WENO reconstruction . 210
7.4.4 Finite Volume WENO . 211
7.4.5 Finite Difference WENO . 212
7.4.6 A sample matlab code . 213

7.5 Multidimensions . 214
7.5.1 Splitting Method . 215
7.5.2 Unsplitting Methods . 216

7.6 Boundary treatments . 218
7.6.1 1D boundary conditions for hyperbolic conservation laws 218
7.6.2 Multidimensional boundary conditions for the Euler equation 220

8 Finite Element Methods for the Poisson Equation 223
8.1 Variational formulation of the Poisson problem 223

8.1.1 Poisson problems in physics . 223
8.1.2 PDE formulation . 224
8.1.3 Weak form of the Poisson equation 224
8.1.4 Variational problem as a minimization problem 227

8.2 1D finite element method . 227
8.2.1 Finite element method . 227
8.2.2 Error analysis . 229

8.3 Finite element methods for the Poisson problem in 2 dimensions 232
8.3.1 Framework of finite element method 232

4

Chapter 1

Numerical Ordinary Differential
Equations

The goal of this course is to introduce theoretical analysis of finite difference methods for
solving partial differential equations, with a focus on stability and convergence theory. The
partial differential equations to be discussed include

• parabolic equations,

• elliptic equations,

• hyperbolic conservation laws.

In Chapter 1, we will discuss finite difference approximations for differential operators, basic
ODE solvers, Runge-Kutta methods, multi-step methods, and basic stability analysis for
ODEs.

1.1 Finite Difference Approximation
• To approximate the derivatives ux, uxx, and so on, using the grid-values of u.

• Method: Taylor expansion.

1.1.1 Simple examples
1. Finite difference: Given a smooth function u defined on R, we want to approximate
u′(x) by u(x), u(x± h). Here are some examples:

• Forward differencing: D+u(x) :=
u(x+h)−u(x)

h
,

• Backward differencing: D−u(x) :=
u(x)−u(x−h)

h
,

• Centered differencing: D0u(x) :=
u(x+h)−u(x−h)

2h
.

5

Here, h is called the mesh size. By Taylor expansion, we can obtain:

• u′(x) = D+u(x) +O(h),
• u′(x) = D−u(x) +O(h),
• u′(x) = D0u(x) +O(h2).

The notation O(h) denotes for a function of h ∼ 0 , say e(h), such that

|e(h)| ≤ Ch in a neighborhood of 0,

for some constant C independent of h. ∗

2. These formulae can be derived by performing Taylor expansion of u at x. For instance,
we expand

u(x+ h) = u(x) + u′(x)h+
h2

2
u′′(x) +

h3

3!
u′′′(x) + · · ·

u(x− h) = u(x)− u′(x)h+
h2

2
u′′(x)− h3

3!
u′′′(x) + · · · .

Subtracting these two equations yields

u(x+ h)− u(x− h) = 2u′(x)h+
2h3

3!
u′′′(x) + · · · .

This gives

u′(x) = D0u(x)−
h2

3!
u′′′(x) + · · · = D0u(x) +O(h2).

Thus, u′(x) can be approximated by many difference operators with different orders of
errors.

3. Example of third-order approximation:

u′(x) = D3u(x) +O(h3),

where
D3u(x) =

1

6h
(2u(x+ h) + 3u(x)− 6u(x− h) + u(x− 2h)) .

This formula can be derived by taking Taylor expansion of u(x+h), u(x−h), u(x−2h)
about x:

u(x+ h) = u(x) + u′(x)h+
h2

2
u′′(x) +

h3

3!
u′′′(x) + · · ·

∗Examples: the functions 3h+ 5h2, eh − 1, sin(h) are O(h) functions. The function 1− cosh = O(h2).
Note that O(h) +O(h) = O(h), aO(h) = O(h), where a is a constant.

6

u(x− h) = u(x)− u′(x)h+
h2

2
u′′(x)− h3

3!
u′′′(x) + · · ·

u(x− 2h) = u(x)− 2u′(x)h+
4h2

2
u′′(x)− 8h3

3!
u′′′(x) + · · ·

Taking the combination 2u(x+ h) + 3u(x)− 6u(x− h) + u(x− 2h), we can cancel the
zeroth, second derivatives and obtain u′(x) = D3u(x) +O(h3).

1.1.2 General formula for finite difference approximation
1. Suppose u(·) is a smooth function. Let {xi} be discrete points, called the grid points.

Let x̄ be a specific point. Given ui = u(xi), i = 0, ..., n, we want to approximate u(k)(x̄)
by ui, i = 0, ..., n. That is,

u(k)(x̄) =
n∑

j=0

cju(xj) +O(hp−k+1).

Here, the mesh size h denotes max0≤i,j≤n{|xi − xj|}. The parameter p ≥ k is an
approximate power to be determined.

2. This can also be done by finding a polynomial Pn(x) of degree n which interpolates
u(·) at x0, ..., xn. This polynomial Pn is unique. Then u(k)(x̄) can be approximated by
P

(k)
n (x̄) with error O(h(n+1−k).

3. To find the coefficients cj, j = 0, ..., n, we take Taylor expansion of u(xj) about the
point x̄:

u(xj) =

p∑
i=0

1

i!
(xj − x̄)iu(i)(x̄) +O(hp+1).

We plug this expansion formula into the finite difference approximation formula for
u(k)(x̄):

u(k)(x̄) =
n∑

j=0

cj

p∑
i=0

1

i!
(xj − x̄)iu(i)(x̄) +O(hp−k+1).

Comparing both sides, equating the coefficients of u(i)(x̄) for i = 0, ..., p, we obtain
n∑

j=0

(xj − x̄)i

i!
cj =

{
1 if i = k
0 otherwise

}
, for i = 0, ..., p.

There are p + 1 equations here, it is natural to choose p = n to match the n + 1
unknowns (c0, ..., cn). This is an (n+1)×(n+1) Vandermonde system. It is nonsingular
if {xi, i = 0, ..., n} are different. The matlab code fdcoeffV(k,xbar,x) can be used to
compute these coefficients. Reference: Randy LeVeque’s book and his Matlab code.

7

https://searchcode.com/codesearch/view/54620472/

4. In the case of uniform grid, using central finite differencing, we can get high order
approximation by using less grid points. For instance, let xj = jh, where j ∈ Z. Let
uj = u(xj). Then

u′(0) =
u1 − u−1

2h
+O(h2)

u′′(0) =
u1 − 2u0 + u−1

h2
+O(h2)

u(3)(0) =
1

2h3
(u2 − 2u1 + 2u0 − 2u−1 + u−2) +O(h2).

Homeworks 1.1. 1. Consider xi = ih, i = 0, ..., n. Let x̄ = xm. Find the coefficients ci
for u(k)(x̄) and the coefficient of the leading truncation error for the following cases:

• k = 1, n = 2, 3, m = 0, 1, 2, 3.
• k = 2, n = 2, m = 0, 1, 2.

1.2 Elementary Numerical Methods for Solving ODEs
1.2.1 Model equations and some target models

1. Some applications

• Circuit simulations: this involves large algebraic-differential equations. Usually,
they are linear. For instance, the Very-Large-Scale Integration (VLSI) circuits.
There are also nonlinear circuit models for circuits with semiconductor devices.

• Dynamical systems from celestial dynamics. This is important in space sciences.
• Chemical kinetics, etc.
• Dynamical systems derived from fluid systems
• Molecular dynamics, N -body problems.
• Dynamical systems from chemistry, biology, ...

2. Examples of some concrete models

• For designing numerical solvers, we should have some simple model equations in
mind to test, to justify the methods work. A simple model is the linear ODE
system:

y′ = Ay

where y is an n-vector and A is an n × n matrix. The eigenvalues of A can be
real, or complex. Thus, we consider the simplex case

y′ = ay

The constant a can be positive, negative, or complex.

8

https://www.youtube.com/watch?v=BRe7qKIAa34
https://web.math.utk.edu/~heather/231Project_ChemicalKinetics.pdf

• Chemical kinetics.
• Synchronization model
• Van de Pole oscillator
• double pendulum

These can be used for testing your codes.

3. A basic assumption to design numerical algorithms for solving ODEs is the smoothness
of the underlying solutions. This assumption is in general valid provided the coeffi-
cients are also smooth. Basic designing techniques include numerical interpolation,
numerical integration, and finite difference approximation. Yet, there are problems
whose solutions are discontinuous.† We shall not discuss those problems here.

1.2.2 Forward Euler method
1. Forward finite differencing The forward Euler method is the simplest numerical

integrator for ODEs. The ODE
y′ = f(t, y) (1.1)

is discretized by
yn+1 = yn + kf(tn, yn). (1.2)

Here, t0, ..., tn are the grid points of time t. The difference k = tn+1 − tn is called
the time step size of the discretization. ‡ The forward Euler method simply replaces
dy/dt(tn) by the forward finite difference (yn+1 − yn)/k. The state yn+1 is expressed
as an explicit formula in terms of yn. Such a scheme is called an explicit scheme.

2. Truncation error and Consistency Let us plug a smooth solution y(·) of (1.1) into
the discrete equation (1.2). The remaining term is called the truncation error τn:

y(tn+1) = y(tn) + kf(tn, y(tn)) + kτn.

A numerical method is called consistent if τn(k) → 0 as k → 0, uniformly in n. By
the Taylor expansion:

y(tn+1)− y(tn) = y′(tn)k +O(k2).

Thus, the truncation error τn(k) of the forward Euler method satisfies

τn(k) = O(k).

A numerical method is called of order p if τn(k) = O(kp) uniformly in n. A numerical
method with order p ≥ 1 is always consistent. The forward Euler method is a first
order method.

†Consider the ODE for a bumping ball. An ODE with constraint.
‡Let us assume fixed step size.

9

https://en.wikipedia.org/wiki/Van_der_Pol_oscillator
https://en.wikipedia.org/wiki/Double_pendulum

3. True error We are interested in the true error, which is defined to be en := yn−y(tn).
We have the following convergence theorem.

Theorem 1.1. Assume f ∈ C1 and suppose the solution y′ = f(t, y) with y(0) = y0
exists on [0, T]. Then the forward Euler method converges at any t ∈ [0, T]. In fact,
the true error en has the following estimate:

|en| ≤ eλt

λ
O(k)→ 0, as n→∞. (1.3)

Here, λ = max |∂f/∂y|, and nk = t is fixed.

Proof. From the regularity of the solution, we have y ∈ C2[0, T] and

y(tn+1) = y(tn) + kf(tn, y(tn)) + kτn. (1.4)

Taking difference of (1.2) and (1.4), we obtain a finite difference inequality:

|en+1| ≤ |en|+ k|f(tn, yn)− f(tn, y(tn))|+ k|τn|
≤ (1 + kλ)|en|+ k|τn|,

where
|f(t, x)− f(t, y)| ≤ λ|x− y|.

This finite difference inequality has a fundamental solution Gn = (1 + λk)n, which is
positive. Multiplying above equation by (1 + λk)−n−1, we obtain

|en+1|G−n−1 ≤ |en|G−n + kG−n−1|τn|.

Let us rename the index n by m, summing this equality in m from m = 0 to n− 1, we
get

|en|G−n ≤ |e0|+ k
n−1∑
m=0

G−m−1|τm|

Note that e0 = 0. Multiply both side by Gn, we get

|en| ≤
n−1∑
m=0

Gn−m−1k|τm| ≤
n−1∑
m=0

GmO(k2)

=
Gn − 1

G− 1
O(k2) ≤ Gn

λ
O(k) ≤ eλt

λ
O(k),

where t = nk and we have used (1 + λk)n =
(
1 + λt

n

)n ≤ eλt.

4. Remarks

10

(a) The theorem states that the numerical method converges in [0, T] as long as the
solutions of the ODE exists. The proof above uses the existence and smoothness
of the solution. One can also use this approach to prove the local existence
theorem by showing the approximate solutions generated by the Euler method
form a Cauchy sequence, and thus converge to a true solution. Here, however,
we are interested in the error analysis of numerical method, not on the existence
theory. We thus assume the existence and regularity theorems from ODE theory.

(b) The true error of the forward Euler method is O(k), where O(k) is of magnitude
eλt/λ with λ ∼ |f ′(y)|. This λ can be very large and the error constant eλt can
be very large. For accuracy purpose, we need to choose very small k. Thus,
the selection of the step size k is based on both (i) stability and (ii) accuracy
considerations.

5. Absolute Stability and step-size restriction.

(a) In many applications, we look for some stable equilibria. We want our numerical
method can reproduce such stable process during computation. This leads to a
restriction on the step size k. To derive a condition, we try a simple model:

y′ = ay, a < 0.

The solution y(t)→ 0 as t→∞. The forward Euler method gives an approximate
solution

yn+1 = yn + kayn = (1 + ka)yn.

The approximate solution is a geometric sequence:

yn = (1 + ka)n y0,

where y0 = y(0) is the initial state. Because a < 0, the exact solution y(t) → 0
as t → ∞. (The state 0 is called a stable equilibrium.) However, the geometric
sequence

|(1 + ka)n| →
{

0 if |1 + ka| < 1,
∞ if |1 + ka| > 1.

Thus, to reproduce such stable process as we have for the continuous situation,
we should choose the step size k such that |1 + ka| < 1.

(b) When a < 0 and |a| is large, we need to choose very large k. Such ODE is called
a stiff ODE. It is usually solved by a implicit method such as the backward Euler
method below.

(c) In later applications in numerical PDEs, a can be a complex number. Let us allow
complex value a. A numerical method for y′ = ay is called stable if its discrete
solutions {yn} are bounded for all n. We combine ka = z ∈ C. The region of z

11

so that {yn} is bounded is called an absolute stability region of the method. for
the Forward Euler method, its absolute stability region is

{z ∈ C||1 + z| ≤ 1}.

It is used to reproduce stable discrete solutions for stable equilibria.

1.2.3 Backward Euler method
1. Backward Euler method approximates (1.1) by

yn+1 = yn + kf(tn+1, yn+1). (1.5)

Note that yn+1 also appears inside f(tn+1, yn+1). We need to solve an equation for yn+1

in this scheme. A scheme with yn+1 appeared implicitly is called an implicit scheme.
The backward Euler method is particular useful for stiff ODE, where ∂f/∂y << 0.

2. Truncation error τn is defined by

y(tn+1) = y(tn) + kf(tn+1, y(tn+1)) + kτn(k),

where y(·) is a true solution. Comparing the Taylor expansion of the exact solution
y(·) at tn+1:

y(tn+1) = y(tn) + ky′(tn+1) + kτn(k),

we get that the truncation error

τn(k) = O(k).

3. Error analysis The true error en := yn − y(tn) satisfies

en+1 = en + k
(
f(tn+1, yn+1)− f(tn+1, y(tn+1))

)
+O(k2)

= en + k

(
∂f

∂y
(t, ȳ)

)
en+1 +O(k2).

This implies
|en+1| ≤ |en|+ kλ|en+1|+O(k2).

where
λ = max

∣∣∣∣∂f∂y (t, ȳ)
∣∣∣∣ .

We choose k small enough such that 1− kλ > 0. We then get the inequality:

|en+1| ≤ (1− kλ)−1 (|en|+O(k2)
)
.

12

Let G = (1− kλ)−1. We get

|en| ≤ G
(
|en−1|+ kτn−1

)
≤ G

(
G(|en−2|+ kτn−2) + kτn−1

)
...
≤ Gn|e0|+ k

(
Gn−1τ 1 + · · ·Gτn−1

)
≤ Ck2

(
Gn−1 + · · ·+G

)
≤ Ck2

Gn −G
G− 1

≤ Ck2
(1− kλ)−n+1 − 1

kλ
≤ Ckeλt/λ

where nk = t and we have used (1− kλ)−n+1 ≤ eλt.

Remark. The backward Euler method is usually used for stiff ODE where ∂f/∂y <
< 0. In such cases, the error estimate is only applicable for very small t because the
constant in the error analysis is too big. Below, we show a useful error estimate.
Suppose ∂f

∂y
(t, ȳ) ≤ −µ (µ > 0) in the region we are interested. If en+1 ≥ 0, we have

en+1 = en + k

(
∂f

∂y
(t, ȳ)

)
en+1 +O(k2)

≤ en − kµen+1 +O(k2).

If en+1 < 0, we have

−en+1 = −en + k

(
∂f

∂y
(t, ȳ)

)
(−en+1) +O(k2)

≤ |en| − kµ(−en+1) +O(k2).

In both cases, we get
(1 + µk)|en+1| ≤ |en|+O(k2).

The error satisfies

|en| ≤
n−1∑
m=0

(1 + µk)−mO(k2)

≤ (1 + µk)−n+1

µk
O(k2)

≤ e−µt

µ
O(k).

13

4. Absolute stability region
To find the absolute stability region, we consider the ODE y′ = ay with a < 0. The
backward Euler scheme produces the approximate solution:

yn+1 = yn + kayn+1.

This gives
yn = (1− ka)−n y0.

We see that this solution yn → 0 as n→∞ for any k > 0. We thus call the backward
Euler scheme unconditional stable. We combine ka = z. The region for z such that
the scheme is absolutely stable is

{z ∈ C||1− z| ≥ 1}.

5. Solving a nonlinear equation for implicit methods. In the backward Euler
method:

yn+1 = yn + kf(tn+1, yn+1),

one needs to solve a nonlinear equation for yn+1. Let us write this as a nonlinear
equation in x:

F (x) = 0, where F (x) = x− yn − kf(tn+1, x)

There are two standard iterative methods to solve nonlinear equations:

• Newton’s method The method generates a sequence of approximate solutions
{xn|n = 0, 1, · · · }. We start by choosing an x0 (here, we choose x0 = yn).
Suppose we have obtain xn, to find xn+1, instead of solving F (x) = 0, we solve
the linearized equation about xn:

F (xn) + F ′(xn)(x− xn) = 0.

This gives
xn+1 = xn − (F ′(xn))

−1F (xn).

If x0 is closed to the root x∗, then one can prove xn → x∗.
• Fixed-point method: this is also an iterative method which generates a sequence

of approximate solutions {xn}. We start by choosing an x0 (say x0 = yn). The
iteration scheme is

xn+1 − xn = αF (xn).

The parameter α is chosen so that
|1 + αF ′(x)| < 1,

then one can show this scheme converges. § A particular choice of α is −F ′(x0)
−1.

With this choice, 1 − αF ′(x) ∼ 0. If we choose different α at each step, say
αn = −F ′(xn)

−1, then this is the Newton’s method.
§contraction mapping The mapping Φ(x) := x+αF (x) satisfies |Φ(x)−Φ(y)| ≤ ρ|x−y|. Such a mapping

has a fixed point: Φ(x) = x.

14

https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Fixed-point_iteration
https://en.wikipedia.org/wiki/Contraction_mapping

The Newton’s method may not converge. But if it converges, the convergent rate is
second order, meaning

|xn+1 − x∗| = O(|xn − x∗|2).

The fixed point method is first order:

|xn+1 − x∗| ≤ ρ|xn − x∗| with ρ < 1.

1.2.4 Trapezoidal method
1. Design idea We integrate y′ = f(t, y) from tn to tn+1. Then we approximate the

integration
´ tn+1

tn
f dt by the trapezoidal method. We then get the trapezoidal method

for ODE:

yt
n+1 − yn =

k

2

(
f(tn, yn) + f(tn+1, yn+1)

)
. (1.6)

2. Truncation error is
τ = O(k2).

3. Absolutely stable region. We consider the equation y′ = ay with a < 0. Using
trapezoidal rule, we get

yn+1 − yn =
k

2

(
ayn + ayn+1

)
.

Thus, we have
yn+1 =

1 + ak/2

1− ak/2
yn.

We call z = ak. The absolute stability region is{
z ∈ C|

∣∣∣∣2 + z

2− z

∣∣∣∣ ≤ 1

}
You can show that this region is

{z = x+ iy|x < 0},

the negative half complex plane.

1.2.5 Leap-frog method (midpoint method)
1. Design idea We integrate y′ = f(t, y) from tn−1 to tn+1:

y(tn+1)− y(tn−1) =

ˆ tn+1

tn−1

f(τ, y(τ)) dτ.

15

We apply the midpoint rule for numerical integration, we then get

y(tn+1)− y(tn−1) = 2kf(tn, y(tn)) +O(k3).

The midpoint method (or called leapfrog method) is

yn+1 − yn−1 = 2kf(tn, yn). (1.7)

2. Truncation error. The corresponding truncation is

τn(k) = O(k2).

3. Absolute stability region. The absolute stability region for the midpoint method
is

{z = iy| − 1 ≤ y ≤ 1}.
I will postpone the discussion of this section to the end of this chapter.

We plot the absolute stability regions for the forward Euler method, the backward Euler
method, the trapezoidal method, the midpoint method.

Homeworks 1.2. 1. Consider the ODE

y′1 = y2, y′2 = −y1.

The solution is y1 = A cos(t+ϕ), y2(t) = −A sin(t+ϕ), where A is called its amplitude
and t + ϕ is its phase. Try the forward Euler, backward Euler, leapfrog, trapezoidal
(implicit) methods to see the changes in amplitude and phase. (see Durran, 2.2.2)

1.3 Runge-Kutta methods
The Runge-Kutta methods (RK) are designed by using numerical integration for

´ tn+1

tn
f dτ

by some quadrature methods. Below, RK2, RK4 are RK methods with different orders.

1.3.1 RK2 and RK4
1. Design idea for RK2 A second-order RK, denoted by RK2, is based on the trape-

zoidal rule of numerical integration. First, we integrate the ODE y′ = f(t, y) to get

y(tn+1)− y(tn) =
ˆ tn+1

tn
f(τ, y(τ)) dτ.

Next, this integration is approximated by
ˆ tn+1

tn
f(τ, y(τ)) dτ =

k

2

(
f(tn, yn) + f(tn+1, yn+1)

)
+O(k3).

16

Figure 1.1: Absolute stability regions: (a) forward Euler method, (b) backward Euler
method, (c) trapezoidal method, (d) leap frog method. The figure is quoted from a uci
website

The second term involves yn+1. An explicit Runge-Kutta method approximates yn+1

by yn + kf(tn, yn). Thus, the RK2 reads{
ξ1 = f(tn, yn)
yn+1 = yn + k

2
(f(tn, yn) + f(tn+1, yn + kξ1)).

2. Another RK2 Another kind of RK2 is based on the midpoint rule of integration. It
reads

ξ1 = f(tn, yn)

yn+1 = yn + kf(tn+1/2, yn +
k

2
ξ1)

The truncation error τn of RK2 is defined as

y(tn+1) = y(tn) + kf(tn+1/2, yn +
k

2
ξ1) + kτn.

17

https://vmm.math.uci.edu/ODEandCM/StabiltyRegionDefinitions/StabilityRegionDefinitions.html
https://vmm.math.uci.edu/ODEandCM/StabiltyRegionDefinitions/StabilityRegionDefinitions.html

τ(k) :=
y(tn+1)− y(tn)

k
− yn+1 − y(tn)

k

=
1

k

ˆ tn+1

tn
f(τ, y(τ)) dτ − 1

2

(
f(tn, yn) + f(tn+1, yn + kξ1)

)
+O(k2)

=
1

k

ˆ tn+1

tn
f(τ, y(τ)) dτ − 1

2

(
f(tn, yn) + f(tn+1, y(tn+1)

)
+O(k2)

= O(k2).

In the last two line, we have used y(tn+1) = y(tn) + ky′(tn) +O(k2).

3. RK4 A 4th-order Runge-Kutta method uses Simpson’s rule to approximate the inte-
gration:
ˆ tn+1

tn
f(t, y(t)) dt =

k

6

(
f(tn, y(tn)) + 4f(tn+1/2, y(tn+1/2)) + f(tn+1, y(tn+1))

)
+O(k5).

The quantity y(tn+1/2) is approximated by the forward Euler method. It has the form

yn+1 = yn +
k

6
(ξ1 + 2ξ2 + 2ξ3 + ξ4)

ξ1 = f(tn, yn)

ξ2 = f(tn +
1

2
k, yn +

k

2
ξ1)

ξ3 = f(tn +
1

2
k, yn +

k

2
ξ2)

ξ4 = f(tn + k, yn + kξ3).

The truncation error of RK4 is

τn(k) :=
1

k

(
y(tn+1)− y(tn)

)
−
(
yn+1 − y(tn)

)
= O(k4).

Its proof is left for exercise.

1.3.2 General explicit Runge-Kutta methods
The method takes the following general form

yn+1 = yn + k

s∑
i=1

biξi, (1.8)

where

ξ1 = f(tn, yn),

18

ξ2 = f(tn + c2k, y
n + ka21ξ1),

ξ3 = f(tn + c3k, y
n + ka31ξ1 + ka32ξ2),

...
ξs = f(tn + csk, y

n + k(as1ξ1 + · · ·+ as,s−1ξs−1)).

We need to specify s (the number of stages), the coefficients aij(1 ≤ j < i ≤ s), bi(i = 1, ..., s)
and ci(i = 2, ..., s). We list them in the following Butcher table.
There are s(s − 1)/2 + s + (s − 1) unknowns to be determined for a specific scheme. We

0
c2 a21
c3 a31 a32
...
cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

Table 1.1: Butcher’s tableau for general Runge-Kutta methods. The weights
∑
bi = 1.

require the truncation error to be O(kp+1). To find these coefficients, we need to expand the
truncation error formula

y(tn+1)− yn = yn+1 − yn +O(kp+1)

about (tn, yn) in terms of derivatives of y(·) at tn. Then we can get p linear equations for
the coefficients. You may see Runge-Kutta methods in wiki for the Butcher table. The table
for RK4 is

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

Table 1.2: Butcher’s tableau for RK4.

1.3.3 Adaptive Runge-Kutta method (Runge-Kutta-Fehlberg method)
1. The idea to get an approximate truncation error numerically The adaptive

Runge-Kutta method is designed to be able to estimate local truncation error in each
time step. From which, we can adjust time step size to have roughly uniform truncation

19

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method

error in each step. This is done by using two RK methods with the same sets of aij
and ci but different bi, b∗i . The set bi produces RK method of order p. The auxiliary
set b∗i produces an RK method with order p+ 1. The corresponding solution yn+1,∗ is
closer to the true solution. Thus, it can be used to estimate the local truncation for
yn+1:

yn+1 − yn+1,∗ = k

s∑
i=1

(bi − b∗i)ξi = O(kp+1)

The step size k is then estimated so that the estimated truncation error is roughly the
same in each time step.

2. Runge-Kutta-Fehberg method: ode45 Below is the Butcher table for RK4 (b)
and RK5 (b∗). Suppose ε is the “uniform” truncation error we prescribe. We define

0
1/4 1/4
3/8 3/32 9/32
12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3860/513 −845/4104
1/2 −8/27 2 −3544/2565 1859/4104 −11/40
b 25/216 0 1408/2565 2197/4104 −1/5 0
b∗ 16/135 0 6656/12825 28561/56430 −9/50 2/55

TE =

∣∣∣∣∣k
6∑

i=1

(bi − b∗i)ξi

∣∣∣∣∣ .
This TE is |yn+1 − yn+1,∗| is an estimate of the truncation error. It is roughly the
truncation error of the 4th order method, which is roughly

TE ∼ Ck5.

We use it to find a step size k so that the truncation error of the 4th order method is
less than ε. Suppose TE < ε, then we use the present step size k and yn+1, and then
go to the next time step. If not, we look for knew such that

ε ∼ Ck5new.

Thus, we eliminating the constant C to get(
knew
k

)5

∼ ε

TE
.

20

Since TE is only an approximation of truncation error, we thus try

knew = 0.9 · k ·
(ε

TE

)1/5
,

and repeat the above procedure until TE < ε. With the new step size knew, the
corresponding yn+1 has roughly the same truncation error ε. This method is an RK4
with roughly uniform truncation error. The corresponding matlab code is called the
ode45. A natural question is why do we just use RK5 with a uniform step size? The
answer is that the performance of such a uniform truncation error method is better than
a higher-order method with uniform step size for stiff ODEs, because the magnitude
the derivative |f (p+1)| can be very large in a stiff region.

1.3.4 *Convergence theory, an example
Let us see the proof of the convergence of the two stage Runge-Kutta method. The scheme
can be expressed as

yn+1 = yn + kΨ(yn, tn, k) (1.9)
where

Ψ(yn, tn, k) := f(y +
1

2
kf(y)). (1.10)

Suppose y(·) is a true solution, the corresponding truncation error

τn :=
y(tn+1)− y(tn)

k
−Ψ(y(tn), tn, k) = O(k2)

Thus, the true solution satisfies

y(tn+1)− y(tn) = kΨ(y(tn), tn, k) + kτn

The true error en := yn − y(tn) satisfies

en+1 = en + k(Ψ(yn, tn, k)−Ψ(y(tn), tn, k))− kτn.

This implies
|en+1| ≤ |en|+ kλ′|en|+ k|τn|,

where λ′ is the Lipschitz constant of Ψ(y, t, k) with respect to y. Hence, we get

|en| ≤ (1 + kλ′)n|e0|+ k
n−1∑
m=0

(1 + kλ′)n−1−m|τm|

≤ eλ
′t|e0|+ eλ

′t

λ′
max
m
|τm|.

We may assume e0 = 0. The truncation error satisfies

max
m
|τm| = O(k2).

Thus, |en| → 0 as k → 0, with nk = t fixed.

21

https://www.mathworks.com/help/matlab/ref/ode45.html

Figure 1.2: Absolutely stable regions of Runge-Kutta methods. The figure is quoted from a
Stability Regions of ODE Formulas

1.3.5 Absolute stability region of RK methods
We apply RK2 to the equation y′ = ay to get

yn+1 = yn +
k

2
(f(yn) + ξ1)

= yn +
k

2
(ayn + a (yn + akyn))

=

(
1 + ak +

(ak)2

2

)
yn

Let us write z = ak. The absolute stability region for RK2 is

{z ∈ C|
∣∣∣∣1 + z +

z2

2

∣∣∣∣ ≤ 1}.

We refer a matlab code and plot for computing the absolute stability region for Runge-Kutta
methods. Stability Regions of ODE Formulas

References:

• Lloyd N. Trefethen, Finite Difference and Spectral Methods for Ordinary and Partial
Differential Equations,

• You may also google Runge-Kutta methods to get more references.

1.4 Multistep methods
1.4.1 Derivation of multistep methods

1. Examples The idea of multi-step methods is to derive a linear relation between, for

22

https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/23972/versions/22/previews/chebfun/examples/ode/html/Regions.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/23972/versions/22/previews/chebfun/examples/ode/html/Regions.html
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

instance, yn+1, yn, yn−1, y′n and y′n−1 so that the corresponding truncation error is
small. The simplest multistep method is the midpoint method.

• Midpoint method Suppose yn and yn−1 is given. The new state yn+1 is defined
by

yn+1 − yn−1 = 2ky′
n
= 2kf(tn, yn).

The truncation error is

τn :=
1

k

(
y(tn+1)− y(tn−1)− 2ky′(tn)

)
= O(k2).

Thus, the method is second order.
• Adams-Bashforth 2-step methodWe can also design a method which involves
yn+1, yn, yn−1 and y′n, y′n−1. For instance,

yn+1 = yn +
k

2

(
3y′

n − y′n−1
)
= yn +

k

2

(
3f(tn, yn)− f(tn−1, yn−1)

)
.

The truncation error τn satisfies

kτn := y(tn+1)− y(tn) + k

2

(
3y′(tn)− y′(tn−1)

)
=

(
y(tn) + y′(tn)k +

y′′(tn)

2
k2
)
− y(tn) + k

2
(3y′(tn)− (y′(tn)− y′′(tn)k)) +O(k3)

= O(k3).

It can be derived by Taylor expansion of y(·) about tn in the above formula.

2. Derivation of general r-step methods A general r-step multistep method involves
(yn+1, yn, ..., yn+1−r) and (y′n+1, y′n, ..., y′n+1−r). It can be written as

r∑
m=0

amy
n+1−r+m = k

r∑
m=0

bmy
′n+1−r+m

= k
r∑

m=0

bmf
n+1−r+m. (1.11)

We will normalize ar = 1. Because it is the coefficient corresponding to yn+1, which
is what we want to find. When br = 0 the method is called explicit; otherwise it is
implicit. For a smooth solution of (1.1), we define the truncation error τn to be

τn :=
1

k

(
r∑

m=0

amy(t
n+1−r+m)− k

r∑
m=0

bmy
′(tn+1−r+m)

)
.

Definition 1.1. A multi-step method is called of order p if τn = O(kp) uniformly in
n. It is called consistent if τn(k)→ 0 as k → 0 uniformly in n.

23

Remark. When f is smooth, the solution of ODE y′ = f(t, y) is also smooth. Then
the truncation is a smooth function of k. In this case, τ(k) → 0 is equivalent to
τ(k) = O(k) as k → 0.

3. Determine the coefficients of multistep methods. For notational convenience,
let us extend a’s and b’s by setting am = 0, bm = 0 for m > r. Taking Taylor expansion
of y(·) about tn+1−r, we get

kτn =
r∑

m=0

am

∞∑
j=0

1

j!
y(j)(mk)j − k

r∑
m=0

bm

∞∑
j=1

1

(j − 1)!
y(j)(mk)j−1

=

(
r∑

m=0

am

)
y(0) +

∞∑
j=1

1

j!

r∑
m=0

(
mjam − jmj−1bm

)
kjy(j)

=

(
r∑

m=0

am

)
y(0) +

∞∑
j=1

1

j!

r∑
m=0

mj−1 (mam − jbm) kjy(j)

=
∞∑
j=0

1

j!

r∑
m=0

mj−1 (mam − jbm)kjy(j)

=
∞∑
j=0

Cj
kj

j!
y(j).

Here, the derivatives of y(·) are evaluated at tn+1−r. We list few equations for the
coefficients a and b:

C0 = a0 + · · ·+ ar

C1 = (a1 + 2a2 + · · ·+ rar)− (b0 + · · ·+ br)

C2 = (a1 + 22a2 + · · ·+ r2ar)− 2(b1 + · · ·+ rbr)
...

Cp =
r∑

m=0

mpam −
r∑

m=1

pmp−1bm.

To obtain a scheme of order p, we require

Cj = 0, for j = 0, ..., p.

There are 2r + 1 unknowns (a0, ..., ar = 1, b0, ..., br). In principle, we should choose
p = 2r + 1 to have the same number of equations. Unfortunately, there are additional
restrictions from the stability criterion for linear finite difference equations. The order
of accuracy p should satisfy

p ≤

r + 2 if r is even,
r + 1 if r is odd,
r if it is an explicit scheme.

24

This is called the first Dahlquist stability barrier. This stability criterion is related
to the stability of linear finite difference equations. We will study them in the next
section. You may also see Trefethen’s book or Dahlquist’s book.

4. Initial setup An r-step multi-step method needs (y0, y1, ..., yr−1)T to start. But only
y0 is given initially from ODE problems. We need to construct y1, ..., yr−1 by other
methods. For instance, we can adopt RK methods. In order to maintain the order of
accuracy, we should use a method of p−1 order. This will give initial error yi−y(ti) =
O(kp) for i = 0, ..., r − 1, which is consistent to the truncation error of the underlying
multi-step method.

1.4.2 A formal algebra for multistep methods
1. Let us introduce the shift operator Zyn = yn+1, or in continuous sense, Zy(t) = y(t+k).

Let D be the differential operator d
dt
. The Taylor expansion

y(t+ k) = y(t) + ky′(t) +
1

2!
k2D2y(t) + · · ·

can be expressed formally as

Zy =

(
1 + (kD) +

1

2!
(kD)2 + · · ·

)
y = ekDy.

This means that the Taylor expansion gives the formula

Z = ekD. (1.12)

2. The multistep method can be expressed as

Ly := (a(Z)− kb(Z)D) y =
(
a(ekD)− kDb(ekD)

)
y = (C0 + C1(kD) + · · ·) y.

Here,

a(Z) =
r∑

m=0

amZ
m, b(Z) =

r∑
m=0

bmZ
m

are the generating functions of {am} and {bm}. A multistep method is of order p means
that (

a(ekD)− kDb(kD)
)
y = O((kD)p+1)y.

We may abbreviate kD by a symbol κ. The above formula is equivalent to

a(eκ)− κb(eκ) = O(κp+1).

Or equivalently,
a(eκ)

b(eκ)
= κ+O(κp+1) as κ→ 0. (1.13)

25

3. We have the following theorem

Theorem 1.2. A multistep method with b(1) ̸= 0 is of order p if and only if

a(z)

b(z)
= log z +O((z − 1)p+1) as z → 1. (1.14)

It is consistent if and only if

a(1) = 0 and a′(1) = b(1). (1.15)

Proof. The first formula can be obtain from (1.13) by writing eκ = z, and log(z) ∼ z−1.
For the second formula, we expand log(z) about 1 to get

a(z) = b(z)

(
(z − 1)− (z − 1)2

2
+

(z − 1)3

3
+ · · ·

)
+O((z − 1)p+1).

We also expand a(z) and b(z) about z = 1, we can get

a(1) + (z − 1)a′(1) = b(1)(z − 1) +O((z − 1)2).

Note that k ∼ 0⇔ ekD ∼ 1⇔ z ∼ 1. The truncation error τ satisfies

(z − 1)τ = a(z)− b(z) log(z)

for z ∼ 1. Thus, the scheme is consistent if and only if a(1) = 0 and a′(1) = b(1).

Homeworks 1.3. 1. Consider the linear ODE y′ = λy, derive the finite difference equa-
tion using multistep method involving yn+1, yn, yn−1 and y′n and y′n−1 for this linear
ODE.

2. Solve the linear finite difference equations derived from the previous problem.

1.4.3 Examples of multistep methods
Let us see some concrete examples below.

• Explicit Adams-Bashforth schemes When br = 0, the method is explicit. Here are
some examples of the explicit schemes called Adams-Bashforth schemes, where ar = 1:

– 1-step: yn+1 = yn + kf(yn)

– 2-step: yn+1 = yn + k
2
(3f(yn)− f(yn−1))

– 3 step: yn+1 = yn + k
12
(23f(yn)− 16f(yn−1) + 5f(yn−2))

The number of step is r and the order is p = r.

26

https://en.wikipedia.org/wiki/Linear_multistep_method

• Implicit Adams-Moulton schemesAnother examples are the Adams-Moulton schemes,
where br ̸= 0 and the number of step is r and the order is p = r + 1.

– 1-step: yn+1 = yn + k
2
(f(yn+1) + f(yn))

– 2-step: yn+1 = yn + k
12
(5f(yn+1) + 8f(yn)− f(yn−1))

– 3 step: yn+1 = yn + k
24
(9f(yn+1) + 19f(yn)− 5f(yn−1) + f(yn−2)).

• Explicit Adams-Bashforth-Moulton schemes Sometimes, we can use an explicit
scheme to guess yn+1 as a predictor in an implicit scheme. Such a method is called a
predictor-corrector method. A standard one is the following Adams-Bashforth-Moulton
schemes: Its predictor part is the Adams-Bashforth scheme:

ŷn+1 = yn +
k

12
(23f(yn)− 16f(yn−1) + 5f(yn−2))

The corrector is the Adams-Moulton scheme:

yn+1 = yn +
k

24
(9f(ŷn+1) + 19f(yn)− 5f(yn−1) + f(yn−2))

The predictor-corrector is still an explicit scheme. However, for stiff problems, we
should use implicit scheme instead.

• Backward differentiation formula The backward differentiation formula (BDF)
has b0 = 1, b1 = · · · = br = 0.

– BDF1: yn+1 − yn = kf(tn+1, yn+1)

– BDF2: yn+1 − 4
3
yn + 1

3
yn−1 = kf(tn+1, yn+1)

– BDF3: yn+1 − 8
11
yn + 9

11
yn−1 − 2

11
yn−2 = 6

11
kf(tn+1, yn+1)

– BDF4: yn+1 − 48
25
yn + 36

25
yn−1 − 16

25
yn−2 + 3

25
yn−3 = 12

25
kf(tn+1, yn+1)

– BDF5: yn+1 − 300
137
yn + 300

137
yn−1 − 200

137
yn−2 + 75

137
yn−3 − 12

137
yn−4 = 60

137
kf(tn+1, yn+1)

For r ≥ 7, there is no stable BDF methods. The r-step BDF has order r, which can
be obtained by taking Taylor expansion of each terms in the formula about tn+1. The
BDFs allow larger step size. It is particularly useful for stiff ODEs. The statement
is below quoted from Chatgpt: “ode15s is actually a variable-order, variable-step-size
solver that uses a combination of BDF methods of orders 1 through 5, along with other
techniques such as extrapolation, interpolation, and local error control. The solver
automatically adjusts the order and step size of the method to maintain a specified
level of accuracy while minimizing computational cost.” A reference is “Shampine, L.
F., Reichelt, M. W. (1997). The MATLAB ODE Suite. SIAM Journal on Scientific
Computing, 18(1), 1-22.”

• Matlab ODE solvers are available. Matlab codes are available on Wikiversity with
key words “Adams-Bashforth and Adams-Moulton methods.” There are many matlab
codes for non-stiff and stiff ODEs. You can consult with the website Matlab function
reference: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb to choose a proper
solver for your problem. The ’s’ in ODE15s stands for ’stiff’.

27

https://en.wikipedia.org/wiki/Backward_differentiation_formula
http://www.ece.northwestern.edu/local-apps/matlabhelp/techdoc/ref/ode45.html
http://www.ece.northwestern.edu/local-apps/matlabhelp/techdoc/ref/ode45.html

1.5 Linear difference equations
1.5.1 Second-order linear difference equation.

1. In linear ODE y′ = ay, the above difference schemes result in a linear difference
equations. For instance, the forward Euler method gives the first order difference
equation: yn+1 = (1+ ka)yn. A two-step method gives a second-order finite difference
equation. For instance, the mid-point method is yn+1−yn−1 = 2kf(tn, yn). Apply this
method to the equation y′ = ay. We get

yn+1 − yn−1 = 2kayn. (1.16)

2. Below, let us consider the following second order linear difference equation with con-
stant coefficients:

ayn+1 + byn + cyn−1 = 0, (1.17)

where a ̸= 0. To find its general solutions, we try the ansatz yn = ρn for some number
ρ. Here, the n in yn is an index, whereas the n in ρn is a power. Plug this ansatz into
the equation, we get

aρn+1 + bρn + cρn−1 = 0.

This leads to
aρ2 + bρ+ c = 0. (1.18)

This is called the characteristic equation for the difference equation (1.17). There are
two solutions ρ1 and ρ2.

• Case 1: ρ1 ̸= ρ2. The two solutions {ρn1 , ρn2} are independent. Since the equation is
linear, any linear combination of these two solutions is again a solution. Moreover,
the general solution can only depend on two free parameters, namely, once y0 and
y−1 are known, then {yn}n∈Z is uniquely determined. Thus, the general solution
for equation (1.17) is

yn = C1ρ
n
1 + C2ρ

n
2 ,

where C1, C2 are constants.
• Case 2: ρ1 = ρ2. First ρn is a solution. Next, we can use perturbation method

to find another set of solution. Consider a small perturbation of (1.17). The
perturbation breaks the double roots ρ2 = ρ1 to two simple roots ρ2 ̸= ρ1, but
with ρ2 ∼ ρ1. We can use the two solutions ρn2 and ρn1 with ρ2 → ρ1 to produce
another nontrivial solution:

lim
ρ2→ρ1

ρn2 − ρn1
ρ2 − ρ1

.

This yields a second independent solution nρn−1
1 . Thus, the general solution is

C1ρ
n
1 + C2nρ

n−1
1 .

28

3. Let us analyze the solutions obtained from the midpoint method. The midpoint
method for the equation y′ = ay gives the finite difference equation

yn+1 − yn−1 = 2akyn.

Let us write ak = z. The two roots for the characteristic equation ρ2−1−2zρ = 0 are

ρ1 = z +
√
1 + z2, ρ1 = z −

√
1 + z2.

The step size k is small. So as z = ak is small, we approximate
√
1 + z2 ∼ 1 + z2

2
.

Thus, the two roots are approximately

ρ1 ∼ 1 + z +
z2

2
, ρ2 ∼ −1 + z − z2

2
.

The solutions to the difference equation are

C1ρ
n
1 + C2ρ

n
2 .

We choose kn = t fixed, k → 0, we get

ρn1 ∼
(
1 + ka+

(ka)2

2

)n

∼ eat.

On the other hand,

ρn2 ∼
(
−1 + ka− (ka)2

2

)n

∼ (−1)n
(
1− ka+ (ka)2

2

)n

∼ (−1)ne−at.

We have the following interpretation.

• Case 1: a > 0. ρn1 gives us the principal mode which converges to the true solution
eat. While ρn2 gives us an exponential decay mode. It is oscillatory!

• Case 2: a < 0. The ρ2 gives an unstable mode.
• Case 3: a = iω is pure imaginary. Both ρn1 and ρn2 are oscillatory, which is correct.

The ρn2 is an extra mode. But its coefficient is small.
• Note that the absolute stability region is a = iω and −1 ≤ ω ≤ 1.

1.5.2 Linear finite difference equations of order r
We consider general linear finite difference equation of order r:

ary
n+r + · · ·+ a0y

n = 0, (1.19)

29

where ar ̸= 0. Since yn+r can be solved in terms of yn+r−1, ..., yn for all n, this equation
together with initial data y0, ..., y−r+1 has a unique solution. The solution space is r dimen-
sions.
To find fundamental solutions, we try the ansatz

yn = ρn

for some number ρ. Plug this ansatz into equation, we get

arρ
n+r + · · ·+ a0ρ

n = 0,

for all n. This implies
a(ρ) := arρ

r + · · ·+ a0 = 0. (1.20)
The polynomial a(ρ) is called the characteristic polynomial of (1.19) and its roots ρ1, ..., ρr
are called the characteristic roots.

• Simple roots (i.e. ρi ̸= ρj, for all i ̸= j): The fundamental solutions are ρni , i = 1, ..., r.

• Multiple roots: if ρi is a multiple root with multiplicity mi, then the corresponding
independent solutions

ρni , nρ
n−1
i , Cn

2 ρ
n−2
i ..., Cn

mi−1ρ
n−mi+1
i .

Here, Cn
k := n!/k!(n−k)!. The solution Cn

2 ρ
n−2
i can be derived from differentiation d

dρ
Cn

1 ρ
n−1

at ρi.

1.5.3 *System of linear difference equations
The above rth order linear difference equation is equivalent to a first order linear difference
system:

A0y
n+1 = Ayn, (1.21)

where

yn =

y
n
1
...
ynr

 =

y
n−r+1

...
yn

A0 =

[
I(r−1)×(r−1) 0

0 ar

]
, A =

0 1 0 · · · 0
0 0 1 · · · 0
...
0 0 0 · · · 1
−a0 −a1 −a2 · · · −ar−1

 .
We may divide (1.21) by A0 and get

yn+1 = Gyn.

30

We call G the fundamental matrix of (1.21). For this homogeneous equation, the solution is

yn = Gny0

Next, we compute Gn in terms of eigenvalues of G.
In the case that all eigenvalues ρi, i = 1, ..., r of G are distinct, then G can be expressed

as
G = TDT−1, D = diag (ρ1, · · · , ρr),

and the column vectors of T are the corresponding eigenvectors.
When the eigenvalues of G have multiple roots, we can normalize it into Jordan blocks:

G = TJT−1, J = diag (J1, · · · ,Js),

where the Jordan block Ji corresponds to eigenvalue ρi with multiplicity mi:

Ji =

ρi 1 0 · · · 0
0 ρi 1 · · · 0
...
0 0 0 · · · 1
0 0 0 · · · ρi

mi×mi

.

and
∑s

i=1mi = r. Indeed, this form also covers the case of distinct eigenvalues.
In the stability analysis below, we are concerned with whether Gn is bounnded. It is

easy to see that
Gn = TJnT−1,Jn = diag (Jn

1 , · · · ,Jn
s)

Jn
i =

ρni nρn−1

i Cn
2 ρ

n−2 · · · Cn
mi−1ρ

n−mi+1
i

0 ρni nρn−1
i · · · Cn

mi−2ρ
n−mi+2
i...

0 0 0 · · · nρn−1
i

0 0 0 · · · ρni

mi×mi

.

where Cn
k := n!

k!(n−k)!
.

1.5.4 Stability of linear difference equations
Definition 1.2. The fundamental matrix G is called stable if Gn remains bounded under
certain norm ∥ · ∥ for all n.

Theorem 1.3 (von Neumann). The fundamental matrix G is stable if and only if its eigen-
values satisfy the following condition:

either |ρ| = 1 and ρ is a simple root,
or |ρ| < 1 .

(1.22)

31

Proof. It is easy to see that the nth power of a Jordan form Jn
i is bounded if its eigenvalue

|ρi| < 1 or if |ρi| = 1 but simple. On the other hand, if |ρi| > 1 then Jn
i is unbounded; or if

ρi| = 1 but not simple, then the term nρn−1
i in Jn

i will be unbounded.
Corollary 1.1. There exists a norm in Rn such that the above root condition for G is
equivalent to ∥G∥ ≤ 1 with this norm.
Proof. 1. First, in Rn (or Cn), we define ∥x∥∞ = maxi |xi|. For a linear mapping G :

Rn → Rn, we define its operator norm under the ∥ · ∥∞ by

∥G∥∞ := sup
x ̸=0

∥Gx∥∞
∥x∥∞

.

It is an easy exercise that for G = (aij)n×n, the operator norm

∥G∥∞ = max
i

∑
j

|aij|.

2. Second, a matrix G can be expressed as

G = TDT−1, D = diag (J1, · · · ,Js)

where Ji are Jordan blocks. For any εi ̸= 0, we can further transform Ji into

Ji = SiKiS
−1
i

where

Ki =

ρi ε 0 · · · 0
0 ρi ε · · · 0
...
0 0 0 · · · ε
0 0 0 · · · ρi

mi×mi

, Si = diag (1, εi, ..., ε
mi−1
i).

Let S = diag(S1, ...,Ss), K = diag(K1, ...,Ks). We can express G as

G = TSK(TS)−1

We now define the new norm of G as

∥G∥ := ∥K∥∞
This means that we define the new norm ∥ · ∥ in Rn by

∥x∥ := ∥(TS)−1x∥∞.

SinceTS is invertible, this does define a norm in Rn. With this norm, the corresponding
operator norm is ∥K∥∞.

3. For those Ji with mi > 1, the stability condition requires that |ρi| < 1. We choose εi
such that |ρi|+ εi ≤ 1. Then the corresponding ∥Ki∥∞ ≤ 1. Thus, ∥G∥ ≤ 1 with the
above operator norm.

32

1.5.5 *Non-homogeneous linear finite difference equations
In general, we consider the nonhomogeneous linear difference system:

yn+1 = Gyn + fn (1.23)

with initial data y0. Its solution can be expressed as

yn = Gyn−1 + fn−1

= G(Gyn−2 + fn−2) + fn−1

...

= Gny0 +
n−1∑
m=0

Gn−1−mfm

Homeworks 1.4. 1. Consider the linear ODE

y′ = λy

where λ considered here can be complex. Study the linear difference equation derived
for this ODE by forward Euler method, backward Euler, midpoint. Find its general
solutions.

2. Consider linear finite difference equation with source term

ayn+1 + byn + cyn−1 = fn

Given initial data ȳ0 and ȳ1, find its solution.

3. Find the characteristic roots for the Adams-Bashforth and Adams-Moulton schemes
with steps 1-3 for the linear equation y′ = λy.

1.6 *Stability and convergence for multistep methods
There are two kinds of stability concepts in numerical ODE:

• Zero stability: Fix t = nk, the computed solution yn remains bounded as n → ∞ (or
equivalently, k → 0). The concept of zero stability is for convergence theory.

• Absolute stability: Fix k > 0, the computed solution yn remains bounded as n →
∞. The concept of absolute stability is for reproducing stable equilibria in numerical
computations.

33

1.6.1 Zero Stability and Dahlquist equivalence theorem
Our goal is to develop a general convergence theory for multistep finite difference method for
the ODE: y′ = f(t, y) with initial condition y(0) = y0. An r-step multistep finite difference
scheme can be expressed as

Lyn =
r∑

m=0

amy
n+1−r+m − k

r∑
m=0

bmf(t
n+1−r+m, yn+1−r+m) = 0. (1.24)

Definition 1.3. The truncation error τn(k) for the above multistep scheme is defined by

τn(k) :=
1

k

(
r∑

m=0

amy(t
n+1−r+m)− k

r∑
m=0

bmf(t
n+1−r+m, y(tn+1−r+m))

)
,

where y(·) is a true solution of the ODE.

Definition 1.4. A difference scheme is called consistent if the corresponding truncation error
τn(k)→ 0 uniformly in n as the mesh size k → 0. The scheme is of order p if τn(k) = O(kp)
uniform in n.

In multistep methods, the consistency is equivalent to τ(k) = O(k) because we assume
y(·) is smooth and the truncation error is a smooth function in k. The consistency is τ(k)→ 0
as k → 0. Thus the smoothness of τ implies τ(k) = O(k).

Definition 1.5. A difference scheme is called zero stable if its solutions yn at time step n
remain bounded as the mesh size k → 0 with nk = t is fixed (accordingly n→∞).

The main theorem is the follows. We will postpone its proof at the end of this section.

Theorem 1.4 (Dahlquist equivalence theorem). For finite difference schemes for the ODE
y′ = f(t, y), we have

(consistency + zero stability)⇐⇒ convergence .

Stability criterion Let us investigate the condition on the coefficients a’s and b’s of an
explicit multistep method for the stability

Lyn = 0

to be bounded. We may assume ar = 1 and br = 0. Let us write it in matrix form:

yn+1 = Ayn + kBfn

where

A =

0 1

0 1
.

0 1
−a0 · · · −ar−2 −ar−1

 , yn =

yn−r

· · ·
yn

 ,

34

B =

0 0

0 0
.

0 0
b0 · · · br−2 br−1

 , fn =

fn−r

· · ·
fn

 .
In order to have solution to be bounded for a multistep scheme Ly = 0 for arbitrary f , it
has at least to be valid when f ≡ 0. In this case, we need to invetigate the boundedness for
the homogeneous equation:

yn+1 = Ayn

We have seen in the last section that

Theorem 1.5. The necessary and sufficient condition for ∥An∥ to be bounded is that the
characteristic roots ρi of the characteristic equation a(z) = 0 satisfies:

either |ρi| < 1

or |ρi| = 1 but simple.

Convergence ⇒ Stability
Proof. We only need to find an f such that the corresponding multistep is not stable implies
that it does not converge. We choose f ≡ 0. ¶ Since An is unbounded, which means there
is an eigenvalue ρi with eigenvector yi such that |ρi| > 1 or |ρi| = 1 but not simple. We
discuss the formal case. The latter case can also be prove easily. In the former case, let yi

be the eigenvector of A corresponding to the eigenvalue ρi which satisfies |ρi| > 1. Let us
choose y0 and generate y0 = (yr−1

0 , · · · , y0)T by some explicit scheme starting from y0. We
can choose y0 such that its component on yi is nonzero. Then the corresponding yn := Any0

will be unbounded. Hence it cannot converge to a constant, as k → 0. On the other hand,
y0 depends on the mesh size k and y0(k)→ (y0, · · · , y0)T as k → 0. Thus, the method does
not converge for f ≡ 0.

Convergence ⇒ Consistency
Proof. From Theorem 1.2, we need to show that a(1) = 0 and a′(1) = b(1). To show the
first, we consider the ODE: y′ = 0 with y(0) = 1. For the second, we consider the ODE:
y′ = 1 and y(0) = 0.

• Show a(1) = 0: We choose y0 = (1, · · · , 1)T . From y1 = Ay0, we get

yr = −a0y0 − · · · − ar−1y
r−1 = −a0 − · · · − ar−1.

¶Suppose a multistep method is convergence for every smooth f , then in particular, for f ≡ 0. In this
case, if this multistep method is unstable, we want to show it does not converge. This is a contradiction.

35

Since yr is independent of k, and we should have yr → 1 as k → 0 (by convergence),
we conclude that yr = 1. Thus, we get a(1) = a0 + · · ·+ ar−1 + 1 = 0.

• Show a′(1) = b(1). We choose f ≡ 1, y(0) = 0. The corresponding ODE solution is
y(t) = t. The multistep method gives

a(Z)yn − kb(Z)1 = 0. (1.25)

We write
a(Z) = a′(1)(Z − 1) +O((Z − 1)2), b(Z)1 = b(1).

Then the principal part of the above finite difference is

(Z − 1)y − k b(1)
a′(1)

= 0.

This is an arithmetic series. Its solution is yn = nk b(1)
a′(1)

. Indeed, this sequence also
satisfies (1.25) provided its initial data yn also has the form yn = nk b(1)

a′(1)
for 0 ≤ n < r.

Thus, arithmetic series yn = nk b(1)
a′(1)

is a solution of the difference equation (1.25).
Since nk = t, the convergence yn → t as n→∞ enforces b(1)

a′(1)
= 1.

Stability + Consistency ⇒ Convergence
Proof. We recall that the multistep scheme can be expressed as

yn+1 = Ayn + kBfn.

Let Y be an exact solution. We plug it into the above scheme to get the truncation error:

Yn+1 = AYn + kBFn + kτ n,

where Yn := (Y (tn−r), ...Y (tn))T . We subtract these two equations and call en := Yn − yn

the true error. We get
en+1 = Aen + kB (Fn − fn) + kτ n.

The term Fn − fn can be expressed as

Fn − fn = (f(Y n−r)− f(yn−r), · · · , f(Y n)− f(yn))T

= (L−re
n−r, · · · , L0e

n)T

:= Lne
n

where
L−m :=

ˆ 1

0

f ′(yn−m + ten−m) dt.

36

Thus, we get
en+1 = (A+ kBLn) e

n + kτ n

:= Gn(k)e
n + kτ n,

Gn(k) := A+ kBLn.

Thus, we have
en ≤ Gn−1e

n−1 + kτ n−1

≤ Gn−1Gn−2e
n−2 + k

(
Gn−2τ

n−2 + τ n−1
)

≤ Gn−1Gn−2 · · ·G0e
0

+k
(
Gn−2 · · ·G0τ

0 + · · ·+Gn−2τ
n−2 + τ n−1

)
.

We note that the term ∥BLk∥ is uniformly bounded, because f is Lipschitz, thus the functions
L−m above are uniformly bounded (independent of n). We have the following lemma.
Lemma 1.1. If ∥An∥ is bounded and ∥Bn∥ are uniformly bounded, then the product∥∥∥∥(A+

1

n
B1) · · · (A+

1

n
Bn)

∥∥∥∥
is also uniformly bounded.
(continue the proof of the Theorem). From this lemma, we get

∥en∥ ≤ C∥e0∥+ nkCmax
n
∥τ n∥ ≤ C∥e0∥+O(kp).

with C independent of n and k. Thus, ∥en∥ → 0 as k → 0 with nk = t fixed.

Proof of Lemma 1.1
Proof. 1. We have seen that ∥An∥ is uniformly bounded under some norm is equivalent

to ∥A∥ ≤ 1 for some other operator norm. Thus, we may just assume ∥A∥ ≤ 1.

2. Since all norms in finite dimension are equivalent, we may assume ∥Bi∥ ≤ b for all
i = 1, ..., n.

3. We have ∥∥∥∥(A+
1

n
B1) · · · (A+

1

n
Bn)

∥∥∥∥ ≤ (∥A∥+ b

n
)n ≤ (1 +

b

n
)n ≤ exp(b).

Theorem 1.6 (First Dahlquist barrier). A zero-stable and linear r-step multistep method
with p order of convergence should satisfies

p ≤

r + 2 if r is even,
r + 1 if r is odd,
r if it is an explicit scheme.

For proof, see pp. 384-387, Hairer, Norsett, Wanner, Solving Ordinary Differential Equa-
tions.

37

1.6.2 Absolute stability regions of multistep methods
1. Absolute stability The concept of absolute stability is nothing to do with the concept

of zero stability. In ODE theory, we encounter stable equilibria, which are those states
ȳ which are stable under small perturbation. It means that the solutions stay in a
small neighborhood of ȳ when their initial states do so. An equilibrium ȳ is called
asymptotically stable if y(t) → ȳ with y(0) ∼ ȳ. In this case, the linearized matrix
∂f/∂y (ȳ) has only negative eigenvalues a < 0. In numerical computation, we would
like to reproduce such asymptotically stable solution. There is some restriction for k to
achieve this goal. This is particularly important when some of the negative eigenvalues
are large in magnitude. Such system is called stiff ODE. To derive such restriction, it
is enough to consider the scalar equation

y′ = ay, a < 0.

Let us call z = ak. We have seen how we derive a region for z in which the discrete
system can reproduce the stable process as that in the continuous case.

2. Absolute stability region for the Midpoint method The midpoint method for
the equation y′ = ay reads [

yn

yn+1

]
=

[
0 1
1 2z

] [
yn−1

yn

]
The characteristic equation is

λ2 − 2zλ− 1 = 0.

The two eigenvalues λk, k = 1, 2 satisfy

λ1λ2 = −1, λ1 + λ2 = 2z.

From the first equation, we have

|λ1||λ2| = 1.

From the stability restriction is

|λk| ≤ 1, k = 1, 2.

This gives
|λk| = 1 for k = 1, 2.

Let us call
λk = eiθk , k = 1, 2.

From λ1λ2 = −1, we get θ1 + θ2 = π. From λ1 + λ2 = 2z, we get

cos θ1 + cos θ2 + i(sin θ1 + sin θ2) = i2 sin θ1 = 2z.

38

This implies
z = iy, −1 ≤ y ≤ 1.

Thus, the absolute stability region for the midpoint method is

{z ∈ C|z = iy,−1 ≤ y ≤ 1}.

3. For absolute stability region for multistep methods and their plots on the complex
plane by using matlab, we refer to Stability Regions of ODE Formulas

4. For more examples, we list some references for readers.

• For absolute stability, see Chapter 7 of Randall LeVeque’s book: Finite Difference
Methods for Ordinary and Partial Differential Equations.

• Stiffness and A-stability
• Absolute Stability Region
• A matlab code to plot the absolute stability region for Adams-Bashforth methods.

Homeworks 1.5. 1. Find the absolute stability regions of the explicit Adams-Bashforth
schemes and the implicit Adams-Moulton schemes, respectively.

Comments

1. There are structure-preserving ODE solver, geometric integrator, symplectic algo-
rithms for Hamiltonian flows.

2. For differential-algebraic equations (DAE), there are DAE packages for Electronic De-
sign Automation (EDA).

39

https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/23972/versions/22/previews/chebfun/examples/ode/html/Regions.html
http://sundials.wikidot.com/stiffness#toc0
https://vmm.math.uci.edu/ODEandCM/StabiltyRegionDefinitions/StabilityRegionDefinitions.html
https://sites.engineering.ucsb.edu/~jbraw/principles/fig-html/ch2/fig-2-26.html

Figure 1.3: The figure is copied from LeVeque’s book: Finite Difference Methods for Ordinary
and Partial Differential Equations

Project 1
1. Study the ozone photochemistry problem (Read Durran’s book, 2.5.2., 2.5.4). This is

a stiff ODE. The following chemical reaction is from atmospheric science. The reaction
involves oxygen (O), nitrogen oxides (NO, NO2), and ozone (O3):

NO2 + hν
k1−→ NO +O

O +O2
k2−→ O3

NO +O3

k3
ongrightarrowO2 +NO2.

Here, hν denotes a photo of solar radiation. Let c1, ..., c4 be the concentrations of O,
NO, NO2 and O3, respectively. The reaction system is

ċ1 = k1c3 − k2c1,
ċ2 = k1c3 − k3c2c4,
ċ3 = k3c2c4 − k1c3,

40

Figure 1.4: The figure is copied from LeVeque’s book: Finite Difference Methods for Ordinary
and Partial Differential Equations

ċ4 = k2c1 − k3c2c4.

The numerical reaction rates are

k1 = 10−2max[0, sin(2πt/td)]s
−1, td the length of 1 day,

k2 = 105s−1, k3 = 10−16cm3molecule−1s−1.

The initial concentration at sunrise is

(c1, c2, c3, c4) = (0, 0, 5× 1011, 8× 1011) molecules/cm3

Find the concentration in the next two days. Plot your answers.

2. Consider the logistic equation

y′ = ry(1− y), 0 < y(0) < 1.

The state y = 1 is a stable equilibrium. You can test several methods to see the
constraint on the step size k to be able to construct a good approximate solution.
Think about how this is connected to the absolute-stability region. If k becomes large,
what will you see?

41

42

Chapter 2

Finite Difference Methods for Heat
Equation

2.1 Problem set-up
1. The heat equation We consider the heat equation in 3D:

ut = K(uxx + uyy + uzz). (2.1)

This equation is derived from the law of conservation of energy

∂

∂t

ˆ
Ω

cvu dx =

ˆ
∂Ω

f · (−n) dS.

Here, cv is the specific heat constant, u the temperature, f the heat flux, n the outer
normal of the boundary ∂Ω. The domain Ω ⊂ R3 is an arbitrary domain. The left-
hand side is the rate-of-change of energy in Ω, where cvu is the energy density. The
right-hand side is the heat flux flows into Ω from its surrounding. The heat should
diffuse from high temperature to low temperature. Fourier proposes that heat flux has
the form:

f = −κ∇u,
where κ > 0 is called the heat conductivity. Plug this Fourier law into the above
equation, apply divergence theorem, we obtain

∂

∂t

ˆ
Ω

cvu =

ˆ
∂Ω

(−κ∇u) · (−n) dS =

ˆ
Ω

∇ · (κ∇u) dx.

This integral equation is valid for any arbitrary domain. As a result, we obtain

cvut = ∇ · (κ∇u).

If the material is homegeneous, then κ is a constant, we obtain

ut = K∇2u,

43

where K = κ/cv > 0 is called the dynamic heat conductivity. We can rescale x by
x′ = x

√
K, then

ut = ∇′2u.

We can also rescale t by t′ = tK, then

ut′ = ∇2u

Both rescaling leads us to the standard heat equation

ut = ∇2u.

The operator
∇2 = △ =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

is called the Laplacian (operator).

2. Geometry of domains In applications, the domains can be an arbitrary domain in
three dimensions. However, in developing numerical methods, we shall consider simpler
domains. Then go to more and more complex domains. Simple domains include

• rectangular domain in 1D, 2D and 3D with period, Dirichlet, Neumann boundary
conditions;

• sphere, spherical shell;
• arbitrary geometry.

Usually, rectangular mesh can be adopted for those nice rectangular domains. Then
finite difference methods can be applied. For arbitrary domain, triangular meshing is
always possible, and finite element methods can be applied.

3. Initial condition
u(x, 0) = u0(x). (2.2)

4. Boundary conditions There are various kinds of boundary conditions. The boundary
of the domain Ω, denoted by Γ, is decomposed into

Γ = ΓD ∪ ΓN ∪ ΓR

On the boundary, we impose

• Dirichlet: u(x, t) = uD(x), x ∈ ΓD

• Neumann: ∂u
∂n

= g(x), x ∈ ΓN .

• Robin: ∂u
∂n
− αu(x) = h(x) x ∈ Γ

Here, n is the outer normal of ∂Ω. In the Rubin condition, h(x) represents environ-
mental temperature. We may assume it is zero. The term ∂u/∂n is the heat flux
flowing outward. The term −αu is the radiation rate. When u > 0 (resp. u < 0), the
heat flows outward (resp. inward) at rate α|u|.

44

2.2 Finite Difference Method for 1-D heat equation

2.2.1 Discretization
1. Spatial Discretization Let us consider 1D case. First, we need to have a grid system.

Let us consider the domain Ω = [0, 1]. The grid is uniform grid

G = {xj =
j

N
|j = 0, ..., N},

and N is the number of cells. Let us call 1/N = h, the mesh size. On this uniform
grid, a smooth function u can be approximated by grid value with error as

uxx(xj, t) =
1

h2
(u(xj+1, t)− 2u(xj, t) + u(xj−1, t)) +O(h2).

You can check this by Taylor expansion. Thus, we consider a discrete function Uj(t)
to approcimate u(xj, t). The discrete function Uj(t) satisfies

U̇j(t) =
1

h2
(Uj+1(t)− 2Uj(t) + Uj−1(t)) . (2.3)

Here, U̇ denotes for time derivative dU/dt. We can express this in matrix form as

U̇ =
1

h2
LU, (2.4)

where U = [U1, ..., UN−1]
T is the unknowns. The operator L is called a discrete Lapla-

cian. Note that U0 and UN as the prescribed boundary values, which are taken to be
zeros:

U0 = 0, UN = 0.

This is called the Dirichlet boundary condition. The matrix representation of the
discrete Laplacian L is

L =

−2 1
1 −2 1

.
1 −2 1

1 −2

(N−1)×(N−1)

. (2.5)

Equation (2.3) is called the spatial discretization equation for the heat equation. This
is a system of ordinal differential equations. We can apply numerical ODE solver to
solve this equation. Below, we introduce temporal discretization for solving this ODE.

45

2. Temporal discretization The goal here is to integrate (2.4) in time t. We shall
introduce forward Euler method, backward Euler method and the Crank-Nicolson
method for temporal integration. Let us also choose uniform mesh on the time interval
[0, T]. The time step size is denoted by k. We use Un

j to approximate Uj(nk). Let us
integrate (2.4) for one time step:

ˆ tn+1

tn
U̇(t) dt =

ˆ tn+1

tn

1

h2
LU(t) dt.

The LHS gives Un+1 − Un. There are many ways to approximate the integration on
the RHS. We lis few common used methods below, which use the rectangular rule
(forward, backward) and trapezoidal rule for numerical integration.

• Forward Euler method:
Un+1 − Un =

k

h2
LUn. (2.6)

• Backward Euler method:

Un+1 − Un =
k

h2
LUn+1. (2.7)

This leads to (
I − k

h2
L

)
Un+1 = Un

and gives

Un+1 =

(
I − k

h2
L

)−1

Un.

• Crank-Nicolson method. This is the trapezoidal method for numerical ODE.

Un+1 − Un =
k

2h2
(
LUn + LUn+1

)
. (2.8)

This gives

Un+1 =

(
I − k

2h2
L

)−1(
I +

k

2h2
L

)
Un.

Homeworks 2.1. 1. Find the eigenvalues of the discrete Laplacian (2.5).
A matlab code is available

LapEig.m
% Define the parameters
N = 101; % Number of grid points
L = 1; % Length of the domain
h = L/(N-1); % Grid spacing

46

Figure 2.1: The eigenvalues of the discrete Laplacian in 1D with Dirichlet boundary con-
dition. The number of grid points N = 101. Note that the eigenvalues ranging from
−4 ∼ −N2.

Figure 2.2: The first 4 (left) and the last 4 (right) eigenvectors of the discrete Laplacian in
1D with Dirichlet boundary condition. The number of grid points N = 100.

% Construct the discrete Laplacian matrix
A = -2*eye(N) + diag(ones(N-1,1),1) + diag(ones(N-1,1),-1);
A = (1/h^2) * A;

% Find the eigenvalues and eigenvectors
[V,D] = eig(A);

% Extract the eigenvalues
lambda = diag(D);

% Sort the eigenvalues in descending order

47

[lambda, idx] = sort(lambda, 'descend');

% Reorder the eigenvectors accordingly
V = V(:, idx);

% Plot the first and last four eigenvectors
figure
for i = 1:4 % plot first 4 eigenvectors

subplot(2,2,i)
plot(V(:,i))
xlabel('Grid point')
ylabel(['Eigenvector ',num2str(i)])

end

% Plot the first and last four eigenvectors
figure
for i = N-3:N % plot last 4 eigenvectors

subplot(2,2,i-N+4)
plot(V(:,i))
xlabel('Grid point')
ylabel(['Eigenvector ',num2str(i)])

end

% Plot the eigenvalues
figure
plot(lambda,'o')
xlabel('Eigenvalue index')
ylabel('Eigenvalue')
title('Eigenvalues of the discrete Laplacian in 1D')

2.2.2 Solving the discrete equations
Writing computer codes to solve the above linear equations. The following items are typical
code structure.

1. Parameter set-up

• Domain set up:[XL, XR], NX , ∆x
• Time domain set up: Tstop, NT , or ∆t
• Ploting frequency:
• Physical parameters: conductivity κ

2. Initialization and boundary conditions:

48

• U0[j], j = 0, NX

• Boundary condition: UL, UR.

3. Select a method

4. Time stepping: solve the equation below until Tstop

• Given Un, solve for Un+1.
• Apply boundary condition.
• Plot (or store) Un+1 while requested.

5. Diagnosis and analysis

• Design benchmark problem to test
• Plots, animations
• Verification and Validation
• Quantitative analysis, statistics, ...

2.2.3 Python codes
A python code for 1D heat equation is available in the open course Practical Numerical
Methods with Python.

2.3 Stability analysis
The stability analysis here is mainly for the interior domain. So, we may either setup the
domain to be [0, 1], or S1 (periodic domain). The computational grid is {xj = jh|j ∈ Zn, h =
1/N}, or {xj = jh|j ∈ ZN , h = 2π/N}. Below, we shall assume our domain is R.

2.3.1 Maximum norm estimates
1. Example of instability In the above forward Euler scheme, you may observe that

the solution can oscillate if the time step size is large. In such a situation, we say
that the scheme is unstable. Let us analyze such instability of a scheme below. Let us
denote

λ :=
k

h2
,

as a natural non-dimensional parameter for a parabolic equation. We will fix it. Let
us express the forward Euler method for just one step to analyze its behavior:

Un+1
j = Un

j + λ
(
Un
j−1 − 2Un

j + Un
j+1

)
= αUn

j−1 + βUn
j + γUn

j+1. (2.9)

49

https://nbviewer.org/github/numerical-mooc/numerical-mooc/blob/master/lessons/04_spreadout/04_01_Heat_Equation_1D_Explicit.ipynb
https://openedx.seas.gwu.edu/courses/course-v1:MAE+MAE6286+2017/about
https://openedx.seas.gwu.edu/courses/course-v1:MAE+MAE6286+2017/about

Here, the coefficients
α = γ = λ, β = 1− 2λ. (2.10)

Note that
α + β + γ = 1,

which implies that Un+1
j is the “average” of Un

j−1, Un
j , and Un

j+1 if α, β, γ ≥ 0. If these
coefficients are not all non-negative, say λ = 1, which gives β = −1, then

Un+1
j = Un

j−1 − Un
j + Un

j+1.

Let us take U0
j = δ0j initially. ∗

• At n = 1 we get U1
0 = −1, U1

±1 = 1.

• At n = 2, we get U2
0 = 3, U2

±1 = −2, U2
±2 = 1.

• At n = 3, we get U3
0 = −7, U3

±1 = 6, U3
±2 = −3, U3

±3 = 1.

You can continue this calculation and find a general formula by hand. Or you can
put this scheme into computer to try few more steps. We observe that the solution U
oscillates and grows. This violates the diffusion process. The heat should diffuse and
decay, not oscillate.

2. Example of stability On the other hand, if we choose

λ ≤ 1/2, (2.11)

fixed, then from (2.10)
α, β, γ ≥ 0.

Equation (2.9) states that Un+1
j is the average of Un

j−1, Un
j and Un

j+1. This leads to

Un+1
j = αUn

j−1 + βUn
j + γUn

j+1

≤ α|Un
j−1|+ β|Un

j |+ γ|Un
j+1|

≤ (α + β + γ)max
i
|Un

i |

= ∥Un∥∞.

Here, ∥U∥∞ := maxi |Ui| is called the maximum norm of U , or the sup norm of U .
Similarly,

−Un+1
j = −

(
αUn

j−1 + βUn
j + γUn

j+1

)
≤ α|Un

j−1|+ β|Un
j |+ γ|Un

j+1|
≤ (α + β + γ)max

i
|Un

i |

∗δj0 :=

{
1 if j = 0
0 otherwise.

50

= ∥Un∥∞.

These imply that
|Un+1

j | ≤ ∥Un∥∞ for all j.

Hence.
∥Un+1∥∞ ≤ ∥Un∥∞. (2.12)

The conclusion here is that ∥Un∥∞ remains bounded for all n.
To summarize, we have shown that the forward Euler method for the heat equation
is stable (i.e., the solution does not grow unboundedly) if and only if λ ≤ 1/2. When
λ > 1/2, the solution grows unboundedly and oscillates, violating the physical behavior
of heat diffusion.

3. Definition of Stability

Definition 2.1. A scheme which produces approximate solutions {Un} is called stable
if there exists a norm ∥ · ∥ † such that {∥Un∥} remain bounded uniformly in n.

Remark This condition is necessary for convergence. Let us fix a point (x, t). Consider
a limiting process: we fix λ = k/h2 and take

jh→ x, nk → t

while
n→∞, j →∞.

If Un
j → u(x, t), then {Un

j } has to be bounded. Thus, convergence implies stability.
This is indeed a theorem, which will be discussed in detail later.

Homeworks 2.2. 1. For the forward Euler method (2.6) with λ ≤ 1/2, show that

minjU
n+1
j ≥ minjU

n
j ,

maxjUn+1
j ≤ maxjUn

j .

2.3.2 Energy method
1. The energy method studies the stability problem in L2-norm:

∥U∥2 :=

(∑
j

|Uj|2h

)1/2

.

†A norm ∥ · ∥ in a vector space V is a mapping from V to R+ which satisfies (i) ∥v∥ ≥ 0 for all v ∈ V ,
(ii) ∥v∥ = 0 if and only if v = 0, (iii) ∥αv∥ = |α|∥v∥, and (iv) ∥u + v∥ ≤ ∥u∥ + ∥v∥. A vector space V
endowed with a norm ∥ · ∥ is called a normed vector space. It is used to measure the length of a vector.

51

2. Let us write the finite difference scheme as

Un+1
j = αUn

j−1 + βUn
j + γUn

j+1, (2.13)

where
α, β, γ ≥ 0 and α + β + γ = 1.

We multiply (2.13) by Un+1
j on both sides, apply Cauchy-Schwarz inequality,‡ we get

(Un+1
j)2 = αUn

j−1U
n+1
j + βUn

j U
n+1
j + γUn

j+1U
n+1
j

≤ α

2
((Un

j−1)
2 + (Un+1

j)2) +
β

2
((Un

j)
2 + (Un+1

j)2) +
γ

2
((Un

j+1)
2 + (Un+1

j)2)

Here, we have used α, β, γ ≥ 0. We multiply this inequality by h and sum it over j ∈ Z
to get

∥Un+1∥22 ≤
α

2
(∥Un∥22 + ∥Un+1∥22) +

β

2
(∥Un∥22 + ∥Un+1∥22) +

γ

2
(∥Un∥22 + ∥Un+1∥22)

=
1

2
(∥Un∥22 + ∥Un+1∥22).

Here, α + β + γ = 1 is used. Thus, we get the energy estimate

∥Un+1∥22 ≤ ∥Un∥22. (2.14)

Homeworks 2.3. 1. Can the RK-2 method possess an energy estimate? (Ans. Yes.)

2.3.3 Entropy method
The property that Un+1 is a convex combination (average) of Un is very important. Given
any convex function η(u), by Jenson’s inequality, we have §

η(Un+1
j) = η

(
αUn

j−1 + βUn
j + γUn

j+1

)
≤ αη(Un

j−1) + βη(Un
j) + γη(Un

j+1). (2.15)

Summing over all j and using α + β + γ = 1, we get∑
j

η(Un+1
j) ≤

∑
j

η(Un
j). (2.16)

The convex function η is called an entropy in this setting. The above inequality means that
the “entropy” decreases in time. In particular, we choose

‡|ab| ≤ a2

2 + b2

2
§Jenson’s inequality: for convex function η, we have

η(αU + (1− α)V) ≤ αη(U) + (1− α)η(V).

52

• η(u) = |u|2, this gives the L2 stability estimate,

• η(u) = |u|p, 1 ≤ p <∞, we get∑
j

|Un+1
j |p ≤

∑
j

|Un
j |p.

This leads to (∑
j

|Un+1
j |ph

)1/p

≤

(∑
j

|Un
j |ph

)1/p

,

the general Lp stability estimates. Taking p→∞, we recover L∞ stability.¶

• η(u) = |u− c| for any constant c, we obtain∑
j

|Un+1
j − c| ≤

∑
j

|Un
j − c|.

This is called Kruzkov’s entropy estimate. We will see this inequality in the theory of
hyperbolic conservation laws in later chapter.

Homeworks 2.4. 1. Show that the solution of the difference equation derived from the
RK2 satisfies the entropy estimate. What is the condition required on h and k for such
entropy estimate?

2.3.4 Von Neumann’s stability Analysis
1. The von Neumann analysis (via Fourier method) provides a necessary and sufficient

condition for L2-stability. It is applicable to general time-evolution linear systems
(discrete or continuous parabolic equations, hyperbolic equations,...) with constant
coefficients. For systems with variable coefficients, Kreiss’ matrix theorem provides a
good characterization of stability.

2. Let us consider an evolutionary finite difference system in a general form:

Un+1
j =

m∑
k=−l

akU
n
j+k = (GUn)j.

The operator G : Un 7→ Un+1.

3. Let us consider the following infinite dimensional vector space

ℓ2(Z) := {U : Z→ C|
∑
j∈Z

|Uj|2 <∞}.

¶∥U∥p → ∥U∥∞ as p→∞.

53

In ℓ2(Z), we define the inner product

⟨U, V ⟩ :=
∑
j∈Z

UjV̄j,

and the ℓ2-norm

∥U∥ :=
√
⟨U,U⟩ =

(∑
j∈Z

|Uj|2
)1/2

.

The ℓ2-space is a Hilbert space. ‖

4. Let us consider another functional space L2(S1):

L2(S1) := {ϕ : S1 → C|
ˆ 2π

0

|ϕ(ξ)|2 dξ <∞}

In L2(S1), we define the inner product

⟨ϕ, ψ⟩ := 1

2π

ˆ 2π

0

ϕ(ξ)ψ(ξ) dξ,

and the L2-norm

∥ϕ∥ :=
√
⟨ϕ, ϕ⟩ =

(
1

2π

ˆ 2π

0

|ϕ(ξ)|2 dξ
)1/2

.

This L2(S1) space is also a Hilbert space.

5. Fourier transform Given U = (Uj)j∈Z ∈ ℓ2(Z), we define its Fourier transform by

Û(ξ) =
1

2π

∑
j∈Z

Uje
−ijξ, ξ ∈ [0, 2π).

The function Û : S1 → C is a 2π-periodic function. In fact, Û ∈ L2(S1). The Fourier
transform: U 7→ Û maps ℓ2(Z) to L2(S1).

6. There are two pros to analyze stability of a finite difference schemes using Fourier
method.

• The shift operator T : ℓ2(Z) → ℓ2(Z) is defined by (TU)j := Uj+1. The shift
operator is transformed to a multiplier:

T̂U(ξ) = eiξÛ(ξ).

‖A Hilbert space means it is a vector space endowed with an inner product structure. Moreover, it is
complete, which means that every Cauchy sequence converges.

54

• The Parseval equality

∥U∥2 = ∥Û∥2

≡ 1

2π

ˆ 2π

0

|Û(ξ)|2 dξ

holds, thus one can control the ℓ2-norm of U and GU in the Fourier space.

7. Now, let us consider a finite difference scheme of the form:

Q(T)Un+1 = P (T)Un, (2.17)

where Q,P are polynomials, say

(P (T)U)j =
m∑

k=−l

akUj+k, (Q(T)U) =
m∑

k=−l

bkUj+k.

The Fourier transform of P (T)U gives

P̂ (T)U(ξ) =
∑
j∈Z

(
m∑

k=−l

akUj+k

)
e−ijξ

=
m∑

k=−l

ak
∑
j∈Z

Uj+ke
−ijξ

=
m∑

k=−l

ak
∑
j∈Z

Uje
−i(j−k)ξ

=
m∑

k=−l

ake
ikξ
∑
j∈Z

Uje
−ijξ

= P (eiξ)Û(ξ).

Thus, taking Fourier transform for the finite difference scheme (2.17), we get

Q(eiξ)Ûn+1(ξ) = P (eiξ)Ûn(ξ), Ûn+1(ξ) = Ĝ(ξ)Ûn(ξ),

where
Ĝ(ξ) :=

P (eiξ)

Q(eiξ)
.

From the Parseval equality,

∥Un+1∥2 = ∥Ûn+1∥2

=
1

2π

ˆ π

−π

|Ĝ(ξ)|2 |Ûn(ξ)|2 dξ

55

≤ max
ξ
|Ĝ(ξ)|2 1

2π

ˆ π

−π

|Ûn(ξ)|2 dξ

= |Ĝ|2∞∥Un∥2.

Thus a sufficient condition for stability is

|Ĝ|∞ ≤ 1. (2.18)

This is also a necessary condition. Indeed, suppose |Ĝ(ξ0)| > 1 at some point ξ0 ∈
[0, 2π], fromĜ being a smooth function in ξ, we can find ε and δ such that

|Ĝ(ξ)| ≥ 1 + ε for all |ξ − ξ0| < δ.

Let us choose an initial data U0 ∈ ℓ2(Z) such that Û0(ξ) = 1 for |ξ − ξ0| ≤ δ. Then

∥Ûn∥2 =
1

2π

ˆ
|Ĝ|2n(ξ)|Û0(ξ)|2 dξ

≥ 1

2π

ˆ
|ξ−ξ0|≤δ

|Ĝ|2n(ξ)|Û0|2 dξ

≥ (1 + ε)2n
δ

2π
→∞ as n→∞

Thus, the scheme is unstable. We conclude the above discussion by the following
theorem.

Theorem 2.1. A finite difference scheme

Q(T)Un+1 = P (T)Un

with constant coefficients is stable if and only if

Ĝ(ξ) :=
P
(
eiξ
)

Q (eiξ)

satisfies
max

−π≤ξ≤π
|Ĝ(ξ)| ≤ 1. (2.19)

8. Examples

• Forward Euler method. The forward Euler method for the heat equation is

Un+1
j = G(Uj−1, Uj, Uj+1) = λUj−1 + (1− 2λ)Uj + λUj+1, λ =

k

h2
.

The corresponding

Ĝ(ξ) = λ(eiξ + e−iξ) + (1− 2λ) = 1− 4λ sin2

(
ξ

2

)
.

56

The condition (2.19) is equivalent to

λ ≤ 1

2
.

That is,
k

h2
≤ 1

2
.

Or equivalently, Un+1
j is the convex combination of Uj−1, Uj and Uj+1.

• Backward Euler method

Un+1
j = Un

j + λ
(
Un+1
j−1 − 2Un+1

j + Un+1
j+1

)
Taking Fourier transform, we get

Ûn+1(ξ) = Ĝ(ξ)Ûn(ξ),

where

G(ξ) =
1

1− λ (eiξ − 2 + e−iξ)
=

1

1− λ (2 cos(ξ)− 2)
=

1

1 + 4λ sin2
(
ξ
2

) .
We see that |G(ξ)| ≤ 1 for any ξ ∈ [0, 2π]. There is no restriction on λ = k/h2.
Thus, we say the backward Euler scheme is unconditional stable.

• Crank-Nicolson method The scheme is(
1− λ

2
L

)
Un+1 =

(
1 +

λ

2
L

)
Un

where L is the discrete Laplacian:

LU =
(
T − 2 + T−1

)
U

The Fourier transform of L is

L̂ = eiξ − 2 + e−iξ = −4 sin2

(
ξ

2

)
.

Thus, the amplification Ĝ(ξ) is

G(ξ) =
1− 2λ sin2

(
ξ
2

)
1 + 2λ sin2

(
ξ
2

) .
We see that

|Ĝ(ξ)| ≤ 1

for all λ > 0 for all ξ ∈ [0, 2π). Thus, the Crank-Nicolson method is unconditional
stable.

Homeworks 2.5. 1. Compute the Ĝ for the schemes: RK2, RK4.

57

2.4 * Relaxation of errors
In this section, we study the evolution of an error on a periodic domain [0, 2π). We consider

ut = uxx, x ∈ [0, 2π), (2.20)

with initial data u0. The grid points xj = 2πj/N , j = 0, ..., N , and h = 2π/N .

Truncation error Let u(·, ·) be a smooth solution. We plug u into the difference equation
(2.9). The remaining term is called the truncation error τnj :

u(xj, t
n+1) = u(xj, t

n) +
∆t

h2
(u(xj−1, t

n)− 2u(xj, t
n) + u(xj+1, t

n)) + ∆tτnj .

By Taylor expansion,
τnj = O(∆t) +O(h2).

True error The true error enj := u(xj, t
n)− Un

j satisfies

en+1
j = enj + λ(enj−1 − 2enj + enj+1) + ∆tτnj . (2.21)

We want to know how error en is relaxed to zero from an initial error e0.

Homogeneous linear difference equation Let us study the homogeneous finite differ-
ence equation first. That is

en+1
j = enj + λ(enj−1 − 2enj + enj+1). (2.22)

or en+1 = G(un). The matrix is a tridiagonal matrix. It can be diagonalized by Fourier
method. The eigenvalues and eigenfunctions are

ρk = 1− 2λ+ 2λ cos(2πk/N) = 1− 4λ sin2(πk/N),

vk,j =
1√
N
e2πijk/N , k = 0, ..., N − 1.

Note that {vk}N−1
k=0 are orthonormal. When λ ≤ 1/2, all eigenvalues are negative except ρ0:

1 = ρ0 > |ρ1| > |ρ2| > · · · .

The eigenfunction corresponding to eigenvalue ρ0 = 1 is

v0,j = 1 for all 0 ≤ j ≤ N − 1.

Hence, the projection of any discrete function U onto this eigenfunction is the average:∑
j Uj.

58

Now, we decompose the error into

en =
N−1∑
k=0

⟨en, vk⟩vk, n ≥ 0

Then
en+1
k = ρke

n
k .

Thus,
enk = ρnke

0
k.

Since ρ0 = 1, we see that en0 = e00, which is the average of en, does not decay, unless e00 = 0
initially. To guarantee the average of e0 is zero, we may choose Un

j to be the cell average of
u(x, tn) in the jth cell:

Un
j =

1

h

ˆ xj+1/2

xj−1/2

u(x, tn) dx.

instead of the grid data. This implies that the initial error has zero local averages.
For the decay behaviours of errors enk for k = 1, ..., N−1, we notice that for 1 ≤ k ≤ N−1,

ρk = 1− 4λ sin2

(
πk

N

)
≈ 1− 4λ

(
πk

N

)2

, for N >> 1.

The largest values of ρ’s are ρ1 and ρN−1:

ρ1 = ρN−1 ≈ 1− 4λ
(π
N

)2
= 1− 4

∆t

h2
π2

N2
= 1−∆t.

They correspond to low frequency eigenmodes: v1 = (e2πij/N)N−1
j=0 and vN−1 = (e−2πij/N)N−1

j=0 .
The corresponding decay rate is

ρn1 ≈ (1−∆t)n =

(
1− t

n

)n

≈ e−t.

Here, t = n∆t. This is the decay rate of en1 and enN−1 with n∆t = t. They are the slowest
decay modes. For k = N/2, the corresponding eigenmode vN/2 = ((−1)j)N−1

j=0 is the highest
frequency mode. The corresponding eigenvalue

ρN/2 = 1− 4λ = 1− 4
∆t

h2
.

The decay rate is

ρnN/2 =

(
1− 4

∆t

h2

)n

≈ e−
4t
h2 .

which decays very fast.

59

Inhomogeneous linear difference equation The contribution of the truncation error
to the true error is given by the following inhomogeneous linear difference equation:

en+1
j = enj + λ(enj−1 − 2enj + enj+1) + ∆tτnj .

Let us expand en in eigenmode vk: en =
∑N−1

k=0 ⟨en, vk⟩vk. The error ⟨en, vk⟩ satisfies ∗∗

⟨en+1, vk⟩ = ρk⟨en, vk⟩+∆t⟨τn, vk⟩.

Its solution is

⟨en, vk⟩ = ρnk⟨e0, vk⟩+∆t
n−1∑
m=0

ρn−1−m
k ⟨τm, vk⟩.

We see that the term ⟨en, v0⟩ does not tend to zero unless ⟨τm, v0⟩ = 0. This can be achieved
if we choose Uj to be the cell averages instead the grid data. For k ≥ 1, we use ρ1 ≤ ρk. We
have

∥en∥2 :=
∑
k

|⟨en, vk⟩|2 ≤ ρ1

N∑
k=1

⟨e0, vk⟩|2 +∆t
n−1∑
m=0

ρn−1−m
1

N∑
k=1

|⟨τm, vk⟩|2

≤ ρn1∥e0∥2 +∆t
n−1∑
m=0

ρn−1−m
1 ∥τm∥2.

We have seen that the truncation error is second order. That is

max
m
∥τm∥ = O(h2).

Then for k ≥ 1,

∆t
n−1∑
m=0

|ρk|n−1−m ≤ ∆t
n−1∑
m=0

|ρ1|n−1−m = ∆t
1− ρn1
1− ρ1

≈ ∆t
1− e−t

1− (1−∆t)
= 1− e−t.

Thus, we obtain
|en|2 ≤ e−te0 + (1− e−t)O(h2)

with n∆t = t.
In summary, the kth mode decays at rate e−k2t, k = 1, ..., h−2. Thus, high frequency modes
decay very fast.

2.5 Boundary conditions
2.5.1 Dirichlet boundary condition
Nonzero Dirichlet boundary condition Now, we consider the initial-boundary prob-
lem:

ut = uxx, x ∈ [0, 1]

∗∗The inner product ⟨enj , vk⟩ :=
∑N−1

j=0 enj vk,j .

60

The Dirichlet boundary condition is

u(0) = a, u(1) = b. (2.23)

The initial condition is
u(x, 0) = u0(x).

We introduce uniform grids: xj = j/N , j = 0, ..., N . The forward Euler method can be
realized on x1, ..., xN−1 as

Un+1
j − Un

j =
∆t

h2
(
Un
j−1 − 2Un

j + Un
j+1

)
, j = 1, ..., N − 1.

Near the boundary point x1, the finite difference approximation of uxx at x1 involves u(x0).
We plug the boundary condition u(x0) = a:

uxx(x1) =
U0 − 2U1 + U2

h2
+O(h2) =

a− 2U1 + U2

h2
+O(h2) (2.24)

Similarly,

uxx(xN−1) =
UN−2 − 2UN−1 + UN

h2
+O(h2) =

UN−2 − 2UN−1 + b

h2
+O(h2)

The unknowns are Un
1 , ..., U

n
N−1 with N − 1 finite difference equations at x1, ..., xN−1. In-

cluding boundary terms, we write the equation as

Un+1 = (I + λLD)U
n + λB, λ =

∆t

h2
, (2.25)

LD =

−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
...
0 0 0 · · · 1 −2

(N−1)×(N−1)

, B =

a
0
...
b

(N−1)×1

. (2.26)

The matrix LD is the discrete Laplacian with zero Dirichlet boundary condition. The term
B comes from the Dirichlet boundary conditions.

We can have energy estimates, entropy estimates as the case of periodic boundary con-
dition.

Solving heat equation with Dirichlet boundary condition In the implicit methods
for solving heat equation, it involves an inversion of the discrete Laplacian. Since the eigen-
values of the Dirichlet BC Laplacian LD(2.26) are all nonzeros, LD is invertible. There is no
problem in using implicit methods.

61

2.5.2 Neumann boundary condition
Discrete formulation The Neumann boundary condition is

u′(0) = −σ0, u′(1) = σ1. (2.27)

We may use the following discretization methods:

• First order:
U1 − U0

h
= −σ0.

• Second order: we use extrapolation

−3U0 + 4U1 − U2

2h
= −σ0.

The unknowns are Un
j with j = 0, ..., N . In the mean time, we add two more equations at

the boundaries.

Discrete Laplacian with Neumann BC Let LN be the discrete Laplacian with Neu-
mann boundary condition using the first order approximation on the boundary. LN is an
(N + 1)× (N + 1) matrix.

LN =

−1 1 0 · · · 0 0
1 −2 1 · · · 0 0
...
0 0 0 · · · 1 −1

(N+1)×(N+1)

. (2.28)

This matrix has the following eigenvectors:

vkj = cos(πjk/N), k = 0, ..., N

with eigenvalue

λk = −2 + 2 cos(πk/N) = −4 sin2

(
πk

2N

)
, k = 0, ..., N.

Note that λ0 = 0. The corresponding eigenvector v0 = [1, ..., 1]T . The error corresponding
this eigenmode does not decay.

% Define the parameters
N = 100; % Number of grid points is N+1
L = 1; % Length of the domain
h = L/N; % Grid spacing

62

% Construct the discrete Laplacian matrix
A = -2*eye(N+1) + diag(ones(N,1),1) + diag(ones(N,1),-1);
A(1,1) = -1; A(N+1,N+1) = -1;%For Neumann BC

A = (1/h^2) * A;

% Find the eigenvalues and eigenvectors
[V,D] = eig(A);

% Extract the eigenvalues
lambda = diag(D);

% Sort the eigenvalues in descending order
[lambda, idx] = sort(lambda, 'descend');

% Reorder the eigenvectors accordingly
V = V(:, idx);

% Plot the first and last four eigenvectors
figure
for i = 1:4 % plot first 4 eigenvectors

subplot(2,2,i)
plot(V(:,i))
xlabel('Grid point')
ylabel(['Eigenvector ',num2str(i)])

end

% Plot the first and last four eigenvectors
figure
for i = N-2:N+1 % plot last 4 eigenvectors

subplot(2,2,i-N+3)
plot(V(:,i))
xlabel('Grid point')
ylabel(['Eigenvector ',num2str(i)])

end

% Plot the eigenvalues
figure
plot(lambda,'o')
xlabel('Eigenvalue index')
ylabel('Eigenvalue')
title('Eigenvalues of the discrete Laplacian in 1D')

Alternatively, we can also use the Laplacian at x0 and xN . At, x0, this gives

uxx(x0) =
U−1 − 2U0 + U1

h2
+O(h2).

63

Figure 2.3: The eigenvalues of the discrete Laplacian in 1D with Neumann boundary condi-
tion. The number of grid points N = 101. Note that the eigenvalues ranging from 0 ∼ −N2.

Figure 2.4: The first 4 (left) and the last 4 (right) eigenvectors of the discrete Laplacian in
1D with Neumann boundary condition. The number of grid points is N = 101. Note that
the first eigenvector is a constant. The plot overwhelms the error.

The Neumann boundary condition ux(x0) = −σ0 is approximated by

ux(x0) =
U1 − U−1

2h
+O(h2).

This gives

uxx(x0) =
−2U0 + 2U1

h2
+

2σ0
h

+O(h).

The discretized equation becomes

U̇0 =
−2U0 + 2U1

h2
+

2

h
σ0.

64

This equation is equivalent to

1

2
U̇0 =

−U0 + U1

h2
+

1

h
σ0.

The reason we divide this equation by 2 is to make the corresponding discrete Laplacian
symmetric. Thus, the heat equation with Neumann boundary condition can be approximated
by

1
2
U̇0

U̇1
...

U̇N−1
1
2
U̇N

 =
1

h2

−1 1
1 −2 1

.
1 −2 1

1 −1

U0

U1
...

UN−1

UN

+
1

h

σ0
0
...
0
σ1

Homeworks 2.6. 1. Find the eigenfunctions and eigenvalues for the discrete Laplacian

with the Neumann boundary condition (consider both first order and second order
approximation at boundary). Note that there is a zero eigenvalue.

2. Consider
ut = uxx + f(x)

on [0, 1] with Neumann boundary condition u′(0) = u′(1) = 0. If
´
f(x) dx ̸= 0. What

will happen to u as t→∞?

Solving heat equation with Neumann BC by implicit methods Let us study the
backward Euler method:

Un+1 = Un +∆tLNU
n+1.

We need to invert the matrix I −∆tLN . The matrix is positive. So there is no problem.

2.6 Multidimensions and sources
2.6.1 2D heat equation
Consider the heat equation

ut = κ (uxx + uyy) in a rectangle [xmin, xmax]× [ymin, ymax]

with zero Dirichlet boundary condition. The grid is

{(xi, yj)|xi = xmin + i∆x, i = 0, ..., nx + 1, yj = ymin + j∆y, j = 0, ..., ny + 1}

The Dirichlet boundary condition gives

Ui,j = 0 for (i = 0) or (i = nx + 1) or (j = 0) or (j = ny + 1).

65

The approximate solution is Uij, i = 1, ..., nx, j = 1, ..., ny. The backward Euler scheme reads

M
(
Un+1 − Un

)
= κ∆tLUn+1. (2.29)

where M is the mass operator
(MU)ij = Uij

and L is the 2D Laplacian:

(LU)ij :=
1

(∆x)2
(Ui+1,j − 2Uij + Ui−1,j) +

1

(∆y)2
(Ui,j+1 − 2Uij + Ui,j−1) .

The Crank-Nicolson method is

M
(
Un+1 − Un

)
=
κ∆t

2

(
LUn+1 + LUn

)
. (2.30)

Below, we present a matlab code which uses sparse matrix solver. This code is much faster
than those without using sparse matrix solver. There are special cares for index arithmetics.

2.6.2 Splitting method for reaction-diffusion equations
1. Models Let us consider the reaction-diffusion equation:

ut = △u+ f(u) (2.31)

The term △u is called the diffusion term, while f(u) the reaction term. It can come
from

• Phase field model: u is an order parameter, f is the derivative of a double-well
free energy F . An example of F is F (u) = (1 − u2)2, or F (u) = u2(1− u)2. For
the later one, the corresponding F ′(u) = f(u) = u(1 − 2u)(1 − u). The state 0
and 1 are stable equilibria, while u = 1/2 is an unstable equilibrium.

• Chemical reaction. Usually, u is a vector consisting of several chemical species
involving reaction. An example is the following chemical reaction in atmosphere.
The reaction involves oxygen (O), nitrogen oxides (NO, NO2), and ozone (O3):

NO2 + hν
k1−→ NO +O

O +O2
k2−→ O3

NO +O3
k3−→ O2 +NO2.

Here, hν denotes a photo of solar radiation. Let c1, ..., c4 be the concentrations
of O, NO, NO2 and O3, respectively. The reaction system is

ċ1 = k1c3 − k2c1,
ċ2 = k1c3 − k3c2c4,
ċ3 = k3c2c4 − k1c3,
ċ4 = k2c1 − k3c2c4.

66

https://en.wikipedia.org/wiki/Phase-field_model

2. Suppose we want to solve the reaction-diffusion equation in a small time step ∆t. Let
us start from a state called u0. This equation can be viewed roughly as

ut ≈ △(u− u0) + f ′(u0)(u− u0).

We view it as
vt = Av +Bv,

where v = u− u0, Av = △v, Bv = f(u0)v. We call these two operators as

• Diffusion operator: e∆t△, which solves the diffusion equation
• Reaction operator: e∆tf ′(u), which solves the ODE: u′ = f(u) for a small time

step.

Let us denote them by e∆tA and e∆tB, respectively. Note that these two operators are
not commutable.

3. Splitting method Formally, the solution of the equation (2.31) is

u = e∆t(A+B)u0.

We want to approximate it by

u ≈ e∆tBe∆tAu0.

We know how to find e∆A and e∆tB. In other words, we will solve this reaction-diffusion
equation by solving

ut = △u
and

ut = f(u)

alternatively. Namely,

et(A+B) ≈ e∆tBe∆tA · · · e∆tBe∆tA︸ ︷︷ ︸
n times

u0, n∆t = t.

Such a method is called a splitting method.

4. Let us study the error of e∆t(A+B) − e∆tBe∆tA,

e∆t(A+B) = 1 +∆t(A+B) +
∆t2

2
(A2 +B2 + AB +BA) + · · ·

etB · etA = (1 + ∆tB +
∆t2

2
B2 + · · ·)(1 + ∆tA+

∆t2

2
A2 + · · ·)

= 1 + ∆t(A+B) +
∆t2

2
(A2 +B2) + ∆t2BA+ · · ·

.·. e∆t(A+B) − e∆tB · e∆tA =
∆t2

2
(AB −BA) +O(∆t3) = ∆t2

2
[A,B] +O(∆t3).

Here, [A,B] := AB−BA is called the commutator of A and B. The error is first order
after time n(∆t)2 = O(∆t), where n = t/∆t and t is the final time.

67

5. High order splitting To reach higher order time splitting, we may approximate
et(A+B) by polynomials P (etA, etB) or rational functions R(etA, etB) for small t. For
example, the Strang splitting (or the Trotter product in physics literatures) is given
by

et(A+B) = e
1
2
tAetBe

1
2
tA +O(t3). (2.32)

For t = n∆t,

et(A+B)u0 = (e
1
2
∆tAe∆tBe

1
2
∆tA) · · · (e

1
2
∆tAe∆tBe

1
2
∆tA)(e

1
2
∆tAe∆tBe

1
2
∆tA)u0

= e
1
2
∆tAe∆tBe∆tAe∆tBe∆tA · · · e∆tAe∆tBe

1
2
∆tAu0

The Strang splitting is second order.

Homeworks 2.7. 1. Design a third order splitting method for

ut + Au+Bu.

2. Suppose we have three operators in our equation:

ut = Au+Bu+ Cu.

Design first order and second order splitting methods.

Project 2
You can do either one of the following two.

1. Study the ozone photochemistry process with diffusion. The reaction involves oxygen
(O), nitrogen oxides (NO, NO2), and ozone (O3):

NO2 + hν
k1−→ NO +O

O +O2
k2−→ O3

NO +O3
k3−→ O2 +NO2.

Here, hν denotes a photo of solar radiation. Let c1, ..., c4 be the concentrations of O,
NO, NO2 and O3, respectively. The reaction system is

ċ1 = k1c3 − k2c1,
ċ2 = k1c3 − k3c2c4,
ċ3 = k3c2c4 − k1c3,
ċ4 = k2c1 − k3c2c4.

68

The numerical reaction rates are

k1 = 10−2max[0, sin(2πt/td)]s
−1, td the length of 1 day,

k2 = 105s−1, k3 = 10−16cm3molecule−1s−1.

The geometry is a rectangle. The initial data is a box function with

(c1, c2, c3, c4) =

{
(0, 0, 5× 1011, 8× 1011) inside box
(0, 0, 0, 0) elsewhere.

The boundary condition is Neumann BC. Use finite difference and spectral methods.
Use Crank-Nicolson in time step. The final equation look like

∂tc = ν △ c+ f(c).

For the source and Laplacian on the right-hand side, you can use Strang-splitting to
treat theLaplacian and source separately. Or you combine them together as a discrete
ODE system.

2. We will study the evolution process of a phase-field model in 2D. You can also search
for Cahn-Hilliard model and Allan-Cahn model. We shall neglect the fluid part, only
concentrate the evolution of the order parameter. The Allen-Cahn equation is

ut = △u+ u− u3.

Here, u represents the order parameter of some material which has two phases (−1
and 1). We choose rectangular domain with the Neumann boundary condition.

69

https://en.wikipedia.org/wiki/Phase-field_model
https://en.wikipedia.org/wiki/Cahn%E2%80%93Hilliard_equation#See_also
https://en.wikipedia.org/wiki/Allen%E2%80%93Cahn_equation

70

Chapter 3

Spectral methods and Fast Fourier
Transform

References:
1. D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations, Sci-

entific Computation, Springer (2009).

3.1 Fourier series expansion
3.1.1 Definition and basic properties

1. L2(T) space A 2π-periodic function can be identified as a function on a circle, which
is expressed as T = R/(2πZ). Let L2(T) denote for

L2(T) := {f : T→ C|
ˆ
T
|f(x)|2 dx <∞}

It is a vector space. In L2(T), we define the inner product:

(f, g) :=
1

2π

ˆ π

−π

f(x)g(x) dx.

The inner product (·, ·) satisfies

• (f, f) ≥ 0,
• (f, f) = 0⇔ f = 0,
• (f, g) = (g, f),
• (·, g) is linear any g ∈ L2(T).

The space L2(T) endowed with the inner product structure is also complete.∗ A com-
plete inner-product space is called a Hilbert space.

∗An inner product space H is called complete if all its Cauchy sequences converge.

71

2. In L2(T), the set {eikx|k ∈ Z} is orthonormal:

(eikx, eimx) :=
1

2π

ˆ 2π

0

eikxeimx dx

=
1

2π

ˆ 2π

0

ei(k−m)x dx = δkm

The set {eikx|k ∈ Z} constitutes a basis in L2(T). This will be justified in the Fourier
convergence theory in the next section.

3. Wave number k Note that k is the wave number of the periodic function eikx. The
wave length is 2π/k.

4. Definition of Fourier series expansion A Fourier series expansion for a 2π-periodic
function f has the following form:

f(x) =
∞∑

k=−∞

ake
ikx. (3.1)

By taking the inner product of f with eimx, and using the orthogonality of {eikx}, we
obtain

am =
1

2π

ˆ π

−π

f(x)e−imx dx.

The coefficient am is called the Fourier modes, or Fourier coefficients, or Fourier mul-
tiples, or Fourier transform of f at wave number m, and is denoted by f̂m.

5. Examples

(a) sign(x) :=
{

1 for 0 < x < π
−1 for − π < x < 0

ak =
1

2π

(ˆ 0

−π

−e−ikx dx+

ˆ π

0

e−ikx dx

)
=

1

2π

(ˆ π

0

−eikx dx+
ˆ π

0

e−ikx dx

)
=

1

ikπ

(
1− (−1)k

)
.

(b) f(x) = 1
π
|x|

% Define the sign function
N = 16; % Number of points

72

x = -pi : pi/N : pi-pi/N; % Grid points
f = sign(x); % Sign function

% Take the DFT
F = fft(f);

% Plot the magnitude and phase of the DFT
subplot(2,1,1)
stem(abs(F))
title('Magnitude of DFT')
xlabel('Frequency')
ylabel('Magnitude')

subplot(2,1,2)
stem(angle(F))
title('Phase of DFT')
xlabel('Frequency')
ylabel('Phase')

3.1.2 Basic properties of Fourier series
1. Basic Properties:

• The Fourier transform is linear. f̂ + g = f̂ + ĝ.
• Translation property:

̂f(x+ a)k = e−iakf̂k

• The differentiation becomes a multiplication under Fourier transform. It is also
equivalent to say that the differential operator is diagonalized in Fourier basis.

• The convolution becomes a multiplication under Fourier transform.

2. Differentiation

Lemma 3.1. If f ∈ C1[T], then

f̂ ′
k = ikf̂k. (3.2)

Proof.

f̂ ′
k =

1

2π

ˆ 2π

0

f ′(x)e−ikx dx

=
1

2π
e−ikxf(x)

∣∣x=2π

x=0
− 1

2π

ˆ 2π

0

(−ik)e−ikxf(x) dx

73

= ikf̂k.

Here, we have used the periodicity of f in the last step.

3. Convolution If f and g are in L2(T), we define the convolution of f and g by

(f ∗ g)(x) = 1

2π

ˆ
T

ˆ
T
f(x− y)g(y) dy.

Many solutions of differential equations are expressed in convolution forms. For in-
stance −u′′ = f in T, its solution can be expressed as u = g ∗ f , where g is the Green’s
function of−d2/dx2 in T. Another example is that we can smoothen a function through
convolution. Namely, consider a C∞-function ρ(x) > 0 in (−1/2, 1/2) and ρ(x) = 0
elsewhere, and

´
ρ(x) dx = 1. We consider

ρε(x) :=
1

ε
ρ
(x
ε

)
,

and
fε = ρε ∗ f.

The functions fε ∈ C∞ and if f ∈ L1(T) and fε → f in L1.

Lemma 3.2. If f, g ∈ C(T), then (
f̂ ∗ g

)
k
= f̂kĝk. (3.3)

Proof. (
f̂ ∗ g

)
k

=
1

(2π)2

ˆ
T
f ∗ g(x)e−ikx dx

=
1

(2π)2

ˆ
T

ˆ
T
f(x− y)g(y) dye−ikx dx

=
1

(2π)2

ˆ
T

ˆ
T
f(x− y)e−ik(x−y)g(y) dye−iky dx

=
1

2π

ˆ
T

(
1

2π

ˆ
T
f(x− y)e−ik(x−y) dx

)
g(y)e−iky dy

=
1

2π

ˆ
T

(
1

2π

ˆ
T
f(x)e−ikx dx

)
g(y)e−iky dy

= f̂kĝk.

Here, we have used Fubini theorem.

4. Remark The above two lemmas are valid for f, g ∈ L2(T). The proof is based on the
L2 convergence for nice functions and the density theorem in the next section.

74

3.1.3 Regularity and decay: Riemann-Lebesgue lemma
1. Smooth functions If f is smooth, then its Fourier coefficients decay very fast. Indeed,

by taking integration-by-part n times, we have

f̂k =
1

2π

ˆ π

−π

f(x)e−ikx dx

=
1

−ik
1

2π

ˆ π

−π

f(x)de−ikx

=
1

−ik
1

2π

ˆ π

−π

f ′(x)e−ikx dx

...
=

1

(−ik)n
1

2π

ˆ π

−π

f (n)(x)e−ikx dx.

Thus, if f ∈ Cn(T), then f̂k = O(|k|−n). In fact, we shall see later from the Riemann-
Lebesgue lemma that f̂k = o(|k|−n). † That is, the regularity of f implies the decay of
f̂k. In other words, if the function f is very smooth, then its high frequency modes f̂k
is very small.
The above property can also be observed by the following arguments. We note that

f̂k = −
1

2π

ˆ π

−π

f(x)e−ik(x+π/k) dx

Hence,

f̂k =
1

2π

ˆ π

−π

f(x)e−ikx dx

=
1

2π

ˆ π

−π

f(x)− f(x− π/k)
2

e−ikx dx

:=
1

2π

ˆ π

−π

Dπ/kf(x)e
−ikx dx

=
1

2π

ˆ π

−π

Dn
π/kf(x)e

−ikx dx

Here, Dπ/k is a backward finite difference operator. We see that if f is smooth, then
Dn

π/kf = O(|k|−n). Thus, f̂k measures the oscillation property of f at scale π/k.

2. Integrable functions When f is not so smooth, say in L1, ‡ we still have f̂k → 0 as
|k| → ∞. This is the following Riemann-Lebesgue lemma.

†The notation o(h) means that it is a function f(h) defined in a neighborhood of h = 0 and it satisfies
f(h)/h→ 0 as h→ 0.

‡A function f ∈ L1(a, b) means that
´ b
a
|f(x)| dx <∞.

75

Lemma 3.3 (Riemann-Lebesgue). If f is in L1(a, b), then

f̂A :=

ˆ b

a

f(x) sin(Ax) dx→ 0, as A→∞.

Proof. (i) First, we show that the lemma holds for uniformly continuous functions.
From sin(A(x− π/A)) = − sin(Ax), we have

2f̂A =

ˆ b

a

f(x) sin(Ax) dx−
ˆ b

a

f(x) sin(A(x− π/A)) dx

= −
ˆ a

a−A/π

f(x+ π/A) sin(Ax) dx+

ˆ b

b−π/A

f(x) sin(Ax) dx

+

ˆ b−π/A

a

(f(x)− f(x+ π/A)) sin(Ax) dx.

From the uniform continuity and integrability of f , we have |f̂A| → 0 as A→∞.
(ii) When f ∈ L1(a, b), we use density theorem, which states that every L1 function
can be approximated by smooth functions in L1-norm, that is, for any ε, there exists
a smooth function g such that ∥f − g∥L1 < ε.
(iii) It holds for any A

|̂(f − g)A| ≤
ˆ b

a

|f(x)− g(x)| dx := ∥f − g∥L1 < ε.

From (i), there exists M such that for A > M , |ĝA| < ε.
(iv) Given f ∈ L1(a, b), and given any ε > 0, from (ii), we can find a smooth function
g such that ∥f − g∥L1 < ε. From (i), there exists an M > 0 such that for any A > M

we have |ĝA| < ε. From (iii), we have |̂(f − g)A| ≤ ∥f − g∥L1 < ε. Combining all these
together, we get

|f̂A| ≤ |ĝA|+ |̂(f − g)A| ≤ 2ε.

We conclude with the following lemma.

Lemma 3.4. If f ∈ Cn(T), then f̂k = o(|k|−n).

Proof. We have seen that

f̂k =
1

(−ik)n

ˆ
T
f (n)e−ikx dx (3.4)

Since f ∈ Cn(T), f (n) ∈ C(T). By Riemann-Lebesgue lemma, we get that
´
T f

(n)e−ikx dx =

o(1). This together with (3.4), we get f̂k = o(|k|−n).

76

3. Remarks.

• If f is a Dirac delta function, we can also define its Fourier transform

f̂k =
1

2π

ˆ π

−π

δ(x)e−ikx dx =
1

2π
.

In this case, δ ̸∈ L1 and δ̂k = 1/2π does not converge to 0 as |k| → ∞.
• If f is a piecewise smooth function with finite many jumps, then it holds that
f̂k = O(1/k). To prove such a result, one can first show the result when f has
only one jump. Next, consider the case that f is the sum of a step function g with
finite many jumps and an absolutely continuous function h. We have seen that
ĥk decays as o(1/k). For the step function g, you can show that ĝk = O(1/k).

3.2 Convergence Theory
Let us denote the partial sum of the Fourier expansion by fN :

fN(x) :=
N∑

k=−N

f̂ke
ikx.

We shall show that under proper condition, fN will converge to f . The convergence is in
the sense of uniform convergence for smooth functions, in L2 sense for L2 functions, and in
pointwise sense for BV functions.

3.2.1 Convergence theory for Smooth function
Theorem 3.1. If f is a 2π-periodic, C∞-function, then for any s > 0, there exists a constant
Cs such that

|fN(x)− f(x)| ≤ CsN
−s. (3.5)

Proof.

fN(x) :=
∑
|k|≤N

f̂ke
ikx

=
∑
|k|≤N

1

2π

ˆ π

−π

f(y)eik(x−y) dy

=
1

2π

ˆ π

−π

∑
|k|≤N

eik(x−y)

 f(y) dy

=
1

2π

ˆ π

−π

sin(N + 1
2
)(x− y)

sin(1
2
(x− y))

f(y) dy

77

=
1

2π

ˆ π

−π

sin(N + 1
2
)t

sin t
2

f(x+ t) dt

=
1

2π

ˆ π

−π

DN(t)f(x+ t) dt

Here, we have used DN(x) :=
∑

|k|≤N e
ikx = sin(N+1/2)x

sin(x/2)
. § Using

´ π

0
DN(x)dx = π, we have

fN(x)− f(x) =
1

2π

ˆ π

−π

sin(N + 1
2
)t

sin t
2

(f(x+ t)− f(x)) dt

:=
1

2π

ˆ π

−π

sin((N +
1

2
)t)g(t) dt.

The function g(t) := (f(x+ t)− f(x))/ sin(t/2) =
´ 1
0
f ′(x+αt) dα · t/ sin(t/2) is 2π periodic

and in C∞. We can apply integration-by-part s times to arrive

fN(x)− f(x) = (N +
1

2
)−s (−1)s/2

2π

ˆ π

−π

g(s)(t) sin((N +
1

2
)t) dt

for even s. Similar formula for odd s. This completes the proof.

Remark. The constant Cs, which depends on
´
|g(s)| dt, is in general not big, as compared

with the term N−s. Hence, the approximation (3.5) is highly efficient for smooth functions.
For example, N = 20 is sufficient in many applications. The accuracy property (3.5) is called
the spectral accuracy.

3.2.2 L2-Convergence Theory
1. The Fourier transform maps a 2π-periodic function f into its Fourier coefficients

(f̂k)
∞
k=−∞. We may view the Fourier transform maps L2(T) space into ℓ2 space:

L2(T)→ ℓ2(Z).

The function spaces L2 and ℓ2 are defined below.

2. The space L2(T):

L2(T) := {f | f is 2π-periodic and
ˆ π

−π

|f(x)|2 dx <∞}

with the inner product
(f, g) :=

1

2π

ˆ π

−π

f(x)g(x) dx

§DN is called a Dirichlet function.

78

and L2-norm: ∥f∥ =
√
(f, f).

An important fact is that all L2-function can be approximated by smooth functions.
Such a smooth function can be obtained by convoling f with a smooth function, called
mollifier. Let ρ ∈ C∞(T), which is positive in a neighborhood of 0 and is zero elsewhere,
and
´
T ρ(x) dx = 1. Given a function f ∈ Lp(T), p ≥ 1, define

fε(x) :=
1

ε

ˆ
ρ

(
x− y
ε

)
f(y) dy

Then fε is a C∞ function and fε → f in Lp. This is called the density theorem. We
shall not prove here.

3. The space ℓ2(Z) is defined as

ℓ2(Z) := {(ak)∞k=−∞ |
∞∑

k=−∞

|ak|2 <∞}.

with inner product (a, b) :=
∑

k akbk.

4. Bessel’s ineqlaity It is easy to check that eikx are orthogonal in L2. From this, we
have for any N ,

0 ≤ (f − fN , f − fN) = ∥f∥2 −
∑
|k|≤N

|f̂k|2.

Or equivalently, ∑
|k|≤N

|f̂k|2 ≤ ∥f∥2. (3.6)

This is called the Bessel inequality. It says that the Fourier transform maps continu-
ously from L2(T) to ℓ2(Z).

5. Isometry property

Theorem 3.2 (Isometry property). The Fourier transform is an isometry from L2(T)
to ℓ2(Z):

(f, g) =
∑
k

f̂kĝk. (3.7)

Proof. To show this, we first assume that f is a smooth function. We can apply the
convergence theorem for f . This yields

(f, g) =
1

2π

ˆ π

−π

f(x)g(x) dx

=
1

2π

ˆ π

−π

∑
k

f̂ke
ikxg(x) dx

79

=
∑
k

f̂k
1

2π

ˆ π

−π

eikxg(x) dx

=
∑
k

f̂kĝk = (f̄ , ḡ).

To show this formula is valid for all f, g ∈ L2(T), we notice that any function in L2

can be approximated by smooth functions fε, namely, fε → f in L2.
Now, the isometry property is valid for fε and g:

(fε, g) = (f̂ε, ĝ). (3.8)

As ε→ 0,
|(fε − f, g)| ≤ ∥fε − f∥∥g∥ → 0,

and
|(f̂ε − f̂ , ĝ)| ≤ ∥f̂ε − f̂∥∥ĝ∥ ≤ ∥fε − f∥∥g∥ → 0.

The last inequality is from the Bessel inequality.

The isometry property says that the Fourier transformation preserves the inner product
structure. When g = f in the above isometry property, we obtain the following Parseval
identity.

6. Parseval equality
Corollary 3.1 (Parseval identity). For f ∈ L2, we have

∥f∥2 =
∑
k

|f̂k|2.

7. Convergence theorem
Theorem 3.3 (L2-convergence theorem). If f ∈ L2, then

fN =
N∑

k=−N

f̂ke
ikx → f in L2.

Proof. First, the sequence {fN} is a Cauchy sequence in L2. This follows from ∥fN −
fM∥ =

∑
N≤|k|<M |f̂k|2 and the Bessel inequality. Suppose fN converges to g. We see

that
̂(f − fN)k =

1

2π

ˆ
T
(f − fN)(x)e−ikx dx = 0 if |k| ≤ N.

Thus, for each fixed k, taking N →∞, we get

̂(f − g)k = 0.

This holds for any k ∈ Z. Thus, the Fourier coefficients of f − g are all zeros. From
the Parseval identity, we have f = g.

80

3.2.3 *BV-Convergence Theory
1. BV functions A function is called a BV function (function of bounded variation) on

an interval (a, b), or function of finite total variation, if for any partition π = {a =
x0 < x1 < · · · < xn = b},

∥f∥BV := sup
π

∑
i

|f(xi)− f(xi−1)| <∞.

2. BV-norm An important property of BV functions is that its singularity can only have
jump discontinuities, i.e. at a discontinuity, say x0, f has both left limit f(x0−) and
right limit f(x0+).
Further, any BV function f can be decomposed into f = f0 + f1, where f0 is a
piecewise constant function andf1 is absolutely continuous (i.e. f1 is differentiable and
f ′
1 is integrable). The jump points of f0 are countable. The BV-norm of f is exactly
equal to

∥f∥BV =
∑
i

|[f(xi)]|+
ˆ
|f ′

1(x)| dx.

where xi are the jump points of f (also f0) and [f(xi)] := f(xi+)− f(xi−) is the jump
of f at xi.

3. Fourier inversion formula for BV functions
Theorem 3.4 (Fourier inversion theorem for BV functions). If f is in BV, then

fN(x) :=
N∑

k=−N

f̂ke
ikx → 1

2
(f(x+) + f(x−)). (3.9)

Proof. Recall that

fN(x) =
1

2π

ˆ π

−π

DN(x− y)f(y) dy

=
1

2π

(ˆ 0

−π

+

ˆ π

0

)
DN(t)f(x+ t) dt

= f−
N (x) + f+

N (x).

Here, DN(x) =
∑

|k|≤N e
ikx = sin(N+1/2)x

sin(x/2)
. Using

´ π
0

sin(N+1/2)x
sin(x/2)

dx = π, we have

f+
N (x)−

1

2
f(x+) =

1

2π

ˆ π

0

sin(N + 1
2
)t

sin t
2

(f(x+ t)− f(x)) dt

:=
1

2π

ˆ π

0

sin((N +
1

2
)t)g(t) dt

From f being in BV, the function g(t) is in L1(0, π). By the Riemann-Lebesgue
lemma, f+

N (x)− 1
2
f(x+)→ 0 as N →∞. Similarly, we have f−

N (x)− 1
2
f(x−)→ 0 as

N →∞.

81

3.2.4 *Pointwise estimate and Gibbs phenomenon
In applications, we encounter piecewise smooth functions frequently. In this case, the approx-
imation is not uniform. An overshoot and undershoot always appear across discontinuities.
Such a phenomenon is called the Gibbs phenomenon. Since a BV function can be decom-
posed into a piecewise constant function and a smooth function, we concentrate to the case
when there is only one discontinuity. A typical example is the function

f(x) =

{
1 for 0 < x < π
−1 for − π < x < 0

The corresponding fN is

fN(x) =
N∑

k=−N

f̂ke
ikx

=
1

2π

ˆ x

x−π

sin((N + 1
2
)t)

sin(t/2)
dt− 1

2π

ˆ x+π

x

sin((N + 1
2
)t)

sin(t/2)
dt

First, we show that we may replace 1
2 sin(t/2)

by 1
t
with possible error o(1/N). This is because

the function 1
t
− 1

2 sin(t/2)
is in C1 on [−π, π] and the Riemann-Lebesgue lemma. Thus, we

have

fN(x) =
1

π

ˆ x

x−π

sin((N + 1
2
)t)

t
dt− 1

π

ˆ x+π

x

sin((N + 1
2
)t)

t
dt+ o(1/N)

=
1

π

ˆ x(N+1/2)

(x−π)(N+1/2)

sinc(t) dt− 1

π

ˆ (x+π)(N+1/2)

x(N+1/2)

sinc(t) dt+ o(1/N).

Here, the function sinc(t) := sin(t)/t. It has the following properties:
ˆ ∞

0

sinc(t) dt = π/2.

For any z > 0, ˆ ∞

z

sinc(t) dt = O

(
1

z

)
To see the latter inequality, we rewrite

ˆ ∞

z

sinc(t) dt =
(ˆ nπ

z

+
∑
k≥n

ˆ (n+1)π

nπ

)
sinc(t) dt

where n = [z/π] + 1. Notice that the series is an alternating series. Thus, the series is
bounded by its leading term, which is of O(1/z). Let us denote the integral

´ z
0
sinc(t) dt by

Si(z).

82

To show that the sequence fN does not converge uniformly, we pick up x = z/(N + 1/2)
with z > 0. After changing variable, we arrive

fN

(
z

N + 1/2

)
=

1

π

ˆ z

z−(N+1/2)π

sinc(t) dt− 1

π

ˆ z+(N+1/2)π

z

sinc(t) dt+ o(1/N)

=
1

π

ˆ z

−∞
sinc(t) dt− 1

π

ˆ ∞

z

sinc(t) dt+O(1/(z +N)) +O(1/(z −N))

=
2

π

ˆ z

0

sinc(t) dt+ (1/(z +N)) +O(1/(z −N))

= 1− 2

π

ˆ ∞

z

sinc(t) dt+ (1/(z +N)) +O(1/(z −N))

In general, for function f with arbitrary jump at 0, we have

fN(
z

(N + 1/2)
) = f(0+)− [f]

π

ˆ ∞

z

sinc(t) dt+ (1/(z +N)) +O(1/(z −N))

= f(0+) +O(1/z) +O(1/(z −N)).

where, the jump [f] := f(0+)− f(0−).
We see that the rate of convergence is slow if z = Nα with 0 < α < 1. This means that

if the distance of x and the nearest discontinuity is N−1+α, then the convergent rate at x is
only O(N−α). If the distance is O(1), then the convergent rate is O(N−1). This shows that
the convergence is not uniform.

The maximum of Si(z) indeed occurs at z = π where
1

π
Si(π) ≈ 0.58949

This yields
fN(

π

N + 1/2
) = f(0+) + 0.08949 (f(0+)− f(0−)).

Hence, there is about 9% overshoot. This is called the Gibbs phenomenon.

% Define the step function
N = 100; % Number of points
x = linspace(-pi,pi,N); % Domain
f = sign(x); % Step function

% Compute the FFT
F = fft(f);

% Add more terms to the FFT to simulate the Gibbs phenomenon
Nterms = 10; % Number of additional terms
F(N/2+1-Nterms:N/2+1+Nterms) = F(N/2+1-Nterms:N/2+1+Nterms) .* linspace

(0,0,Nterms*2+1);

83

Figure 3.1: Gibbs phenomenon. The original Fourier modes are f̂k, k = −49, ..., 50. We
reset the last 20 Fourier modes to be 0’s. That is, we approximate f by f40.

% Compute the inverse FFT
f_gibbs = real(ifft(F));

% Plot the original and Gibbs-affected functions
figure
subplot(2,1,1)
plot(x,f,'k-')
title('Original Step Function')
xlabel('x')
ylabel('f(x)')

subplot(2,1,2)
plot(x,f_gibbs,'k-')
title('Gibbs-affected Step Function')
xlabel('x')
ylabel('f(x)')

Homeworks

1. Derive the Fourier expansion formula for periodic functions with period L.

2. What is the limit of the above Fourier expansion formula as L→∞.

3. Derive the Fourier expansion for the following functions: f(x) = |x| − 1/2 for |x| ≤ 1
and f is a periodic function with period 2.

84

4. What is the convergence rate of the above function in L2 and pointwise convergence
rate at x = 0?

3.2.5 Fourier expansion of real-valued functions
1. Fourier expansion for real-valued functions

Proposition 3.1. When f is real-valued, f can be expressed as

f(x) ∼ a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx)

with
an =

1

2π

ˆ 2π

0

f(x) cosnx dx, bn =
1

2π

ˆ 2π

0

f(x) sinnx dx.

Proof. We have

f̂n =
1

2π

ˆ
T
f(x)e−inx dx, f̂−n =

1

2π

ˆ
f(x)einx dx.

Thus, when f is a real-valued function,

f̂n = f̂−n.

If we express f̂n = 1
2
(an − ibn), where an, bn ∈ R, then f̂−n = 1

2
(an + ibn) and

f(x) =
∑
n∈Z

f̂ne
inx

=
a0
2

+
1

2

∞∑
n=1

(an − ibn)einx +
1

2

∞∑
n=1

(an + ibn)e
−inx

=
a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx)

Here,

1

2
(an − ibn) =

1

2π

ˆ
T
f(x)e−inx dx

=
1

2π

ˆ
T
f(x) (cosnx− i sinnx) dx.

Thus,

an =
1

2π

ˆ 2π

0

f(x) cosnx dx, bn =
1

2π

ˆ 2π

0

f(x) sinnx dx.

85

2. Orthogonality The functions {cosnx, sinnx} are orthogonal to each other. But

1

2π

ˆ 2π

0

cos2 nx dx =
1

2π

ˆ 2π

0

sin2 nx dx =
1

2
for all n.

3. Parseval equility The Parseval equality reads
1

2π

ˆ
T
|f(x)|2 dx = 2

∑
n

(
a2n + b2n

)
.

3.3 Discrete Fourier Transform
3.3.1 Definition and the inversion formula

1. Definition of the discrete Fourier transform Given a 2π-periodic function f , we
define

f̃k :=
1

N

N−1∑
j=0

f(xj)e
−ikxj (3.10)

to be the discrete Fourier transform of f . This definition is the numerical integral
formula for the Fourier transform

1

2π

ˆ
T
f(x)e−ikx dx ≈

n∑
j=0

f(xj)wj

with quadrature points xj = 2πj/N and weights wj := 2π/N .

2. This is exactly the trapezoidal approximation for numerical integration of the Fourier
modes:

1

2π

ˆ 2π

0

f(x)e−ikx dx =
1

2π

N−1∑
j=0

ˆ xj+1

xj

f(x)e−ikx dx

≈ 1

2π

N−1∑
j=0

1

2

(
fje

−ikxj + fj+1e
−ikxj+1

) 2π
N

=
1

N

N−1∑
j=0

fje
−ikxj .

Here, fj := f(xj). When f ∈ C∞, according to the Euler-MacLaurin summation
formula for periodic functions,∣∣∣∣∣ 12π

ˆ 2π

0

f(x)e−ikx dx− 1

N

N−1∑
j=0

fje
−ikxj

∣∣∣∣∣ = O(N−s)

for any s > 0. Thus, the discrete Fourier modes can approximate Fourier modes with
spectral accuracy, provided the underlying function is C∞.

86

https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula
https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula

3. N -periodicity of f̃k:
f̃k+N = f̃k

4. Inversion formula . We shall always choose N to be even. From the periodicity of
f̃k, we define

INf(x) :=

N/2−1∑
k=−N/2

f̃ke
ikx.

We claim that
INf(xj) = f(xj) for j = 0, ..., N − 1.

In other words, INf is a trigonometric interpolant of f at {xj}N−1
j=0 . To see this, we

plug the formula for f̃k into the formula for fN :

INf(x) =

N/2−1∑
k=−N/2

1

N

N−1∑
k=0

fje
ik(x−xj)

=
N−1∑
j=0

DN(x− xj)fj

where

DN(x) =
1

N

N/2−1∑
k=−N/2

eikx = e−ix/2 sin(Nx/2)

N sin(x/2)
.

This function is a 2π-periodic function. For x ∼ 0,

lim
x→0

DN(x) = 1.

For xj = 2πj/N , j ̸= 0, sin(Nxj/2) = 0. Thus, we get

DN(xj) =

{
1 for j ≡ 0 (mod N)
0 for j ̸≡ 0 (mod N)

Hence, INf(xj) = fj.

5. Problem of this discrete Dirichlet kernel. First, it is not real-valued. Second,
its derivative produces an oscillatory term due to eix. The problem comes from the
asymmetric summation in

∑N/2−1
N/2 eikx. To fix this problem, we can just take its real

part, namely,

INf(x) :=
N−1∑
j=0

f(xj)φN(x− xj) (3.11)

where

φN(x) = Re (DN(x)) = cot(x/2)
sin(Nx/2)

N
(3.12)

87

is a real-valued 2π-periodic function. It is called the periodic sinc function. It satisfies

φN(xj) = δ0,j (3.13)

for j = 0, 1, ..., N − 1. It is a trigonometric polynomial interpolating {zj = eixj}. Its
derivative is

φ′
N(xj) = δ0,j

1

2
(−1)j cot (jh/2)

where h = 2π/N is the mesh size. Alternatively, we can use the property f̃N/2 = f̃−N/2,
define

INf(x) =

N/2∑
k=−N.2

f̃k
ck
eikx

where
ck =

{
2 if k = ±N/2
1 otherwise

This gives

INf(x) =
N−1∑
j=0

f(xj)φN(x− xj).

In other words, INf is the trigonometric polynomial interpolating f at {xj}.

6. Isometry property Let SN be the space of the trigonometric polynomial of degree
N/2:

SN := span{Ek(x) = eikx | −N/2 ≤ k < N/2}.
In this space, the inner product defined by

(f, g) :=
1

2π

ˆ π

−π

f(x)g(x) dx,

is equivalent to the discrete inner product

(f, g)N :=
1

N

N−1∑
j=0

fj ḡj.

It is easy to check that {Ek(x)}−N/2≤k<N/2 are orthonormal in both inner products.
Hence, these two inner products are identical any f, g ∈ SN .
Again, from orthonormality of {Ek(x)}, we have the isometry property:

(f, g)N =
∑

−N/2≤k<N/2

f̃kg̃k,

and the Parseval identity:

1

N

N∑
j=0

|fj|2 =
∑

−N/2≤k<N/2

|f̃k|2.

88

3.3.2 Approximation issues
1. Modal projection vs. Nodal projection Given a 2π-periodic function f , the map-

ping
PNf(x) :=

∑
−N/2≤k<N/2

f̂ke
ikx

is an orthogonal projection from L2(−π, π) to SN . On the other hand, the interpolation
operator INf :

INf(x) :=
N−1∑
j=0

f(xj)φN(x− xj)=
∑

−N/2≤k<N/2

f̃ke
ikx

is a projection onto SN , and is characterized by INf(xj) = f(xj), j = 0, · · · , N − 1.
PN is expressed in terms of Fourier mode f̂k, and is called the modal projection. While
IN , as expressed in terms of node data f(xj), and is called the nodal projection.

2. Aliasing error The difference between PN and IN is called “aliasing error.” It can be
characteristized as the follows. First,

f̃k =
1

N

N−1∑
j=1

f(xj)e
−ikxj =

1

N

N−1∑
j=1

∑
−∞<ℓ<∞

f̂ℓe
i(ℓ−k)xj

=
∑

−∞<ℓ<∞

f̂ℓ
1

N

N−1∑
j=0

ei(ℓ−k)xj =
∑

−∞<ℓ<∞

f̂ℓDN(xℓ − xk)

=
∑

−∞<m<∞

f̂k+mN = f̂k +
∑

−∞ < m < ∞
m ̸= 0

f̂k+mN

From the orthogonality of Ek in L2, we see that

RNf := INf − PNf =
∑

−N/2≤k<N/2

 ∑
−∞ < m < ∞

m ̸= 0

f̂k+mN

Ek

and

∥RNf∥2 =
∑

−N/2≤k<N/2

|f̃k − f̂k|2

≤
∑

−N/2≤k<N/2

∑
−∞ < m < ∞

m ̸= 0

|f̂k+mN |2

=
∑

k≥N/2,k<−N/2

|f̂k|2.

89

3. Since PN is an orthogonal projection, we have

∥f − INf∥2 = ∥f − PNf∥2 + ∥RNf∥2.

4. Sobolev Spaces It is not difficult to find the approximation error for PN . Indeed, let
Hs denote the Sobolev space of order s:

Hs := {f is 2π-periodic, and f, · · · , f (s) ∈ L2}

with the norm ∥f∥2Hs :=
∑s

m=0 ∥f (m)∥2. From the Parseval identity, this norm is equiv-
alent to

∑
k(1 + |k|2)s|f̂k|2. Projection error We have the following approximation

theorem.

Theorem 3.5. If f ∈ Hs, then

∥f − PNf∥ ≤ CN−s∥f (s)∥

Proof. We use the facts that {Ek}k∈Z is a basis in L2 and the Parseval identity:

∥f − PNf∥2 =
∑

|k|≥N/2

|f̂k|2

=
∑

|k|≥N/2

|k|−2s|k|2s|f̂k|2

≤ O(N−2s)∥f (s)∥2.

5. Interpolation error For the interpolation operator, we have similar result. In other
words, the aliasing error has the same spectral error as that of the truncated Fourier
polynomial for smooth functions. This follows from

∥RNf∥2 ≤
∑

k≥N/2,k≤−N/2

|f̂k|2.

Thus, we have proved the following theorem (Kreiss and Oliger). We refer its detailed
proof to (p.280??).

Theorem 3.6. If f ∈ Hs, s ≥ 1, then there is a constant Cs such that

∥f − INf∥ ≤ CsN
−s∥f (s)∥.

Corollary 3.2. If f ∈ C∞, then for any s > 0, there exists constant Cs and C ′
s such

that
∥f − PNf∥ ≤ CsN

−s, ∥f − INf∥ ≤ C ′
sN

−s

This is called spectral accuracy.

90

3.4 Fast Fourier Transform
Spectral methods become practical due to the birth of fast Furier transform which reduces
the operation counts from O(N2) to N lnN . We explain Cooley-Tukey’s fast algorithm
below.

3.4.1 The FFT algorithm
1. Fourier transform matrix Recall that both f and f̃ are periodic, and the transform

can be rewritten as

f̃k =
1

N

N−1∑
j=0

fje
−ikxj , k = 0, · · · , N − 1

fj =
N−1∑
k=0

f̃ke
ikxj , j = 0, · · · , N − 1.

The transformation matrix FN is

FN =
(
ωij
N

)
0 ≤ i < N
0 ≤ j < N

=

1 1 · · · 1
ω ω2 · · · ωN−1

ω2 ω4 · · · ω2(N−1)

...
ω(N−1) ω(N−1)2 · · · ω(N−1)2

N×N

. (3.14)

ω = ωN = e−2π
√
−1/N .

Note that
F̄NFN = NIN×N

For simplicity, below, let us call f̃ = FNf instead of f̃ = 1
N
FNf .

2. Splitting of the transformation matrix Let us suppose N is even, say N = 2M .
Then we have

f̃k =
N−1∑
j=0

ωkj
N fj

=
M−1∑
j=0

ωk2j
N f2j +

M−1∑
j=0

ω
k(2j+1)
N f2j+1

We define f ′ = (f0, f2, · · · , f2M−2), f ′′ = (f1, f3, · · · , f2M−1).

91

• For 0 ≤ k < M := N/2, we have

f̃k =
M−1∑
j=0

ωkj
Mf2j + ωk

N

M−1∑
j=0

ωkj
Mf2j+1

= (FMf
′)k + ωk

N(FMf
′′)k

Here, we have used
ω2
N := ω2

2M = ωM .

• For f̃M+k, k = 0, ...,M − 1, we have

f̃k+M =
M−1∑
j=0

ω
(M+k)2j
2M f2j +

M−1∑
j=0

ω
(M+k)(2j+1)
2M f2j+1

=
M−1∑
j=0

ωkj
Mf2j +

M−1∑
j=0

ω
M(2j+1)
2M ωk

2Mω
kj
Mf2j+1

=
M−1∑
j=0

ωkj
Mf2j − ω

k
2M

M−1∑
j=0

ωkj
Mf2j+1

= (FMf
′)k − ωk

2M(FMf
′′)k

Here, we have used
ω2M
2M = 1, ωM

2M = −1.

Thus, the discrete Fourier transform can be calculated as the follows.

(a) Split f = (f0, · · · , fN−1) into even and old parts:

f ′ = (f0, f2, ·, fN−2), f
′′ = (f1, f3, · · · , fN−1)

(b) Let M = N/2, perform
f̃ ′ = FMf

′, f̃ ′′ = FMf
′′

(c) For 0 ≤ k < M , compute

f̃k = f̃ ′
k + ωk

N f̃
′′
k

f̃k+M = f̃ ′
k − ωk

N f̃
′′
k

3. Splitting in matrix form In matrix form, FN can be splitted into

FN = QN

[
FN/2 0
0 FN/2

]
PN (3.15)

Here, PN is a permutation matrix which maps

(f0, f1, · · · , fN−1)
t 7→ (f0, f2, · · · , fN−2, f1, f3, · · · , fN−1)

t;

92

the matrix QN is defined as

QN =

[
IN/2 DN/2

IN/2 −DN/2

]
, I : identity matrix, DN/2 = diag(1, ω, · · · , ωN/2−1)

4. Computation complexity Notice that both PN and QN are sparse matrices. The
amount of work to perform PN and QN is O(N). Let the operation count to perform
PN and QN be CN . Suppose N = 2L. Let C2L be the operation counts to perform
F2L . Then we have

C2L = C2L + 2C2L−1 .

This yields

CN = C2L = C2L + 2C2L−1 = C2L + 2
(
C2L−1 + 2C2L−2

)
= C

(
2L + 2 · 2L−1 + 222L−2 + · · ·+ 2L−12

)
= CL2L = CN lnN.

Thus, the computational complexity of FFT is N lnN . Since lnN is relatively small,
we call such complexity is essentially linear.

3.4.2 Variations of FFT
Trigonometric representation

When all fj ∈ R, then f̃k = f̃−k = f̃N−k, for k = 1, N/2. Let

M =

{
N/2 for even N
(N + 1)/2 for odd N

f̃k = c2k−1 − ic2k, k = 1, · · · ,M − 1 , and c0 = f̃0, and cN−1 = fN/2. Then

fj = f̃0 + (−1)jfN/2 +

N/2−1∑
k=1

(f̃ke
ikxj + f̃ke

−ikxj)

= c0 + (−1)jcN−1 + 2
M∑
k=1

c2k−1 cos(kxj) + c2k sin(kxj)

and

c0 =
1

N

N−1∑
j=0

fj

c2k−1 =
1

N

N−1∑
j=0

fj cos(kxj), k = 1, · · · , N/2− 1

c2k =
1

N

N−1∑
j=0

fj sin(kxj), k = 1, · · · , N/2

93

cN−1 =
1

N

N−1∑
j=0

(−1)jfj

Fourier Cosine Transform

When fj is an even sequence, i.e. fN−j = fj, j = 1, · · · , N/2, then for k = 0, · · ·N/2− 1,

f̃k =
1

N

N/2−1∑
j=−N/2

fje
−ikxj

=
1

N

f0 + (−1)kfN/2 +

N/2−1∑
j=1

2fj cos(kxj)

Its inverse transform is

fj =

N/2−1∑
k=−N/2

f̃ke
ikxj

= f0 + (−1)j f̃N/2 +

N/2−1∑
k=1

2fk cos(kxj)

Fourier Sine Transform

When fj is an odd sequence, i.e. fN−j = −fj, j = 0, · · · , N/2, then for k = 1, · · ·N/2− 1,

f̃k =
1

N

N/2−1∑
j=−N/2

fje
−ikxj

=
1

N

N/2−1∑
j=1

2fj sin(kxj)

Its inverse transform is, for j = 1, · · · , N/2− 1,

fj =

N/2−1∑
k=−N/2

f̃ke
ikxj

=

N/2−1∑
k=1

2fk sin(kxj)

3.4.3 List of matlab commands regarding FFT
You can access the malab functions.

94

https://www.mathworks.com/help/matlab/index.html?s_tid=CRUX_topnav

fft Fast Fourier transform
fft2 2-D fast Fourier transform
fftn N-D fast Fourier transform
nufft Nonuniform fast Fourier transform
nufftn N-D nonuniform fast Fourier transform
fftshift Shift zero-frequency component to center of spectrum
fftw Define method for determining FFT algorithm
ifft Inverse fast Fourier transform
ifft2 2-D inverse fast Fourier transform
ifftn Multidimensional inverse fast Fourier transform
ifftshift Inverse zero-frequency shift
nextpow2 Exponent of next higher power of 2
interpft 1-D interpolation (FFT method)

3.4.4 Solving the heat equation on torus
1. Representation of d/dx in modal representation.

The matrix representation of d/dx under the basis {Ek}N/2−1
−N/2 is

D = diag(i(−N/2), ..., i(N/2− 1)).

2. Representation of d2/dx2 in modal representation.

D2 = diag(−(−N/2)2, ...,−(N/2− 1)2).

3. Representation of d/dx in nodal representation.

4. Representation of d2/dx2 in nodal representation.

5. Solving heat equation: ut = △u on T. Suppose the modal representation of the
an approximate solution is uN(x, t) =

∑N/2−1
k=−N/2 Ũk(t)Ek(x). Plug this into the heat

equation. Using the representation of d2/dx2 under the basis {Ek}. We get that

˙̃Uk = −k2Ũk.

This gives
Ũk(t) = e−k2tŨk(0) = e−k2t⟨u(0), Ek⟩

The approximate solution uN is given by

uN(x, t) =

N/2−1∑
k=−N/2

e−k2tŨk(0)

95

6. For reaction-diffusion equation:

ut = △u+ f(u) on T,

we can use the splitting method. The part ut = △u can be solved exactly by modal
approximation. The part ut = f(u) can be solved using nodal representation. Thus,
there are two representation in the calculation:

UN(x, t) =

N/2−1∑
k=−N/2

Ũk(t)Ek(x) =
N−1∑
j=0

Ujϕ(x− xj).

The transformation (U0, ..., UN−1) 7→ (Ũ−N/2, ..., ŨN/2−1) is the discrete Fourier trans-
form.

References

• Spectral method Codes

• Parallel Codes in python and matlab

3.5 Orthogonal Polynomials and the corresponding dis-
crete transform

3.5.1 Orthogonal polynomials
The Fourier series is one example of orthogonal polynomials, which is for the periodic domain
T. There is a general theory for orthogonal polynomial on more general domain Ω with weight
w. The weight w defines the inner product

⟨f, g⟩ =
ˆ
Ω

f(x)g(x)w(x) dx.

Here is a list of standard orthogonal polynomials:

• w(x) = 1 on [−1, 1]: the Legendre polynomials Pk

• w(x) = 1/
√
1− x2 on [−1, 1]: the Chebyshev polynomials Tk

• w(x) = xαe−x on [0,∞): the Laguerre polynomials Lα
k

• w(x) = e−x2 on (−∞,∞): the Hermite polynomials Hk

• w(x) = (1− x)α(1 + x)β on (−1, 1) with α, β > −1: the Jacobi polynomials P (α,β)
k

We shall only study the case of Legendre polynomials. Ref. Numerical Recipes, Sec. 4.5.
Gaussian quadrature and orthogonal polynomials.

96

http://www.math.toronto.edu/mpugh/Teaching/Mat1062/spectral.html
https://en.wikibooks.org/wiki/Parallel_Spectral_Numerical_Methods/Examples_in_Matlab_and_Python
http://numerical.recipes/

3.5.2 Gaussian quadrature for numerical integration
To find mode presentation of a function f , we need to perform numerical integration. For
instance

f̂k =

ˆ 2π

0

f(x)e−ikx dx ≈ f̃k :=
1

N

N∑
j=0

f(xj)e
−ikxj .

Similarly, to find the Legendre mode f̂k, we approximate

f̂k :=
2k + 1

2

ˆ 1

−1

f(x)Pk(x) dx

by numerical integration:

f̃k :=
2k + 1

2

N∑
j=0

f(xj)Pk(xj)wj.

In this subsection, we study the numerical integration methods for the weighted integral
ˆ b

a

f(x)w(x) dx,

where w > 0 is the weight. We want to approximate it by:
ˆ b

a

f(x)w(x) dx ≈
n∑

i=1

f(xi)wi, (3.16)

where {xi|i = 1, ..., n} are called the quadrature points, {wi|i = 1, ..., n} the corresponding
weights.

1. Determine the weights. Let

Πn := {p is a polynomial with deg(p) ≤ n}.

We want (3.16) to be exact for f ∈ Πn−1. This means that this formula is exact for
f(x) = 1, x, ..., xn−1. Suppose {xi}ni=1 are given, then the above “exact” condition
involves n equations for n knowns w1, ..., wn. In particular, the integration should be
exact for the Lagrange interpolants

ℓi(x) :=

∏
j ̸=i(x− xj)∏
j ̸=i(xi − xj)

∈ Πn−1.

That is, ˆ b

a

ℓi(x)w(x) dx =
n∑

k=1

ℓi(xj)wj for i = 1, ..., N.

From
ℓi(xj) = δij, 1 ≤ i, j ≤ N,

97

we get a formula for wi:

wi =
n∑

k=1

ℓi(xj)wj =

ˆ b

a

ℓi(x)w(x) dx. (3.17)

2. Determine the quadrature points Next, we can choose the quadrature points
so that (3.16) is exact for f ∈ Π2n−1. This involves 2n conditions for 2n knowns
{w1, ..., wn} and {x1, ..., xn}. We introduce a theory of orthogonal polynomials to
determine the quadrature points. The orthogonal polynomials are w-orthogonal under
the weighted inner product

⟨f, g⟩ :=
ˆ b

a

f(x)g(x)w(x) dx.

We have the following theorem. See Kincaid and Chaney, pp. 311, pp. 457.

Theorem 3.7. Let w > 0 in [a, b] be a positive weight.

(i) Suppose q ∈ Πn is w-orthogonal to Πn−1. If {x1, ..., xn} are the zeros of q, then
the numerical integration formulae (3.16) (3.17) are exact for f ∈ Π2n−1.

(ii) For general f ∈ C2n[a, b], the error of the numerical integration formula (3.16) is

f (2n)(ξ)

(2n)!

ˆ b

a

q2(x)w(x) dx, for some ξ ∈ [a, b].

Proof. (i) If f ∈ Π2n−1, from q ∈ Πn, we can write

f = qp+ r

with p, r ∈ Πn−1. This gives

f(xi) = r(xi) for i = 1, ..., n, ∵ q(xi) = 0.

Note that
´ b

a
p(x)q(x)w(x) dx = 0 for any p ∈ Πn−1 because q is w-orthogonal to Πn−1

by our assumption. Using these two properties, we have
ˆ b

a

f(x)w(x) dx =

ˆ b

a

(q(x)p(x) + r(x))w(x) dx =

ˆ b

a

r(x)w(x) dx

=
n∑

i=0

r(xi)wi =
n∑

i=0

f(xi)wi

(ii) Given f ∈ C2n[a, b]. Let p ∈ Π2n−1 such that ¶

p(xi) = f(xi), p′(xi) = f ′(xi), i = 1, ..., n,

¶Such p is called the Hermite interpolant of f at x1, ..., xN . See Kincaid and Chaney, Sec. 6.3.

98

q(t) :=
n∏

j=1

(t− xj), ϕ = f − p− λq2.

With a prescribed x, the parameter λ is chosen so that ϕ(x) = 0. That is,

λ :=
f(x)− p(x)

q(x)2
.

Then ϕ has n + 1 zeros at x, x1, ..., xn in [a, b]. By Roll’s Theorem, ϕ′ has at least n
zeros different from {x, x1, ..., xn}. On the other hand, ϕ′(xi) = 0, i = 1, ..., n from
our construction. Thus, ϕ′ has at least 2n distinct zeros in (a, b). Using the same
argument, we get ϕ′′ has at least 2n−1 distinct zeros in (a, b), and so on. By repeating
this argument, ϕ(2n) has a zero ξ ∈ (a, b). We have

0 = ϕ(2n)(ξ) = f (2n)(ξ)− p(2n)(ξ)− λ(q2)(2n)(ξ).

Since p ∈ Π2n−1, we get p(2n) = 0. The leading term of q2(t) is t2n. We get (q2)(2n)(ξ) =
(2n)!. Thus, we have

0 = ϕ(2n)(ξ) = f (2n)(ξ)− λ(q2)(2n)(ξ)) = f (2n)(ξ)− f(x)− p(x)
q2(x)

(2n)!.

That is,

f(x)− p(x) = f (2n)(ξ)

(2n)!
q2(x).

Integrating this from a to b with weight w, using the mean value theorem, we get the
final result.

Remarks.

• Quadrature rule: The quadrature nodes are chosen to be the zeros of q ∈ Πn

which is w-orthogonal to Πn−1.
• The above roots of q are in (a, b) and distinct. (See Kincaid and Channey, pp.

457.)

3.6 Legendre polynomials and Legendre Transform
3.6.1 Legendre polynomials
Legendre polynomials are polynomials which are orthogonal in L2(−1, 1). While trigonomet-
ric polynomials are useful basis for functions on periodic domains, Legendre polynomials are
the useful orthogonal polynomials on bounded domains. Reference: Legendre Polynomials,
wiki

99

https://www.chebfun.org/examples/cheb/FastDLT.html
https://en.wikipedia.org/wiki/Legendre_polynomials
https://en.wikipedia.org/wiki/Legendre_polynomials

1. The Legendre polynomials Pn, n = 0, 1, ... are defined as:

• Pn is a polynomial of degree n;
• Pn is normalized with Pn(1) = 1.
• {Pn} are orthogonal in L2([−1, 1], dx):

ˆ 1

−1

Pn(x)Pm(x) dx = 0 if m ̸= n. (3.18)

2. Recursion formula The polynomials Pn can be obtained from the Gram-Schmidt
orthogonalization of the monomials {1, x, x2, · · · }. By definition, Pn+1 ⊥ Πn. We can
use this to derive a 3-step recursion formula. Suppose we want to go from Pn to Pn+1.
We consider xPn ∈ Πn+1. Note that xPn ⊥ Πn−2 because for any p ∈ Πn−2,

ˆ 1

−1

xPn(x)p(x) dx =

ˆ 1

−1

Pn(x)(xp(x)) dx = 0 ∵ xp ∈ Πn−1.

Thus, xPn can be expressed as a linear combination of Pn+1, Pn and Pn−1. This gives

xPn = anPn+1 + bnPn + cnPn−1,

where
an =

⟨xPn, Pn+1⟩
∥Pn+1∥2

,
⟨xPn, Pn⟩
∥Pn∥2

, cn =
⟨xPn, Pn−1⟩
∥Pn−1∥2

.

After some computation, we obtain the following recursion formula

(n+ 1)Pn+1 = (2n+ 1)xPn − nPn−1. (3.19)

We take
P0 = 1, P1 = x.

A matlab code provided by ChatGPT is shown below.

function P = legendre_polynomials(N, x)
% Compute Legendre polynomials up to degree N at the points x
% Input: N = degree of highest polynomial to compute
% x = vector of evaluation points
% Output: P = (N+1) x length(x) matrix of Legendre polynomials

% Initialize matrix of Legendre polynomials
P = zeros(N+1, length(x));

% Compute first two polynomials
P(1,:) = 1;
P(2,:) = x;

100

% Recursively compute higher order polynomials using recurrence
relation

for k = 2:N
P(k+1,:) = (2*k-1)/k * x .* P(k,:) - (k-1)/k * P(k-1,:);

end

This code initializes a matrix P of size (N + 1)×length(x) to store the Legendre
polynomials, and then computes the first two Legendre polynomials using the known
expressions P0(x) = 1 and P1(x) = x. The higher order polynomials are then com-
puted recursively using the recurrence relation for Legendre polynomials. The resulting
matrix P contains the Legendre polynomials up to degree N evaluated at the points
x.

3. The Legendre polynomials have the following properties:

• Pn has the expression (Rodrigues’ formula)

Pn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
. (3.20)

• Pn is the eigenfunction of the differential operator:

d

dx

(
(1− x2) d

dx

)
Pn = −n(n+ 1)Pn. (3.21)

• {Pk|k = 0, 1, · · · } is complete in L2([−1, 1], dx). This means that any f ∈
L2([−1, 1], dx) can be expanded as

f(x) =
∞∑
k=0

f̂kPk(x)

with coefficient (Legendre mode)

f̂k =
2k + 1

2

ˆ 1

−1

f(x)Pk(x) dx.

Note that ∥Pk∥2 = 2k+1
2

. A matlab code to plot Legendre polynomials is shown below.

x = linspace(-1, 1, 1000); % Define range of x values

figure % Create new figure window

for n = 0:5
y = legendreP(n, x); % Calculate Legendre polynomial for current n

101

plot(x, y, 'DisplayName', ['P_' num2str(n) '(x)']) % Plot
polynomial

hold on % Hold plot for next iteration
end

xlabel('x') % Label x-axis
ylabel('y') % Label y-axis
title('Legendre Polynomials') % Add title
legend('show') % Show legend

Figure 3.2: The left figure is the graph of Legendre polynomials P0 - P5. You can see the
zeros of Pi and Pi+1 are interlaced each other. The right figure is P40. You can see the zeros
are clustered more on the boundary.

4. Examples (see Kopriva, Implementing Spectral Methods for Partial Differential Equa-
tions (2009)

• The Legendre modes of f(x) = sign(x) is

f̂k =
2k + 1

2
⟨f, Pk⟩ = (−1)k (4k + 3)(2k)!

22k+1(k + 1)!k!
= O(k−1/2)

Note that ∥Pk∥2 = 2k+1
2

. If we normalize it by P̄k =
√

2
2k+1

Pk. Then P̄k are
orthonormal, and

f =
∑
k

f̂kPk =
∑
k

√
2

2k + 1
P̄k =

∑
k

⟨f, P̄k⟩P̄k.

The Legendre coefficient ⟨f, P̄k⟩ = O(1/k), the same decay rate as that in the
Fourier expansion.

102

https://link.springer.com/book/10.1007/978-90-481-2261-5
https://link.springer.com/book/10.1007/978-90-481-2261-5

• f(x) = |x|: for odd k, f̂k = 0, for even k,

f̂k = (−1)k/2+1 (2k + 1) k!

2k+1 (k/2!)2 (k − 1)(k/2− 1)
= O(k−3/2).

5. Spectral accuracy: The finite Legendre expansion of a smooth f converges exponen-
tially fast. Namely, for any s > 0, there exist a constant Cs such that if f ∈ Hs(−1, 1),
then

∥f −
N∑
k=0

f̂kPk∥ ≤ CsN
−s.

Canuto,C.,Hussaini,M.,Quarteroni,A.,Zang,T.: Spectral Methods: Fundamentals in
Single Domains. Springer, Berlin (2006).

3.7 Discrete Legendre transform
3.7.1 Gauss-Legendre quadrature method

1. In this subsection, we will introduce numerical integration method to compute the
Legendre modes:

f̂k =
2k + 1

2

ˆ 1

−1

f(x)Pk(x)dx (3.22)

We will introduce the Gauss-Legendre quadrature method and the Gauss-Lobetto
quadrature method. The Legendre modes will be approximated by the quadrature
method:

f̃k =
2k + 1

2

n∑
j=1

f(xj)Pk(xj)wj. (3.23)

where {xj} are the quadrature points, {wj} the weights.

2. Gauss-Legendre quadrature Let us consider the integration on [−1, 1] with weight
w ≡ 1. From the quadrature rule, the quadrature nodes are chosen to be the zeros of
q ∈ Πn and w-orthogonal to Πn−1, which is the Legendre polynomial Pn(x). That is,

Pn(xj) = 0, j = 1, ..., N.

These quadrature points are called the Gauss-Legendre quadrature points. The corre-
sponding weights are

wj :=

ˆ 1

−1

ℓj(x) dx,

where ℓi(xj) = δij are the Lagrange polynomials determined by the nodes {xj}Nj=1.
The weights have an explicit expression (Abramowitz & Stegun 1972)

wj =
2

(1− x2j)P ′
n(xj)

2
, j = 1, ..., N. (3.24)

103

https://en.wikipedia.org/wiki/Gaussian_quadrature#CITEREFQuarteroniSaccoSaleri2000
https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_quadrature

3. Numerical algorithms to compute the Gauss-Legendre quadrature nodes and weights:

• Newton-Raphson method: This is to solve the equation Pn(x) = 0 by Newton’s
method.

• Golub-Welsch method.
• Fast algorithm is also available in the paper Fast and accurate computation of

Gauss-Legendre quadratures.

4. Newton-Raphson method for Gauss-Legendre quadrature rule. The roots of
PN can be obtained by Newton’s method:

xk+1
j = xkj −

PN(x
k
j)

P ′
N(x

k
j)
, j = 1, ..., N.

The coefficient of the polynomial PN and P ′
N can be obtained from the recursion

formula. The initial guess of the Newton’s iteration is

x0j = − cos

(
2j − 1

2N
π

)
, j = 1, ..., N.

A matlab code provided by ChatGPT is shown below.

function [x, w] = legendre_zeros(N)
% Compute zeros and weights of Legendre polynomial of degree N
% Input: N = degree of Legendre polynomial
% Output: x = vector of N zeros of Legendre polynomial
% w = vector of N weights for Gaussian quadrature

% Initial guess for zeros
x0 = cos(pi*(0:N-1)/(N-0.5));

% Tolerance for convergence
tol = eps;

% Maximum number of iterations
maxiter = 100;

% Compute zeros using Newton's method
x = x0;
for k = 1:N

fk = legendre_polynomial(N, x(k));
dfk = legendre_derivative(N, x(k));
iter = 0;
while abs(fk) > tol && iter < maxiter

x(k) = x(k) - fk/dfk;

104

https://www.google.com/search?client=firefox-b-d&q=zAlgorithm+to+compute+Legendre-Gauss+quadrature+points
https://www.google.com/search?client=firefox-b-d&q=zAlgorithm+to+compute+Legendre-Gauss+quadrature+points

fk = legendre_polynomial(N, x(k));
dfk = legendre_derivative(N, x(k));
iter = iter + 1;

end
end

% Compute weights for Gaussian quadrature
w = 2./(1-x.^2)./legendre_derivative(N-1, x).^2;

5. Golub-Welsch method We rewrite the recursion formula for the Legendre polyno-
mials as

Pn+1 = an+1xPn − cn+1Pn−1

where
an+1 =

2n+ 1

n+ 1
, cn+1 =

n

n+ 1
.

In matrix form, it reads
0 1/a1

c2/a2 0 1/a2
.

cn−1/an−1 0 1/an−1

cn/an 0

P0

P1
...

Pn−2

Pn−1

 = x

P0

P1
...

Pn−2

Pn−1

−
1

an

0
0
...
0
Pn

This tridiagonal matrix can be symmetrized by a diagonal matrix D to

0 β1
β1 0 β2

.
βn−2 0 βn−1

βn−1 0

P0

P1
...

Pn−2

Pn−1

 = x

P0

P1
...

Pn−2

Pn−1

−
n

2n− 1

0
0
...
0
Pn

where

βi =

√
ci+1

aiai+1

=

√
i

i+1
2i−1
i

2i+1
i+1

=
1

2
√

1−
(

1
2i

)2 (3.25)

We note that Pn(xj) = 0 if and only if xj is the eigenvalue of the above matrix.
Moreover, if vj = (vj,1, ..., vj,n) is the corresponding unit eigenvector, then the weight
is given by

wj =

(ˆ 1

−1

w(x) dx

)
v2j,1 = 2v2j,1.

A matlab code generated by ChatGPT for Gauss-Legendre quadratures using Golub-
Welsch method is available.

105

https://people.sc.fsu.edu/~jburkardt/c_src/legendre_rule/legendre_rule.html

function [x, w] = gauss_legendre(n,a,b)
% Computes the Gauss-Legendre quadrature points and weights on the

interval [-1, 1].
% n: number of quadrature points and weights (degree of polynomial

accuracy)
% x: array of quadrature points
% w: array of quadrature weights

beta = 0.5./sqrt(1-(2*(1:n)).^(-2)); % beta coefficients
T = diag(beta,1) + diag(beta,-1); % Jacobi matrix
[V, D] = eig(T); % eigenvectors and eigenvalues of Jacobi matrix
x = diag(D); % quadrature points are the eigenvalues
w = 2*V(1,:).^2; % quadrature weights
x = (b-a)/2*x + (b+a)/2; % rescale and shift nodes
w = (b-a)/2*w; % rescale weights
end

6. A MATLAB code that computes the Legendre coefficients of a function f(x) using
Gauss-Legendre quadrature. Now we perform the numerical integration for the Leg-
endre coefficients.

% Define the function f(x)
f = @(x) x.^2 + sin(x);

% Define the maximum order of the Legendre polynomial
nmax = 5;
% Compute the integral using Gaussian-Legendre quadrature

[xq,wq] = gauss_legendre(nmax,-1,1); % gauss_legendre() is a function
that returns the quadrature points xq and weights wq

% Compute the Legendre coefficients using Gauss-Legendre quadrature
ck = zeros(nmax+1,1);
for k = 0:nmax

% Define the Legendre polynomial Pk(x)
Pk = legendreP(k,x); % x is a variable that takes values in the

interval [-1,1]
integrand = f(xq).*Pk(xq);
ck(k+1) = sum(integrand.*wq);

end

In this example, we define the function f(x) = x2 + sin(x) and the maximum order of
the Legendre polynomial as nmax = 5. We then loop over all orders of the Legendre
polynomial from 0 to nmax and compute the corresponding Legendre coefficient cn

106

using the formula above.
To compute the integral using Gauss-Legendre quadrature, we use the gauss_legendre
function to generate nmax quadrature points xq and weights wq in the interval [−1, 1].
We then evaluate the integrand at these points and sum the weighted function values
to obtain the Legendre coefficient.

3.7.2 Legendre-Lobetto quadrature method
1. The Legendre-Lobetto quadrature method is to approximate

f̂k =
2k + 1

2

ˆ 1

−1

f(x)Pk(x) dx

by

f̃k =
2k + 1

2

N∑
j=0

f(xj)Pk(xj)wj.

It is almost the same as the Gauss-Legendre quadrature except it uses the end points
as the quadrature points. It is useful for boundary-value problems.

2. The Legendre-Lobetto quadrature rule :

• The nodes {x0, ..., xN} are roots of (1− x2)P ′
N(x) = 0.

• The corresponding weights are

wj =
2

(N + 1)NPN(xj)2
, j = 0, ..., N. (3.26)

They are determined so that quadrature formula
ˆ 1

−1

f(x) dx ≈
N∑
j=0

f(xj)wj

is exact for f ∈ Π2N−1. Note that x0 = −1, xN = 1 are already prescribed. Thus,
there are only 2N unknowns: x1, ..., xN−1 and w0, w1, ..., wN . We can only have 2N
conditions to have the above numerical integration formula to be exact. That is, the
formula is exact for f = 1, x, ..., x2N−1. These give 2N conditions.

3. A function f defined on [−1, 1] can be represented as

f(x) ≈
∑
j

f(xj)ℓj(x)

where ℓj(x) is the Lagrange interpolant

ℓj(x) =

∏
i ̸=j(x− xi)∏
i ̸=j(xj − xi)

, j = 0, ..., N.

107

https://mathworld.wolfram.com/LobattoQuadrature.html

The Lagrange interpolants satisfy
ℓi(xj) = δij.

There is another expression for ℓj:

ℓj(x) =
−(1− x2)P ′

N(x)

(N + 1)NPN(xj)(x− xj)
, j = 0, ..., N.

4. Here is a matlab code to find the nodes and weights.

function [x,w] = legendre_lobatto(N)
% Calculates the Legendre -Lobatto nodes and weights for numerical

integration on [-1,1].
% n: degree of the Legendre polynomial
% x: array of nodes
% w: array of weights

% Define the Legendre polynomial of degree n
syms x
Pn = legendreP(N,x);

% Find the roots of Pn'
Pn_prime = diff(Pn);
x = solve(Pn_prime == 0, x);

% Add the endpoints -1 and 1 to the list of roots
x = [x; -1; 1];
x = sort(x);

% Calculate the weights
w = zeros(N+1,1);
for i = 1:N+1

w(i) = 2/(N*(N+1)*(legendreP(N,x(i)))^2);
end

end

5. Example:

3.8 Spectral methods
3.8.1 Introduction
A nice book for implementing the spectral method is Kopriva, Implementing Spectral Meth-
ods for Partial Differential Equations (2009)

108

https://link.springer.com/book/10.1007/978-90-481-2261-5
https://link.springer.com/book/10.1007/978-90-481-2261-5

1. In this section, we introduce spectral method for PDEs on

• the periodic domain [0, 2π] using Fourier series,
• on [−1, 1] using Legendre polynomials.

The PDEs include

• Reaction-diffusion equation and Phase-field models
– Allan-Cahn equation

ut = △u+ u− u3.
– Cahn-Hilliard equatio:

ut = −△
(
△u+ u− u3

)
.

A recent review article for spectral method for phase-field model can be found in
Fourier-Spectral Method for the Phase-Field Equations.

• Nonlinear Schrödinger equation

iψt = −△ ψ − |ψ|2ψ in [0.2π]

A nice survey article is:
Weizhu Bao, Shi Jin, Peter Markowich, Numerical study of time-splitting spectral
discretization of nonlinear Schrödinger equations (2003).

2. The unknown u can be a modal representation, or a nodal representation:

uN(x) =
N∑
k=1

ukϕk(x)

The functions {ϕk} are called the trial functions. Usually, the trial functions are
required to satisfy the boundary conditions. The trial functions are orthogonal poly-
nomials:

• Fourier
• Legendre
• Chebeshev
• Jacobi, Laguarre, Hermite

3. We plug an approximate unknown uN into the equation and get a residual RN . For
instance

RN = ∂tuN −△uN
for the heat equation. The equations are realized (projected) on test functions {ψk}:

⟨RN , ψk⟩ = 0, k = 1, ..., N.

109

https://en.wikipedia.org/wiki/Allen%E2%80%93Cahn_equation
https://en.wikipedia.org/wiki/Cahn%E2%80%93Hilliard_equation
https://www.mdpi.com/2227-7390/8/8/1385
https://www.google.com/search?client=firefox-b-d&q=Bao%2C+nonlinear+Schrodinger+equation%2C+survey
https://www.google.com/search?client=firefox-b-d&q=Bao%2C+nonlinear+Schrodinger+equation%2C+survey

• Galerkin: the test functions are the same as the trial functions.
• Petrov-Galerkin: the test functions are different from the trial functions.
• Collocation: The collocation points {x1, ..., xN} are pre-assigned. The residual
RN satisfies

RN(xj) = 0, j = 1, ..., N.

The test functions should also satisfy the boundary conditions. The spectral-collocation
method is also called the pseudo-spectral method.

4. The general strategies are:

• Operator splitting: for problem like

ut = △u+ f(u) = Au+Bu.

A first order splitting method is to approximate e(A+B)∆t by e∆tBe∆tA. That is,
we solve the two problems:

vt = △v, v(0) = u0

and
wt = f(w), w(0) = v(∆t).

Then
u(∆t) ≈ w(∆t).

• Spectral method for the linear part Linear equation with constant coeffi-
cients can be solved exactly by spectral method.

ut = uxx

is solved by
Ũk = e−k2tUk(0).

• Collocation method for the nonlinear part. For nonlinear equations, one
should use collocation method. That is, we solve

U̇(xj, t) = f(U(xj, t)), j = 1, ..., N.

Implicit methods may be needed. For instance, the backward Euler method for
this ODE:

Un+1 − Un = ∆tf(Un+1). (3.27)

Let us denote this equation by

F (y) = 0, where y = Un+1, F (y) = y −∆tf(y)− Un.

110

We solve this equation by Newton’s iteration:

yi+1 = yi − F ′(yi)
−1
F (y),

We can start from y0 = Un since we expect the final solution y = Un+1 is not
too far from Un. The derivative F ′(yi) = I −∆f(yi). To avoid many derivative
calculations, we can use just one derivative, namely F ′(y0). We put a coefficient
α to stablize the scheme. The final iteration is

yi+1 = yi − αF ′(y0)
−1
F (y).

In terms of Un+1,i, it reads

Un+1,i+1 = Un+1,i − α (I −∆tf ′(Un))
−1 (

Un+1,i −∆tf(Un+1,i)− Un
)
.

The stablizing parameter α is chosen so that

α
∣∣∣(I −∆tf ′(U))

−1
∣∣∣ < 1, for U under consideration.

If we do not put the term (I −∆tf ′(U))−1 in the iteration, the resulting iteration
is

Un+1,i+1 = Un+1,i − α
(
Un+1,i −∆tf(Un+1,i)− Un

)
.

This is a fixed point iteration for the nonlinear equation (3.27).

3.8.2 Legendre-Galerkin method
Let us solve the heat equation

ut = uxx, on [−1, 1], u(−1) = 0, u(1) = 0.

by the Legendre-Galerkin method.

1. The trial functions ϕk are chosen to be

ϕk :=
1√

4k + 6
(Pk − Pk+2) , k = 0, ..., N − 2. (3.28)

The Legendre polynomial Pk satisfies Pk(1) = 1, Pk(−1) = (−1)k . Thus, the trial
functions ϕk satisfy the boundary conditions:

ϕk(−1) = ϕk(1) = 0.

The unknown u is represented as

u ≈
N−2∑
l=0

ûk(t)ϕk(x).

111

2. The Galerkin method for the heat equation is

⟨ut, ϕk⟩ = ⟨uxx, ϕk⟩, k = 0, ..., N − 2.

With u =
∑
ûlϕl, we get ∑

l

⟨ϕk, ϕl⟩ ˙̂ul = −
∑
l

⟨ϕ′
k, ϕ

′
l⟩ûl.

In matrix form:
M

˙̂
U = −SÛ.

where Û = (û0, ..., ûN−2)
T . Here,M is called the mass matrix, while S, the stiff matrix.

3. The stiff matrix:
S =

(
⟨ϕ′

i, ϕ
′
j⟩
)
0≤i,j≤N−2

= (δij) .

4. The mass matrix

M = (⟨ϕi, ϕj⟩)0≤i,j≤N−2 = αiαj (βiδij + γjδi+2,j + µjδi,j+2) ,

αi =
1

4i+ 6
, γi =

2

2i+ 1
, µi = −

2

2i+ 5
, βi = −(γi + µi).

5. The equation M ˙̂
U = −SÛ can be solved by the Crank-Nilcolson method

M
(
Ûn+1 − Ûn

)
= −∆t

2

(
Ûn + Ûn+1

)
,

with initial state Û0 =
(
û00, ..., û

0
N−2

)T .
6. The initial state Û0 is obtained from the initial data u0 =

∑
l û0,lϕl. The coefficients

û0k satisfy
⟨u0, ϕk⟩ = ⟨

∑
l

û0l ϕl, ϕk⟩, k = 0, ..., N − 2.

In matrix form, it is

MÛ0 = û0, û0 :=
(
⟨u0, ϕ0⟩, · · · , ⟨u0, ϕN−2⟩

)T
.

The inner product

⟨u0, ϕk⟩ =
1√

4k + 6
⟨u0, Pk − Pk+2⟩, k = 0, ..., N − 2.

Finally, one can use Legendre quadrature method to find the Legendre coefficients
⟨u0, Pk⟩.

112

Below are matlab codes generated by ChatGPT for the matrix representation of the
derivative operator and the Laplacian.

1. Q: Write a matlab code to generate the matrix representation for the d/dx under the
Legendre polynomials.
ChatGPT:
To generate the matrix representation for the derivative operator d

dx
under the Legendre

polynomials, we can use the fact that the Legendre polynomials satisfy the following
recurrence relation:
(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x)

Using this recurrence relation, we can derive a matrix representation for the derivative
operator in terms of the Legendre polynomials. Here’s a MATLAB code to generate
the matrix:

function D = legendre_derivative_matrix(n)
% Generate matrix representation for d/dx under the Legendre

polynomials
% Input: n = degree of Legendre polynomials
% Output: D = n x n matrix representing the derivative operator

% Compute Legendre polynomial coefficients
P = zeros(n+1);
P(1,1) = 1;
P(2,2) = 1;
for k = 2:n

P(k+1,:) = ((2*k-1)*[0,P(k,1:n)] - (k-1)*[0,0,P(k-1,1:n-1)]) / k;
end

% Compute derivative matrix
D = zeros(n);
for i = 1:n

for j = 1:n
if i == j

if i == 1
D(i,j) = n*(n+1)/4;

else
D(i,j) = i*P(i,j-1);

end
elseif j == i+1

D(i,j) = (2*i+1)/2;
elseif j == i-1

D(i,j) = -(i-1)/2;
end

end

113

end

This code first computes the coefficients of the Legendre polynomials up to degree n,
using the recurrence relation given above. It then constructs the derivative matrix
D using the coefficients of the Legendre polynomials. The diagonal entries of D are
computed using the formulaDii = iPi−1(xi), where xi are the roots of the n-th Legendre
polynomial, and Pi−1(xi) are the Legendre polynomials evaluated at those roots. The
off-diagonal entries of D are computed using the recurrence relation for the Legendre
polynomials.

2. Q: Generate matrix representation for d2/dx2 on [−1, 1] using the matrix representation
for the derivative operator d/dx.
ChatGPT: To generate the matrix representation for the second derivative operator
d2

dx2 on [−1, 1] using the matrix representation for the derivative operator d
dx
, we can

use the fact that the second derivative can be written as the composition of two first
derivative operators:

d2

dx2
=

d

dx
◦ d

dx

Using this fact, we can compute the matrix representation for the second derivative by
taking the product of the matrix representation for the derivative operator with itself.

Here’s a MATLAB code to generate the matrix representation for d2

dx2 on [−1, 1]:

function D2 = legendre_second_derivative_matrix(n)
% Generate matrix representation for d^2/dx^2 under the Legendre

polynomials
% Input: n = degree of Legendre polynomials
% Output: D2 = n x n matrix representing the second derivative operator

% Compute derivative matrix
D = legendre_derivative_matrix(n);

% Compute second derivative matrix
D2 = D * D;

This code first computes the matrix representation for the derivative operator using
the legendre_derivative_matrix function from the previous answer. It then computes
the matrix representation for the second derivative operator by taking the product
of the derivative matrix with itself. The resulting matrix D2 is the desired matrix
representation for d2

dx2 on [−1, 1] in terms of the Legendre polynomials.

114

3.8.3 Legendre collocation method
We solve the heat equation

ut = uxx on [−1, 1], with u(−1, t) = u(1, t) = 0, u(·, 0) = u0(·).

1. We represent the unknown

uN(x, t) =
N∑
j=0

U(xj, t)ℓj(x),

where x0 = −1, ..., xN = 1 are the Lengendre-Lobetto quadrature nodes with weights
{wj}Nj=0. The function ℓj is the Lagrange interplant satisfying ℓj(xi) = δij and deg(ℓj) =
N .

2. Let us denote U(xj, t) by Uj(t). At boundaries, U0(t) = UN(t) = 0. The unknowns are
U = (U1, ..., UN−1)

T .

3. The equation is realized at xi, i = 1, ..., N − 1:

⟨uN,t, ℓi⟩ = ⟨uN,xx, ℓi⟩, i = 1, ..., N − 1.

⟨
N−1∑
j=1

U̇jℓj, ℓi⟩ = −⟨
N−1∑
j=1

Ujℓ
′
j, ℓ

′
i⟩.

In matrix form, it reads
MU̇ = −SU,

where the mass matrix M and the stiff matrix S are given by

M = (⟨ℓi, ℓj⟩)(N−1)×(N−1) =
N∑

m=0

ℓi(xm) ℓj(xm)wm = δijwi,

S =
(
⟨ℓ′i, ℓ′j⟩

)
(N−1)×(N−1)

=
N∑

m=0

ℓ′i(xm) ℓ
′
j(xm)wm.

The matrix ℓ′i(xm) is the polynomial derivative matrix. It has an explicit form.

4. The discrete equation MU̇ = −SU can be solved by the Crank-Nicolson method.

3.9 Spectral element methods

Project 3
• Solve the Poisson equation on the interval [−1, 1] by using the Legendre-Lobetto spec-

tral method.

115

• Solve the Poisson equation on the box [−1, 1] × [−1, 1] by using Legendre-Lobetto
spectral method.

• Solve the Poisson equation on the sphere using cubic sphere grid. (The ‘‘Cubed
Sphere’’: A New Method for the Solution of Partial Differential Equations in Spherical
Geometry, JCP 1996). The sphere is parametrized by an inscribed cube. There are 6
surfaces on the cube. Adopt the Legendre-Lobetto spectral method on each surface.

• Implement the (geometric or algebraic) multigrid method for solving the Poisson equa-
tion on a rectangle. See Algebraic multigrid method.

116

https://reader.elsevier.com/reader/sd/pii/S0021999196900479?token=7A4323C92A7EB7246DED336D1375616F4F31958FB89F0D46FA952E870F23DF80A0B310DF77B89EBBC344435BEF47FEE6&originRegion=us-east-1&originCreation=20230221025125
https://reader.elsevier.com/reader/sd/pii/S0021999196900479?token=7A4323C92A7EB7246DED336D1375616F4F31958FB89F0D46FA952E870F23DF80A0B310DF77B89EBBC344435BEF47FEE6&originRegion=us-east-1&originCreation=20230221025125
https://reader.elsevier.com/reader/sd/pii/S0021999196900479?token=7A4323C92A7EB7246DED336D1375616F4F31958FB89F0D46FA952E870F23DF80A0B310DF77B89EBBC344435BEF47FEE6&originRegion=us-east-1&originCreation=20230221025125
https://www.google.com/search?client=firefox-b-d&q=algebraic+multigrid+methods

Chapter 4

Finite Difference Methods for the
Poisson Equations

4.1 Discrete Laplacian in two dimensions
In this chapter, we will solve the Poisson equation

△ u = f in Ω ⊂ R2, (4.1)

with Dirichlet boundary condition
u = g on ∂Ω.

Such a problem is a core problem in many applications. We may assume g = 0 by subtracting
a suitable function from u. Thus, we limit our discussion to the case of zero boundary
condition. Let h be the spatial mesh size. For simplicity, let us assume Ω = [0, 1] × [0, 1].
Yet, many discussion below can be extended to general smooth bounded domain.

4.1.1 Discretization methods
Centered finite differencing The Laplacian is approximated by

A =
1

h2
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Ui,j) .

For the square domain, the indeces run from 1 ≤ i, j ≤ N − 1 and

U0,j = UN,j = Ui,0 = Ui,N = 0

from the boundary condition.
Let us order the unknowns U by i+ j ∗ (N − 1) with j being outer loop index and i the

117

inner loop index, then the matrix form of the discrete Laplacian is

A =
1

h2

T I
I T I

I T I
.

I T

This is an (N − 1)× (N − 1) block tridiagonal matrix. The block T is an (N − 1)× (N − 1)
matrix

T =

−4 1
1 −4 −1

1 −4 1
.

1 −4

Since this discrete Laplacian is derived by centered finite differencing over uniform grid, it
is second order accurate, the truncation error

τi,j :=
1

h2
(u(xi−1, yj) + u(xi+1, yj) + u(xi, yj−1) + u(xi, yj+1)− 4u(xi, yj))

= O(h2).

4.1.2 The 9-point discrete Laplacian
The Laplacian is approximated by

△9 =
1

6h2

1 4 1
4 −20 4
1 4 1

One can show by Taylor expansion that

△9u = △u+ 1

12
h2△2 u+O(h4).

If u is a solution of △u = f , then

△9u = f +
1

12
h2△f +O(h4).

Thus, we get a 4th order method:

△9Uij = fij +
h2

12
△fij

118

4.2 Stability of the discrete Laplacian
We have seen that the true solution of △u = f with Dirichlet boundary condition satisfies

Au = f + τ,

where A is the discrete Laplacian and τ is the truncation error and satisfies τ = O(h2) in
maximum norm. The numerical solution U satisfies AU = f . Thus, the true error satisfies

Ae = τ,

where e = u − U . Thus, e satisfies the same equation with right-hand side τ and with the
Dirichlet boundary condition. To get the convergence result, we need an estimate of e in
terms of τ . This is the stability criterion of A. We say that A is stable if there exists some
norm ∥ · ∥ and a constant C such that

∥e∥ ≤ C∥Ae∥.

4.2.1 Fourier method
Since our domain Ω = [0, 1] × [0, 1] and the coefficients are constant, we can apply Fourier
transform. Let us see one dimensional case first. Consider the Laplacian d2/dx2 on domain
[0, 1] with Dirichlet boundary condition. The discrete Laplacian is A = 1

h2diag (1,−2, 1),
where h = 1/N . We can check below that the eigenvectors of A are vk = (sin(πjkh))N−1

j=1 ,
k = 1, ..., N − 1. The corresponding eigenvalues are − 4

h2 sin
2(πhk/2).

[Avk]j = [A sin(jπkh)]j =
1

h2
(sin((j + 1)πhk) + sin((j − 1)πhk)− 2 sin(jπhk))

=

[
2

h2
(cos(πhk)− 1)

]
sin(jπhk) = − 4

h2
sin2(πhk/2)[vk]j.

For two dimensional case, the eigenfunctions of the discrete Laplacian are Uk,ℓ, 1 ≤, k, ℓ ≤
N − 1,

(Uk,ℓ)i,j = sin(iπkh) sin(jπℓh), 1 ≤ i, j ≤ N − 1.

The corresponding eigenvalues are

λk,ℓ =
2

h2
(cos(kπh) + cos(ℓπh)− 2)

= − 4

h2
(sin2(kπh/2) + sin2(ℓπh/2)), 1 ≤, k, ℓ ≤ N − 1.

The smallest eigenvalue (in magnitude) is

λ1,1 = − 8

h2
sin2(πh/2) ≈ −2π2 for small h.

119

To show the stability, we take Fourier transform of U and A. We then have

∥ÂÛ∥∥Û∥ ≥
∣∣∣⟨ÂÛ , Û⟩∣∣∣ ≥ |λ1,1|∥Û∥2 ≈ 2π2∥Û∥2.

Hence, the L2 norm of Â has the following estimate:

∥ÂÛ∥ ≥ 2π2∥Û∥.

Thus, we get
∥Û∥ ≤ 1

2π2
∥ÂÛ∥.

From Parseval equality, we have
∥U∥ ≤ 1

2π2
∥AU∥

Applying this stability to the formula: Ae = τ , we get

∥e∥ ≤ 1

2π2
∥τ∥ = O(h2).

Homeworks 4.1. 1. Compute th eigenvalues and eigenfunctions of the 9-point discrete
Laplacian on the domain [0, 1]× [0, 1] with zero boundary condition.

4.2.2 Energy method
Below, we use energy method to prove the stability result for discrete Laplacian. We shall
prove it for rectangular domain. However, it can be extended to more general domain. To
perform energy estimate, we rewrite the discrete Laplacian as

AUi,j =
1

h2
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Ui,j) = ((Dx+Dx− +Dy+Dy−)U)i,j

where
(Dx+U)i,j =

Ui+1,j − Ui,j

h

the forward differencing. We multiply the discrete Laplacian by Ui,j, then sum over all i, j.
By applying the summation by part, we get

⟨AU,U⟩ = ⟨(Dx+Dx− +Dy+Dy−)U,U⟩
= −⟨Dx−U,Dx−U⟩ − ⟨Dy−U,Dy−U⟩
= −∥∇hU∥2h

Here, the discrete L2 norm is defined by

∥U∥2h =
∑
i,j

|Ui,j|2h2.

120

The boundary term does not show up because we consider the zero Dirichlet boundary
problem. Thus, the discrete Poisson equation has the estimate

∥∇hU∥2h = |⟨f, U⟩| ≤ ∥f∥h∥U∥h. (4.2)

Next, for the zero Dirichlet boundary condition, we have the Poincaré inequality, which will
be shown below. Before stating the Poincare inequality, we need to clarify the meaning of
zero boundary condition in the discrete sense. We define the Sobolev space H1

h,0 to be the
completion of the restriction of all C1

0 functions to the grid points under the discrete H1

norm. Here, C1
0 function is a C1 function that is zero on the boundary; the discrete H1 norm

is
∥U∥h,1 := ∥U∥h + ∥∇hU∥h.

Lemma 4.1 (Poincaré inequality). Let Ω be a bounded domain in R2, then there exist a
constant dΩ, which is the diameter of the domain Ω, such that for any U ∈ H1

h,0,

∥U∥h ≤ dΩ∥∇hU∥h. (4.3)

Proof. Let us take Ω = [0, X]× [0, Y] as an example for the proof. We assume X =Mh, Y =
Nh. From zero boundary condition, we have

U2
i,j = (

i∑
i′=1

Dx−Ui′,jh)
2

≤ (
i∑

i′=1

12) · (
i∑

i′=1

(Dx−Ui′,j)
2)h2 (Hölder’s inequality)

≤ i(
M∑
i′=1

(Dx−Ui′,j)
2)h2

multiply both sides by h2 then sum over all i, j, we get

∥U∥2h =
∑
i,j

U2
i,jh

2

≤ (
M∑
i=1

i)h2
∑
i′,j

(Dx−Ui′,j)
2h2

≤ M2

2
h2
∑
i′,j

(Dx−Ui′,j)
2h2

=
M2

2
h2∥Dx−U∥2h

Similarly, we have
∥U∥2h ≤

N2

2
h2∥Dy−U∥2h

121

Thus,

∥U∥2h ≤ h2
1

2
max{M2, N2}∥∇hU∥2

≤ d2Ω∥∇hU∥2h.

With the Poincaré inequality, we can obtain two estimates for U .

Proposition 4.1. Consider the discrete Laplacian with zero boundary condition. We have

∥U∥h ≤ d2Ω∥f∥h, (4.4)

∥∇hU∥ ≤ dΩ∥f∥h. (4.5)

Proof. From
∥∇hU∥2h ≤ ∥f∥h · ∥U∥h

We apply the Poincaré inequality to the left-hand side, we obtain

∥U∥2h ≤ d2Ω∥∇U∥2h ≤ d2Ω∥f∥h∥U∥h

This yields
∥U∥h ≤ d2Ω∥f∥h

If we apply the Poincare inequality to the right-hand side, we get

∥∇hU∥2h ≤ ∥f∥h · ∥U∥h ≤ ∥f∥h · dΩ∥∇hU∥h

Thus, we obtain
∥∇hU∥ ≤ dΩ∥f∥h

When we apply this result to Ae = τ , we get

∥e∥ ≤ d2Ω∥τ∥ = O(h2)

∥∇he∥ ≤ dΩ∥τ∥ = O(h2).

Remark The discrete Laplacian has many good properties as those of continuous Lapla-
cian. For continuous Laplacian, we can have ∥u∥Hs+2 estimated by some ∥f∥Hs . In the case
of discrete Laplacian, we have similar result. As the truncated error is of ∥τ∥Hs = O(h2) in
terms of the discrete norm, then we have ∥e∥Hs+2 = O(h2). Using Sobolev inequality, wecan
get |e|∞ = O(h2).

122

4.3 Solving the Poisson equation

4.4 Multigrid method

Project 3
1. Implement the (geometric or algebraic) multigrid method for solving the Poisson equa-

tion on a rectangle. See Algebraic multigrid method.

123

https://www.google.com/search?client=firefox-b-d&q=algebraic+multigrid+methods

124

Chapter 5

Finite Difference Methods For Linear
Hyperbolic Equations

5.1 Linear hyperbolic equations
Hyperbolic PDEs have the property that information propagates at a finite speed and is
governed by the characteristics of the system. This is in contrast to parabolic PDEs where
information is diffused and elliptic PDEs where information is transmitted instantaneously.

For systems of linear PDEs, hyperbolicity can be characterized in terms of the eigenvalues
of the coefficient matrix. Specifically, if all eigenvalues are real, then the system is hyperbolic.
If some eigenvalues are complex, the system may be parabolic or elliptic.

5.1.1 Linear advection equation
1. Constant speed

We start with the Cauchy problem of the linear advection equation with constant
speed:

ut + aux = 0, x ∈ R, (5.1)
u(x, 0) = u0(x). (5.2)

Its solution is simply a translation of u0 with speed a, namely,

u(x, t) = u0(x− at).

2. Variable speed
More generally, we can solve the linear advection equation with variable coefficients
by the method of characteristics. Consider

ut + a(x, t)ux = 0.

125

Let us interpret this equation as the direction derivative of u:

DV u := ∇u · V =

[
ux
ut

]
·
[
a
1

]
= 0.

Here, the direction of the derivative is

V =

[
a
1

]
.

Let us consider the integral curves of the vector field V :[
dx
dt

]
∥
[
a
1

]
,

which is governed by the ODE
dx

dt
= a(x, t).

Let x(t, ξ) be its solution with initial data x(0, ξ) = ξ. Then

d

dt

∣∣∣∣
ξ

u(x(t, ξ), t) = ∂tu+ ∂xu
dx

dt

= ut + aux = 0.

In other words, u is unchanged along the curve: dx/dt = a. Such curves are called the
characteristic curves of equation (5.1). Suppose the mapping

ξ 7→ x(t, ξ)

is invertible, say ξ(t, x) for any t > 0 and x ∈ R. Then the solution to the Cauchy
problem (5.1),(5.2) is given by u(x, t) = u0(ξ(t, x)). Note that the signal propagates
along characteristic curves.

3. With source term
Lastly, we study the linear advection equation with a source term:

ut + a(x, t)ux = f(x, t).

Along the forementioned characteristic curves x(t, ξ), the equation becomes

d

dt

∣∣∣∣
ξ

u(x(t, ξ), t) = ut + aux = f(x(t, ξ), t).

We integrate this equation in t with fixed ξ to obtain

u(x(t, ξ), t) = u0(ξ) +

ˆ t

0

f(x(s, ξ), s) ds.

This is a function in (ξ, t). The final solution is obtained by replacing ξ by ξ(t, x).

126

4. Example: Let us consider
ut − |x|ux = 0.

The characteristics are
dx

dt
= −|x|

Its solution is
x(t, ξ) = e−tξ.

Thus, the solution is
u(x, t) = u0(ξ) = u0(etx).

Homeworks

1. Find the solution of
ut − (tanhx)ux = 0

with initial data u0. Also show that u(x, t) → 0 as t → ∞, provided u0(x) → 0 as
|x| → ∞.

2. Show that the initial value problem for

ut + (1 + x2)ux = 0

is not well-defined. (Show the characteristics issued from x-axis do not cover the entire
domain: x ∈ R, t ≥ 0.)

5.1.2 Linear hyperbolic systems of equations
1. Hyperbolicity Let us consider the following linear system of equations

ut + A(x, t)ux = B(x, t)u+ f(x, t), x ∈ R, t > 0, (5.3)

with initial data
u(x, 0) = u0(x), x ∈ R.

Here, u is an n-vector and A,B are n× n matrices. The system is called hyperbolic if
A is diagonalizable with real eigenvalues. That is, A has real eigenvalues

λ1 ≤ · · · ≤ λn

with left/right eigenvectors li/ri:

liA = λili, Ari = λiri,

127

respectively. Let us normalize ∥ri∥ = 1, for i = 1, ..., n, then normalize li such that
lirj = δij. ∗ Let

L :=

l1...
ln

 , R := [r1, · · · , rn], Λ := diag(λ1, · · · , λn).

Then
LA = ΛL, AR = RΛ, LR = I.

The eigenvalues λi are wave speeds, the eigenvectors ri are the wave modes.

2. Method of characteristics
We use L to diagonalize system (5.3). We multiply equation (5.3) by L from the left:

Lut + LAux = LBu+ Lf.

By introducing v = Lu and u = Rv†, we can rewrite the equation as follows:

vt + Λvx = Cv + g,

where C := LBR + LtR + ΛLxR and g := Lf . The i-th equation can be written as:

vi,t + λivi,x =
∑
j

cijvj + gi,

which represents an ODE in the direction of dx/dt = λi(x, t). This is a linear advection
equation with a characteristic speed λi. The vector field (λi, 1) in x-t plane is known as
the ith characteristic field. Its integral curves are referred to as the ith characteristic
curves. For a given (x, t) with t ≥ 0, let yi(s, t, x), 0 ≤ s ≤ t be the ith characteristic
curve defined by:

dy

ds
= λi(y, s), 0 ≤ s ≤ t, y(t, t, x) = x.

We then integrate the i-th equation along this curve to obtain

vi(x, t) = v0i (yi(0, t, x)) +

ˆ t

0

[∑
j

cijvj + gi

]
(yi(s, t, x), s) ds,

which represents a system of integral equations for v. Here, v0 = Lu0 and u0 is the
initial data of v. From these integral equations, we can draw some conclusions:

∗From λilirj = liArj = λj lirj . Thus, lirj = 0 if λi ̸= λj . We normalize lj such that ljrj = 1. For
multiple eigenvalue λ, we first select a set of basis (unit right eigenvectors) in the right invariant space of λ,
then choose a et of left eigenvectors such that lirj = δij .

†Note that LR = I implies that both L and R are 1-1 and onto (a consequence of the rank-nullity
theorem). This implies RL = I as well.

128

• The domain of dependence of (x, t), denote by D(x, t), is [yn(0, t, x), y1(0, t, x)],
which is a finite interval. This implies that if the initial data u0 is zero on D(x, t),
then the solution u(x, t) is identically zero.

• Another conclusion we can draw from these integral equations is the local exis-
tence theorem, which can be obtained if v0 and v0x are bounded. The proof is
similar to that of the local existence of ODEs.
We define a function space Cb(R), the bounded continuous functions on R, using
the sup norm: ∥v∥∞ := supx |v(x)|. We then define the map T : Cb(R)→ Cb(R)
as follows:

Tv = v0,i(ξi(0, t, x)) +

ˆ t

0

[∑
j

cijvj + gi

]
(yi(s, t, x), s) ds.

The integral equation can then be written as finding a fixed point of T in the
space Cb(R), i.e., solving v = Tv.
If the time is sufficiently short, then T is a contraction map in Cb(R), and therefore
the contraction mapping theorem yields a unique fixed point, which is the solution
to the integral equation. This implies the existence of a local solution to the
original PDE.

• The global existence theorem for the PDE (5.3) can be obtained using a priori
estimates, such as C1-estimates, based on the integral equations derived earlier.
A sufficient condition for such a priori estimates is that A(x, t) is bounded in the
upper half plane in the x-t space.

• A necessary condition for global existence is that all characteristics emanating
from any point (x, t), where x ∈ R and t > 0, should be traced back to the initial
time.

• A nice reference for the method of characteristics for systems of hyperbolic equa-
tions in one dimension is Fritz John’s book on PDEs, Sec. 5, Chapter 2.

3. Example Consider the wave equation

utt − c2uxx = 0.

This is a second order PDE. It can be rewritten as the following first order system:[
ux
ut

]
t

−
[
0 1
c2 0

] [
ux
ut

]
x

= 0. (5.4)

Here, the first equation is the consistency equation (i.e. uxt = utx), while the second
equation is the original wave equation. The eigenvalues and the left/right eigenvectors
of the matrix are

λ1 = −c, ℓ1 = (−c, 1), r1 =
1√

1 + c2

[
1
−c

]
,

129

λ2 = c, ℓ2 = (c, 1), r2 =
1√

1 + c2

[
1
c

]
.

We multiply the system by ℓ1 from the left to obtain

(ut − cux)t + c(ut − cux)x = 0

and by ℓ2 to obtain
(ut + cux)t − c(ut + cux)x = 0.

Let v1 = ut − cux, and v2 = ut + cux. Then v1 and v2 satisfy the following linear
advection equations:

v1,t + cv1,x = 0, v2,t − cv2,x = 0.

They can be solved by previous characteristic method for the linear advection equation:

v1(t, x) = v01(x− ct), v2(t, x) = v02(x+ ct).

We thus obtain

ut =
v1(t, x) + v2(t, x)

2
, ux =

v2(t, x)− v1(t, x)
2c

.

Once ut and ux are obtained, noting that uxdx+utdt is integrable from the consistency
equation, we can obtain u by integrating the 1-form uxdx+ utdt.

5.1.3 *Linear symmetric hyperbolic systems in multi-dimensions
1. Example of symmetric hyperbolic systems For system (5.4), we can convert it

to so-called symmetric hyperbolic system:[
1 0
0 c−2

] [
ux
ut

]
t

−
[
0 1
1 0

] [
ux
ut

]
x

= 0.

We denote it as
A0ut + Aux = 0,

where A0 and A are symmetric and A0 is positive definite. Such a system is called a
symmetric hyperbolic system.

2. Symmetric hyperbolic system‡

A linear symmetric hyperbolic system in d dimensions has the form:

A0ut +
d∑

i=1

Ai(x, t)uxi
= B(x, t)u+ f, (5.5)

‡The notion of Symmetric hyperbolic systems were proposed by K.O. Friedrichs. He notices most of
physical systems can be expressed in this form. Such systems have nice mathematical structure and naturally
meet physical requirements.

130

where u is an n-vector, A0, Ai are n × n symmetric matrices and A0 is positive defi-
nite. Given a direction ξ ∈ Rd, the matrix A(ξ) :=

∑d
i=1Aiξi is symmetric. Its the

eigenvalues λk(ξ) and right eigenvector rk are(
d∑

i=1

Aiξi

)
rk = λkA0rk, k = 1, ..., n.

Below, we introduce another method, the energy method, for the existence and well-
posedness. It is useful for stability analysis.

3. Energy estimates

(a) We take inner product of this equation with u, later we integrate in x over the
whole space. For simplicity, we assume A0 and A are constant matrices tem-
porarily. We get

∂

∂t

1

2
A0u · u+

d∑
i=1

∂

∂xi

(
1

2
Aiu · u

)
= Bu · u+ f · u.

Here, we have used the symmetric properties of A0 and Ai:

∂

∂xi
(Aiu · u) = Aiuxi

· u+ Aiu · uxi
=2Aiuxi

· u.

As we integrate in x over the whole space, we get

d

dt

1

2
⟨A0u, u⟩ = ⟨Bu, u⟩+ ⟨f, u⟩. (5.6)

The boundary term is gone because we assume u ∼ 0 at ∞.
(b) The positivity of A0 yields that ⟨A0u, u⟩ is a norm

|||u|||2 := ⟨A0u, u⟩

It is called the energy norm. It is equivalent to ∥u∥22, namely, there are two
constants C1 and C2 such that for any u ∈ L2(R),

C1

ˆ
|u|2 dx ≤ ⟨A0u, u⟩ ≤ C2

ˆ
|u|2 dx.

From (5.6), we get

d

dt

1

2
|||u(t)|||2 ≤ C|||u|||2 + C ′|||u||| · ∥f∥

Here, we have used the boundedness of B. Eliminating |||u|||, we get

d

dt
|||u(t)||| ≤ C|||u|||+ C ′∥f∥

131

This yields (by the Gronwall inequality)

|||u(t)||| ≤ eCt|||u(0)|||+ C ′
ˆ t

0

eC(t−s)∥f(s)∥ ds

Thus, |||u(t)||| is bounded for any finite time if ∥u(0)∥ is bounded. This is called
the energy estimate for system (5.5).

(c) By differentiating the system in x, applying the same method to ux, we can obtain
energy estimate for ux. This way can give us the boundedness of all derivatives
of u, from which we can get compactness for approximate solutions and existence
theorem. This is a standard theory for general symmetric hyperbolic systems in
arbitrary dimensions. We refer the readers to Chapter 6 of John’s book.

5.2 Finite difference methods for linear advection equa-
tion

5.2.1 Design procedure
We shall explain some design procedure for the linear advection equation:

ut + aux = 0. (5.7)

We shall assume that a > 0 is a constant. Despite its simplicity, the linear advection equation
is a prototype equation for designing numerical methods for nonlinear hyperbolic equations
in multiple dimensions.

1. The grids We choose h = ∆x and k = ∆t to be the spatial and temporal mesh sizes,
respectively. We discretize the x-t plane using the grid points (xj, tn), where xj = j∆x
and tn = n∆t. We use Un

j to approximate u(xj, tn). We also abbreviate u(xj, tn) by unj .
To derive finite difference schemes, we use finite differences to approximate derivatives.
We demonstrate spatial discretization first, followed by temporal discretization.

2. Spatial discretization. There are two important design principles in spatial dis-
cretization: interpolation and upwinding.

(a) Derivatives are approximated by finite differences. For examples, ux(xj) can be
replaced by

Uj − Uj−1

h
,
Uj+1 − Uj−1

2h
, or 3Uj − 4Uj−1 + Uj−2

2h
.

The first one is a one-sided, first-order finite difference. The second one is the cen-
tral differencing, which is second order. The third one is a one-sided, second-order
finite difference. These formulas can be obtained by making a Taylor expansion
of u about xj.

132

(b) Upwinding. We assume a > 0, which means that the information comes from
the left. Therefore, it is reasonable to approximate ux(xj) by the left-sided finite
differencing:

Uj − Uj−1

h
or 3Uj − 4Uj−1 + Uj−2

2h
.

3. Temporal discretization.

(a) Forward Euler: We replace ut(xj, tn) with (Un+1
j − Un

j)/k. By combining this
with spatial upwinding finite differencing, we obtain the upwinding scheme.

(b) Backward Euler: We replace ut(xj, tn) with (Un+1
j − Un

j)/k, but replace ux with
(Dx)

n+1
j , where Dx is a spatial finite difference.

(c) Leap frog: We replace ut(xj, tn) with (Un+1
j − Un−1

j)/2k.

4. List of some finite difference schemes
Assuming a > 0, let σ = ak/h.

Upwind : Un+1
j = Un

j − σ(Un
j − Un

j−1)

Lax-Friedrichs : Un+1
j =

Un
j+1 + Un

j−1

2
− σ

2
(Un

j+1 − Un
j−1)

Backward Euler : Un+1
j − Un

j =
σ

2
(Un+1

j−1 − Un+1
j+1)

Lax-Wendroff : Un+1
j = Un

j −
σ

2
(Un

j+1 − Un
j−1) +

σ2

2
(Un

j+1 − 2Un
j + Un

j−1)

Beam-Warming : Un+1
j = Un

j −
σ

2
(3Un

j − 4Un
j−1 + Un

j−2) +
σ2

2
(Un

j − 2Un
j−1 + Un

j−2)

MacCormack : Un+1
j = Un

j − σ(Un
j − Un

j−1) +
σ(1− σ)

2
(Un

j+1 − 2Un
j + Un

j−1).

5. In general, a (explicit) finite difference scheme for the linear advection equation can
be written as

Un+1
j = G(Un

j−l, U
n
j−l+1, · · · , Un

j+m) =
m∑

k=−l

akU
n
j+k (5.8)

where ak are coefficients and l and m are integers that define the stencil, or the set of
grid points used to compute the numerical approximation at (xj, tn+1).

5.2.2 Courant-Friedrichs-Levy condition
1. Numerical domain of dependence

For a finite difference scheme:

Un+1
j = G(Un

j−ℓ, · · · , Un
j+m),

133

we can define numerical domain of dependence of (xj, tn) to be [xj−nℓ, xj+nm] (denoted
by D(j, n)). For instance, the numerical domain of upwind method is [xj−n, xj]. If
U0
k = 0 on D(j, n), then Un

j = 0.

2. CFL condition
In order to have our finite difference schemes physically meaningful, a natural condition
is

physical domain of dependence ⊂ numerical domain of dependence.

This gives a constraint on the ratio of h and k. Such a condition is called the Courant-
Friedrichs-Levy (C-F-L) condition. For the linear advection equation with a > 0, the
condition is

{xj − ak} ⊂ [xj−ℓ, xj+m].

This leads to
−ℓh ≤ −ak ⇒ ak

ℓh
≤ 1

3. Violating the CFL condition

• If the CFL condition is violated, we can easily construct an initial datum which
is zero in numerical domain of dependence of (x, t), but u(x, t) ̸= 0. The finite
difference scheme will produce 0 at (x, t). Thus, its limit is also 0. But the true
solution u(x, t) is not zero.

• We will see below that a scheme violating the CFL condition is unstable.

Below, we shall fix the ratio h/k during the analysis and take h → 0 in the approxi-
mation procedure.

5.2.3 Consistency and Truncation Errors
1. Truncation error

Let us express our finite difference scheme as:

Un+1 = GUn.

Given a smooth solution u(x, t) to the PDE (5.7), we plug it into this finite difference
equation, then make Taylor expansion of u about (jh, nk). For instance, we plug a
smooth function u into the upwind scheme. Let

τnj :=
1

k
(un+1

j − unj)−
a

h
(unj − unj−1).

This error is called the truncation error. In general, the truncation error is defined as

τn(h, k) =
un+1 −Gun

k
.

134

2. Consistency
A finite difference scheme is called consistent if τ(h, k) → 0 as h, k → 0. Naturally,
this is a minimal requirement for a finite difference scheme. If the scheme is expressed
as

Un+1
j =

m∑
k=−l

akU
n
j+k,

then a necessary and sufficient condition for consistency is

m∑
k=−l

ak = 1.

This is easy to see because the constant is a trivial solution.

3. Order of a scheme
If τ = O(kr), then the scheme is called order r. We can easily check that τ = O(k) for
the upwind method by Taylor expansion about (xj, tn):

τ =
1

k

(
un+1
j − unj − σ(unj − unj−1)

)
=

1

k

(
utk +

1

2
uttk

2 − ak

h
(−uxh+

1

2
uxxh

2)

)
+HOT

= (ut + aux) +
k

2

(
utt −

ah

k
uxx

)
+HOT

= (ut + aux) +
k

2

(
a2uxx −

ah

k
uxx

)
+HOT ∵ ut = −aux

= (ut + aux)−
h2

2k
σ(1− σ)uxx +HOT

The term h2

2k
σ(1 − σ)uxx is O(h) because we keep σ = ak/h fixed. Thus, the upwind

scheme is first order.

Homework Find the truncation errors of the schemes listed above.

5.2.4 Upwinding and numerical diffusion
1. Upwinding From the characteristic method, we have u(xj, tn+1) = u(xj−ak, tn). We

can approximate it by interpolating using neighboring grid points. For example, a
linear interpolation at xj−1 and xj gives

un+1
j ≈ ak

h
unj−1 + (1− ak

h
)unj .

135

The corresponding finite difference scheme is defined as

Un+1
j =

ak

h
Un
j−1 + (1− ak

h
)Un

j ,

which is the well-known upwind scheme. Here, the spatial discretization is exactly the
above one-sided, first-order finite differencing.

2. Forward Euler introduces an anti-diffusion The term (un+1
j −unj)/k in the forward

Euler method introduces an anti-diffusion term −a2k
2
uxx, namely,

un+1
j − unj
k

= ut +
k

2
utt +O(k2) = ut+

a2k

2
uxx +O(k2).

Here, we have replaced utt with

utt = −auxt = a2uxx,

then approximate uxx with central finite difference.
If we use

ut ←
un+1
j − unj
k

, ux ←
unj+1 − unj−1

2h
.

Then we have
ut + aux = −a

2k

2
uxx +O(k2) +O(h2).

The term −a2k
2
uxx comes from the forward Euler method, is an anti-diffusion term.

We can obtain a second-order approximation of ut by removing this anti-diffusion term:

ut =
Un+1
j − Un

j

k
− k

2h2
(Un

j+1 − 2Un
j + Un

j−1) +O(k2)

The last term is to cancel the anti-diffusion term −a2k
2
uxx. It is called a numerical

diffusion. For the ux term, we also need to have second order approximation. We
consider two cases.

(a) Lax-Wendroff scheme: we approximate ux by the central finite difference:

ux =
Un
j+1 − Un

j−1

2h
+O(h2).

The resulting scheme is

Un+1
j − Un

j = −ak
2h

(
Un
j+1 − Uj−1

)
+
a2k2

2h2
(Un

j+1 − 2Un
j + Un

j−1).

This is a second-order scheme in both space and time. The scheme is the Lax-
Wendroff scheme.

136

(b) Beam-Warming scheme: the term ux is approximated using second-order upwind-
ing finite differencing:

ux =
1

2h
(3Un

j − 4Un
j−1 + Un

j−2) +O(h2).

Here, the upwinding means that: for a > 0, the information comes from the left,
and we use Uj−2, Uj−1, and Uj as our stencil. The resulting scheme is

Un+1
j = Un

j −
σ

2
(3Un

j − 4Un
j−1 + Un

j−2) +
σ2

2
(Un

j − 2Un
j−1 + Un

j−2).

3. Backward Euler introduces a diffusion If the spatial finite differencing is high-
order, say σ

2
(3Un

j − 4Un
j−1 + Un

j−2) for ux, such scheme is unstable because the only
second-order derivatives come from the above anti-diffusion term which is unstable. On
the other hand, temporal backward Euler scheme introduces a diffusion term a2k

2
uxx:

un+1
j − unj
k

= ut
n+1
j − k

2
utt

n+1
j +O(k2) = ut−

a2k

2
uxx

n+1
j +O(k2).

4. MacCormack scheme is an upwind scheme followed by an anti-diffusion
step. The MacCormack scheme can be described as a two-step process. In the first
step, an upwind scheme is used to calculate the intermediate value U∗

j . The scheme is
given by:

U∗
j = Un

j +
a∆t

∆x

(
Un
j−1 − Un

j

)
.

This step introduces numerical viscosity, which can be expressed as

1

2

a∆t

∆x
(1− a∆t

∆x
)uxx.

In the second step, a correction is applied to the intermediate value to obtain the final
value Un+1

j . The correction term can be written as:

Un+1
j = U∗

j +
a∆t

2∆x

(
1− a∆t

∆x

)[
2Un

j − Un
j+1 − Un

j−1

]
.

This correction step removes the diffusion term introduced by the upwind scheme and
is called the anti-diffusion term.
Alternatively, the MacCormack scheme can be expressed as a two-step process. In
the first step, a forward upwind step is used to produce an intermediate value U∗.
The forward upwind scheme contains advection and numerical viscosity terms, which
introduce some error in the solution. In the second step, a backward upwind step is
used to produce a corrected intermediate value U∗∗:

U∗∗
j = U∗

j +
a∆t

∆x

(
U∗
j+1 − U∗

j

)
.

137

Both the forward and backward upwind schemes contain advection and numerical
viscosity terms, but the advection terms cancel each other out. The difference between
U∗∗
j and Un

j is twice the numerical viscosity. The final value Un+1
j is then calculated

as:
Un+1
j = U∗

j −
1

2

(
U∗∗
j − Un

j

)
.

This correction step removes the numerical viscosity introduced by the upwind schemes,
resulting in a more accurate solution.
In summary, the prediction step of the MacCormack scheme uses an upwind scheme
to calculate an intermediate value, while the correction step uses a backward upwind
scheme to remove the numerical viscosity introduced in the prediction step.

Homeworks

1. Derive the Lax-Wendroff scheme using the trick utt = a2uxx and the central finite
difference.

2. Derive a finite difference scheme using method of characteristics and a quadratic inter-
polation at xj−2, xj−1 and xj. Is this scheme identical to the Beam-Warming scheme?

3. Do the same thing with cubic interpolation at xj−2, · · · , xj+1?

4. Write a computer program using the above listed schemes to the linear advection
equation. Use periodic boundary condition. The initial condition are

(a) square wave,
(b) hat function
(c) Gaussian
(d) e−x2/D sinmx

Refine the mesh by a factor of 2 to check the convergence rates.

5.2.5 Modified equations
We shall study the performance of a finite difference scheme for the linear advection equation.
Consider the upwind scheme for the linear advection equation:

ut + aux = 0. (5.9)

1. Modified equation for the upwind scheme Let u(x, t) be a smooth function of
(5.9). Taking Taylor expansion of u, we obtain

un+1
j −G(un)j = (ut + aux)∆t−

(∆x)2

2
(σ − σ2)uxx +O((∆t)3).

138

The truncation error for the upwind method is O(∆t) if u satisfies the linear advection
scheme. However, if we fix ∆x and ∆t, then the error is O(∆t3), provided u satisfies

ut + aux − νuxx = 0,

where
ν =

(∆x)2

2∆t
(σ − σ2).

This equation is called the modified equation of the upwind scheme. The solution of
the finite difference equation is closer to the solution of this modified equation than the
original equation. The role of νuxx is a diffusion term in the scheme.

• The term −(∆x)2/(∆t)σ2uxx comes from the forward Euler approximation to ut.
It is an anti-diffusion term.

• The term (∆x)2/(∆t)σuxx comes from the upwind discretization for aux. It is a
diffusion term.

• The effective diffusion is νuxx, where ν > 0 is called numerical viscosity.

We observe that ν ≥ 0 if and only if 0 ≤ σ ≤ 1, which is exactly the CFL condition for
stability. This is consistent to the well-postedness of diffusion equations (i.e. ν ≥ 0).

2. Effect of numerical viscosity

(a) The numerical viscosity will cause solution smoother, and will smear out discon-
tinuities.

(b) To see this, let us solve the Cauchy problem:

ut + aux = νuxx

u(x, 0) = H(x) :=

{
1 if x ≥ 0
0 if x < 0.

The function H is called the Heaviside function. The corresponding solution is
given by

u(x, t) =
1√
4πνt

ˆ ∞

−∞
e−

(x−at−y)2

4νt u(y, 0) dy

=
1√
4πνt

ˆ ∞

0

e−
(x−at−y)2

4νt dy

= erf((x− at)/
√
4νt),

where
erf(x) := 2√

π

ˆ x

−∞
e−z2 dz.

139

The error function has the property:

lim
x→−∞

erf(x) = 0, lim
x→∞

erf(x) = 1, erf(x)− 1

2
is an odd function.

Let ue(x, t) be the exact solution of ut + aux = 0 with u(x, 0) = H(x). Then

|ue(y + at, t)− u(y + at, t)| = erf(−|y|/
√
4νt).

Hence,

∥ue(·, t)− u(·, t)∥L1 = 2

ˆ 0

−∞
erf(y√

4νt
) dy

= C
√
νt

Since ν = O(∆t), we see that

∥une − un∥L1 = O(
√
∆t).

On the other hand, if U is the solution of the finite difference equation, then we
expect that ∥Un − un∥L1 = O(∆t), because it is first order. Indeed, it is only
O(
√
∆t) and

∥Un − une∥L1 = O(
√
∆t).

Thus, a first-order scheme is only half-order for “linear discontinuities.”
(c) One can also observe the smearing (averaging) of discontinuities from the fi-

nite difference scheme directly. In the upwind scheme, Un+1
j may be viewed as

weighted averages of Un
j and Un

j−1:

Un+1
j = (1− σ)Un

j + σUn
j−1.

If Un
j−1 = 0 and Un

j = 1, then Un+1
j is a value between 0 and 1. This is a smearing

process (averaging process). The smearing process will spread out. The width of
spread-out after n time steps is (

√
n∆x) = O(

√
∆t) from the estimate of binomial

distribution.
(d) The numerical viscosity of the upwind and the Lax-Friedrichs schemes are:

• Upwind: µ = ∆xσ(1− σ)
• Lax-Friedrichs: µ = ∆x (1− σ2).

Note that the magnitude of the numerical viscosity of the upwind method is
smaller than that of the Lax-Friedrichs method, because CFL condition 0 ≤ σ ≤
1. The upwind method uses the information of characteristic speed whereas the
Lax-Friedrichs does not use this.

140

3. Modified equations for second-order schemes
The modified equations for second-order schemes (Beam-Warming, Lax-Wendroff)
have the following form

ut + aux = µuxxx, (5.10)
where

µ

{
> 0 for Beam-Warming
< 0 for Lax-Wendroff.

The term µuxxx is called the dispersion term. Below, we study the effect of this
dispersion term for Heaviside initial data.

(a) By taking Fourier transform on equation (5.10) in x:

û(ξ, t) :=

ˆ
u(x, t)e−ixξ dx,

we get
ût = (−iaξ − iµξ3)û = −iω(ξ)û.

Hence
u(x, t) =

1

2π

ˆ
ei(xξ−ω(ξ)t)û(ξ, 0) dξ. (5.11)

(b) Let us consider the Heaviside functionH(x) as the initial data. It can be expanded
as superposition of waves at different wave numbers. As these waves propagate
according to (5.11), they form a wave package: a high frequency wave modulated
by a low frequency wave (modulated wave). By the method of stationary phase,
we see that the major contribution of the integral (5.11) is on the set when

d

dξ
(xξ − ω(ξ)t) = 0.

The correspond wave ei(x−ω′(ξ)t) is the modulated wave. Its speed ω′(ξ) is called
the group velocity vp.

(c) The group velocities are

vp = a+ 3µξ2
{
> a for Beam-Warming
< a for Lax-Wendroff.

Since µ < 0 for the Lax-Wendroff, while µ > 0 for the Beam-Warming, we observe
that the wave package leaves behind (resp. ahead) the discontinuity in the Lax-
Wendroff (resp. Beam-Warming).

(d) One can also observe this oscillation phenomena directly from the schemes. In
Beam-Warming, we know that Un+1

j is a quadratic interpolation of Un
j−2, U

n
j−1 and

Un
j . If Un

j−2 = 0, and Un
j−1 = Un

j = 1, then the quadratic interpolation gives an
overshoot at Un+1

j (that is, Un+1
j > 1). Similarly, in the Lax-Wendroff scheme,

Un+1
j is a quadratic interpolation of Un

j−1, U
n
j and Un

j+1. If Un
j−1 = Un

j = 0, and
Un
j+1 = 1, then Un+1

j < 0 (an undershoot).

141

Homeworks 5.1. 1. Find the modified equations for the following schemes:

Lax-Friedrichs : ut + aux =
(∆x)2

2∆t
(1− σ2)uxx

Lax-Wendroff : ut + aux =
(∆x)2

6
a(σ2 − 1)uxxx

MacCormack : ut + aux =??uxxx

Beam-Warming : ut + aux =
(∆x)2

6
a(2− 3σ + σ2)uxxx

2. Expand u up to uxxxx, find the modified equation with the term uxxxx for the Lax-
Wendroff scheme and Beam-Warming. That is

ut + aux = µuxxx + κuxxxx.

Show that the coefficient κ < 0 for both scheme if and only if the C-F-L stability
condition.

3. Find the solution Un
j of the upwind scheme with initial data U0

j = δj0. (Hint: a
binomial distribution.) Now, condider the Heaviside function as our initial data. Using
the above solution formula, superposition principle and the Stirling formula, show that∑

j |unj − Un
j |∆x = O(

√
n∆x) = O(

√
∆t).

4. Measure the width of the oscillation as a function of number of time steps n.

5.2.6 Lax’s equivalence theorem
1. Definition of stability

Suppose Un is generated from a finite difference scheme: Un+1 = G(Un), we wish the
solution remain bounded under certain norm as the mesh size ∆t→ 0, or equivalently,
the time steps n → ∞. Thus, we have the following definition. A scheme is called
stable if ∥Un∥ remains bounded under certain norm ∥ · ∥ for all n.

2. True error and convergence Let u be an exact solution of some linear hyperbolic
P.D.E. and U be the solution of a corresponding finite difference equation, We want
to estimate the true error enj = unj − Un

j .
First we estimate how much errors accumulate in one time step.

en+1 := un+1 − Un+1 = ken +Gun −GUn = ken +Gen.

If we can have an estimate (called stability condition) like

∥GU∥ ≤ ∥U∥ (5.12)

under certain norm ∥ · ∥, then we obtain

∥un − Un∥ ≤ ∥u0 − U0∥+ k(τn−1 + · · ·+ τ 1).

142

From the consistency, we obtain ∥en∥ → 0 as k → 0. If the scheme is of order r, then
we obtain

∥en∥ ≤ ∥u0 − U0∥+O(kr).

Thus, we have the following theorems.

Theorem 5.1 (Lax equivalence theorem). Given a linear hyperbolic partial differential
equation. Then a consistent finite difference scheme is stable if and only if is is
convergent.

We have proven stability ⇒ convergence. We shall prove the other part in the next
section.

Theorem 5.2. For smooth solutions, the associated true error computed by a finite
difference scheme of order r is O(kr).

5.2.7 Stability analysis
1. Since we only deal with smooth solutions in this section, the L2-norm is a proper norm

to our stability analysis. For linear hyperbolic systems with constant coefficients, the
von Neumann analysis (via Fourier method) provides a necessary and sufficient con-
dition for stability. For systems with variable coefficients, the Kreiss’ matrix theorem
provides characterizations of stability condition.

2. The von Neumann stability analysis.
Given {Uj}j∈Z, we define

∥U∥2 =
∑
j

|Uj|2

and its Fourier transform
Û(ξ) =

1

2π

∑
Uje

−ijξ.

The advantages of Fourier method for analyzing finite difference scheme are

• the shift operator is transformed to a multiplier:

T̂U(ξ) = eiξÛ(ξ),

where (TU)j := Uj+1;
• the Parseval equility

∥U∥2 = ∥Û∥2 := 1

2π

ˆ π

−π

|Û(ξ)|2 dξ.

143

If a finite difference scheme is expressed as

Un+1
j = (GUn)j =

m∑
i=−l

ai(T
iUn)j,

then
Ûn+1 = Ĝ(ξ)Ûn(ξ).

From the Parseval equality,

∥Un+1∥2 = ∥Ûn+1∥2

=
1

2π

ˆ π

−π

|Ĝ(ξ)|2 |Ûn(ξ)|2 dξ

≤ max
ξ
|Ĝ(ξ)|2 1

2π

ˆ π

−π

|Ûn(ξ)|2 dξ

= |Ĝ|2∞∥U∥2

Thus a necessary condition for stability is

|Ĝ|∞ ≤ 1. (5.13)

Conversely, Suppose |Ĝ(ξ0)| > 1, fromĜ being a smooth function in ξ, we can find ε
and δ such that

|Ĝ(ξ)| ≥ 1 + ε for all |ξ − ξ0| < δ.

Let us choose an initial data U0 in ℓ2 such that Û0(ξ) = 1 for |ξ − ξ0| ≤ δ. Then

∥Ûn∥2 =
1

2π

ˆ
T
|Ĝ|2n(ξ)|Û0|2

≥
ˆ
|ξ−ξ0|≤δ

|Ĝ|2n(ξ)|Û0|2

≥ (1 + ε)2nδ →∞ as n→∞

The operator Gn is unbounded in ∥ · ∥2 operator norm. It is a fact that it will not
be bounded by any equivalent norm, which involves more analysis and will be omit
here. Thus, the scheme can not be stable. We conclude the above discussion by the
following theorem.

Theorem 5.3. A finite difference scheme

Un+1
j =

m∑
k=−l

akU
n
j+k

with constant coefficients is stable if and only if

Ĝ(ξ) :=
m∑

k=−l

ake
−ikξ

144

satisfies
max

−π≤ξ≤π
|Ĝ(ξ)| ≤ 1. (5.14)

3. Example As a simple example, we show that the scheme:

Un+1
j = Un

j +
σ

2
(Un

j+1 − Un
j−1)

is unstable. The operator G = 1 + σ
2
(T − T−1). The corresponding Ĝ(ξ) = 1 +

iσ sin ξ, which cannot be bounded by 1 in magnitude. One the other hand, the Lax-
Friedrichs scheme replaces Un

j in the above scheme by the average (Un
j−1+U

n
j+1)/2. The

corresponding Ĝ(ξ) = cos ξ + iσ sin ξ, which is bounded by 1 in magnitude provided
|σ| ≤ 1. The above replacement is equivalent to add a term (Un

j−1 − 2Un
j + Un

j+1)/2
to the right hand side of the above unstable finite difference. It then stabilizes the
scheme. This quantity is called a numerical viscosity. We see the discussion in the
next section.

Homeworks 5.2. 1. Compute the Ĝ for the schemes: backward Euler, Lax-Friedrichs,
Lax-Wendroff, MacCormack, and leap-frog.

5.3 Finite difference schemes for linear hyperbolic sys-
tems with constant coefficients

5.3.1 Some design techniques
We consider the linear hyperbolic system

ut + Aux = 0

with A being a constant n× n matrix.

1. The Lax-Friedrichs scheme is

Un+1
j =

Un
j−1 + Un

j+1

2
+

∆t

2∆x
A(Un

j−1 − Un
j+1)

= Un
j +

∆t

2∆x
A(Un

j−1 − Un
j+1) +

Un
j−1 − 2Un

j + Un
j+1

2

Note that he last term is a dissipation term.

2. A modified L-F scheme as

Un+1
j = Un

j +
∆t

2∆x
A(Un

j−1 − Un
j+1) +D

Un
j−1 − 2Un

j + Un
j+1

2

where D is a positive constant matrix. D is chosen so that the scheme is stable by the
von-Neumann analysis.

145

3. Upwind scheme

(a) Using the left/right eigenvectors: AR = RΛ, LA = ΛL, LR = I, we can express
A = L−1ΛL = RΛL. We decompose A into two parts:

A = RΛL

= R(Λ+ − Λ−)L

= A+ − A−.

Here, Λ = diag(λ1, · · · , λn) and Λ± are the positive/negative parts of Λ.
(b) With this decomposition, we define the upwind scheme as

Un+1
j = Un

j +
∆t

∆x
A+(Un

j−1 − Un
j)−

∆t

∆x
A−(Un

j+1 − Un
j).

4. The Lax-Wendroff scheme is given by

Un+1
j = Un

j +
∆t

2∆x
A(Un

j−1 − Un
j+1) +

(∆t)2

2(∆x)2
A2(Un

j+1 − 2Un
j + Un

j−1).

5. The C-F-L condition for upwind, Lax-Friedrichs, Lax-Wendroff is

max
i
|λi|

∆t

∆x
≤ 1.

Homeworks 5.3. 1. Find the modified equation for the above schemes.

2. What is the stability condition on D for the modified L-F scheme.

3. Write a computer code to compute the solution of the wave equation:

ut = vx

vt = c2ux

using upwind, modified L-F, L-W schemes. The initial data is chosen as those for the
linear advection equation. Use the periodic boundary condition.

5.3.2 *Stability analysis
The definition of L2-stability is that the L2-norm of the solution of finite difference scheme∑

j

|Un
j |2∆x

is uniformly bounded.

146

This L2-theory for smooth solutions was well developed in the 60s. First, Lax’s equiva-
lence theorem was originally proved for well-posed linear systems in multi-dimension. Thus,
the essential issue for finite difference scheme is still the stability problem.

Let us suppose the system is expressed as

ut =
∑
i

Aiuxi
+Bu+ f

Here, Ai, B are constant matrices. We assume that the system is hyperbolic. This means
that

∑
i ξAi is diagonal with real eigenvalues. Suppose the corresponding finite difference

scheme is expressed as
Un+1 = GUn =

∑
aαT

αUn.

Here, α = (α1, · · · , αn) is multi-index, aα are matrices. Consider the Fourier transform of
G:

Ĝ(k) =
∑
α

aαe
i
∑

m αmkm∆xm

If we take ∆xm as a function of ∆t, then Ĝ is a function of (k,∆t). Using Ĝ, we have

Ûn = ĜnÛ0.

From the Parseval equality: ∥U∥2 =
´
|Û |2, we obtain that the stability of a scheme Un+1 =

GUn is equivalent to ∥Ĝn∥ is uniformly bounded. Von Neumann gave a necessary condition
for stability for system case.

Theorem 5.4. A necessary condition for stability is that all eigenvalues of Ĝ(k,∆t) satisfies

|λi(k,∆t)| ≤ 1 +O(∆t), for all k, for all ∆t ≤ τ.

Proof. The spectral radius of Ĝ(k,∆t) is the maximum value of the absolute values of the
its eigenvalues. That is,

ρ(Ĝ) := max
i
|λi|

Since there is an eigenvector v such that |Ĝv| = ρ|v|, we have that

ρ ≤ ∥Ĝ∥ := max
u

|Ĝu|
|u|

.

Also, the eigenvalues of Ĝn are λni . Hence we have

ρ(Ĝn) = ρ(Ĝ)n.

Combine the above two, we obtain

ρ(Ĝ)n ≤ ∥Ĝn∥.

147

Now, if ∥Ĝn∥ is uniformly bounded, say by a constant C depends on t := n∆t, then

ρ ≤ C1/n

≤ 1 +O(∆t).

For single equation, we have seen that von Neumann condition is also a sufficient condition
for stability.

In general, Kreiss provided characterization of matrices which are stable.

Definition 5.1. A family of matrices {A} is stable if there exists a constant C such that
for all A ∈ {A} and all positive integer n,

∥An∥ ≤ C.

Theorem 5.5 (Kreiss matrix theorem). The stability of {A} is equivalent to each of the
following statements:

(i) There exists a constant C such that for all A ∈ {A} and z ∈ C, |z| > 1, (A − zI)−1

exists and satisfies
∥(A− zI)−1∥ ≤ C

|z| − 1
.

(ii) There exist constants C1 and C2 such that for all A ∈ {A}, there exists nonsingular
matrix S such that (1) ∥S∥, ∥S−1∥ ≤ C1, and (2) B = SAS−1 is upper triangular and
its off-diagonal elements satisfy

|Bij| ≤ C2min{1− |κi|, 1− |κj|}

where κi are the diagonal elements of B.

(iii) There exists a constant C > 0 such that for all A ∈ {A}, there exists a positive definite
matrix H such that

C−1I ≤ H ≤ CI

A∗HA ≤ H

Remarks.

1. In the first statement, the spectral radius of A is bounded by 1.

2. In the second statement, it is necessary that all |κi| ≤ 1.

3. The meaning of the last statement means that we should use the norm
∑
|Uj|2 =∑

j(HUj, Uj) instead of the Euclidean norm. Then An is nonincreasing under this
norm.

148

5.4 *Finite difference methods for linear hyperbolic
systems with variable coefficients

1. Necessary condition for stability
The essential issue is stability because Lax’s equivalence theorem. Kreiss showed by an
example that the local stability (i.e. the stability for the frozen coefficients) is neither
necessary nor sufficient for overall stability of linear variable systems. However, if the
system ut = Au with A being first order, Strang showed that the overall stability
does imply the local stability. Therefore, for linear first-order systems with variable
coefficients, the von Neumann condition is also a necessary condition for the overall
stability.

2. Monotone schemes are stable in L2. For sufficient condition, we need some numer-
ical dissipation to damp the high frequency component from spatial inhomogeneity.
To illustrate this, let us consider the following scalar equation:

ut + a(x)ux = 0,

and a finite difference scheme

Un+1(x) = A(x)Un(x−∆x) +B(x)Un(x) + C(x)Un(x+∆x).

For consistency, we need to require

A(x) +B(x) + C(x) = 1

A(x)− C(x) = a(x)

Now, we impose another condition for local stability:

0 ≤ A(x), B(x), C(x) ≤ 1.

We show stability result. Multiply the difference equation by Un+1(x), use Cauchy-
Schwartz inequality, we obtain

(Un+1(x))2 = A(x)Un(x−∆x)Un+1(x) +B(x)Un(x)Un+1(x) + C(x)Un(x+∆x)Un+1(x)

≤ A(x)

2
((Un(x−∆x))2 + (Un+1(x))2) +

B(x)

2
((Un(x))2 + (Un+1(x))2)

+
C(x)

2
((Un(x+∆x))2 + (Un+1(x))2)

=
A(x)

2
(Un(x−∆x))2 +

B(x)

2
(Un(x))2 +

C(x)

2
(Un(x+∆x))2 +

1

2
(Un+1(x))2

This implies

(Un+1(x))2 ≤ A(x)(Un(x−∆x))2 +B(x)(Un(x))2 + C(x)(Un(x+∆x))2

149

= A(x−∆x)(Un(x−∆x))2 +B(x)(Un(x))2 + C(x+∆x)(Un(x+∆x))2

+(A(x)− A(x−∆x))(Un(x−∆x))2 + (C(x)− C(x+∆x))(Un(x+∆x))2

Now, we sum over x = xj for j ∈ Z. This yields

∥Un+1∥2 ≤ ∥Un∥2 +O(∆t)∥Un∥2

Hence,
∥Un∥2 ≤ (1 +O(∆t))n∥U0∥2 ≤ eKt∥U0∥2.

The above analysis show that monotone schemes are stable in L2. Indeed, the scheme
has some dissipation to damp the errors from the variation of coefficient (i.e. the term
like (A(x)− A(x−∆x))).

3. High-order dissipation implies stability For higher-order scheme, we need to es-
timate higher order finite difference ∆U , this will involves |∆a|∥∆U∥, or their higher
order finite differences. We need some dissipation to damp the growth of this high
frequency modes. That is, the eigenvalues of the amplification matrix should satisfies

|λi| ≤ 1− δ|k∆x|2r, when |k∆x| ≤ π

for some δ > 0.
To be more precisely, we consider first-order hyperbolic system in high-space dimension:

ut +
d∑

i=1

ai(x)uxi
= 0, (5.15)

where u ∈ RN , ai, i = 1, ..., d, are N × N matrices. Consider a finite difference
approximation:

Un+1(x) =
∑
α

Aα(x)T
αUn(x). (5.16)

Here, α = (α1, · · · , αd) is a multi-index.
Let Ĝ(x,∆t, ξ) =

∑
αAαe

iα·ξ be the Fourier transform of the frozen finite difference
operator.
Definition 5.2. A finite difference scheme with amplification matrix Ĝ(x,∆t, ξ) is
called dissipative of order 2r if there exists a constant δ > 0 such that all eigenvalues
of Ĝ satisfy

|λi(x,∆t, ξ)| ≤ 1− δ|ξ|2r

for all maxi |ξi| ≤ π, all x, and all ∆t < τ for some constant τ .

An important theorem due to Kreiss is the following stability theorem.
Theorem 5.6. Suppose that system (5.15) is symmetric hyperbolic, meaning that the
matrices ai are symmetric, and that the coefficient matrices Aα of the finite difference
scheme (5.16) are also symmetric. Assume that all coefficients are uniformly bounded.
If the scheme is of order 2r − 1 and dissipative of order r, then the scheme is stable.

150

Project 4
1. Implement the following methods for the linear advection equation, the inviscid Burg-

ers equation and the gas dynamics to solve the Riemann problems in 1D. The methods
are (1) Lax-Friedrichs, (2) Upwind, (3) Lax-Wendroff, (4) MacCormack, (5) Second-
order Godunov, (6) WENO3. See Sec. 5.1, example 1 of Shu’s note (pp. 54) for the
Riemann data.

(a) For linear advection equation and the Burgers equation, the domain is [−2, 10],
the initial datum is

u(x, 0) =

{
1 0 < x < 1
0 elsewhere.

You can set periodic boundary condition.
(b) For the gas dynamic equations, the domain is [−5, 5]. The initial data are the

Riemann data. There are two test cases:
• Sod test case

(ρL, qL, PL) = (1, 0, 1), (ρR, qR, PR) = (0.125, 0, 0.1)

• Lax test case

(ρL, qL, PL) = (0.445, 0.698, 3.528), (ρR, qR, PR) = (0.5, 0, 0.571).

You can set the Dirichlet boundary condition.

151

http://www.thevisualroom.com/sods_test_problem.html
https://www.sciencedirect.com/science/article/pii/S2468227620303112

152

Chapter 6

Hyperbolic Conservation Laws

6.1 Scalar conservation laws
6.1.1 Physical models
Many partial differential equations are derived from physical conservation laws such as con-
servation of mass, momentum, energy, charges, etc. This class of PDEs is called conservation
laws. The scalar conservation law is a conservation law with single equation. Below, we give
three examples.

1. Traffic flow model An interesting model is the following traffic flow model on a high
way. We use macroscopic model, which means that ∆x ≈ 100 m. Let ρ be the car
density, u be the average car velocity. The car flux at a point x is the number of cars
passing through x per unit time. In a time period ∆t, the car which can pass x must be
in the region u(x, t)∆t. Thus, the flux at x is (ρ(x, t)u(x, t)∆t)/(∆t) = ρ(x, t)u(x, t).
Now, consider an arbitrary region (a, b), we have

the change of number of cars in (a, b) = [the car flux at a] − [the car flux at b].

In mathematical formula, it reads

d

dt

ˆ b

a

ρ(x, t) dx = ρ(a, t)u(a, t)− ρ(b, t)u(b, t)

= −
ˆ b

a

(ρu)x dx.

This holds for any (a, b). Hence, we have

ρt + (ρu)x = 0. (6.1)

This equation is usually called the continuity equation in continuum mechanics. It is
not closed because it involves two knowns ρ and u. Empirically, u can be teated as a

153

function of ρ which satisfies u→ 0 as ρ→ ρmax. For instance,

u(ρ) = umax(1−
ρ

ρmax

),

if there is a upper velocity limit, or

u(ρ) = a log(ρmax/ρ),

if there is no restriction of velocity. Furthermore, we can model u to depend on ρx as
well. For instance,

u = u(ρ)− ν ρx
ρ
.

The quantity ρx/ρ = −Vx/V is the negative expansion rate, where V is called the
specific length, the space occupied by a car including the front and rear spaces (i.e. V =
1/ρ). If the expansion rate is positive, then the car train is rarefied. Thus, if the car
number becomes denser (resp. rarefied), then the speed is reduced (resp. increased).
Here, ν is the diffusion coefficient (viscosity) which is a positive number. Thus, the
final equation is

ρt + f(ρ)x = 0, (6.2)

or
ρt + f(ρ)x = νρxx, (6.3)

where f(ρ) = ρu(ρ).

2. Burgers’ equation The Burgers equation is given by

ut +
1

2
(u2)x = εuxx, (6.4)

where ε is a positive constant. When ε = 0, this equation is called the inviscid Burgers
equation. This equation is a prototype equation used to study conservation laws.
The following Hopf-Cole transformation linearizes this nonlinear equation. Let

ϕ(x, t) :=

ˆ x

−∞
u(y, t) dy, v = e−

1
ε
ϕ.

Then ϕ satisfies the Hamilton-Jacobi equation

ϕt +
ϕ2
x

2
=
ε

2
ϕxx,

and v satisfies heat equation:

vt = −
1

ε
v, vx = −1

ε
ϕxv,

154

vxx = −1

ε
ϕxxv +

(
1

ε
ϕx

)2

v.

Thus,

vt =
ε

2
vxx ⇔ ϕt +

ϕ2
x

2
=
ε

2
ϕxx.

The solution to the heat equation can be expressed as

v(x, t) =
1√
2πεt

ˆ ∞

−∞
e−

(x−y)2

2εt v(y, 0) dy.

From
ϕ = −ε ln v, u = ϕx = −εvx

v
,

we can obtain an explicit form of the solution u as

u(x, t) = −ε 1

v(x, t)

1√
2πεt

ˆ ∞

−∞

(
−x− y

tε

)
e−

(x−y)2

2tε e−
1
ε
ϕ(y,0) dy

=

ˆ ∞

−∞

(
x− y
t

)
pε(x, y, t) dy,

where

pε(x, y, t) =
e−

1
ε
I(x,y,t)´∞

−∞ e−
1
ε
I(x,y,t) dy

, I(x, y, t) =
(x− y)2

2t
+ ϕ(y, 0).

Taking ε→ 0+, we obtain

u(x, t) =
x− y(x, t)

t
,

where
y(x, t) := arg minxI(x, y, t).

3. Two-phase flow model The Buckley-Leverett equation models how oil-water flow in
a reservoir (a porous media). The unknown u is the saturation of water, 0 ≤ u ≤ 1.
The equation is given by

ut + f(u)x = 0, f(u) =
u2

u2 + a(1− u2)2
.

where a > 0 is a constant. Unlike previous examples, the flux f here is a non-convex
function.

6.1.2 Basic theory
1. Blow-up and weak solutions

155

https://en.wikipedia.org/wiki/Buckley%E2%80%93Leverett_equation

(a) Method of characteristics for smooth solutions Let us consider scalar con-
servation law

ut + f(u)x = 0. (6.5)

The equation can be viewed as a directional derivative ∂t + f ′(u)∂x of u is zero.
That implies u is constant along the characteristic curve

dx

dt
= f ′(u(x, t)).

This yields that the characteristic curve is indeed a straight line. Using this we
can solve the Cauchy problem of (6.5) with initial data u0 implicitly:

u = u0(x− ut).

For instance, for inviscid Burgers’ equation with u0(x) = x, the solution u is given
by u = x− ut, or u = x/(1 + t).

(b) Weak solutions The solution may blow up (i.e. |ux| → ∞) in finite time due to
the intersection of characteristic curves. A shock wave (discontinuity) is formed.
We have to extend our solution class to to include these discontinuous solutions.
We can view (6.5) in “weak sense.” That is, for every smooth test function ϕ with
compact support in R× [0,∞),

ˆ ∞

0

ˆ ∞

−∞
ϕ[ut + f(u)x] dx dt = 0.

We take integrate-by-part to obtain
ˆ ∞

0

ˆ ∞

−∞
[ϕtu+ ϕxf(u)] dx dt+

ˆ ∞

−∞
ϕ(x, 0)u(x, 0) dx = 0, (6.6)

In this formulation, it allows u to be discontinuous.

Definition 6.1. A function u is called a weak solution of (6.5) if it satisfies (6.6)
for all smooth test function ϕ with compact support in R× [0,∞).

(c) Jump conditions
Lemma 6.1. Suppose u is a weak solution with discontinuity across a curve x(t).
Suppose u is smooth on the two sides of x(t). Then u satisfies the following jump
condition across x(t):

dx

dt
[u] = [f(u)], (6.7)

where [u] := u(x(t)+, t)− u(x(t)−, t).

156

Proof. Let us consider a fixed shock position (t0, x(t0)). Suppose ẋ(t0) = 0. The
shock is a standing shock at t0. The fluxes on its two sides must be equal due to
conservation law. That is

f(u(x(t0)−, t0) = f(u(x(t0)+, t0).

Suppose ẋ(t0) = σ ̸= 0. We make a change-of-variable: x′ = x− σt, t′ = t. Then
the resulting equation is

ut′ + (f(u)− σu)x′ = 0.

For this equation, the shock is standing at t′ = t0. This gives

[f(u)− σu] = 0,

which is
[f(u)]− σ[u] = 0,

the jump condition at (t0, x(t0)) for σ ̸= 0.

2. Riemann problems The Riemann problem is a Cauchy problem for equation (6.5)
with the following initial data

u(x, 0) =

{
uℓ for x < 0
ur for x > 0.

(6.8)

Here uℓ, ur are two constant states. The importance of Riemann problems lies in the
following reasons:

(i) Both equation (6.5) and the Riemann data (6.8) are invariant under the Galilean
transform: x → λx, t → λt for all λ > 0. If uniqueness holds, the solution to
the Riemann problem is self-similar, that is, u = u(x/t). This reduces the PDE
problem to an ODE problem.

(ii) Discontinuities are common for nonlinear conservation laws. Hence, near a dis-
continuity, the Riemann problem is also generic locally.

(iii) For physical problems, the far-field states are typically two constant states. Due
to hyperbolicity, we expect the solution to be a perturbation of the solution to
the Riemann problem at large time. Therefore, Riemann problem is also generic
globally.

When f ′′ ̸= 0, say, f ′′ > 0, here are two important classes of solutions.

(a) Shock wave: uℓ ≥ ur

u(x, t) =

{
uℓ for x < σt
ur for x > σt

(6.9)

where σ = (f(ur)− f(uℓ))/(ur − uℓ).

157

(b) Rarefaction wave: uℓ < ur

u(x, t) =

uℓ for x < λℓt
u for λℓ < λ(u) = x

t
< λr

ur for x > λrt
(6.10)

where λ(u) = f ′(u) is an increasing function.

These two solution are of fundamental importance. We shall denote them by (uℓ, ur).

3. Non-uniqueness problem The weak solution is not unique. For instance, in the case
of uℓ < ur, both (6.10) and (6.9) are weak solutions. Indeed, there are infinite many
weak solutions to such a Riemann problem. Therefore, additional condition is needed
to guarantee uniqueness. Such a condition is called an entropy condition.

Homeworks 6.1. 1. If f is convex and u0 is increasing, then the Cauchy problem for
equation (6.5) has global solution.

2. If f is convex and u′0 < 0 at some point, then ux → −∞ at finite time.

3. Prove Lemma 6.1.

6.1.3 Entropy conditions
To find a suitable entropy condition for general hyperbolic conservation laws, let us go back to
study the gas dynamic problems. The hyperbolic conservation laws are simplified equations.
The original physical equations usually contain a viscous term νuxx, as that in the Navier-
Stokes equation. We assume the viscous equation has uniqueness property. Therefore let us
make the following definition.

Definition 6.2. A weak solution is called admissible if it is the limit of

uεt + f(uε)x = εuεxx, (6.11)

as ε→ 0+.

We shall label this condition by (A). In gas dynamics, the viscosity causes the physical
entropy increases as gas particles passing through a shock front. One can show that such
a condition is equivalent to the admissibility condition. Notice that this entropy increasing
condition does not involve viscosity explicitly. Rather, it is a limiting condition as ε→ 0+.
This kind of conditions is what we are looking for. For general hyperbolic conservation laws,
there are many of them. We list some of them below.

(L) Lax’s entropy condition: across a shock (uℓ, ur) with speed σ, the Lax’s entropy con-
dition is

λℓ > σ > λr. (6.12)

158

where λℓ (resp. λr) is the left (resp. right) characteristic speed of the shock.
The meaning of this condition is that the information can only enter a shock and then
disappear. Information cannot come out of a shock. Thus, if we draw a characteristic
curve from any point (x, t) backward in time, we will always meet the initial axis. It
cannot stop at a shock in the middle of time because that would violate the entropy
condition. In other words, all information can be traced back to the initial time. This
is a causality property and is also time irreversible, consistent with the second law of
thermodynamics. However, Lax’s entropy is only suitable for flux f with f ′′ ̸= 0.

(OL) Oleinik-Liu’s entropy condition: Let

σ(u, v) :=
f(u)− f(v)

u− v
.

The Oleinik-Liu’s entropy condition is that, across a shock

σ(uℓ, v) ≥ σ(uℓ, ur) (6.13)

for all v between uℓ and ur. This condition is applicable to nonconvex fluxes.

(GL) The above two conditions are conditions across a shock. Lax proposed another global
entropy condition. First, he define entropy-entropy flux: a pair of function (η(u), q(u))
is called an entropy-entropy flux for equation (6.5) if (i) η is convex, and (ii) q′ = η′f ′.
A weak solution u(x, t) is said to satisfy entropy condition if for any entropy-entropy
flux pair (η, q), u(x, t) satisfies

η(u(x, t))t + q(u(x, t))x ≤ 0 (6.14)

in weak sense.

(K) Another global entropy proposed by Kruzkov is for any constant c,ˆ ∞

0

ˆ ∞

−∞
[|u− c|ϕt + sign(u− c)(f(u)− f(c))ϕx] dx ≥ 0 (6.15)

for all positive smooth ϕ with compact support in R× (0,∞). (GL) ⇒ (K):
For any c, we choose η(u) = |u − c|, which is a convex function. One can check the
corresponding q(u) = sign(u− c)(f(u)− f(c)). Thus, (K) is a special case of (GL). We
may remark here that we can choose even simplier entropy-entropy flux:

η(u) = u ∨ c, q(u) = f(u ∨ c),

where u ∨ c := max{u, c}.

When the flux is convex, each of the above conditions is equivalent to the admissibility
condition. When f is not convex, each but the Lax’s entropy condition is equivalent to the
admissibility condition.

We shall not provide general proof here. Rather, we study special case: the weak solution
is only a single shock (uℓ, ur) with speed σ.

159

Theorem 6.1. Consider the scalar conservation law (6.5) with convex flux f . Let (uℓ, ur)
be its shock with speed σ. Then the above entropy conditions are all equivalent.

Proof. (L) ⇔ (OL);
We need to assume f to be convex. This part is easy. It follows from the convexity of f .
We leave the proof to the reader.
(A) ⇔ (OL):
We also need to assume f to be convex. Suppose (uℓ, ur) is a shock. Its speed

σ =
f(ur)− f(uℓ)

ur − uℓ
.

We shall find a solution of (6.11) such that its zero viscosity limit is (uℓ, ur). Consider a
solution haing the form ϕ((x− σt)/ε). In order to have ϕ→ (uℓ, ur), we need to require far
field condition:

ϕ(ξ)→
{
uℓ ξ → −∞
ur ξ →∞ (6.16)

Plug ϕ((x− σt)/ε) into (6.11), integrate in ξ once, we obtain

ϕ′ = F (ϕ). (6.17)

where F (u) = f(u) − f(uℓ) − σ(u − uℓ). We find F (uℓ) = F (ur) = 0. This equation with
far-field condition (6.16) is solvable if and only if, for all u between uℓ and ur, (i) F ′(u) > 0
when uℓ < ur, or (ii) F ′(u) < 0 when uℓ > ur. One can check that (i) or (ii) is equivalent to
(OL).

Next, we study global entropy conditions.
(A) ⇒ (GL)
If u is an admissible solution. This means that it is the limit of uε which satisfy the viscous
conservation law (6.11). Let (η, q) be a pair of entropy-entropy flux. Multiply (6.11) by
η′(uε), we obtain

η(uε)t + q(uε)x = εη′(uε)uεxx
= εη(uε)xx − εη′′(uεx)2

≤ εη(uε)xx

We multiply this equation by any positive smooth test function ϕ with compact support in
R× (0,∞), then integrate by part, and take ε→ 0, we obtainˆ ∞

0

ˆ ∞

−∞
[η(u)ϕt + q(u)ϕx] dx dt ≥ 0

This means that η(u)t + q(u)x ≤ 0 in weak sense.
(K) ⇒ (OL) for single shock:
Suppose (uℓ, ur) is a shock. Suppose it satisfies (K). We want to show it satisfies (OL). The
condition (GL), as applied to a single shock (uℓ, ur), is read as

−σ[η] + [q] ≤ 0.

160

Here, we choose η = |u− c|. The condition becomes

−σ(|ur − c| − |uℓ − c|) + sign(ur − c)(f(ur)− f(c))− sign(uℓ − c)(f(uℓ)− f(c)) ≤ 0

Or
− σ(uℓ, ur)(|ur − c| − |uℓ − c|) + |ur − c|σ(ur, c)− |uℓ − c|σ(uℓ, c) ≤ 0 (6.18)

We claim that this condition is equivalent to (OL). First, if c lies outside of uℓ and ur, then
the left-hand side of (6.18) is zero. So (6.18) is always true in this case. Next, if c lies
betrween uℓ and ur, one can easily check it is equivalent to (OL).

6.1.4 *Riemann problems for non-convex fluxes
The Oleinik-Liu’s entropy condition can be interpreted as the follows graphically. Suppose
(uℓ, ur) is a shock, then the condition (OL) is equivalent to one of the follows. Either uℓ > ur
and the graph of f between uℓ, ur lies below the secant (ur, f(ur)), (uℓ, f(uℓ)). Or uℓ < ur
and the graph of f between uℓ, ur lies above the secant ((uℓ, f(uℓ)), (ur, f(ur))). With this,
we can construct the solution to the Riemann problem for non-convex flux as the follows.

• Case uℓ < ur: We connect (uℓ, f(uℓ)) and (ur, f(ur)) by a convex envelope of f (i.e.
the largest convex function below f). The straight line of this envelope corresponds to
an entropy shock. In the curved part, where f ′(u) increases, corresponds to a centered
rarefaction wave. Note that f ′(u∗) = σ at the intersection of the straight line and
the curved portion, meaning that the shock speed is the same as the characteristic
speed of the rarefaction wave. We call such a shock a contact sock. The solution is a
composition of rarefaction waves and contact shocks, and is called a composite wave.

• Case uℓ ≥ ur: We simply replace convex envelope by a concave envelope. The portions
of straight lines of the concave envelop correspond to shocks, while the concave curved
portions are the center rarefaction waves. The solution is a composition wave.

Example. Consider the cubic flux: f(u) = 1
3
u3.

• Case uℓ < 0, ur > 0: From uℓ, we can draw a line tangent to the graph of f at
u∗ℓ = −uℓ/2.

– If ur > u∗ℓ : The wave structure is a contact shock (uℓ, u
∗
ℓ) followed by a rarefaction

wave (u∗ℓ , ur).
– If ur ≤ u∗ℓ , then the wave is a single shock.

• Case uℓ > 0, ur < 0:

Homeworks 6.2. 1. For the flux f(u) = u3/3, construct the general solution to the
Riemann problem for general left/right states uℓ andur.

161

6.1.5 *Uniqueness and Existence
Theorem 6.2 (Kruzkov). Assume f is Lipschitz continuous and the initial data u0 is in
L1∩BV . Then there exists a global entropy solution (satisfying condition (K)) to the Cauchy
problem for (6.5). Furthermore, the solution operator is contractive in L1, that is, if u, v
are two entropy solutions, then

∥u(t)− v(t)∥L1 ≤ ∥u(0)− v(0)∥L1 (6.19)

As a consequence, we have uniqueness theorem and the total variation diminishing property:

T.V.u(·, t) ≤ T.V.u(·, 0) (6.20)

Proof. The part of total variation diminishing is easy. We prove it here. The total variation
of u is defined by

T.V.u(·, t) = Suph>0

ˆ
|u(x+ h, t)− u(x, t)|

h
dx

We notice that if u(x, t) is an entropy solution, so is u(x + h, t). Apply the contraction
estimate for u(·, t) and v = u(·+ h, t). We obtain the total variation diminishing property.

To prove the L1-contraction property, we claim that the constant c in the Kruzhkov
entropy condition (K) can be replaced by any other entropy solution v(t, x). That is
¨

[|u(t, x)− v(t, x)|ψt + sign(u(t, x)− v(t, x))(f(u(t, x))− f(v(t, x)))ψx] dx dt ≥ 0

for all positive smooth ψ with compact support in R× [0,∞). To see this, we choose a test
function ϕ(s, x, t, y), the entropy conditions for u and v are
¨

[|u(s, x)− k|ϕs(s, x, t, y) + sign(u(s, x)− k)(f(u(s, x))− f(k))ϕx(s, x, t, y)] dx ds ≥ 0

¨
[|v(t, y)− k′|ϕt(s, x, t, y) + sign(v(t, y)− k′)(f(v(t, y))− f(k′))ϕy(s, x, t, y)] dx ds ≥ 0

Set k = v(t, y) in the first equation and k′ = u(s, x) in the second equation. Integrate the
rest variables and add them together. We get
¨¨

{|u(s, x)− v(t, y)|(ϕs + ϕt) + sign(u(s, x)− v(t, y)) · [f(u(s, x))− f(v(t, y))] · (ϕx + ϕy)} dx ds dy dt ≥ 0.

Now we choose ϕ(s, x, t, y) such that it concentrates at the diagonal s = t and x = y. To do
so, let ρh(x) = h−1ρ(x/h) be an approximation of the Dirac mass measure. Let ψ(T,X) be
a non-negative test function on (0,∞)× R. Choosing

ϕ(s, x, t, y) = ψ

(
s+ t

2
,
x+ y

2

)
ρh

(
s− t
2

)
ρh

(
x− y
2

)
,

162

we get
¨¨

ρh

(
s− t
2

)
ρh

(
x− y
2

){
|u(s, x)− v(t, y)|ψT

(
s+ t

2
,
x+ y

2

)
+sign(u(s, x)− v(t, y)) · [f(u(s, x))− f(u(v(t, y)))] · ψX

(
s+ t

2
,
x+ y

2

)}
dx dy ds dt ≥ 0.

Now taking limit h→ 0, we can get the desired inequality.
Next, we choose

ψ(t, x) = [αh(t)− αh(t− τ)] · [1− αh(|x| −R + L(τ − t))],

where αh(z) =
´ z

−∞ ρh(s) ds. We can get the desired L1 contraction estimate.

The existence theorem mainly based on the same proof of the uniqueness theorem. Sup-
pose the initial data is in L1∩L∞∩BV , we can construct a sequence of approximate solutions
which satisfy entropy conditions. They can be construncted by finite difference methods (see
the next section), or by viscosity methods, or by wave tracking methods (by approximate
the flux function by piecewise linear functions). Let us suppose the approximate solutions
are constructed via viscosity method, namely, uε are solutions of

uεt + f(uε)x = εuεxx.

Following the same proof for (GL)⇒ (K), we can get that the total variation norms of the
approximate solutions uε are bounded by T.V.u0. This gives the compactness in L1 and a
convergent subsequence leads to an entropy solution.
Remark. The general existence theorem can allow only initial data u0 ∈ L1∩L∞. Even the
initial data is not in BV , the solution immediately has finite total variation at any t > 0.

6.2 Systems of Hyperbolic Conservation Laws
6.2.1 Hyperbolicity
We consider the following system of PDEs in one space dimension:

ut + f(u)x = 0, u =

u1
u2
...
un

 , f : Rn → Rn (called flux) (6.21)

System (6.21) is called hyperbolic if ∀u, the n × n matrix f ′(u) is diagonalizable with real
eigenvalues

λ1(u) ≤ λ2(u) ≤ · · · ≤ λn(u).

Let us denote the corresponding left/right eigenvectors by ℓi(u)/ri(u), i = 1, ..., n, respec-
tively. We can normalize them with ∥ri∥ = 1, i = 1, ..., n and ℓirj = δij.

163

6.2.2 Elementary waves and Riemann problems
1. Self-similar solutions

(a) Note that the system is Galilean invariant, namely, the equation is unchanged
under the transform:

t→ λt, x→ λx, ∀λ > 0.

This suggests that we can look for special solutions of the form u(x
t
).

(b) Let us plug u(x
t
) into (6.21). It gives

u′ · (− x
t2
) + f ′(u)u′ · 1

t
= 0

=⇒ f ′(u)u′ =
x

t
u′.

Note that f ′(u) is an n × n matrix, while u′ is an n-vector. The above formula
states that u′ is an eigenvector of the matrix f ′(u) with eigenvalue x/t. Thus,
there exists i such that x

t
= λi(u(

x
t
)), an eigenvalue of f ′(u), and u′ = ri(u) is the

corresponding eigenvector.
(c) To find such a solution, we first construct the integral curve of ri(u): u′ = ri(u).

Let Ri(u0, s) be the integral curve of ri(u) passing through u0, parameterized by
its arc-length. Along Ri, the variation of the speed λi is:

d

ds
λi(Ri(u0, s)) = ∇λi ·R′

i = ∇λi · ri.

(d) We have the following definition.
Definition 6.3. The i-th characteristic field is called
• genuinely nonlinear if ∇λi(u) · ri(u) ̸= 0 ∀u.
• linearly degenerate if ∇λi(u) · ri(u) ≡ 0 ∀u.
• non-genuinely nonlinear if ∇λi(u) · ri(u) = 0 on isolated hypersurfaces in Rn.

For scalar equation, the genuine nonlinearity is equivalent to the convexity (or
concavity) of the flux f , linear degeneracy corresponds to f(u) = au, and the
non-genuine nonlinearity is existence of inflection points of f .

2. Rarefaction Waves When the i-th field is genuinely nonlinear, we define
R+

i (u0) = {u ∈ Ri(u0)|λi(u) ≥ λi(u0)}.

For any u1 ∈ R+
i (u0), note that λi(u0) < λi(u1), we construct the following centered

rarefaction wave, denoted it by (u0, u1), as:

(u0, u1)
(x
t

)
=

u0 if x

t
≤ λi(u0)

u1 if x
t
≥ λi(u1)

u if λi(u0) ≤ x
t
≤ λi(u1) and λi(u) = x

t
.

It is easy to check this is a solution. We call (u0, u1) an i-rarefaction wave.

164

t

x

λi(u0)
λi(u1)

u0 u1

λi(u) =
x
t

λi

u0

λi(u1)
u1

λi(u0)

Figure 6.1: The integral curve of u′ = ri(u) and the rarefaction wave.

3. Shock Waves A shock wave depends on three parameters: (u0, u1, σ), and is expressed
as:

u
(x
t

)
=

{
u0 for x

t
< σ

u1 for x
t
> σ.

Here, σ is a constant, representing the shock speed. The three quantities (u0, u1, σ)
should satisfy the jump condition:

f(u1)− f(u0) = σ(u1 − u0). (6.22)

Lemma 6.2. (Local structure of shock waves)

1. The solution of (6.22) for (u, σ) consists of n algebraic curves passing through u0
locally, named them by Si(u0), i = 1, · · · , n.

2. Si(u0) is tangent to Ri(u0) up to second order, i.e., S
(k)
i (u0) = R

(k)
i (u0), k =

0, 1, 2. Here, the derivatives are arclength derivatives.
3. σi(u0, u)→ λi(u0) as u→ u0, and σ′

i(u0, u0) =
1
2
λ′i(u0)

Proof. (a) Let S(u0) = {u|f(u) − f(u0) = σ(u − u0) for some σ ∈ R}. We claim
that S(u0) =

n∪
i=1

Si(u0), where Si(u0) is a smooth curve passing through u0 with

tangent ri(u0) at u0. To show this, first we express

f(u)− f(u0) =
[ˆ 1

0

f ′(u0 + t(u− u0) dt
]
(u− u0)

= Ã(u0, u)(u− u0).

When u is on S(u0), we can rewrite the jump condition as

Ã(u0, u)(u− u0) = σ(u− u0).

.·. u ∈ S(u0)⇐⇒ (u− u0) is an eigenvector of Ã(u0, u). (6.23)

165

Assume A(u0) = f ′(u0) has real and distinct eigenvalues λ1(u0) < · · · < λn(u0).
The matrix Ã(u0, u) is a perturbation of A(u). From the perturbation theory,
for u ∼ u0, Ã(u0, u) also has real and distinct eigenvalues. Let us denote them
by λ̃1(u0, u) < · · · < λ̃n(u0, u), with left/right eigenvectors ℓ̃i(u0, u) and r̃i(u0, u),
respectively. And they converge to λi(u0), ℓi(u0), ri(u0) as u→ u0, respectively.

(b) Let us normalize the eigenvectors by ∥r̃i∥ = 1, ℓ̃ir̃j = δij. The eigenvector r̃i,
which is parallel to ri at u = u0, can be determined by

ℓ̃k(u0, u)(u− u0) = 0 for k ̸= i, k = 1, · · · , n. (6.24)

Thus, we can define

Si(u0) = {u|ℓ̃k(u0, u)(u− u0) = 0, k ̸= i, k = 1, · · · , n}.

We claim this is a smooth curve passing through u0. Let us choose coordinate
system r1(u0), · · · , rn(u0). Differentiate this equation ℓ̃k(u0, u)(u − u0) = 0 at
u = u0 in rj(u0) direction:

∂

∂rj

∣∣∣∣
u=u0

(ℓ̃k(u0, u)(u− u0)) = ℓ̃k.(u0, u0) · rj(u0) = δjk,

Thus, this is the Jacobian matrix of the map: u 7→ (ℓ̃k(u0, u)(u − u0), k ̸= i) at
u0, which is an (n − 1) × n full rank matrix. By the implicit function theorem,
the set Si(u0) is a smooth curve passing through u0.

(c) Note that Ri(u0) = u0 = Si(u0).

f(u)− f(u0) = σi(u0, u)(u− u0) ∀u ∈ Si(u0)

Take arclength derivative along Si(u0)

f ′(u)u′ = σ′
i(u− u0) + σiu

′ and u′ = S ′
i.

As u→ u0
f ′(u0)S

′
i(u0) = σi(u0, u0)S

′
i(u0)

=⇒ S ′
i(u0) = ri(u0) and σi(u0, u0) = λi(u0).

Consider the second derivative.

(f ′′(u)u′, u′) + f ′(u)u′′ = σ′′
i (u− u0) + 2σ′

i · u′ + σiu
′′

At u = u0, u′ = S′
i(u0) = R′

i(u0) = ri(u0) and u′′ = S′′
i (u0),

=⇒ (f ′′ri, ri) + f ′S′′
i = 2σ′

iri + σiS
′′
i

166

On the other hand, we take derivative of f ′(u)ri(u) = λi(u)ri(u) along Ri(u0),
then evaluate at u = u0.

(f ′′ri, ri) + f ′(∇ri · ri) = λ′iri + λi∇ri · ri,

where ∇ri · ri = R′′
i .

=⇒ (f ′ − λi)(S′′
i −R′′

i) = (2σ′
i − λ′i)ri

Taking inner product with ℓi leads to

2σ′
i = λ′i.

Let S′′
i −R′′

i =
∑
k

αkrk(u0). Taking inner product with ℓk leads to

∑
k ̸=i

(λk − λi)αkrk = 0 =⇒ αk = 0 ∀k ̸= i

On the other hand, from (R′
i,R

′
i) = 1 and (S′

i,S
′
i) = 1, we get (R′′

i ,R
′
i) = 0 and

(S′′
i ,S

′
i) = 0. Since R′

i = S′
i = ri, we then get

(S′′
i −R′′

i , ri) = 0.

Hence S′′
i = R′′

i at u0.
·.· (R′

i,R
′
i) = 1 (S′

i,S
′
i) = 1

and (R′′
i ,R

′
i) = 0 (S′′

i ,S
′
i) = 0

.·. (R′′
i −S′′

i)⊥ri
.·. αi = 0

Hence R′′
i = S′′

i at u0.

4. Let S−
i (u0) = {u ∈ Si(u0)|λi(u) ≤ λi(u0)}.

If u1 ∈ S−
i (u0), define

(u0, u1) =

{
u0 for x

t
< σi(u0, u1)

u1 for x
t
> σi(u0, u1)

(u0, u1) is a weak solution.

u0

S−
i

R+
i

Ri

Si

167

Suppose the i-th characteristic field is genuinely nonlinear. The Lax entropy condition
reads

λi(u0) > σi(u0, u1) > λi(u1) (6.25)
Let us define S−

i (u0) to be the branch of Si(u0) which satisfies entropy condition:

Si(u0) := {u ∈ Si(u0)|λi(u) < λi(u0)}

Then for u1 ∈ S−
i (u0), and u1 ∼ u0, (6.25) is always valid. This follows easily from

λi = 2σ′
i and σi(u0, u0) = λi(u0). For u1 ∈ S−

i (u0), we call the solution (u0, u1) an
i-shock or Lax-shock.

5. Contact Discontinuity (Linear Wave) When ∇λi(u) · ri(u) ≡ 0, we call the i-th
characteristic field linearly degenerate. In the case of scalar equation, this corresponds
to f ′′ = 0. We claim that, along a linearly degenerate field ri, we have

Ri(u0) = Si(u0) and σi(u0, u) = λi(u0) for all u ∈ Si(u0) or Ri(u0). (6.26)

Indeed, along Ri(u0), we have

f ′(u)u′ = λi(u)u
′.

and λi(u) is a constant λi(u0) from the linear degeneracy. We integrate the above
equation from u0 to u along Ri(u0), we get

f(u)− f(u0) = λi(u0)(u− u0).

This gives the shock condition. Thus, Si(u0) ≡ Ri(u0) and σ(u, u0) ≡ λi(u0).

6. Wave curve Define Ti(u0) = R+
i (u0) ∪S−

i (u0). It is called the i-th wave curve. For
u1 ∈ Ti(u0), the wave (u0, u1) is either a rarefaction wave, an entropy shock, or a
contact discontinuity.

7. Solutions to the Riemann problems

Theorem 6.3. (Lax) For strictly hyperbolic system (6.21), if each field is either gen-
uinely nonlinear or linear degenerate, then for uL ∼ uR, the Riemann problem with two
end states (uL, uR) has a unique self-similar solution which consists of n elementary
waves. Namely, there exist u0 = uL, · · · , un = uR such that (ui−1, ui) is an i-wave.

Proof. Given (α1, · · · , αn) ∈ Rn, we define ui successively as the follows. First we define
u0 = uL. Then we follow T1 curve from u0 with length α1. This gives u1 ∈ T1(u0) and
(u0, u1) forms a 1-wave with strength α1 (measured by the arc length α1 on T1(u0).
From u1, we follow T2(u1) with length α2 to u2. This gives (u1, u2) a 2-wave with
strength α2. We continue this process until un := f(uL, α1, ..., αn). This gives a map
from strengths (α1, ..., αn) to the final state un with f(uL, 0, ..., 0) = uL. The mapping

168

is C2 because the curves Ti ∈ C2. Now, we are given the final state uR. We solve the
inverse problem

uR = f(uL, α1, ..., αn).

This mapping is locally invertible because the Jacobian

∂f

∂αk

(uL, 0, ..., 0) = rk(uL), k = 1, ..., n

is invertible at uL. By the inverse function theorem, when uR ∼ uL, there exists a
unique (α1, ..., αn) such that uR = f(uL, α1, ..., αn).

ui = f(u0, α1, · · · , αi)

We want to find α1, · · · , αn such
that

uR = f(uL, α1, · · · , αn).

u0

u1
T1

T2(u1)

α2

α1

When uR ∼ uL and {ri(u0)}

are independent,
∂

∂αi

∣∣∣∣
α=0

f(uL, 0, · · · , 0) = ri(u0) and f ∈ C2

By Inverse function theorem, for uR ∼ uL, there exists unique α such that uR = f(uL, α).
Uniqueness leaves as an exercise.

6.2.3 Gas dynamics
The equations of gas dynamics can be derived based on conservation of mass, momentum
and energy. Before we derive these equations, let us review some thermodynamics.

1-wave
2-wave

n-wave

t

x

u0 = uL un = uR

u1 u2 un−1

169

1. Thermo relations First, the basic thermo variables are pressure (p), specific volume
(V), called state variables. The internal energy (e) is a function of p and V . Such a
relation is called a constitutive equation. The basic assumption are

∂e

∂p

∣∣∣∣
V

> 0,
∂e

∂V

∣∣∣∣
p

> 0

Sometimes, it is convenient to express p as a function of (V, e).
In an adiabetic process (no heat enters or losses), the first law of thermodynamics
(conservation of energy) reads

de+ pdV = 0. (6.27)

This is called a Pfaffian equation mathematically. A function σ(e, V) is called an
integral of (6.27) if there exists a function µ(e, V) such that

dσ = µ · (de+ pdV).

Thus, σ = constant represents a specific adiabetic process. For Pfaffian equation with
only two independent variables, one can always find its integral. First, one can derive
equation for µ: from

σe = µ and σV = µp

and using σeV = σV e, we obtain the equation for µ:

µV = (µp)e.

This is a linear first-order equation for µ. It can be solved by the method of charac-
teristics in the region V > 0 and e > 0. The solutions of µ and σ are not unique. If
σ is a solution, so does σ̄ with dσ̄ = ν(σ)dσ for any function ν(σ). We can choose µ
such that if two systems are in thermo-equilibrium, then they have the same value µ.
In other words, µ is only a function of emperical temperature. We shall denote it by
1/T . Such T is called the absolute temperature. The corresponding σ is called the
physical entropy S. The relation dσ = µ(de+ pdV) is re-expressed as

de = TdS − pdV. (6.28)

For ideal gas, which satisfies the laws of Boyle and Gay-Lussac:

pV = RT, (6.29)

where R is the universal gas constant. From this and (6.28), treating S and V as
independent variables, one obtains

ReS(S, V) + V eV (S, V) = 0.

170

We can solve this linear first-order equation by the method of characteristics. We
rewrite this equation as a directional differentiation:(

R
∂

∂S
+ V

∂

∂V

)
e = 0.

This means that e is constant along the characteristic curves

R
dV

dS
= V.

These characteristics can be integrated as

V e−S/R = ϕ.

Here ϕ is a positive constant. The energy e(V, S) is constant when V e−S/R is a constant.
That is, e = h(ϕ) for some function h. We notice that h′ < 0 because p = −(∂e

∂V
)S =

−e−S/Rh′(V H) > 0. From T = (∂e
∂S
)V = − 1

R
h′(ϕ) · ϕ, we see that T is a function of ϕ.

In most cases, T is a decreasing function of ϕ. We shall make this as an assumption.
With this, we can invert the relation between T and ϕ and treat ϕ as a decreasing
function of T . Thus, we can also view e as a function of T , say e(T), and e(T) is
now an increasing function. Now, we have five thermo variables p, V, e, S, T , and three
relations:

pV = RT

e = e(T)

de = TdS − pdV

Hence, we can choose two of as independent thermo variables and treat the rest three
as dependent variables.
For instance, e is a linear function of T , i.e. e = cvT , where cv is a constant called
specfic heat at constant volume. Such a gas is called polytropic gas. We can obtain

pV = RT and e = cvT =
pV

γ − 1
(6.30)

or in terms of entropy,

p = A(S)V −γ

T =
A(S)

R
V −γ+1

e =
cvA(S)

R
V −γ+1

where

A(S) = (γ − 1) exp((S − S0)/cv)

171

γ = 1 +R/cv

If we define dQ = TdS, it is easy to see that cv and cp are the specific heat at constant
volume and constant pressure, respectively.

cv =

(
∂Q

∂T

)
V

=

(
∂e

∂T

)
V

,

cp :=

(
∂Q

∂T

)
p

= ((
∂e

∂V
)p + p)/(

∂T

∂V
)p

=

(
∂e

∂T

)
p

+ p

(
∂V

∂T

)
p

In general, cp > cv. Because cp is the amount of heat added to a system per unit
mass at constant pressure. In order to maintain constant pressure, the volume has to
expand (otherwise, pressure will increase), the extra amount of work due to expansion
is supplied by the extra amount of heat cp − cv.

2. Equations for Gas dynamics Next, we derive the equation of gas dynamics. Let
us consider an arbitrary domain Ω ⊂ R3. The mass flux from outside to inside per
unit time per unit area dS is −ρv·, where n is the outer normal of ∂Ω. Thus, the
conservation of mass can be read as

d

dt

ˆ
Ω

ρ dx =

ˆ
∂Ω

[−ρv · n]dS

= −
ˆ
Ω

div (ρ v) dx.

This holds for arbitrary Ω, hence we have

ρt + div(ρ v) = 0. (6.31)

This is called the continuity equation.
Now, we derive momentum equation. Let us suppose the only surface force is from
pressure (no viscous force). Then the momentum change in Ω is due to (i) the mo-
mentum carried in through boundary, (ii) the pressure force exerted on the surface,
(iii) the body force. The first term is −ρvv ·n, the second term is −pn. Thus, we have

d

dt

ˆ
Ω

ρv dx =

ˆ
∂Ω

−[ρvv · n+ pn] dS +

ˆ
F dx

=

ˆ
Ω

div[−ρv ⊗ v − pI] + F dx

This yields
(ρv)t + div(ρ v ⊗ v) +∇p = F. (6.32)

172

Here, the notation ∇· ρv⊗ v stands for a vector whoes ith component is
∑

j ∂j(ρv
ivj).

The energy per unit volume is E = 1
2
ρ v2 + ρe. The energy change in Ω per unit time

is due to (i) the energy carried in through boundary (ii) the work done by the pressure
from boundary, and (iii) the work done by the body force. The first term is −Ev · n.
The second term is −pv · n. The third term is F · v. The conservation of energy can
be read as

d

dt

ˆ
Ω

E dx =

ˆ
∂Ω

[−Ev · n− pv · n] dS +

ˆ
Ω

F · v dx

By applying divergence theorem, we obtain the energy equation:

Et + div[(E + p)v] = ρF · v. (6.33)

In one dimension, the equations are (without body force)

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

(
1

2
ρu2 + ρe)t + [(

1

2
ρu2 + ρe+ p)u]x = 0.

Here, the unknowns are two thermo variable ρ and e, and one kinetic variable u.
Another thermal variable p is given by the constitutive equation p(ρ, e).

6.2.4 Riemann Problems for Gas Dynamics
This subsection is mainly comes from Courant and Friedrichs’ book: Supersonic Flow and
Shock Waves.

Hyperbolicity of the equations of gas dynamics We use (ρ, u, S) as our unknown
variables. The equations of gas dynamics can be expressed asρu

S

t

+

u ρ 0
c2

ρ
u PS

ρ

0 0 u

ρu
S

x

= 0

Here, P (ρ, S) = A(S)ργ, γ > 1, and c2 = ∂P
∂ρ

∣∣∣
S
. This system is hyperbolic. The eigenvalues

and eigenvectors are

λ1 = u− c, λ2 = u, λ3 = u+ c,

r1 =

 ρ
−c
0

 , r2 =

−PS

0
c2

 , r3 =

ρc
0

 ,
ℓ1 = [c,−ρ, PS

c
], ℓ2 = [0, 0, 1], ℓ3 = [c, ρ,

PS

c
].

173

Note that

∇λ1 · r1 =
1

c
(
1

2
ρPρρ + c2) > 0,

∇λ3 · r3 =
1

c
(
1

2
ρPρρ + c2) > 0,

∇λ2 · r2 ≡ 0.

These show that the 1st and 3rd characteristic fields are genuinely nonlinear, while the 2nd
is linearly degenerate.

Rarefaction curves The rarefaction curve R1 is the integral curve of the vector field r1,
that is, (dρ, du, dS)T ∥ r1. Note that ℓ2r1 = 0, ℓ3r1 = 0. Thus, the differential equations for
R1 are govern by {

(dρ, du, dS) · (0, 0, 1) = 0
(dρ, du, dS) · (c, ρ, PS

c
) = 0.

=⇒
{
dS = 0
cdρ+ ρdu+ PS

c
dS = 0

Thus, R1 can be expressed as {
dS = 0
c
ρ
dρ+ du = 0

Similarly, R3 is expressed as {
dS = 0
c
ρ
dρ− du = 0.

Since S = S0, a constant, on R1 and R3, it is convenient to project the rarefaction curves
R1 and R3 onto the u-P plane. The rarefaction curves R1 and R3 are given by{

R1 : u− u0 = −ℓ+ ℓ0
R3 : u− u0 = ℓ− ℓ0.

where
ℓ(P, S) :=

ˆ
c(ρ, S)

ρ
dρ.

Below, we express ℓ in terms of (P, S). From P = A(S)ργ, c =
√
Pρ =

√
A(S)γργ−1, we

obtain

ℓ :=

ˆ
c

ρ
dρ =

√
γA(S)

2

γ − 1
ρ

γ−1
2 =

2

γ − 1

√
γP

ρ
.

Note that
Pρ−γ = A(S) = A(S0) = P0ρ

−γ
0 .

174

We can express ρ in terms of P, P0, ρ0:

ρ−1 = ρ−1
0

(
P0

P

)1/γ

.

Hence,

ℓ− ℓ0 =
2

γ − 1

√γP

(
P0

P

)1/γ

ρ−1
0 −

√
γP0

ρ0

=

2
√
γ

γ − 1
ρ
− 1

2
0 P

1
2γ

0 (P
γ−1
2γ − P

γ−1
2γ

0) := ψ0(P).

.·. R1 : u = u0 − ψ0(P)

R3 : u = u0 + ψ0(P).

Figure 6.2: The integral curve of the rarefaction curves R1 and R3 on the u-P plane. Here
(u0, P0) is a left state. For any point (u1, P1) on R+

1 , ((u0, P0), (u1, P1)) forms a 1-rarefaction
wave. Note that the entropy S = S0 along a rarefaction curve.

The contact discontinuity On R2, (dρ, du, dS) ⊥ ℓ1, ℓ3, which gives

=⇒
{
c2dρ+ cρdu+ PSdS = 0
c2dρ− cρdu+ PSdS = 0

=⇒
{
dP + cρdu = 0
dP − cρdu = 0

Thus, R2 is given by {
dP = 0
du = 0

For any (u1, P1) ∈ R2, we have u1 = u0, P1 = P0, and ((u0, P0, S0), (u0, P0, S1)) constitutes
a contact discontinuity.

Note thatR2 = S2 because the 2-characteristic field is linearly degenerate. You can check
the jump conditions for the 2-characteristic field. Which gives ρ0(u0 − σ) = ρ(u − σ) = 0
because u0 = u = σ, and P = P∗. (see the paragraph of shock curves below.)

175

Shock curves Let us consider a 1-shock (resp. 3-shock) with left state (resp. right state)
(0) := (ρ0, u0, P0) and shock speed σ. We want to find the shock curves S1 (resp. S3)
passing through the state (0). Indeed, we want to have expressions of S1 (resp. S3) on the
u-P plane.

Let v := u− σ. The jump conditions give
[ρv] = 0
[ρv2 + P] = 0
[(1

2
ρv2 + ρe+ P)v] = 0.

Let
m := ρv.

From the first jump condition, we have

m = m0.

The second jump condition is

ρ0v
2
0 + P0 = ρv2 + P =⇒ mv0 + P0 = mv + P.

This gives
m = −P − P0

v − v0
= − P − P0

mV −mV0
,

where V = 1
ρ
is the specific volume. Note that m ̸= 0. ∗

.·. m2 = −P − P0

V − V0
, v − v0 = −

P − P0

m

These give
(u− u0)2 = (v − v0)2 = −(P − P0)(V − V0). (6.34)

The third jump condition is(
1

2
ρ0v

2
0 + ρ0e0 + P0

)
v0 =

(
1

2
ρv2 + ρe+ P

)
v.

We want to remove the kinetic energy part and only remain an internal energy relation.
From ρ0v0 = ρv, we get

1

2
v20 + e0 + P0V0 =

1

2
v2 + e+ PV.

By v20 = m2V 2
0 , v

2 = m2V 2, and m2 = −P−P0

V−V0
, we arrive at

H(P, V) := e− e0 +
P + P0

2
(V − V0) = 0

∗The case m = 0 corresponds to the contact discontinuity.

176

Using e = PV
γ−1

, we get

PV

γ − 1
− P0V0
γ − 1

+ (
P + P0

2
)(V − V0) = 0.

We use this equation to express V in terms of P, P0, V0:

V =

(
P+P0

2

)
V0 +

P0V0

γ−1

P+P0

2
+ P

γ−1

then plug it into
(u− u0)2 = −(P − P0)(V − V0).

We get an expression of S1 and S3 on the u-P plane:

S1 : u = u0 − ϕ0(P)

S3 : u = u0 + ϕ0(P)

ϕ0(P) = (P − P0)

√√√√ 2
γ+1

V0

P + γ−1
γ+1

P0

=
(P − P0)

Z0

,

Z0 =

√
P0

V0
Φ

(
P

P0

)
, Φ(w) =

√
γ + 1

2
w +

γ − 1

2
.

Admissible rarefaction curves and shock curves On R1, only the portion where λ1
is increasing is admissible, because the rarefaction fan requires the characteristic speed of
the left end of the fan should be smaller than that of the right end of the fan. Therefore, we
define the admissible rarefaction curves and shock curves for the left state (ℓ) as

R+
1 (ℓ) = u0 − ψ0(P) for P < P0

S−
1 (ℓ) = u0 − ϕ0(P) for P > P0

and the admissible rarefaction curves and shock curves for the right state (r) as

R−
3 (r) = u0 + ψ0(P) for P < P0

S+
3 (r) = u0 + ϕ0(P) for P > P0.

The admissible wave curves are defined to be

T
(ℓ)
1 := R+

1 (ℓ) ∪S−
1 (ℓ)

T
(r)
3 := R−

3 (r) ∪S+
3 (r).

177

Figure 6.3: The admissible rarefaction curves and shock curves on the u-P plane with
left/right states.

Solving Riemann problems Now we are ready to solve the Riemann Problem with initial
states (ρL, PL, uL) and (ρR, PR, uR). The solution to this Riemann problem consists of three
elementary waves:

1-wave :((ρL, PL, uL), (ρI , PI , uI)),

2-wave :((ρI , PI , uI), (ρII , PII , uII)),

3-wave :((ρII , PII , uII), (ρR, PR, uR)).

Figure 6.4: The three elementary waves with the left state (ρL, PL, uL) and the right state
(ρR, PR, uR). The states (ρI , PI , uI) and (ρII , PII , uII) are called the mid states, which forms
a contact discontinuity.

Recall that the second wave is a contact discontinuity, on which [u] = 0, [P] = 0. Thus, we
have

uI = uII = u∗,

PI = PII = P∗.

178

Finding the mid states (u∗, P∗) Given a left state UL := (ρL, PL, uL) and a right state
UR := (ρR, PR, uR), we want to find two mid states UI and UII such that (UL, UI) forms an
1-wave, and (UII , UR) forms a 3-wave and (UI , UII) forms a 2-wave. From the jump condition
of the 2-wave, we have UI = (ρI , P∗, u∗) and UII = (ρII , P∗, u∗). With this, then ρI and
ρII can be determined the equation on T (ℓ)

1 (UL) and T (r)
3 (UR), respectively. The mid state

(u∗, P∗) is the intersection of T (ℓ)
1 (UL) and T (r)

3 (UR) on the u-P plane.
Godunov gives a procedure to find the mid state (u∗, P∗). The algorithm to find P∗ is to

solve

uL − fL(P) = uI = uII = uR + fR(P)

f0(P) =

{
ψ0(P) P < P0

ϕ0(P) P ≥ P0
0 = L, or R.

This is equivalent to {
−ZL(u∗ − uL) = P∗ − PL

ZR(u∗ − uR) = P∗ − PR,
(6.35)

where
ZL =

√
PL

VL
Φ

(
P∗

PL

)
, ZR =

√
PR

VR
Φ

(
P∗

PR

)
and

Φ(w) =

√

γ+1
2
w + γ−1

2
w > 1 (shock),

γ−1
2
√
γ

1−w

1−w
γ−1
2γ

w ≤ 1 (rarefaction).

System (6.35) is an equation for (u∗, P∗). It can be solved by Newton’s method.
The state ρII can be obtained from (ρR, pR, uR) and (u∗, P∗) by similar way.

Figure 6.5: This is a solution of the Riemann problem with pL < pR. In this case, from the
left state (ℓ), we follow S−

1 ; and from the right state (r), we follow R−
3 . Their intersection

gives the mid state (u∗, P∗).

179

Wave structures Given (ρL, PL, uL) and (ρR, PR, uR). Let us define

• raref := 2
γ−1

cL

(
1−

(
pR
pL

) γ−1
2γ

)
,

• shk := cL

(
PR

PL
− 1
)√

2

γ
(
(γ−1)+(γ+1)

PR
PL

) ,
• du := uR − uL.

We have the following cases:

(1) (PR < PL) & (du ≥ raref) or (pR ≥ PL) & (du ≥ shk) ⇒ R1 +R3.

(2) (pR ≥ PL) & (−shk < du < shk) ⇒ S1 +R3

(3) (pR < PL) & (−shk < du < shk) ⇒ R1 + S3

(4) (PR < PL) & (du ≤ −raref) or (pR ≥ PL) & (du < −shk) ⇒ S1 + S3.

Note that the transition from (1) to (2) (i.e. R1+R3 to S1+R3 happens when the left state
(ℓ) ∈ R−

3 (r).
Once (u∗, P∗) is found, the full mid state can be obtained by the follows:

• If the 1-wave is a rarefaction wave, then ρI can be determined by

P∗ρ
−γ
I = A(SI) = A(SL) = PLρ

−γ
L

In the region: λ1(UL) < x/t < λ1(UI), the state U = (ρ, u, SL) is determined by{
u− c = x

t

u− uL = ϕL(P).

• If the 1-wave is a shock, then 1/ρI = VI can be determined by

(u∗ − uL)2 = −(P∗ − PL)(VI − VL).

The vacuum State The mid state should satisfy P∗ > 0. There are situations that the
mid state P∗ < 0. In such cases, we say the mid state contains a vacuum state. The
intersections of the admissible wave curves and the axis where P = 0 are the vacuum states.
Usually, this happens when the two sides of gases running in opposite directions too fast.

180

Figure 6.6: The vacuum state appears when P∗ < 0.

181

182

Chapter 7

Finite Difference/ Finite Volume
Methods for Hyperbolic Conservation
Laws

7.1 General theory of finite difference methods for hy-
perbolic conservation laws

The important issues of FD schemes for hyperbolic conservation laws are

• Upwinding,

• Interpolating functions with discontinuities,

• Conservative.

7.1.1 Some problems in FD schemes for conservation laws
We list common problems for FD schemes for hyperbolic conservation laws.

• Stability issue First of all, we should keep in mind that local stability is necessary in
designing finite difference schemes for hyperbolic conservation laws. The scheme has
to be stable for hyperbolic conservation laws with frozen coefficients, see Section 5.4.
In particular, the CFL condition should be satisfied.
Stability

• Spurious oscillation appears around discontinuities in every high order
schemes.. The reason is that the solution of finite difference scheme is closer to a PDE
with higher order derivatives. The corresponding dispersion formula demonstrates that
oscillation should occur. Also, one may view that it is incorrect to approximate weak

183

derivative at discontinuity by higher order finite differences. The detail spurious struc-
ture can be analyzed by the study of the discrete traveling wave corresponding to a
finite difference scheme.
To cure this problem, we have to lower the order of approximation near discontinuities
to avoid oscillation. We shall devote to this issue later.
A scheme cannot be high order near discontinuities

• The approximate solutions may converge to a function which is not a weak
solution. For example, let us apply the Courant-Isaacson-Rees (C-I-R) method to
compute a single shock for the inviscid Burgers equation:

ut + uux = 0.

The C-I-R method is based on characteristic method. Suppose we want to update the
state Un+1

j . We draw a characteristic curve back to time tn. However, the slope of the
characteristic curve is not known yet. So, let us approximate it by Un

j . Then we apply
upwind method:

Un+1
j − Un

j =

{
∆t
∆x
Un
j (U

n
j−1 − Un

j) if Un
j ≥ 0

∆t
∆x
Un
j (U

n
j − Un

j+1) if Un
j < 0

Now, we take the following initial data:

U0
j =

{
1 for j < 0
0 for j ≥ 0

It is easy to see that Un
j = U0

j . This is a wrong solution. The reason is that we use a
wrong characteristic speed Un

j when there is a discontinuity passing xj from tn to tn+1.
To resolve such a problem, it is advised that one should use a conservative scheme.
We shall discuss this issue in the next section.
The scheme is not conservative.

• The approximate solutions converge to a weak solution, but not an entropy
solution. For example, consider the inviscid Burgers equation ut + uux = 0 with the
initial data:

U0
j =

{
−1 for j < 0
1 for j ≥ 0

We define the scheme by

Un+1
j = Un

j +
∆t

∆x
(F (Un

j−1, U
n
j)− F (Un

j , U
n
j+1))

where
F (U, V) =

{
f(U) if U + V ≥ 0
f(V) if U + V < 0

We find that F (Un
j , U

n
j+1) = F (Un

j−1, U
n
j). Thus, the solution is Un

j = U0
j for all n > 0.

This is a non-entropy solution.
Need entropy satisfying numerical flux.

184

7.1.2 Conservative schemes
1. Conservative schemes A finite difference scheme is called conservative if it can be

written as

Un+1
j = Un

j +
∆t

∆x

(
F

n+1/2
j−1/2 − F

n+1/2
j+1/2

)
(7.1)

where F n+1/2
j+1/2 is called a numerical flux. The advantage of this formulation is that the

total mass is conservative: ∑
j

Un
j =

∑
j

Un+1
j (7.2)

2. Numerical fluxes There is a nice interpretation of F if we view Un
j as an approxi-

mation of the cell-average of the solution u over the cell (xj−1/2, xj+1/2) at time step n.
Let us integrate the conservation law ut + f(u)x = 0 over the box: (xj−1/2, xj+1/2) ×
(tn, tn+1). Using divergence theorem, we obtain

ūn+1
j = ūnj +

∆t

∆x
(f̄

n+1/2
j−1/2 − f̄

n+1/2
j+1/2) (7.3)

where

ūnj =
1

∆x

ˆ xj+1/2

xj−1/2

u(x, tn) dx

f̄
n+1/2
j+1/2 =

1

∆t

ˆ tn+1

tn

f(u(xj+1/2, t)) dt.

Thus, in a conservative scheme (7.1), we may view

• Un
j as an approximation of the cell average ūnj and

• F
n+1/2
j+1/2 as an approximation of the flux average f̄n+1/2

j+1/2 .

This formulation is closer to the original integral formulation of conservation laws, and
it does not involve derivatives of the unknown quantity u.

3. Consistency A conservative scheme is consistent if Fj+1/2(U) = f(u), where U is a
vector with Uj = u. For explicit scheme, Fj+1/2 is a function of Un

j−ℓ+1, · · · , Un
j+m.

That is
F

n+1/2
j+1/2 = F (Un

j−ℓ+1, · · · , Un
j+m).

We usually assume that the function F is a Lipschitz function.
An advantage of conservative schemes is the following Lax-Wendroff theorem. Which
says that its approximate solutions, if converge, must to a weak solution.

4. Conservative schemes guarantee weak solutions

185

Theorem 7.1 (Lax-Wendroff). Suppose {Un
j } be the solution of a conservative scheme

(7.1). Define u∆x := Un
j for [xj−1/2, xj+1/2) × [tn, tn+1). Suppose u∆x is uniformly

bounded and converges to u almost everywhere. Then u is a weak solution of (6.5).

Proof. Let ϕ be a smooth test function with compact support on R × [0,∞). We
multiply (7.1) by ϕn

j and sum over j and n to obtain
∞∑
n=0

∞∑
j=−∞

ϕn
j (U

n+1
j − Un

j) =
∆t

∆x

∞∑
n=0

∞∑
j=−∞

ϕn
j [Fj−1/2(U

n)− Fj+1/2(U
n)]

Using summation by part, we obtain
∞∑

j=−∞

ϕ0
jU

0
j +

∞∑
n=1

∞∑
j=−∞

(ϕn
j − ϕn−1

j)Un
j +

∞∑
n=0

∞∑
j=−∞

(ϕn
j+1 − ϕn

j)Fj+1/2(U
n) = 0

Since ϕ is of compact support and u∆x, hence F (Un), are uniformly bounded, we obtain
the convergence in the above equation is uniformly in j and n. If (xj, tn)→ (x, t), then
from the consistency condition, Fj+1/2(U

n) → f(u(x, t)). We obtain that u is a weak
solution.

5. Examples Below, we show that many scheme can be written in conservation form.
We may view F

n+1/2
j+1/2 as a numerical flux at xj+1/2 between tn and tn+1. All schemes

below have the form:

Un+1
j = Un

j +
∆t

∆x

(
F

n+1/2
j−1/2 − F

n+1/2
j+1/2

)
(7.4)

(a) Lax-Friedrichs:
F

n+1/2
j+1/2 = FLF (U

n
j , U

n
j+1) (7.5)

where
FLF (U, V) =

1

2
(f(U) + f(V) + α(U − V)) . (7.6)

The constant α > 0 is chosen so that the eigenvalues

|f ′(u)| ≤ α.

(b) Godunov scheme:
F

n+1/2
j+1/2 = FG(U

n
j , U

n
j+1). (7.7)

where
FG(U, V) = f(Ū), Ū = Riemann solution(U,V)(0). (7.8)

For scalar cases, we claim that

FG(U, V) =

{
minU≤u≤V f(u) if U ≤ V
maxV≤u≤U f(u) if V < U.

186

Let us prove this result only for the case U ≤ V . Suppose Ū ∈ (U, V). If the
solution to the Riemann problem is a rarefaction wave and across x/t = 0, then
f ′(Ū) = 0 because it is the solution on the x/t = 0 = f ′(Ū). The state Ū must be
a local minimum of f(u) because the wave structure near x/t = 0 is a rarefaction
fan across x/t = 0, where f ′(u) is increasing near Ū . For other cases, we have
either Ū = U or Ū = V . You can check that the above formula for FG is valid.

(c) Two-step Lax-Wendroff:

U
n+1/2
j+1/2 =

Un
j + Un

j+1

2
+

∆t

2∆x

[
f(Un

j)− f(Un
j+1)

]
,

F
n+1/2
j+1/2 = f(U

n+1/2
j+1/2).

Note that the state Un+1/2
j+1/2 is the solution obtained by the Lax-Friedrichs scheme

with ∆t/2 and ∆x/2. The Lax-Wendroff scheme is 2nd order accurate.
(d) MacCormack:

U∗
j = Un

j +
∆t

∆x

(
f(Un

j)− f(Un
j+1)

)
F

n+1/2
j+1/2 =

1

2

(
f(Un

j+1) + f(U∗
j)
)
.

The MacCormick method is a two-step method. In the first step, the prediction
step, it is an upwind method if f ′(u) > 0, or it is a downwind method if f ′(u) < 0.
In the upwind case, it contains an advection + a diffusion. The second step, a
correction step, which removes this numerical diffusion. In the downwind case, it
contains an advection + an anti-diffusion, which is removed in the second step.
Note that we can switch the indices (j − 1) and (j +1) in the above formulation.
Namely,

U∗
j = Un

j +
∆t

∆x

(
f(Un

j)− f(Un
j−1)

)
F

n+1/2
j+1/2 =

1

2

(
f(Un

j−1) + f(U∗
j)
)
.

Homeworks 7.1. 1. Construct an example to show that the Lax-Wendroff scheme may
produce non-entropy solution.

2. Find the modified equation for the MacCormack scheme for the linear advection equa-
tion.

7.1.3 Monotone schemes and entropy-satisfying schemes
1. Definition of Monotone schemes

187

Definition 7.1. A FD scheme expressed as

Un+1
j = G(Un

j−ℓ, · · · , Un
j+m) (7.9)

is called a monotone scheme if
∂G

∂Uj+k

≥ 0, k = −ℓ, · · · ,m. (7.10)

Note that we still need to require the consistency condition:

U = G(U, ..., U).

2. Conditions of monotone schemes in flux form Let us consider the conservative
schemes:

Un+1
j = Un

j +
∆t

∆x

(
F (Un

j−1, U
n
j)− F (Un

j , U
n
j+1

)
= G(Un

j−1, U
n
j , U

n
j+1). (7.11)

We want to find the conditions on F so that the corresponding scheme is monotone.
Note that

∂G

∂Uj−1

≥ 0⇔ ∂F (U, V)

∂U
≥ 0,

∂G

∂Uj+1

≥ 0⇔ ∂F (U, V)

∂V
≤ 0,

Thus, F is increasing in the first argument and decreasing in the second argument.
We denotes this as F (↑, ↓). Usually, the condition ∂G

∂Uj
≥ 0 corresponds to the CFL

condition for the scheme (7.11). In the above schemes,

• Lax-Friedrichs flux:

FLF (U, V) =
1

2
(f(U) + f(V) + α(U − V)) , |f ′(u)| ≤ α.

We see that the condition |f ′(u)| ≤ α is equivalent to FLF (↑, ↓). The scheme is

G(Uj−1, Uj, Uj+1) = Uj +
∆t

∆x
[F (Uj−1, Uj)− FLF (Uj, Uj+1)]

= Uj +
∆t

∆x

[
1

2
(f(Uj−1) + f(Uj) + α(Uj−1 − Uj))−

1

2
(f(Uj) + f(Uj+1) + α(Uj − Uj+1))

]
= Uj +

∆t

2∆x
[(f(Uj−1)− f(Uj+1) + α(Uj−1 − 2Uj + Uj+1)]

The condition ∂G
∂Uj
≥ 0 is equivalent to

1− ∆t

∆x
α ≥ 0.

188

We see that the best choice of α is

α = max |f ′(u)|.

For such a choice, the above condition is equivalent to the CFL condition. If we
choose larger α, then the scheme has stronger numerical diffusion. The forward
Euler method for such diffusion equation, a stability condition is needed. The
condition 1− ∆t

∆x
α ≥ 0 gives such stability constraint.

Note that the flux f can be decomposed into upwind and downwind part:

f(u) = f+(u) + f−(u),

f±(u) :=
1

2
(f(u)± αu) , |f ′(u)| ≤ α.

The eigenvalues of f+ are all non-negative, whereas the eigenvalues of f− are all
non-positive. The Lax-Friedrichs flux can be expressed as

FLF (U, V) =
(
f+(U) + f−(V)

)
.

• Godunov flux: for scalar,

FG(U, V) =

{
minU≤u≤V f(u) if U ≤ V
maxV≤u≤U f(u) if V < U.

You can show that FG(↑, ↓).
For system,

FG(U, V) = f(Ū),

where Ū is the solution u(x/t)) of the Riemann problem (U, V) on the vertical
line x = 0.

• Kinetic flux:

3. In the case of linear equation, a monotone scheme can be expressed as

Un+1
j =

m∑
k=−ℓ

akU
n
j+k

with ak ≥ 0. The consistency condition gives
∑

k ak = 1. Thus, for linear cases, a
monotone scheme produces Un+1

j as an average of Un
j−ℓ, · · · , Un

j+m. Indeed, monotone
schemes are generalization of such “averaging schemes” for nonlinear cases. A mono-
tone scheme has the following properties: the sup norm is non-increasing, the solution
operator is ℓ1-contraction, and the total variation is diminishing. To be precise, let us
define the following norms for U = {Uj}:

|U |∞ = sup
j
|Uj|

189

∥U∥1 =
∑
j

|Uj|∆x

T.V.(U) =
∑
j

|Uj+1 − Uj|.

4. Properties of monotone schemes We have the following theorem.

Theorem 7.2. For a monotone scheme (7.9), we have

(a) ℓ∞- bound:
|Un+1|∞ ≤ |Un|∞

(b) ℓ1-contraction: if U , V are two solutions of (7.1), then

∥Un+1 − V n+1∥1 ≤ ∥Un − V n∥1 (7.12)

(c) total variation diminishing:

T.V.x(U
n+1) ≤ T.V.x(U

n) (7.13)

(d) boundedness of total variation: there exists a constant C such that

T.V.x,t(U) ≤ C. (7.14)

Proof. (a)

Un+1
j = G(Un

j−ℓ, · · · , Un
j+m)

≤ G(maxUn, · · · ,maxUn)

= maxUn ∵ consistency

Hence, we have maxUn+1 ≤ maxUn. Similarly, we also have minUn+1 ≥ minUn.
(b) Let us denote the vector (Un

j) by Un and express scheme (7.9) in operator form:

Un+1 = G(Un).

The notations:
• U ≤ V means that Uj ≤ Vj for each j.
• U ∨ V for the vector (max{Uj, Vj}).
• The monotonicity reads G(U) ≤ G(V) if U ≤ V.

(c) Clearly we have G(U ∨ V) ≥ G(V). Hence,

(G(U)−G(V))+ ≤ ((G(U ∨ V)−G(V))+ = G(U ∨ V)−G(V).

190

We take summation in j, and use conservative property ofG, namely,
∑

j(G(U))j =∑
j Uj, we obtain∑

j

(G(U)−G(V))+j ≤
∑
j

((U ∨ V)− V)j =
∑
j

(U − V)+j .

Similarly, we have ∑
j

(G(V)−G(U))+j ≤
∑
j

(V − U)+j .

Adding these two, we obtain the ℓ1-contraction:∑
j

|G(U)j −G(V)j| ≤
∑
j

|Uj − Vj|.

(d) Suppose Un
j is a solution of (7.9). We take V n

j to be Un
j+1. Then V n

j also satisfies
(7.9). From the ℓ1-contraction property, we have∑

j

|Un+1
j+1 − Un+1

j | ≤
∑
j

|Un
j+1 − Un

j |

This shows the total variation dimishing property of (7.9).
(e) The total variation of U in x, t with 0 ≤ t ≤ T is defined by

T.V.x,t(U) =
N∑

n=0

∞∑
j=−∞

[
|Un

j+1 − Un
j |

∆x
+
|Un+1

j − Un
j |

∆t

]
∆x∆t

=
N∑

n=0

[
T.V.xU

n∆t+ ∥Un+1 − Un∥L1

]
≤ T.V.xU

0T +
N∑

n=0

∥Un+1 − Un∥L1 .

Here N∆t = T . We claim that ∥Un+1 − Un∥L1 ≤ O(∆t). If so, then we obtain
the result with C ≤ T +NO(∆t) ≤ T +KT for some constant K. Now, we prove
this claim:

∥Un+1 − Un∥L1 =
∑
j

|Un+1
j − Un

j |∆x

=
∑
j

|G(Un
j−ℓ, · · · , Un

j+m)−G(Un
j , · · · , Un

j)|∆x

≤
∑
j

L
(
|Un

j−ℓ − Un
j |+ · · ·+ |Un

j+m − Un
j |
)
∆x

191

≤ L(ℓ+m)T.V.x(U
n)∆x

≤ L(ℓ+m)T.V.x(U
0)
∆t

λ

Here, λ = ∆t/∆x. We have used that G is Lipschitz continuous. Hence, we
conclude

N∑
n=0

∥Un+1 − Un∥L1 ≤ L(ℓ+m)T

λ
T.V.x(U

0).

The boundedness of total variation of U in (x, t) implies that we can substract a
subsequence u∆x which converges in L1. Below, we show that its limit indeed satisfies
entropy condition.

5. Monotone schemes give entropy solutions

Theorem 7.3. The limiting function of an approximate solution constructed from a
monotone scheme satisfies Kruzkov’s entropy condition.

Proof. We choose η = (u − c)+ = u ∨ c − c. The corresponding entropy flux is
q(u) = f(u ∨ c) − f(c). It is natural to choose the numerical entropy flux to be
Q(Uj−ℓ+1, · · · , Uj+m) = F (Uj−ℓ+1 ∨ c, · · · , Uj+m ∨ c)− F (c, · · · , c). We have

(Un+1 ∨ c) = G(Un
j−ℓ, · · · , Un

j+m) ∨G(c, · · · , c)
≤ G(Un

j−ℓ ∨ c, · · · , Un
j+m ∨ c)

= Un
j ∨ c+

∆t

∆x

[
F (Un

j−ℓ ∨ c, · · · , Un
j+m−1 ∨ c)− F (Un

j−ℓ+1 ∨ c, · · · , Un
j+m ∨ c)

]
= Un

j ∨ c+
∆t

∆x

[
Q(Un

j−ℓ, · · · , Un
j+m−1)−Q(Un

j−ℓ+1, · · · , Un
j+m)

]
Multiply this inequality by ϕn

j , sum over j and n, and apply “summation-by-part”,
then take limit ∆t,∆x→ 0. We obtain that u is an entropy solution.

6. Monotone schemes can only be first order.

Theorem 7.4 (Harten-Hyman-Lax). A monotone scheme (7.9) is at most first order.

Proof. We claim that the modified equation corresponding to a monotone scheme has
the following form

ut + f(u)x = ∆t[β(u, λ)ux]x (7.15)
where λ = ∆t/∆x,

β =
1

2λ2

m∑
k=−ℓ

k2Gk(u, · · · , u)−
1

2
f ′(u)2, Gk :=

∂G

∂uk
, (7.16)

192

and β > 0 except for some exceptional cases. Thus, monotone schemes are at most
first order.
To show (7.15), we take Taylor expansion of G about (u0, · · · , u0):

G(u−ℓ, · · · , um) = G(u0, · · · , u0) +
m∑

k=−ℓ

Gk(uk − u0)

+
1

2

m∑
j,k=−ℓ

Gj,k(uj − u0) (uk − u0) +O(∆x)3

= u0 +∆xux

m∑
k=−ℓ

kGk +
1

2
(∆x)2uxx

m∑
k=−ℓ

k2Gk

+
∑
j,k

1

2
(∆x)2u2xjkGj,k +O(∆x)3

= u0 +∆xux

m∑
k=−ℓ

kGk +
1

2
(∆x)2

(
m∑

k=−ℓ

k2Gkux

)
x

+
∑
j,k

1

2
(∆x)2u2x(jk − k2)Gj,k +O(∆x)3

On the other hand,

G(u−ℓ, · · · , um) = u0 + λ(F (ū)− F (T ū))

where ū = (u−ℓ, ·, um−1), T ū = (u−ℓ+1, · · · , um). We differentiate this equation to
obtain

Gk = δ0,k + λ[Fk(ū)− Fk−1(T ū)]

Gj,k = λ[Fj,k(ū)− Fj−1,k−1(T ū)]

We differentiate the consistency condition F (u0, · · · , u0) = f(u0) to obtain

m−1∑
−ℓ

Fk(u0, · · · , u0) = f ′(u0).

Therefore,
m∑

k=−ℓ

Gk = 1

m∑
k=−ℓ

kGk = λ
∑

(Fk − Fk−1)k = −λf ′(u0)

193

∑
j,k

(j − k)2Gj,k = λ
∑

(j − k)2[Gj−1,k−1 −Gj,k] = 0

Using this and the symmetry Gj,k = Gk,j, we obtain∑
j,k

Gj,k(jk − k2) = −
1

2

∑
Gj,k(j − k)2 = 0.

Hence we obtain

G(u−ℓ, · · · , um) = u0 −∆xλf ′(u)ux + (
1

2
∆x)2uxx

∑
k

k2Gk +O(∆x)3

Now, from the Taylor expansion:

u10 = u0 +∆tut +
1

2
(∆t)2utt +O(∆t)3

= u0 −∆tf(u)x + (
1

2
∆t)2[f ′(u)2ux]x +O(∆t)3

Combine these two, we obtain that smooth solution of the finite difference equation
satisfy the modified equation up to a truncation error (∆t)2.
To show β ≥ 0, from the monotonicity Gk ≥ 0. Hence

λ2f ′(u)2 =

(∑
k

kGk

)2

=
(∑

k
√
Gk

√
Gk

)2
≤

∑
k2Gk ·

∑
Gk =

∑
k

k2Gk

The equality holds only when Gk(u, · · · , u) = 0 for all k except 1. This means that
G(uℓ, · · · , um) = u1. This is a trivial case.

7.2 Flux limiter methods
The main idea for flux limiter methods is to add a switch between a low order scheme and a
high order scheme such that the scheme becomes first order near discontinuities and remains
high order in the smooth region. For details, See Flux Limiter (Wiki).

Suppose
FL a lower-order numerical flux
FH a higher-order numerical flux

Define

Fj+ 1
2

= FL
j+ 1

2
+ ϕj+ 1

2
(FH

j+ 1
2
− FL

j+ 1
2
)

194

https://en.wikipedia.org/wiki/Flux_limiter

= FH
j+ 1

2
+ (1− ϕj+ 1

2
)(FL

j+ 1
2
− FH

j+ 1
2
).

Here, ϕj+ 1
2
is a limiter or a switch. It is required such that

• ϕj+ 1
2
∼ 0 (i.e. Fj+ 1

2
∼ FL

j+ 1
2

) near a discontinuity,

• ϕj+ 1
2
∼ 1 (i.e. Fj+ 1

2
∼ FH

j+ 1
2

) in smooth region.

The term FH − FL is an anti-diffusion flux. When ϕ ∼ 1, this term cancels the numerical
diffusion inherited in the lower order flux FL.
Below, we devote to design criteria for ϕj+ 1

2

7.2.1 Total Variation Diminishing (TVD)
In this subsection, we will find a condition on the limiter ϕ so that the resulting scheme is
total variation diminishing (TVD). We consider the linear advection equation

ut + aux = 0, a > 0.

We show the ideas by using

FL
j+ 1

2

= aUj (upwind flux)
FH
j+ 1

2

= aUj +
1
2
a(1− a∆t

∆x
)(Uj+1 − Uj) (2nd order flux).

Note that the FL gives the upwind scheme. It produces a numerical diffusion 1
2
a∆t
∆x

(1− a∆t
∆x

)uxx
term in the modified equation. The higher-order flux contains the anti-diffusion flux:

(FH − FL)j−1/2 − (FH − FL)j+1/2 =
1

2
a(1− a∆t

∆x
) [(Uj − Uj−1)− (Uj+1 − Uj)] ,

which cancels the numerical diffusion produced by the upwind method.
The numerical flux of a flux limiter method is defined as

Fj+ 1
2
= aUj + ϕj+ 1

2

[
1

2
a(1− a∆t

∆x
)(Uj+1 − Uj)

]
, (7.17)

where

ϕj+ 1
2
= ϕ(θj+ 1

2
), θj+ 1

2
:=

Uj − Uj−1

Uj+1 − Uj

.

Theorem 7.5. 1. If ϕ is bounded, then the scheme is consistent.

2. If ϕ(1) = 1, and ϕ is Lipschitz continuous(or C1) at θ = 1, then the scheme is second
order in smooth monoton regions (i.e. u is smooth and ux ̸= 0).

195

3. If 0 ≤ ϕ(θ)
θ
≤ 2 and 0 ≤ ϕ(θ) ≤ 2, then the scheme is total variation diminishing

(TVD).

Proof. 1. Fj+ 1
2
(u, u) = f(u) = au.

2. Hint: Apply truncation error analysis.

3. From (7.17), the next time step Un+1
j is

Un+1
j Un

j +
∆t

∆x

(
Fj−1/2 − Fj+1/2

)
= Un

j + ν(Uj−1 − Uj) +
[
ϕj−1/2

ν

2
(1− ν) (Uj − Uj−1)

]
−
[
ϕj+1/2

ν

2
(1− ν) (Uj+1 − Uj)

]
= Un

j − cnj−1(U
n
j − Un

j−1),

where

cnj−1 = ν +
1

2
ν(1− ν)

(
ϕj+ 1

2
(Un

j+1 − Un
j)− ϕj− 1

2
(Un

j − Un
j−1)

Un
j − Un

j−1

)
, ν =

a∆t

∆x
.

In other words, Un+1
j is the average of Un

j and Un
j−1 with weights (1− cnj−1) and cnj−1.

Un+1
j+1 − Un+1

j = (Un
j+1 − cnj (Un

j+1 − Un
j))− (Un

j − cnj−1(U
n
j − Un

j−1))

= (1− cnj)(Un
j+1 − Un

j) + cnj−1(U
n
j − Un

j−1)

Suppose 0 ≤ cnj ≤ 1 ∀j, n. Then

|Un+1
j+1 − Un+1

j | ≤ (1− cnj)|Un
j+1 − Un

j |+ cnj−1|Un
j − Un

j−1|

∑
j

|Un+1
j+1 − Un+1

j | ≤
∑
j

(1− cnj)|Un
j+1 − Un

j |+
∑

cnj−1|Un
j − Un

j−1|

=
∑
j

(1− cnj)|Un
j+1 − Un

j |+
∑

cnj |Un
j+1 − Un

j |

=
∑
j

|Un
j+1 − Un

j |.

Thus, the computed solution Un
j is total variation diminishing, provided 0 ≤ cnj ≤ 1

for all j, n.
Next, we need to find conditions on ϕ such that 0 ≤ cnj ≤ 1, ∀j, n. Note that the
quantity

ϕj+ 1
2
(Uj+1 − Uj)− ϕj− 1

2
(Uj − Uj−1)

Uj − Uj−1

=
ϕj+1/2

θj+ 1
2

− ϕj−1/2 =
ϕ(θj+ 1

2
)

θj+ 1
2

− ϕ(θj− 1
2
),

196

=⇒ cnj−1 = ν +
1

2
ν(1− ν)

(
ϕ(θj+ 1

2
)

θj+ 1
2

− ϕ(θj− 1
2
)

)
, 0 ≤ ν ≤ 1

Note that 0 < ν ≤ 1. A sufficient condition for (0 ≤ cnj−1 ≤ 1, ∀j) is∣∣∣∣∣ϕ(θj+ 1
2
)

θj+ 1
2

− ϕ(θj− 1
2
)

∣∣∣∣∣ ≤ 2. (7.18)

If 0 ≤ ϕ(θ)
θ
≤ 2, 0 ≤ ϕ(θ) ≤ 2, then (7.18) is valid.

0

1

2

1

ϕ(θ)

θ

ϕ(θ) ≤ 2

ϕ(θ)
θ
≤ 2

2

Figure 7.1: The region in which ϕ(θ) should lie so that the scheme is TVD.

We summarize the criteria of a limiter ϕ(θ):

• ϕ(1) = 1, and ϕ is Lipschitz continuous(or C1) at θ = 1. This gives second scheme in
smooth regions.

• ϕ(0) = 0, ϕ(θ) = 0 for θ < 0. This gives a first order scheme near discontinuities. Note
that if θj+ 1

2
:=

Uj−Uj−1

Uj+1−Uj
< 0, then Uj is a local extremal. In this case, we should set

ϕ(θj+ 1
2
) = 0 to avoid possible spurious oscillations.

• 0 ≤ ϕ(θ)
θ
≤ 2 and 0 ≤ ϕ(θ) ≤ 2. This is a sufficient condition for TVD.

7.2.2 Examples of limiters ϕ(θ)
We list some limiters below. Case 1-3 are second schemes. For more examples of limiters,
see Flux Limiter, (Wiki).

1. ϕLW (θ) = 1. This is the Lax-Wendroff scheme.

197

https://en.wikipedia.org/wiki/Flux_limiter

2. ϕBW (θ) = θ. This is Beam-Warming.

3. Any ϕ between ϕBW and ϕLW with 0 ≤ ϕ ≤ 2, 0 ≤ ϕ(θ)
θ
≤ 2 gives a second order

scheme.

4. Van Leer’s minmod
ϕ(θ) =

θ + |θ|
1 + |θ|

.

It is a smooth limiter with ϕ(1) = 1 and ϕ(0) = 0.

5. Roe’s superbee
ϕ(θ) = max(0,min(1, 2θ),min(θ, 2))

0

1

2

1

ϕ(θ)

θ

Lax-Wendroff

2 0

1

2

1

ϕ(θ)

θ2

Beam-Warming

0

1

2

1

ϕ(θ)

θ2

van Leer’s minmod

0

1

2

1

ϕ(θ)

02

Roe’s superbee

Figure 7.2: The solid lines are the limiters

7.2.3 Extensions
There are two kinds of extensions. One is the case a < 0 , and the other is the linear system
case.

Case: scalar flux with negative characteristic speed For a < 0, we choose ∗

FL
j+ 1

2
=

1

2
(a(Uj + Uj+1)− |a|(Uj+1 − Uj))

∗Let us use f(u) = au. We decompose f(u) = f+(u) + f−(u), where f± = 1
2 (f(u)± |A|u), A = f ′(u).

Then FL(u, v) = f+(u) + f−(v).

198

=

{
aUj if a > 0
aUj+1 if a < 0

FH
j+ 1

2
=

1

2
(a(Uj + Uj+1)− νa(Uj+1 − Uj)) , ν =

a∆t

∆x

Then

Fj+ 1
2

= FL
j+ 1

2
+ ϕj+ 1

2
(FH

j+ 1
2
− FL

j+ 1
2
)

= FL
j+ 1

2
+ ϕj+ 1

2

1

2
(sign(a)− ν)a(Uj+1 − Uj).

Where ϕj+ 1
2
= ϕ(θj+ 1

2
), θj+ 1

2
=

Uj′+1−Uj′

Uj+1−Uj
, and j′ = j − sign(a) = j ± 1.

Linear system case In the linear system case, our equation is

ut + Aux = 0. (7.19)

We can decompose A so that A = RΛR−1 with Λ = diag(λ1, · · · , λn) constituting by A’s
eigenvalues and R = [r1, · · · , rn] being right eigenvectors.That is, Ari = λiri. We know that
Uj+1 − Uj =

n∑
k=1

αj,krk, let

νk = λk
∆t

∆x

θj,k =
αj′,k

αj,k

j′ = j − sign(λk).

Therefore,

FL =
1

2
A(Uj + Uj+1)−

1

2
|A|(Uj+1 − Uj)

FH =
1

2
A(Uj + Uj+1)−

1

2

∆t

∆x
A2(Uj+1 − Uj)

where |A| = R|Λ|R−1. The numerical flux is

Fj+ 1
2
= FL

j+ 1
2
+

1

2

∑
k

ϕ(θj,k)(sign(λk)− νk)λkαj,krk.

7.3 Higher-order Godunov methods
7.3.1 Piecewise-linear reconstruction (MUSCL reconstruction)
(1) Reconstruction

Given cell average {Un
j }, we want to reconstruct a linear function ũ(x, tn) in each cell

(xj− 1
2
, xj+ 1

2
) under following criterions

199

– high order approximation in smooth regions.
– total variation non-increasing

(2) Find edge fluxes:

– Solve a linearized equation in (xj−1/2, xj+1/2) × (tn, tn+1/2) with the linear data
ũ(x, tn) to find the solutions at (xj−1/2+, t

n+1/2) and (xj+1/2−, tn+1/2).
– Solve the Riemann problems and find the Godunov fluxes: define

F
n+1/2
j+1/2 := FG(ũ(xj+1/2−, tn+1/2), ũ(xj+1/2+, t

n+1/2)).

(3) Updating: We use midpoint rule for time integration

Un+1
j = Un

j +
∆t

∆x
[F

n+1/2
j−1/2 − F

n+1/2
j+1/2].

Scalar Case

(1) Reconstruction
Suppose ũ(x, tn) = a+ b(x− xj)+ c(x− xj)2, want to find a, b, c such that the average
of ũ = Uj.

1

∆x

ˆ x
j+1

2

x
j− 1

2

ũ(x, tn) dx = Uj

1

∆x

ˆ x
j− 1

2

x
j− 3

2

ũ(x, tn) dx = Uj−1

1

∆x

ˆ x
j+3

2

x
j+1

2

ũ(x, tn) dx = Uj+1

=⇒ a = Uj, b =
Uj+1 − Uj−1

2∆x
, c = 0

Lemma 7.1. Given a smooth function u(x), let Uj =
1
∆x

´ x
j+1

2
x
j− 1

2

u(x) dx, and let ũ(x) =

Uj+δUj
x−xj

∆x
, δUj = (Uj+1−Uj−1)/2, then |ũ(x)−u(x)| = O(∆x)3 for x ∈ (xj− 1

2
, xj+ 1

2
).

When u has discontinuities or ux changes sign, we need to put a “limiter” to avoid
oscillation of ũ.
Examples of limiters

(a) Minmod limiter:
δUj = minmod(Uj+1 − Uj, Uj − Uj−1), (7.20)

minmod(a, b) :=
{

sign(a)min{|a|, |b|} if a,b have same signs
0 otherwise. (7.21)

200

(b) A shaper minmod:

δUj = minmod(Uj+1 − Uj−1

2
, 2(Uj − Uj−1), 2(Uj+1 − Uj)).

(2) A linear solver for half-time step
Consider the linear advection equation

ut + aux = 0, a ≥ 0,

with linear data

ũ(x, tn) =

{
Uj + δUj

x−xj

∆x
x < xj+ 1

2

Uj+1 + δUj+1
x−xj+1

∆x
x > xj+ 1

2

Then

ũ
n+ 1

2

j+ 1
2

= ũ(xj+ 1
2
− a(t− tn), tn) (a > 0)

= Uj + δUj(xj+ 1
2
− a(tn+ 1

2
− tn)− xj)/∆x

= Uj + δUj(
1

2
− a∆t

2∆x
) let ν =

a∆t

∆x

Fj+ 1
2

= aŨ
n+ 1

2

j+ 1
2

= a(Uj + δUj(
1

2
− ν

2
))

To compare with the TVD scheme (7.17), let δUj = minmod(Uj+1 − Uj, Uj − Uj−1)

Fj+ 1
2

= aUj + (
1

2
− ν

2
)a(Uj+1 − Uj) · ϕj+ 1

2

ϕj+ 1
2

=
minmod(Uj+1 − Uj, Uj − Uj−1)

Uj+1 − Uj

ϕ(θ) =

0 θ ≤ 0
θ 0 ≤ θ ≤ 1
1 θ ≥ 1

, θ =
Uj − Uj−1

Uj+1 − Uj

If a < 0, then

ũ
n+ 1

2

j+ 1
2

= Uj+1 + δUj+1(−
1

2
− a∆t

2∆x
) |a∆t

∆x
| ≤ 1

Fj+ 1
2

= a(Uj+1 + δUj+1(−
1

2
− ν

2
))

This second-order Godunov method reproduces the TVD scheme (7.17).

201

System Case
ut + Aux = 0 (7.22)

(1) Reconstruction
Construct ũ(x, tn) to be a piecewise linear function.

ũ(x, tn) = Un
j + δUn

j (
x− xj
∆x

)

The slope is found by δUn
j = minmod(Uj−Uj−1, Uj+1−Uj). We can write it characteristic-

wisely: let

αL
j,k = ℓk(Uj − Uj−1),

αR
j,k = ℓk(Uj+1 − Uj),

αj,k = minmod(αL
j,k, α

R
j,k).

Then δUj =
∑
αj,krk.

(2) A linear solver for half-time step
We trace back along the characteristic curve to get u in half time step.

u
n+ 1

2

j+ 1
2

=
∑
k

ℓkũ(xj+ 1
2
− λk(tn+

1
2 − tn), tn)rk

=
∑
λk≥0

ℓk(Uj + δUj(
1

2
− νk

2
))rk +

∑
λk<0

ℓk(Uj+1 + δUj+1(−
1

2
− νk

2
))rk

= initial state of Riemann data (Uj, Uj+1)

+
∑
λk≥0

(ℓk(
1

2
− νk

2
)rk)δUj +

∑
λk<0

(ℓk(−
1

2
)− νk

2
)rk)δUj+1.

Another viewpoint. Let un+
1
2

j+ 1
2
,L
be the solution of (7.22) in (xj−1/2, xj+1/2)×(tn, tn+1/2).

The solution at (xj+1/2+, t
n+1/2) is given by

u
n+ 1

2

j+ 1
2
,L

= unj +
∑
λk≥0

ℓkδU
n
j (
xj+ 1

2
− λk∆t

2
− xj

∆x
)rk

= unj +
∑
λk≥0

ℓkδU
n
j (

1

2
− νk

2
)rk

where ℓk, rk are left / right eigenvector, λk is eigenvalue and νk = λk∆t
∆x

.
Similarly, we solve the linearized equation in (xj+1/2, xj+3/2)× (tn, tn+1/2) and gives the
solution at (xj+1/2+, t

n+1/2) as

u
n+ 1

2

j+ 1
2
,R

= unj+1 −
∑
λk<0

ℓkδU
n
j+1(

xj+ 1
2
− λk∆t

2
− xj+1

∆x
)rk

202

= unj+1 −
∑
λk<0

ℓkδU
n
j+1(−

1

2
− νk

2
)rk

Then we solve (7.22) with(un+
1
2

j+ 1
2
,L
, u

n+ 1
2

j+ 1
2
,R
) as the Riemann data. This gives un+

1
2

j+ 1
2

.
Therefore

u
n+ 1

2

j+ 1
2

= u
n+ 1

2

j+ 1
2
,L
+
∑
λk≥0

ℓkδUj+ 1
2
(−
λk

∆t
2

∆x
)rk

= u
n+ 1

2

j+ 1
2
,L
+
∑
λk≥0

ℓkδUj+ 1
2
(−νk

2
)rk

or u
n+ 1

2

j+ 1
2

= u
n+ 1

2

j+ 1
2
,R
−
∑
λk≤0

ℓkδUj+ 1
2
(−νk

2
)rk

or u
n+ 1

2

j+ 1
2

=
U

n+ 1
2

j+ 1
2
,L
+ U

n+ 1
2

j+ 1
2
,R

2
− 1

2

∑
sign(νk)ℓkδUj+ 1

2

νk
2
rk,

where δUj+ 1
2

= U
n+ 1

2

j+ 1
2
,R
− Un+ 1

2

j+ 1
2
,L
.

(3) We adopt the Godunov flux: F n+1/2
j+1/2 = f(U

n+1/2
j+1/2). Thus, the scheme is

Un+1
j = Un

j +
∆t

∆x
(f(U

n+ 1
2

j− 1
2

)− f(Un+ 1
2

j+ 1
2

)).

7.3.2 Approximate Riemann Solvers
A detailed exact and approximate Riemann solver can be found in Toro, Riemann Solvers
and Numerical Methods for Fluid Dynamics, A Practical Introduction.
Some approximate Riemann solvers listed in Wiki.

1. Characteristic Riemann solver Consider the Riemann data (uL, uR). We look for
middle states u0 = uL, u1, ..., un = uR. Suppose uL ∼ uR, the original equation can be
replaced by

ut + A(ū)ux = 0,

where A(u) := f ′(u) and ū = (uL + uR)/2. We will solve this linear hyperbolic
equation with Riemann data (uL, uR). Let λi, ℓi, ri be eigenvalues and eigenvectors of
A(ū). Then the solution of the Riemann problem is self-similar and has the form

u
(x
t

)
= uL +

∑
λi<

x
t

(ℓi · (uR − uL)) · ri.

One severe error in this approximate Riemann solver is that rarefaction waves are
approximated by discontinuities. This will produce non-entropy shocks. This is par-
ticularly serious for Godunov method which uses Riemann solution at x/t = 0. To

203

doi: 10.1007/b79761
doi: 10.1007/b79761
https://en.wikipedia.org/wiki/Riemann_solver#cite_note-3

cure this problem, we expand such a linear discontinuity by a linear fan. Precisely,
suppose λi(ui−1) < 0, λi(ui) > 0, this suggests that there exists rarefaction fan crossing
x
t
= 0. We then expand this discontinuity by a linear fan. At x/t = 0, we thus choose

the mid state um (the solution of Riemann problem at x/t = 0) as

um = (1− α)ui−1 + αui, α =
−λi(ui−1)

λi(ui)− λi(ui−1)
.

2. Roe’s Riemann solver A final remark, the above A(ū) can be replaced by a Roe’s
matrix Ã(uL, uR) in the application of gas dynamics. The matrix Ã(uL, uR) satisfies

• Ã(u, u) = f ′(u),
• f(uR)− f(uL) = Ã(ur − uL),
• Ã is diagonalizable by real eigenvalues with independent eigenvectors.

The advantage of the Roe matrix is that it is exact for shock representation. For gas
dynamics, such Ã exists. Indeed, we can express the conservative vector u (don’t be
mixed up with the velocity u) and the flux vector f(u)

u =

 ρρu
E

 , f(u) =

 ρu
ρu2 + p
(E + p)u

as a quadratic functions of

w := ρ1/2[1, u,H]T , ρH := E + p.

Note that the total energy density E = 1
2
ρ|u|2 + p

γ−1
. The expressions are

u =

 w2
1

w1w2
w1w3

γ
+ γ−1

2γ
w2

2

 , f(u) =

 w1w2
γ−1
γ
w1w3 +

γ+1
2γ
w2

2

w2w3

 .
Then

uR − uL = B̃(wR − wL),

f(uR)− f(uL) = C̃(wR − wL)

and
f(uR)− f(uL) = C̃B̃−1(uR − uL) := Ã(uR − uL),

where

B̃ =

2w̄1 0 0
w̄2 w̄1 0
w̄3

γ
γ−1
γ
w̄2

w̄1

γ

 , C̃ =

 w̄2 w̄1 0
γ−1
γ
w̄3

γ+1
γ
w̄2

γ−1
γ
w̄1

0 w̄3 w̄2

 .
The w̄ := 1

2
(wL + wR). For detail, see Roe’s original paper (1981), “Approximate

Riemann solvers, parameter vectors and difference schemes”. Journal of Computational
Physics. 43 (2): 357–372.

3. Harten-Lax-von Leer (HLL, HLLC) approximate Riemann solver

204

doi:10.1016/0021-9991(81)90128-5
doi:10.1016/0021-9991(81)90128-5
doi:10.1016/0021-9991(81)90128-5

7.4 ENO/WENO schemes
This section is a summary of the following paper:

• Chi-Wang Shu, Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory
Schemes for Hyperbolic Conservation Laws, NASA, ICASE Report, 1997.

Let us consider a system of hyperbolic conservation laws:
ut + f(u)x = 0.

Let us choose an 1D grid {xj+1/2}j∈Z. Let Ij := (xj−1/2, xj+1/2) be the jth cell, xj be the
mid point of Ij and Uj the average of the unknown u on Ij.

The ENO/WENO schemes consists of 3 steps:
• Reconstruction: given {Un

j }j∈Z, reconstruct a piecewise polynomial function ũn(x) =
pj(x) in each cell.

• Numerical flux: choosing an entropy satisfying numerical flux F (u, v).

– Lax-Friedrichs flux: FLF (U, V) = f+(U) + f−(V), where we split the flux f into
f(u) = f+(u) + f−(u), f± := f(u)± αu, |f ′(u)| ≤ α.

– Godunov flux: FG(U, V) = f(Ū), where Ū is the solution to the Riemann problem
(U, V) on the array x/t = 0. We can use an approximate Riemann solver for
finding an approximation of Ū .

– Kinetic flux

• A TVD-ODE solver for updating: generate {Un+1
j }j∈Z by using an ODE solver

for
U̇j =

1

∆x

(
F (ũj−1/2,−, ũj−1/2,+)− F (ũj+1/2,−, ũj+1/2,+)

)
.

The ODE solver is required to be total variation diminishing (TVD). The forward
Euler ODE solver is TVD. The RK2 is a convex combination of two forward Euler
solvers, and thus is a TVD solver.

7.4.1 Reconstruction for smooth functions
Problem Let v(·) be a smooth function. Suppose we are given v̄i := 1

∆x

´ xi+1/2

xi−1/2
v(x) dx, we

would like to find a piecewise smooth function ṽ such that
• ṽ(x) = pi(x) in Ii, a degree k − 1 polynomial

• ¯̃vi = v̄i

• ṽ(x) = v(x) +O(∆xk) in smooth region

• TVB (total variation bounded):
TV (ṽ) ≤ TV (v) +O(∆xk).

205

Method

1. Let V (x) =
´ x
−∞ v(ξ) dξ. Vi+1/2 = V (xi+1/2) =

∑i
j=−∞ v̄j∆xj.

2. Let P be a polynomial of degree k which interpolates V at xi−r−1/2, · · · , xi+s+1/2

(r + s+ 2 = k + 1 points). †

3. Define p = P ′, then

p̄j =
1

∆xj

(
P (xj+1/2)− P (xj−1/2)

)
=

1

∆xj

(
V (xj+1/2)− V (xj−1/2)

)
= v̄j

for j = i− r, ..., i+ s.

4. From interpolation theory,

P (x) = V (x) +O(∆xk+1), p(x)− v(x) = O(∆xk), x ∈ Ii−r, ..., Ii+s.

Exact formula for edge states We are interested to evaluate p(xi+1/2), denoted by vi+1/2,
in terms of v̄i−r, ..., v̄i−r+k:

vi+1/2 = p(xi+1/2) =
k∑

j=0

crj v̄i−r+j.

To find the coefficients crj, j = 0, ..., k, we notice that

1. P has the expression:

P (x) =
k∑

m=0

Vi−r−1/2+mLm(xi−r−1/2,, xi+s+1/2, x),

Lm(xi−r−1/2,, xi+s+1/2, x) =
k∏

l=0,l ̸=m

x− xi−r−1/2+l

xi−r−1/2+m − xi−r−1/2+l

.

The polynomial Lm is the Lagrange interpolation polynomial satisfying Lm(xi−r−1/2+l) =
δml, 0 ≤ l,m ≤ k.

P (x)− Vi−r−1/2 =
k∑

m=0

(Vi−r−1/2+m − Vi−r−1/2)Lm(x)

=
k∑

m=0

m−1∑
j=0

v̄i−r+j∆xi−r+jLm(x).

†Here, the location of the stencil is another degree of freedom. Let us use r to identify the location of
the stencil. Thus, P depends on two parameters: r and k.

206

2. Taking derivative, we obtain p

p(x) =
k∑

m=0

m−1∑
j=0

v̄i−r+j∆xi−r+jL
′
m(x).

3. Evaluate p(x) at xi+1/2, we obtain

vi+1/2 = p(xi+1/2) =
k−1∑
j=0

crj v̄i−r+j,

crj =

 k∑
m=j+1

∑k
l=0
l≠m

∏k
q=0

q ̸=m,l

(
xi+1/2 − xi−r+q−1/2

)
∏k

l=0
l ̸=m

(
xi−r+m−1/2 − xi−r+l−1/2

)
∆xi−r+j.

For uniform grid,

crj =

 k∑
m=j+1

∑k
l=0
l ̸=m

∏k
q=0

q ̸=m,l
(r − q + 1)∏k

l=0
l ̸=m

(m− l)

 .

4. Examples: k = 3,

vi+1/2 =
11

6
v̄i+1 −

7

6
v̄i+2 +

1

3
v̄i+3 +O(∆x3),

=
1

3
v̄i +

5

6
v̄i+1 −

1

6
v̄i+2 +O(∆x3)

= −1

6
v̄i−1 +

5

6
v̄i +

1

3
v̄i+1 +O(∆x3)

=
1

3
v̄i−2 −

7

6
v̄i−1 +

11

6
v̄i +O(∆x3).

The set of the grid points used to construct p(x) in Ii is called its stencil, which is

Sk
r (i) := {xi−r, ..., xi−r+k−1}.

In the first example above, the stencil set is S3
−1(i) = {xi+1, xi+2, xi+3}.

Table 2.1 in Shu’s note has more examples for various r and j.

7.4.2 ENO approximation
The ENO approximation uses Newton’s divided differences to represent the interpolation
polynomial P . The construction of the stencil set is by successively adding stencil point
from left or right, which has the smallest divided difference.

207

Table 7.1: The ENO coefficient table

n = 2 n = 3 n = 4 n = 5

j c
(2)
j c

(3)
j d

(3)
j c

(3)
j d

(3)
j c

(4)
j d

(4)
j c

(4)
j d

(4)
j e

(4)
j c

(5)
j d

(5)
j

0 1
2
−1

3
1
2

−1
6

1
4
−1

6
− 1

24
1
24

−1
5

1
20

1 1
2

2
3
−1

2
1
3

1
2

0 0 − 1
12

2
5
− 1

10

2 0 −1
3

1
2

−1
6

−1
4

1
6

1
24

1
24

−1
5

1
20

3 0 0 0 0 1
12

1
12

1
144

1
144

4
5

−1
5

4 0 0 0 0 0 0 0 0 −1
5

1
4

1. Divided Difference In the theory of polynomial interpolation, we have the following
polynomial interpolation represented by the Newton’s divided difference. Let f be a
function and let {xi} be grid points. The Newton’s divided difference is defined as

f [x0] := f(x0)

f [x0, ..., xj] :=
f [x1, ..., xj]− f [x0, ..., xj−1]

xj − x0
.

We notice that

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
→ f ′(x0) as x1 → x0

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
→ f ′′(x0)

2!
as x1, x2 → x0

f [x0, ..., xj] :=
f [x1, ..., xj]− f [x0, ..., xj−1]

xj − x0
→ f (j)(x0)

j!
, as x1, ..., xj → x0.

2. Examples of polynomial approximation

f(x) = f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0) +O(∆x2)

= f(x0) + f [x0, x1](x− x0) +O(∆x2)

= f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) +O(∆x3)

...

3. Representation of polynomial interpolant in terms of divided differences:

Theorem 7.6. Suppose Pk(x) interpolates f at x0, ..., xk. Then Pk can be expressed
as

Pk(x) =
k∑

j=0

f [x0, ..., xj]

j−1∏
m=0

(x− xm). (7.23)

208

Proof by induction. Let Pk−1 interpolates f at x0, ..., xk−1 and Q(x) interpolates V at
x1, ..., xk. Then

Q(x) =
k∑

j=1

f [x1, ..., xj]

j−1∏
m=1

(x− xm) (by induction hypotheses)

Pk(x) = Q(x) +
x− xk
xk − x0

(Q(x)− Pk−1(x)) .

The second line follows from the fact that both sides take same values at x0, ..., xk and
have the same degree k. From this formula and the induction hypothesis, we get the
coefficient of the term

∏k−1
m=0(x− xm) is (f [x1, ..., xk]− f [x0, ..., xk−1])/(xk − x0).

4. ENO reconstruction: ENO scheme is to construct a stencil to determine the poly-
nomial interpolant. Let us use S̄ for the stencil for V and S for the corresponding
stencil v̄. For example, S̄2

0(i) = {xi−1/2, xi+1/2, xi+3/2}, its corresponding stencil for v̄
is S2

0(i) = {xi, xi+1}. In general,

S̄k
r (i) = {xi−r−1/2, ..., xi−r+k−1/2}, Sk

r (i) = {xi−r, ..., xi−r+k−1}, r = 0, ..., k − 1.

• Let us first compute the divided differences of V for degree 1, ..., k using v̄, that
is, V [xi−r, ..., xi−r+k]. Here, we use indices (i− r) and k with fixed i.

• Let us start from S̄1 := {xi−1/2, xi+1/2}. We approximate V by

P 1(x) = V [xi−1/2] + V [xi−1/2, xi+1/2](x− xi−1/2).

• We compare |V [xi−3/2, xi−1/2, xi+1/2]| and |V [xi−1/2, xi+1/2, xi+3/2]|. We add one
side grid point into S̄1 according to
– if |V [xi−3/2, xi−1/2, xi+1/2]| ≤ |V [xi−1/2, xi+1/2, xi+3/2]|, then

S̄2 = S̄1 ∪ {xi−3/2}
P 2 = P 1 + V [xi−3/2, xi−1/2, xi+1/2](x− xi−1/2)(x− xi+1/2),

– If |V [xi−3/2, xi−1/2, xi+1/2]| > |V [xi−1/2, xi+1/2, xi+3/2]|, then

S̄2 = S̄1 ∪ {xi+3/2}
P 2 = P 1 + V [xi−1/2, xi+1/2, xi+3/2](x− xi−1/2)(x− xi+1/2).

• We repeat the above procedure until S̄k, we obtain P k which has degree k. Let
us denote this P k by Pi because the procedure starts from the cell Ii.

• Define pi = Pi
′ and compute

vi−1/2+ = pi(xi−1/2), vi+1/2− = pi(xi+1/2).

5. Properties:

209

• Accuracy: Pi = V (x) +O(∆xk+1) if Ii does not contain a discontinuity.
• Monotonicity: Pi is monotone if Ii does not contain a discontinuity.
• The reconstruction is total variation bounded (TVB), i.e.there exists a function
z which satisfying

z = Pi +O(∆xk+1), TV (z) ≤ TV (V) in Ii.

7.4.3 WENO reconstruction
1. Recall that we have k stencils around a cell Ii:

Sk
r (i) = {xi−r, ..., xi−r+k−1}, r = 0, ..., k − 1.

These produces k approximate values of vi+1/2:

vri+1/2 :=
k−1∑
j=0

crj v̄i−r+j, r = 0, ..., k − 1.

The WENO reconstruction takes a convex combinationof vri+1/2 to a higher order ap-
proximation of v(xi+1/2), provided v is smooth around xi+1/2:

vi+1/2 =
k−1∑
r=0

ωrv
r
i+1/2.

ωr ≥ 0,
k−1∑
r=0

ωr = 1.

2. If v is smooth, then we should choose ωr = dr, where dr are the coefficients such that

vi+1/2 =
k−1∑
r=0

drv
r
i+1/2 = v(xi+1/2) +O(∆x2k−1).

For k = 2, 3,
d0 = 2/3, d1 = 1/3, k = 2,
d0 = 3/10, d1 = 3/5, d2 = 1/10, k = 3.

We always have dr ≥ 0 and
∑k−1

r=0 dr = 1.

3. In the smooth region, we would like to choose

ωr = dr +O(∆xk−1).

This would give

vi+1/2 =
k−1∑
r=0

ωrv
r
i+1/2 = v(xi+1/2) +O(∆x2k−1).

In the non-smooth region, where |vri+1/2| is big, we would like to have ωr ∼ 0.

210

4. Finally, we choose

ωr =
αr∑k−1
s=0

αs, r = 0, ..., k − 1.

αr =
dr

(ε+ βr)2
, ε = 10−6.

The coefficients βr are called a smooth indicators. We require

βr =

{
O(∆x2) in smooth region
O(1) in non-smooth region

This leads to ωr = O(1) in smooth region, and ω = O(∆x4) in non-smooth region.
For k = 2, we choose

β0 = (v̄i+1 − v̄i)2

β1 = (v̄i − v̄i−1)
2 .

For k = 3, βr are chosen as

β0 =
13

12
(v̄i − 2v̄i+1 + v̄i+2)

2 +
1

4
(3v̄i − 4v̄i+1 + v̄i+2)

2 ,

β1 =
13

12
(v̄i−1 − 2v̄i + v̄i+1)

2 +
1

4
(vi−1 − vi+1)

2 ,

β2 =
13

12
(v̄i−2 − 2v̄i−1 + v̄i)

2 +
1

4
(v̄i−2 − 4v̄i−1 + 3v̄i)

2 .

5. The case k = 3 has stencil set S3
r = {xi−r,...,i−r+2}, r = 0, 1, 2. It involves 5 stencil

points {xi−2, xi+2}. Such WENO is called the WENO5.

7.4.4 Finite Volume WENO
The WENO produces an approximation of u at xj+1/2− and xj−1/2+ in cell Ij from the cell
averages {Ūk}. Let us denote them as Uj+1/2±. Then we can use the Lax-Friedrichs flux
FLF , or the Godunov flux FG to compute the flux at xj+1/2. We reach

U̇j =
1

∆x

(
F (Uj−1/2−, Uj−1/2+)− F (Uj+1/2−, Uj+1/2+)

)
.

Let us write this system of ODE by

U̇ = L(U).

This ODE can be solved by RK2:

U (1) = Un +∆tL(Un)

211

Un+1 = Un +
1

2
∆t
(
L(Un) + L(U (1))

)
=

1

2
Un +

1

2
U (1) +

1

2
∆tL(U (1)).

This time-advancing procedure is a convex combination of the forward Euler method. It can
be shown that such a method is TVD if a forward Euler method is TVD.

A TVD-RK3 is given by

U (1) = Un +∆tL(Un)

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tL(U (1))

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tL(U (2)).

This is a convex combination of a sequence of forward Euler methods. It is proven that
there are no further higher-order RK methods that are convex combinations of forward
Euler methods. For higher-order RK methods (which not convex combination of forward
Euler methods) and multistep methods with TVB property, see sections 4.2.1, 4.2.2 of Shu’s
Note.

7.4.5 Finite Difference WENO
1. In the finite difference approach, we discretize the flux derivative by finite difference:

U̇j =
f̂j−1/2 − f̂j+1/2

∆x
= L̂(U). (7.24)

This method is a conservative method.

2. Computing f̂j+1/2(U):

(a) Flux splitting: We split the flux f into two parts: positive and negative fluxes

f(u) = fp(u) + fm(u).

An example is the Lax-Friedrich flux:

fp(u) :=
1

2
(f(u) + αu) , fm(u) :=

1

2
(f(u)− αu)

The coefficient α is chosen such that

max |f ′(u)| ≤ α.

Thus, fp is part of the flux f with positive characteristic speeds.
(b) Given U = (Uj)j∈Z, we evaluate fp

j (U) := fp(Uj) and fm
j (U) := fm(Uj).

212

(c) Using ENO/WENO, we reconstruct fp
j+1/2−(U) from fp

j (U) and fm
j−1/2+(U) from

fm
j (U).

(d) f̂j+1/2(U) = fp
j+1/2−(U) + fm

j+1/2+(U).

3. Use the TVD-RK2 method for temporal discretization:

U (1) = Un +∆tL̂(Un)

Un+1 = Un +
1

2
∆t
(
L̂(Un) + L̂(U (1))

)
=

1

2
Un +

1

2
U (1) +

1

2
∆tL̂(U (1)).

4. Remark. Without the WENO step, the fluxes fp
j+1/2 = fp(Uj) and fm

j+1/2 = fm(Uj+1).

Fj+1/2(Uj, Uj+1) = fp(Uj) + fm(Uj+1)

=
1

2
(f(Uj) + αUj + f(Uj+1)− αUj+1)

Thus, the forward Euler gives

Un+1
j = Un

j +
∆t

∆x

(
Fj−1/2(U

n
j−1, U

n
j)− Fj+1/2(U

n
j , U

n
j+1)

)
= Un

j +
∆t

∆x

[
1

2
(f(Uj−1) + αUj−1 + f(Uj)− αUj)−

1

2
(f(Uj) + αUj + f(Uj+1)− αUj+1)

]
= Un

j +
∆t

2∆x
[f(Uj−1)− f(Uj+1) + α(Uj−1 + Uj+1 − 2Uj)]

This is exactly the Lax-Friedrichs method.
With the WENO interpolation, the limiter of the interpolation is applied to the fluxes,
instead to the state variables. This is the same as the flux limiter methods.

7.4.6 A sample matlab code
A finite difference WENO5-RK3 code for solving the 1D Euler equation is available in
GitHub: WENO5 for 1D gas dynamics.

1. The reconstruction can be applied to

• the conservative quantities: (ρ, ρu, E),
• the characteristic coefficients: ℓi · (ρ, u, S), i = 1, 2, 3

• the primitive variables: (ρ, p, u).

2. The parameters: r = 3, k = 3. The stencils are

S0 = {xi−2, xi−1, xi}, S1 = {xi−1, xi, xi+1}, S2 = {xi, xi+1, xi+2}.

213

https://www.mathworks.com/matlabcentral/fileexchange/56905-weighted-essentially-non-oscillatory-weno-scheme-for-euler

3. The coefficients are

c0,j = [11/6,−7/6, 2/6], c1,j = [2/6, 5/6,−1/6], c2,j = [−1/6, 5/6, 2/6].

The weights are d = [1/10, 6/10, 3/10], ε = 10−6.
The β’s are

β0 =
13

12
(v̄i − 2v̄i+1 + v̄i+2)

2 +
1

4
(3v̄i − 4v̄i+1 + v̄i+2)

2 ,

β1 =
13

12
(v̄i−1 − 2v̄i + v̄i+1)

2 +
1

4
(vi−1 − vi+1)

2 ,

β2 =
13

12
(v̄i−2 − 2v̄i−1 + v̄i)

2 +
1

4
(v̄i−2 − 4v̄i−1 + 3v̄i)

2 .

4. The boundary conditions:

• For the Dirichlet boundary condition, we set the correct boundary state after the
reconstruction step.

• For the wall conditions (Neumann boundary condition),we set the ghost states
before each reconstruction step.

5. The TVD-RK3 updating:

U (1) = Un +∆tL̂(Un)

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tL̂(U (1))

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tL̂(U (2)).

The Sod tube problem is a standard test problem for 1D gas code. It has Riemann initial
data: ρLPL

uL

 =

11
0

 ,
ρRPR

uR

0.1250.1
0

 .
The solution to the Sod shock tube problem is given in Figure 7.3.

7.5 Multidimensions
There are two kinds of methods.

1. Splitting method.

2. Unsplitting method.

We consider two-dimensional case.

214

https://en.wikipedia.org/wiki/Sod_shock_tube

Figure 7.3: The solution to the Sod tube problem. The result was produced by a matlab
program coded by Manuel Diaz, 02.10.2012, NTU Taiwan, and last updated on 06.20.2018,
NHRI Taiwan.

7.5.1 Splitting Method
We start from

ut + Aux +Buy = 0. (7.25)

This equation can be viewed as

ut = (−A∂x −B∂y)u.

Then the solution operator is:
e−t(A∂x+B∂y),

which can be approximate by e−tA∂xe−tB∂y for small t. Let A = −A∂x,B = −B∂y, we have

u = et(A+B)u0.

Consider et(A+B),

et(A+B) = 1 + t(A+ B) + t2

2
(A2 + B2 +AB + BA) + · · ·

215

etB · etA = (1 + tB +
t2

2
B2 + · · ·)(1 + tA+

t2

2
A2 + · · ·)

= 1 + t(A+ B) + t2

2
(A2 + B2) + t2BA+ · · ·

.·. et(A+B) − etB · etA =
t2

2
(AB − BA) +O(t3).

Now we can design splitting method as:
Given {Un

i,j},

1. For each j, solve ut + Aux = 0 with data {Un
j } for ∆t step. This gives Ūn

i,j.

Ūn
i,j = Un

i,j +
∆t

∆x
(F (Un

i−1,j, U
n
i,j)− F (Un

i,j, U
n
i+1,j))

where F (U, V) is the numerical flux for ut + Aux = 0.

2. For each i, solve ut +Buy = 0 for ∆t step with data {Ūn
i,j}. This gives Un+1

i,j .

Un+1
i,j = Ūn

i,j +
∆t

∆y
(G(Ūn

i,j−1, Ū
n
i,j)−G(Ūn

i,j, Ū
n
i,j+1))

The error is first order in time n(∆t)2 = O(∆t).
To reach higher order time splitting, we may approximate et(A+B) by polynomials P (etA, etB)

or rationals R(etA, etB). For example, the Strang splitting (or the Trotter product) is given
by

et(A+B) = e
1
2
tAetBe

1
2
tA +O(t3).

For t = n∆t,

et(A+B)u0 = (e
1
2
∆tAe∆tBe

1
2
∆tA) · · · (e

1
2
∆tAe∆tBe

1
2
∆tA)(e

1
2
∆tAe∆tBe

1
2
∆tA)u0

= e
1
2
∆tAe∆tBe∆tAe∆tBe∆tA · · · e∆tAe∆tBe

1
2
∆tAu0

The Strang splitting is second order.

7.5.2 Unsplitting Methods
The PDE is

ut + f(u)x + g(u)y = 0 (7.26)

Integrate this equation over (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
)× (tn, tn+1). We have

Un+1
i,j = Un

i,j +
∆t

∆x
(f̄

n+ 1
2

i− 1
2
,j
− f̄n+ 1

2

i+ 1
2
,j
) +

∆t

∆y
(ḡ

n+ 1
2

i,j− 1
2

− ḡn+
1
2

i,j+ 1
2

)

216

where

f̄
n+ 1

2

i+ 1
2
,j

=
1

∆t

ˆ tn+1

tn

f(u(xi+ 1
2
, yj, t)) dt

ḡ
n+ 1

2

i,j+ 1
2

=
1

∆t

ˆ tn+1

tn

g(u(xi, yj+ 1
2
, t)) dt.

We consider the second-order Godunov method.
1. Reconstruction

ũ(x, y, tn) = uni,j + δxUi,j(
x− xi
∆x

) + δyUi,j(
y − yj
∆y

) in I = (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
)

For example, δxUi,j = minmod(Ui,j − Ui+1,j, Ui+1,j − Ui,j).

2. We need to solve

ut + Aux +Buy = 0 with data
{
ũ(x, y, tn) for (x, y) ∈ I
0 otherwise

For scalar case, where A = a and B = b, we have

ũ(xj+ 1
2
, yj,

∆t

2
) = Un

i,j +
∑
a>0

δxUi,j(
xi+ 1

2
− a∆t

2
− xi

∆x
) + δyUi,j(

yj − b∆t
2
− yj

∆y
)

= Un
i,j +

∑
a>0

(δxU
n
i,j) · (

1

2
− νx

2
) + (δyU

n
i,j)(−

νy
2
),

where νx = a∆t
∆x
, νy = b∆t

∆y
. For system case, the speeds a and b are replaced by λxk, λ

y
k,

which are the eigenvalues of A and B, respectively.

U
n+ 1

2

i+ 1
2
,L,j

= Un
i,j +

∑
λx
k≥0

(
1

2
− νxk

2
)(ℓxk · δxUi,j)r

x
k +

∑
k

(−ν
y
k

2
)(ℓyk · δyUi,j)r

y
k.

Similarly,

U
n+ 1

2

i+ 1
2
,R,j

= Un
i+1,j +

∑
λx
k<0

(−1

2
− νxk

2
)(ℓxk · δxUi+1,j)r

x
k +

∑
k

(−ν
y
k

2
)(ℓyk · δyUi+1,j)r

y
k

Finally, solve Riemann problem ut + Aux = 0 with data

 U
n+ 1

2

i+ 1
2
,L,j

U
n+ 1

2

i+ 1
2
,R,j

.·. f
n+1/2
i+1/2,j = F (U

n+1/2
i+1/2,L,j, U

n+1/2
i+1/2,R,j).

Similarly, we compute
g
n+1/2
i,j+1/2 = G(U

n+1/2
i,j,L , U

n+1/2
i,j+1/2,R).

3. Updating step:

Un+1
i,j = Un

i,j +
∆t

∆x
(f

n+ 1
2

i− 1
2
,j
− fn+ 1

2

i+ 1
2
,j
) +

∆t

∆y
(g

n+ 1
2

i,j− 1
2

− gn+
1
2

i,j+ 1
2

).

217

7.6 Boundary treatments
7.6.1 1D boundary conditions for hyperbolic conservation laws

1. Let us consider a linear hyperbolic system

ut + A(x)ux = 0 on [a, b].

We need to impose proper boundary conditions in order to determine the solution in
the interior uniquely. Let us discuss the left boundary only. The right boundary can
be treated in a similar way.
At x = a, suppose the eigenvalues of A satisfy

λ1 ≤ · · · ≤ λr < 0 < λr+1 ≤ · · · ≤ λn.

By the method of characteristics, there are r pieces of information that enter the
boundary x = a from the interior. We need to impose n − r boundary conditions to
comprise full information at x = a. The boundary condition has the form:

n∑
k=1

bikuk = di, i = r + 1, ..., n,

The matrix (bik)(n−r)×n has full rank in order to have n − r independent boundary
conditions.
For example, for the linear advection equation

ut + aux = 0, on [0, 1], a > 0.

we should impose u at x = 0. But we can not impose any boundary condition at x = 1
because the value of u at x = 1 is determined from the interior.

2. For nonlinear scalar conservation laws, we need to have consistent boundary conditions.
Let us consider the inviscid Burgers equation

ut + uux = 0, on [0, 1].

At the boundary x = 0, if we impose the value u, then u has to satisfy u > 0. For
example, we can impose boundary condition

u(0, t) = 1, u(1, t) = −1.

This will form a shock wave with speed 0 in the interior. However, depending on the
initial state, the location of this standing shock may or may not stay in the region
[0, 1]. Think what will happen when the shock approaching to the boundary. Another
similar case is

u(0, t) = 3, u(1, t) = −1.

218

The asymptotic shock has speed 2, which will eventually leave the computational
domain [0, 1]. Suppose we want it moves away from the boundary, what should you
do?
Note that we cannot impose a boundary condition u(0, t) with u(0, t) < 0, nor u(1, t) >
0 with u(1, t) > 0, because they are inconsistent to the characteristic direction at the
boundary, that is, we can only impose left boundary condition when λ(u) > 0 and
right boundary condition when λ(u) < 0.
Indeed, if we impose a boundary data u, then the corresponding flux at the boundary
is determined. However, this flux has to be consistent to the flux computed from the
interior.

3. Boundary conditions for the Euler equation. In a finite gas tube, the boundary condi-
tions are classified into

• Inflow boundary condition: we impose ρ, p, u. A consistent condition is

u− c > 0.

With this, all characteristic speeds u− c, u, u+ c are positive, which is consistent
with the three conditions ρ, p, u we impose.

• Outflow boundary condition: if u − c, u, u + c are all positive, then we cannot
impose any more conditions. However, if u − c < 0 but u > 0, then we should
impose one themo condition, say p.

• Wall condition:
u = 0 on the wall.

In this case, we impose a reflection boundary condition. This means that we
take even function reflection for ρ, p, and odd function reflection for u about the
boundary x = 0. The Riemann problem to such reflection states gives correct
boundary state, i.e. u = 0. Thus, the corresponding solution in the extended
domain satisfies the wall condition.

4. General hyperbolic conservation laws: ut + f(u)x = 0. Suppose u has n components.
How many boundary conditions we should impose depending on how many characteris-
tic directions go inward to the interior. At the left boundary, the boundary conditions
look like

bL(u) = 0,

where bL is an (n− r)-valued function, it satisfy the following consistent conditions:

• there are exactly n− r positive characteristic speeds for f ′(u).
• The Jacobian ∂bL

∂u
has full rank.

Alternatively we can use the Riemann problem to count on how many waves move into
the interior to determine the interior states. The boundary condition can be imposed
in terms of the wave strengths of inward waves.

219

7.6.2 Multidimensional boundary conditions for the Euler equa-
tion

Let us consider the 2D case. The unknowns are ρ, p and the velocity v. On the boundary,
let us denote the normal velocity by vn and the tangential velocity by vt.

• Inflow: we impose ρ, p, vn, and set vt = 0.

• Outflow: if the flow is subsonic but vn > 0 at the outlet, we need impose p, which
is set to be the surrounding pressure. If it is supersonic, then we don’t impose any
boundary condition.

• Wall: The condition is
vn = 0.

We extend the domain for few grid points. The extended grids are called ghost grid.
The state at the ghost grid is set to be the reflection of the interior state, which is
ρ, p, vt are even reflection, vn is odd reflection. The Riemann problem to such reflection
states gives correct boundary state, i.e. vn = 0.
In the ENO/WENO methods, we should set the reflection state at the ghost grids
before every ENO/WENO reconstruction steps. For instance, in the splitting methods
using splitting WENO-RK2, during the x-sweeping procedure, there are two recon-
struction steps, one for LUn, one for LU (1), we should determine these ghost states
before the reconstruction steps. There are two such procedures for the x-sweeping, and
another two for the y-sweeping.
However, for the unsplit WENO-RK2, we only need two such reflection procedures.

Project
1. Implement a WENO5 code to solve the Mach reflection problem for gas dynamics.

Imagine a shock impinging a wedge in 2D. We set up initial time is the impinging
moment. Set the tip of the wedge to be the origin. At this moment, the data is
homogeneous in each array from (0, 0). Since the equations and the initial data are
invariant under (x, t) 7→ λ(x, t) for all λ > 0, we expect the solution has the form
U(x/t). We also expect the solution should be symmetric about the axis of the wedge.
Thus, we choose the one wedge side to be the x-axis, the computational domain is
[−2, 5] × [0, 3]. The shock is 60◦ to the bottom wall. A computational result from
Shu’s note is the figure. See

• Sec. 5.1, example 5 of Shu’s note (pp. 57).
• This benchmark problem was proposed in Paul Woodward and Phillip Colella,

The numerical simulation of two-dimensional fluid flow with strong shocks, Jour-
nal of Computational Physics, v54, 1984, pp.115-173.

220

Figure 7.4: Double Mach reflection. The figure is quoted from a Shu’s ENO, WENO note

221

https://www.google.com/search?q=essentially+non-oscillatory+and+weighted+essentially+non-oscillatory+schemes&client=firefox-b-d&ei=7cDVY_bpMY-j1e8Pt--lyA0&oq=Essential+non-oscillatory&gs_lcp=Cgxnd3Mtd2l6LXNlcnAQARgAMgkIABANEIAEEBMyCAgAEB4QDRATMg0IABAFEB4QDRDxBBATOgoIABBHENYEELADOg0ILhANEIAEEMcBEK8BOgYIABAeEA06BAgAEB46CwguEIAEEMcBEK8BOgUIABCABDoLCC4QrwEQxwEQgAQ6CggAELEDEIMBEEM6CwgAEIAEELEDEIMBOggIABCABBCxAzoLCC4Q1AIQsQMQgAQ6CwguEIAEELEDEIMBOgUILhCABDoICAAQsQMQgwE6BAgAEEM6EQguEIAEELEDEIMBEMcBENEDOg0IABCABBCxAxBGEP8BOgcIABAeEPEEOgcIABCABBATOgYIABAeEBM6CQgAEB4Q8QQQEzoGCAAQCBAeOgkIABAIEB4Q8QQ6BQghEKABSgQIQRgASgQIRhgAUMwIWJFlYJZ_aAFwAXgAgAFNiAGGDJIBAjMymAEAoAEByAEBwAEB&sclient=gws-wiz-serp

222

Chapter 8

Finite Element Methods for the
Poisson Equation

8.1 Variational formulation of the Poisson problem
8.1.1 Poisson problems in physics

1. Electric potential induced by charge density: Let ρ(x) be the charge density. It
induces an electric potential in the space. The governing equation is

−△ ϕ = ρ.

If there is a closed conductor with boundary ∂Ω which coberns the support of ρ, then
the boundary condition of ϕ is

∂tϕ = 0.

Or equivalently, ϕ = const. on ∂Ω.

2. Streamline of incompressible flows The incompressible flow satisfies

∇ · v = 0.

The vorticity ω is defined by
∇× v = ω.

Given vorticity field ω, we can recover a stream function by solving

∇× (∇×ψ) = ω.

The streamline is constant on the boundary.

3. Elasticity Let u be the displacement of an elastic material. The infinitesimal strain
corresponding to u is defined as

e := ∇u+ (∇u)T

223

The stress is a response to the strain. For linear material, it is

σ = Ee

The material is under an exterior force f . The force balance equation is

−∇ · σ = f .

There are two kinds of boundary conditions: Dirichlet and Neumann. The boundary
∂Ω = Γ = ΓD ∪ ΓN .

• Dirichlet: u = 0 on ΓD,
• Neumann: σ · ν = t on ΓN . ν is the outer normal of ∂Ω.

4. Heat balance. Let u be the temperature of a material in domain Ω. The variation
of the temperature will induce a heat conduction q defined by

q = κ∇u.

The energy balance equation is
∇ · q = f .

Here, f is the external heat source.

5. Hodge decomposition in differential geometry.

8.1.2 PDE formulation
Consider a domain Ω. The boundary ∂Ω is decomposed into two disjoint boundaries ΓD and
ΓN . The Poisson problem we consider is

−△ u = f in Ω, (8.1)

u = gD on ΓD,
∂u

∂ν
= gN on ΓN . (8.2)

8.1.3 Weak form of the Poisson equation
1. Let us introduce some function spaces.

• L2(Ω) = {f ||
´
Ω
|f(x)|2 dx < ∞}. In L2(Ω), we introduce the inner product

structure:
(f, g) :=

ˆ
Ω

f(x)g(x) dx.

224

• Sobolev spaces:

Hm(Ω) := {f |f, ..., Dαf ∈ L2(Ω), |α| = m}

The index α = (α1, ..., αn) is a multi-index. |α| :=
∑n

i=1 αi. The derivative

Dαf(x) :=
∂|α|f(x)

∂xα1
1 · · · ∂xαn

n

.

In Hm(Ω), we have the inner product structure

(f, g)Hm =
m∑

|α|=0

(Dαf,Dαg).

2. We introduce variational formulation for the Poisson problem (8.1), (8.2) with gD and
gN ≡ 0. First, we introduce the space V

V = {v ∈ H1(Ω) : v|ΓD
= 0}

We take inner product of the Poisson equation with any v ∈ V :

(−△ u, v) = (f, v).

The left-hand side is
(−△ u, v) = a(u, v)−

ˆ
∂Ω

∂u

∂ν
v dS,

where
a(u, v) :=

ˆ
Ω

∇u(x) · ∇v(x) dx

is called the Dirichlet integral. In this step, we have used

−(△u)v = −∇ · (v∇u) + (∇u)(∇v),

and the divergence theorem
ˆ
Ω

∇ · (v∇u) dx =

ˆ
∂Ω

v∇u · ν dS =

ˆ
∂Ω

v
∂u

∂ν
dS.

The boundary term
ˆ
∂Ω

∂u

∂ν
v dS =

ˆ
ΓD

∂u

∂ν
v dS +

ˆ
ΓN

∂u

∂ν
v dS = 0,

because v = 0 on ΓD and ∂u/∂ν = 0 on ΓN .

225

3. Thus, (8.1) (8.2) implies the following variational formulation:

Find u ∈ V such that a(u, v) = (f, v) for all v ∈ V. (8.3)

This is called the weak form of the Poisson equation. Its solution is called a weak
solution to (8.1), (8.2).

4. Strong solution and weak solution. Note that a weak solution is only in H1(Ω), while
a C2 solution of (8.1), (8.2) is called a classical solution. A weak solution in H2(Ω) is
also called a strong solution.

5. Suppose u is a strong solution, then u satisfies (8.1), (8.2).
Proof. We choose those v ∈ V and v|∂Ω = 0. Then u ∈ H2(Ω), v ∈ H1

0 (Ω) and
a(u, v) = (f, v) lead to

(−△ u− f, v) = 0 for all v ∈ H1
0 (Ω).

This implies −△u = f . This together with u|ΓD
= 0, and a(u, v) = (f, v) for all v ∈ V

imply

0 = a(u, v)− (f, v) = (−△ u− f, v) +
ˆ
ΓD

∂u

∂ν
v dS +

ˆ
ΓN

∂u

∂ν
v dS =

ˆ
ΓN

∂u

∂ν
v dS

This implies ∂u/∂ν = 0 on ΓN .

6. General boundary conditions. The variational formulation for general Dirichlet bound-
ary data gD and general Neumann data gN is: define

VgD := {u ∈ H1(Ω), u = gD on ΓD} (8.4)

(V) Find u ∈ VgD such that .a(u, v) = (f, v) +

ˆ
ΓN

gNv dS for all v ∈ V. (8.5)

One can show that this variational formulation is equivalent to the PDE formulation,
provided u ∈ H2(Ω).

7. Existence and uniqueness. The elliptic PDE theory uses coerciveness of a and the
Lax-Milgram theorem (or Riesz representation if a is symmetric) to show the existence
for weak solution. The uniqueness theory can be obtained by energy estimate, or L∞

estimate using the maximal principle.

8. The strong solution is obtain by regularity theorem which shows that u ∈ H2 if f ∈ L2

and ∂Ω ∈ C1.

226

8.1.4 Variational problem as a minimization problem
1. The above variational problem can be thought as a minimization problem. We consider

a functional defined on V by

F (v) :=
1

2
a(v, v)− (f, v)−

ˆ
ΓN

gNv dS :=
1

2
a(v, v)− (f, v)− < gN , v > (8.6)

We look for
(M) min{F (u)|u ∈ VgD} (8.7)

2. We show (M) ⇒ (V). If u is a minimum of F in VgD , then u+ εv ∈ VgD for v ∈ V and

F (u) ≤ F (u+ εv).

Differentiate in ℓ, we get

a(u, v)− (f, v)− < gN , v >= 0.

This shows that (M) ⇒ (V).

3. Next, we show (V) ⇒ (M). For any w ∈ VgD , we have v := u− w ∈ V . Thus,

a(u, v)− (f, v)− < gN , v >= 0.

Now,

F (w)− F (u) = 1

2
(a(w,w)− a(u, u))− (f, w − u)− < gN , w − u >

=
1

2
(a(w,w)− a(u, u))− a(u,w − u)

=
1

2
(a(w,w) + a(u, u)− 2a(u,w))

=
1

2
a(u− w, u− w) ≥ 0.

8.2 1D finite element method
8.2.1 Finite element method

1. Let us consider the Poisson equation in one dimension:

− u′′ = f on (a, b), u(a) = u(b) = 0. (8.8)

We shall find an approximate solution by finite element method.

227

2. First, we discretize the space [a, b] and define the finite element functions. We choose
an n > 0. Let h := (b − a)/n the mesh size, xi = a + ih, i = 0, · · · , n the grid point.
Each cell Ki := (xi, xi+1) is called an element. We consider linear functions P1 in Ki.
There are two such functions: χ0

i = (xi+1 − x)/h and χ1
i := (x − xi)/h, satisfying

χ0
i (xi) = 1 and χ1

i (xi+1) = 1.

3. Define the finite element function ϕi(x) to be ϕi(xj) = δij and ϕ(x) is continuous and
piecewise linear. In cell Ii, ϕi = χi

0, whlle ϕi = χi−1
1 in cell Ii−1.

4. Let
Vh = Span{ϕ1, · · · , ϕn−1}.

It is called the finite element space. An element v ∈ Vh is a continuous and piecewise
linear function and is uniquely expressed by

v(x) =
n−1∑
i=1

v(xi)ϕi(x).

5. Next, we find an approximate solution uh ∈ Vh. We express uh by

uh(x) =
n−1∑
i=1

Uiϕi(x).

We project f onto Vh by

πhf(x) =
n−1∑
i=1

f(xi)ϕi(x).

We project the equation (8.8) onto Vh:

(−u′′ − f, v) = 0, for all v ∈ Vh
This leads to the following equations for U = (U1, · · · , Un−1)

T :

⟨uh, ϕi⟩1 = (f, ϕi), i = 1, · · · , n− 1.

Or
n−1∑
j=1

(ϕ′
i, ϕ

′
j)Uj =

n−1∑
j=1

f(xj)(ϕj, ϕi), i = 1, · · · , n− 1.

6. The matrix A = (ϕ′
i, ϕ

′
j)(n−1)×(n−1) is called the stiff matrix. The matrix M :=

(ϕi, ϕj)(n−1)×(n−1) is called the mass matrix. We compute A and M using the rep-
resentation of ϕi in terms of χi in each cell. Finally, we obtain

A =
1

h
diag(−1, 2,−1), M =

h

6
diag(1, 4, 1).

The FE equation reads
AU =MF.

This can be inverted.

228

Let us consider another boundary condition:

u(a) = 0, u′(b) = ub.

The variational formulation is

a(u, v)− (f, v)− ubv(b) = 0.

The trial and test space
Vh = Span{ϕ1, ..., ϕn}.

The approximate solution is

uh =
n∑

j=1

Ujϕj.

The last row of the stiff matrix is

(ϕ′
n−1, ϕ

′
n) = −1/h, (ϕ′

n, ϕ
′
n) = 1/h.

The last row of the mass matrix is

(ϕn−1, ϕn) =
h

6
, (ϕn, ϕn) =

h

3
.

The last row on the right-hand side is

f(xn)(ϕn, ϕn) + ub.

8.2.2 Error analysis
1. True error is controlled by an approximation error Let u be the exact solution

and eh := u− uh be the true error. Since both u and uh satisfy

(u′, v′) = (f, v), (u′h, v
′) = (f, v) for all v ∈ Vh,

we obtain
(e′h, v

′) = 0 for all v ∈ Vh.
That is, (u − uh) ⊥1 Vh. ∗ This is equivalent to say that uh is the ⟨·, ·⟩1-orthogonal
projection of u on Vh. Thus,

∥u′ − u′h∥2 ≤ ∥u′ − v′∥2 for all v ∈ Vh.

In particular, we can choose v ∈ Vh that equals u at x1, · · · , xn−1. That is,

v = πhu :=
n−1∑
i=1

u(xi)ϕi,

∗We define ⟨u, v⟩1 := (u′, v′). This is an inner product in the space H1
0 (a, b). The zero boundary condition

gives ⟨u, u⟩1 = 0⇒ u = 0.

229

then
∥u′ − u′h∥2 ≤ ∥u′ − (πhu)

′∥2. (8.9)
Thus, the true error is controlled by the approximation error.

2. Approximation error in terms of ∥u′′∥∞
It is easy to see that πh is a projection. If u ∈ C2, then in each cell (xi, xi+1), the
projection error w(x) = u(x) − πhu(x) satisfies w(xi) = w(xi+1) = 0. By applying
Rolle’s theorem twice, we get that for any x ∈ (xi, xi+1), there exists an ξi ∈ (xi, xi+1)
such that

w(x) =
w′′(ξi)

2
(x− xi)(x− xi+1).

This leads to
|w(x)| ≤ h2

8
max

ξ∈(xi,xi+1)
|w′′(ξ)|.

Hence
ˆ b

a

|w(x)|2 dx =
n−1∑
i=0

ˆ xi+1

xi

|w(x)|2 dx

≤
n−1∑
i=0

h

(
h2

8

)2

max
x∈(xi,xi+1)

|w′′(x)|2

≤ (b− a)
(
h2

8

)2

max
x∈[a,b]

|u′′(x)|2.

Here, we have used that w′′(x) = u′′(x) on each subinterval (xi, xi+1). Hence,

∥u− πhu∥2 ≤
√
b− ah

2

8
∥u′′∥∞

We can also estimate u′ − (πhu)
′ by mean value theorem. First, there exists a ζ1 ∈

(xi, xi+1) such that u′(ζ1) = (u(xi+1 − u(xi))/h. For any x ∈ (xi, xi+1), there exists
ζ2 ∈ (xi, xi+1) such that u′(x)− u′(ζ1) = u′′(ζ2)(x− ζ1). Therefore, we get

u′(x)− (πhu)
′(x) = u′(x)− u(xi+1)− u(xi)

h
= u′′(ζ2)(x− ζ1).

Notice that (πhu)′(x) = u(xi+1)−u(xi)
h

for x ∈ (xi, xi+1). Hence, we obtain
ˆ b

a

|u′ − (πhu)
′|2 dx =

n−1∑
i=0

ˆ xi+1

xi

|u′ − (πhu)
′|2 dx

≤
n−1∑
i=0

hh2 max
x∈[a,b]

|u′′(x)|2

= (b− a)h2∥u′′∥2∞

230

3. Approximation error in terms of ∥u′′∥2 The estimate above is in terms of ∥u′′∥∞.
It is desirable to estimate in terms of ∥u′′∥2. That is, we want to estimate ∥u− πhu∥2
in terms of ∥u′′∥2. To do so, we should use the integral representation of error. We
recall that for w(xi) = w(xi+1) = 0, w has the representation:

w(x) = h2
ˆ xi+1

xi

g

(
x− xi
h

,
y − xi
h

)
w′′(y) dy

w′(x) = h

ˆ xi+1

xi

gx

(
x− xi
h

,
y − xi
h

)
w′′(y) dy

where g is the Green’s function of d2/dx2 on (0, 1) with zero boundary condition. That
is,

g(x, y) =

{
−x/2 if x < y
−y + x/2 if x > y

Thus, we can estimate ∥w∥2 in terms of ∥w′′∥2 on (xi, xi+1). Namely,

|w(x)|2 ≤ h4
(ˆ xi+1

xi

|g
(
x− xi
h

,
y − xi
h

)
|2 dy

) (ˆ xi+1

xi

|w′′(y)|2 dy
)
.

ˆ xi+1

xi

|w(x)|2 dx ≤
ˆ xi+1

xi

ˆ xi+1

xi

|g
(
x− xi
h

,
y − xi
h

)
|2 dy dx

ˆ xi+1

xi

|w′′(y)|2 dy

≤ 1

90
h4
ˆ xi+1

xi

|w′′(y)|2 dy.

As we sum over i = 1, · · · , n− 1, we get

∥w∥2 ≤
1√
90
h2∥w′′∥2.

Similarly, we get
∥w′∥2 ≤

1√
6
h∥w′′∥2.

Theorem 8.1. For u ∈ H2(a, b) ∩ H1
0 [a, b], the interpolation error has the following

estimates
∥u− πhu∥2 ≤

1√
90
h2∥u′′∥2,

∥u′ − (πhu)
′∥2 ≤

1√
6
h∥u′′∥2.

4. True error of the finite element method

231

Theorem 8.2. For the finite element method for problem (8.8), the true error u− uh
has the following estimate

∥u′ − u′h∥2 ≤ ∥u′ − (πhu)
′∥2 ≤

1√
6
h∥u′′∥2,

∥u− uh∥2 ≤
1

6
h2∥u′′∥2.

Proof. The first estimate follows from the previous theorem. For the second, the trick
is called a duality argument. Let eh = u − uh. We find the function ϕh such that
ϕ′′
h = −eh and ϕ(a) = ϕ(b) = 0. Then

(eh, eh) = −(eh, ϕ′′
h) = (e′h, ϕ

′
h) = (e′h, ϕ

′
h − (πhϕh)

′).

Here, I have used
(e′h, v

′) = 0 for all v ∈ Ran(πh).
Applying interpolation estimate to ϕh, we get

∥eh∥2 ≤ ∥e′h∥∥(ϕh − πhϕh)
′∥ ≤ 1√

6
∥e′h∥h ∥ϕ′′

h∥ =
1√
6
h∥e′h∥ ∥eh∥

Hence, we get
∥eh∥2 ≤

1√
6
h∥e′h∥2 ≤

1

6
h2∥u′′∥2.

Homeworks
1. The error function w on each interval (xi, xi+1) satisfies w(xi) = w(xi+1) = 0. w can be

estimated in terms of w′′ in (xi, xi+1). This is indeed a generalized Poincaré inequality.
You can get best estimate via Fourier sin expansion. Find the best constant and the
get the best error estimate.

Given x0 < x1 < x2. Let w be a smooth function satisfying w(xi) = 0 for i = 0, 1, 2.
Find an integral representation of w in terms of w′′′ on (x0, x2).

8.3 Finite element methods for the Poisson problem in
2 dimensions

8.3.1 Framework of finite element method
1. Triangulation. This give T = ∪kKk a partition of the domain Ω. The partition

consists of nodal points N = {N1, ..., Np} and triangles K := {K1, ..., Kl}. The nodes
include interior nodes and Neumann boundary nodes, denoted by N i and NN , respec-
tively.

232

2. Delaunay triangulation algorithms: Given a set of points P , the Delaunay trian-
gulation is a triangulation T = ∪Kk such that no point in P is inside the circumcircle
of any triangle in T .

3. Finite Element We associate a triangle K with nodes N := {N1, N2, N3} and piece-
wise linear functions P1 := {χ1, χ2, χ3} such that χi(Nj) = δij. The triple (K,N ,P}
is called a finite element.

4. Nodal function ϕi is a continuous function and ϕi|Kj
is a linear function. Moreover,

ϕi(Nj) = δij.

• Interior nodal functions
• Nodal function on Neumann boundary
• Nodal function near Dirichlet boundary

5. The Finite element space

Vh := Span{ϕ1, ..., ϕp}.

6. Representation of the Poisson equation on Vh: The unknown u is approximated by

uh :=

p∑
i=1

Uiϕi ∈ Vh

The test function v is also in Vh. We will uses basis ϕi, i = 1, ..., p as test functions.
The equation in Vh reads

(

p∑
j=1

Uj∇ϕj,∇ϕi) = (

p∑
j=1

Fjϕj, ϕi) + (
Nn∑
k=1

gN,kϕk, ϕi)

In matrix form:
SU =MF + TG

7. The mass matrix M .

(ϕi, ϕj) =

ˆ
Ω

ϕiϕj dx

=
l∑

k=1

ˆ
Kk

ϕiϕj dx

=
l∑

k=1

ˆ
Kk

(
3∑

m=1

ci,mχk,m(x) ·
3∑

l=1

cjlχk,l(x)) dx

8. The stiff matrix.

233

	Numerical Ordinary Differential Equations
	Finite Difference Approximation
	Simple examples
	General formula for finite difference approximation

	Elementary Numerical Methods for Solving ODEs
	Model equations and some target models
	Forward Euler method
	Backward Euler method
	Trapezoidal method
	Leap-frog method (midpoint method)

	Runge-Kutta methods
	RK2 and RK4
	General explicit Runge-Kutta methods
	Adaptive Runge-Kutta method (Runge-Kutta-Fehlberg method)
	*Convergence theory, an example
	Absolute stability region of RK methods

	Multistep methods
	Derivation of multistep methods
	A formal algebra for multistep methods
	Examples of multistep methods

	Linear difference equations
	Second-order linear difference equation.
	Linear finite difference equations of order r
	*System of linear difference equations
	Stability of linear difference equations
	*Non-homogeneous linear finite difference equations

	*Stability and convergence for multistep methods
	Zero Stability and Dahlquist equivalence theorem
	Absolute stability regions of multistep methods

	Finite Difference Methods for Heat Equation
	Problem set-up
	Finite Difference Method for 1-D heat equation
	Discretization
	Solving the discrete equations
	Python codes

	Stability analysis
	Maximum norm estimates
	Energy method
	Entropy method
	Von Neumann's stability Analysis

	* Relaxation of errors
	Boundary conditions
	Dirichlet boundary condition
	Neumann boundary condition

	Multidimensions and sources
	2D heat equation
	Splitting method for reaction-diffusion equations

	Spectral methods and Fast Fourier Transform
	Fourier series expansion
	Definition and basic properties
	Basic properties of Fourier series
	Regularity and decay: Riemann-Lebesgue lemma

	Convergence Theory
	Convergence theory for Smooth function
	L2-Convergence Theory
	*BV-Convergence Theory
	*Pointwise estimate and Gibbs phenomenon
	Fourier expansion of real-valued functions

	Discrete Fourier Transform
	Definition and the inversion formula
	Approximation issues

	Fast Fourier Transform
	The FFT algorithm
	Variations of FFT
	List of matlab commands regarding FFT
	Solving the heat equation on torus

	Orthogonal Polynomials and the corresponding discrete transform
	Orthogonal polynomials
	Gaussian quadrature for numerical integration

	Legendre polynomials and Legendre Transform
	Legendre polynomials

	Discrete Legendre transform
	Gauss-Legendre quadrature method
	Legendre-Lobetto quadrature method

	Spectral methods
	Introduction
	Legendre-Galerkin method
	Legendre collocation method

	Spectral element methods

	Finite Difference Methods for the Poisson Equations
	Discrete Laplacian in two dimensions
	Discretization methods
	The 9-point discrete Laplacian

	Stability of the discrete Laplacian
	Fourier method
	Energy method

	Solving the Poisson equation
	Multigrid method

	Finite Difference Methods For Linear Hyperbolic Equations
	Linear hyperbolic equations
	Linear advection equation
	Linear hyperbolic systems of equations
	*Linear symmetric hyperbolic systems in multi-dimensions

	Finite difference methods for linear advection equation
	Design procedure
	Courant-Friedrichs-Levy condition
	Consistency and Truncation Errors
	Upwinding and numerical diffusion
	Modified equations
	Lax's equivalence theorem
	Stability analysis

	Finite difference schemes for linear hyperbolic systems with constant coefficients
	Some design techniques
	*Stability analysis

	*Finite difference methods for linear hyperbolic systems with variable coefficients

	Hyperbolic Conservation Laws
	Scalar conservation laws
	 Physical models
	Basic theory
	Entropy conditions
	*Riemann problems for non-convex fluxes
	*Uniqueness and Existence

	Systems of Hyperbolic Conservation Laws
	Hyperbolicity
	Elementary waves and Riemann problems
	Gas dynamics
	Riemann Problems for Gas Dynamics

	Finite Difference/ Finite Volume Methods for Hyperbolic Conservation Laws
	General theory of finite difference methods for hyperbolic conservation laws
	Some problems in FD schemes for conservation laws
	Conservative schemes
	Monotone schemes and entropy-satisfying schemes

	Flux limiter methods
	Total Variation Diminishing (TVD)
	Examples of limiters ()
	Extensions

	Higher-order Godunov methods
	Piecewise-linear reconstruction (MUSCL reconstruction)
	Approximate Riemann Solvers

	ENO/WENO schemes
	Reconstruction for smooth functions
	ENO approximation
	WENO reconstruction
	Finite Volume WENO
	Finite Difference WENO
	A sample matlab code

	Multidimensions
	Splitting Method
	Unsplitting Methods

	Boundary treatments
	1D boundary conditions for hyperbolic conservation laws
	Multidimensional boundary conditions for the Euler equation

	Finite Element Methods for the Poisson Equation
	Variational formulation of the Poisson problem
	Poisson problems in physics
	PDE formulation
	Weak form of the Poisson equation
	Variational problem as a minimization problem

	 1D finite element method
	Finite element method
	Error analysis

	Finite element methods for the Poisson problem in 2 dimensions
	Framework of finite element method

