
COMPUTATIONAL MATHEMATICS

AN INTRODUCTION

I-Liang Chern

Department of Mathematics
National Taiwan University

2015

December 28, 2015

2

Contents

1 Solving Equations of One Variable 1
1.1 Motivation . 1
1.2 Newton’s method . 2
1.3 Secant method . 5
1.4 A dynamical system point of view of iterative map 7
1.5 Fixed Point Method . 8

2 Basic Numerical Linear Algebra 13
2.1 Motivations . 13
2.2 Introduction and overview . 19
2.3 *Matrix Algebra . 19
2.4 Matrix Analysis . 26

2.4.1 Matrix Norm . 26
2.4.2 Condition number . 30
2.4.3 *Functional Calculus . 31

2.5 Direct Methods for Solving Linear Equations . 34
2.5.1 LU Decomposition . 34
2.5.2 *Other direct methods . 38

2.6 Classical Iterative Methods . 39
2.6.1 Splitting iterative methods . 40
2.6.2 Preconditioned iterative methods . 44
2.6.3 Conjugate Gradient Method . 45

2.7 Power Method for Finding Eigenvalues . 53
2.7.1 Inverse Power Method . 55

3 Approximation Theory 57
3.1 Motivations . 57

3.1.1 Basic Notion of function spaces . 57
3.2 Approximation by polynomials: Interpolation Theory 59

3.2.1 Newton’s interpolation . 60
3.2.2 Runge Phenomenon . 63

3.3 Approximation by Trigonometric polynomials . 66

3

CONTENTS 1

3.3.1 Definition and examples . 66
3.3.2 Basic properties . 67

3.4 Convergence Theory . 70
3.4.1 Convergence theory for Smooth function 70
3.4.2 L2 Convergence Theory . 71
3.4.3 BV Convergence Theory . 73
3.4.4 Pointwise estimate of rate of convergence 74
3.4.5 Fourier Expansion of Real Valued Functions 76

3.5 Discrete Fourier Transform . 77
3.5.1 Definition and inversion formula . 77
3.5.2 Approximation issues . 78

3.6 Fast Fourier Transform . 80
3.6.1 The FFT algorithm . 80
3.6.2 Variants of FFT . 82

3.7 Fast Chebyshev Transformation . 84
3.8 Approximation by Splines . 85

3.8.1 Splines on uniform grid systems . 89
3.9 Approximation by Wavelets and Framelets . 95

3.9.1 Motivations . 95
3.9.2 General Discrete Wavelet Transform . 99
3.9.3 Examples of filter banks . 104
3.9.4 Multi-resolution Analysis framework . 106
3.9.5 Construction of scaling functions and wavelets 109

4 Numerical Integration 123
4.1 Motivations . 123
4.2 Newton-Cotes Method for numerical integration 124
4.3 Gaussian Quadrature Methods . 128

5 Numerical Ordinary Differential Equations 135
5.1 Motivations . 135
5.2 Basic Numerical Methods for Ordinary Differential Equations 138
5.3 Runge-Kutta methods . 141
5.4 Multistep methods . 144
5.5 Linear difference equation . 148
5.6 Stability analysis . 151

5.6.1 Zero Stability . 151

2 CONTENTS

Chapter 1

Solving Equations of One Variable

1.1 Motivation

This part is taken from QSG’s book.

Motivation 1: Investment fund At the beginning of every year a bank customer deposits v euros
in an investment fund and withdraws, at the end of the nth year, a capital of M euros. We want
to compute the average yearly rate of interest r of this investment. Since M is related to r by the
relation

M = v

n∑
k=1

(1 + r)k = v
1 + r

r
[(1 + r)n − 1],

we deduce that r is the root of

f(r) = 0, f(r) = v
1 + r

r
[(1 + r)n − 1]−M.

Motivation 2: State equation of a gas The van der Waals equation of state (i.e. the equation that
relates pressure p, volume V and temperature T) is[

p+ a
N

V

]
(V −Nb) = kNT,

where N is the number of molecules and k is the Boltzmann constant. The parameters a measures
the attraction between molecules and b measures the volume occupied by the molecules (Van der
Waals equation, Wiki).

We want to determine the volume V occupied by a gas at temperature T and pressure p.

Motivation 3: Rods system Let us consider the mechanical system represented by the four rigid
rods ai of Figure 2.1. For any admissible value of the angle β, let us determine the value of the
corresponding angle α between the rods a1 and a2. Starting from the vector identity

a1 − a2 − a3 − a4 = 0,

1

2 CHAPTER 1. SOLVING EQUATIONS OF ONE VARIABLE

and noting that the rod a1 is always aligned with the x-axis, we can deduce the following relation-
ship between β and α:

a2
1 + a2

2 − a2
3 + a2

4 + 2a1a4 cosβ − 2a1a2 cosα− 2a2a4 cos(β − α) = 0.

We would also like to mention that a solution does not exist for all values of β, and may not even be
unique. To solve the equation for any given β lying between 0 and π we should invoke numerical
methods.

Motivation 4: Population dynamics The population of species or bacteria is modeled by

x+ = xR(x)

where x and x+ are respectively the populations of the present and next generations. R(x) is the
growth rate.

• Beverton-Holt or discrete Verhulst model R(x) = r
1+Kx

• Redator/prey model R(x) = rx
1+(x/K)2

.

We look for saturated population where x+ = x.

1.2 Newton’s method

Goal: solve f(x) = 0

Strategy

• it is an iterative method

• it approximate the equation by a linear equation at each step, use the solution of the linear
equation to approximate the root.

f(x) ∼ f(xn) + f ′(xn)(x− xn) = 0.

Algorithm

xn+1 = xn − f ′(xn)−1f(xn).

Error analysis

Theorem 1.1. Let x∗ be the root. Suppose it is simple. Let en = xn− x∗. Then |en+1| = O(|en|2).

1.2. NEWTON’S METHOD 3

Proof. Let g(x) = x−f ′(x)−1f(x). We have g(x∗) = x∗. Subtract xn+1 = g(xn) and x∗ = g(x∗),
we get

en+1 = g(xn)− g(x∗) = g(x∗ + en)− g(x∗) =
1

2
g′′(ξ)e2

n.

Here, we have used g′(x∗) = 0 and the lemma below. In computing g′(x∗), we use

g′(x∗) = 1− f ′(x∗)2 − f(x∗)f ′′(x∗)

f ′(x∗)2
= 0

where f ′(x∗) 6= 0 is used.

Lemma 1.1. If g ∈ C2 and g(0) = g′(0) = 0, then there exists ξ between 0 and x such that

g(x) =
1

2
g′′(ξ)x2.

Proof. We use integral form of mean value theorem.

g(x) =

∫ x

0
(x− t)g′′(t) dt.

Then use mean value theorem:∫ x

0
(x− t)g′′(t) dt = g′′(ξ)

∫ x

0
(x− t) dt.

Remark. The proof above requires too many derivatives of f (it uses g′′, which is equivalent to
f ′′′). But we only need f ′′ for quadratic convergence. Here is a shorter proof.

en+1 = en −
f(xn)

f ′(xn)
=
enf

′(xn)− f(xn)

f ′(xn)

From

0 = f(x∗) = f(xn − en) = f(xn)− enf ′(xn) +
1

2
f ′′(ξ)e2

n,

we get

en+1 =
1

2

f ′′(ξ)

f ′(xn)
e2
n,

or

en+1 ≈
1

2

f ′′(x∗)

f ′(x∗)
e2
n.

4 CHAPTER 1. SOLVING EQUATIONS OF ONE VARIABLE

Important example: Solve x2 = a, a > 0. The corresponding Newton’s method is

xn+1 = xn −
x2
n − a
2xn

:= g(xn)

This was known as the Babylonian method. Heron of Alexandria (AD 10 - AD 70) was a Greek
mathematician who described an iterative method of computing the square root. Heron’s method
can also be derived as a special case of the (much) later Newton’s method (16th century). In fact, an
implementation of this algorithm is found on a Babylonian clay tablet (YBC7289, 1800-1600 BC),
hence the Heron’s method is also known as the Babylonian method. After thousands of years, today
it has been one of the most commonly taught examples in numerical computation and analysis, the
basis of many numerical algorithms of nonlinear equations and optimization problems, and in fact
the most common algorithm for computing square roots. For this method, you can show that

• g : [
√
a,∞)→ [

√
a,∞) is a strictly decreasing function.

• g : (0,
√
a]→ [

√
a,∞).

These two properties assure the convergence of {xn} if x0 > 0.

A third order method If we use a parabola to approximate f , we can get a third order method.

f(x) ∼ f(xn) + f ′(xn)(x− xn) +
1

2
f ′′(xn)(x− xn)2 = 0.

This leads to a root

xn+1 = xn +
−f ′(xn) +

√
f ′(xn)2 − 2f(xn)f ′′(xn)

f ′′(xn)

You can prove it is third order convergence.

Multiple roots You can check that the method falls to a first order method if the root x∗ is a
double root. If the multiplicity is p, then the Newton method convergence rate becomes (1− 1/p)n.
This can serve to detect the multiplicity of x∗. There are two ways to gain high order convergence.
The first one is to modify the scheme to

xn+1 = xn − p
f(xn)

f ′(xn)
:= g(xn),

provided we have known that the multiplicity of x∗ is p. You can check that g′(x∗) = 0.
The second method is to consider the new function

µ(x) :=
f(x)

f ′(x)
,

which has a simple root at x∗. You can apply Newton’s method to this one.

xn = g(xn−1),

where

g(x) = x− µ(x)

µ′(x)
= x− f(x)f ′(x)

f ′(x)2 − f(x)f ′′(x)

1.3. SECANT METHOD 5

1.3 Secant method

Goal: solve f(x) = 0

Strategy

• it is an iterative method

• it approximate the equation by a linear equation at each step, use the solution of the linear
equation to approximate the root.

f(x) ∼ f(xn) +
f(xn)− f(xn−1)

xn − xn−1
(x− xn) = 0.

Algorithm

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)
f(xn)

Start from x0, x1.

Avoiding loss of significance The divided difference

an :=
f(xn)− f(xn−1)

xn − xn−1

loses significant digits. To fix it, we replace it by

an ←
f(xn + h)− f(xn)

h
when |xn − xn−1| < h.

Here, h is chosen to be a fixed number. For example, we can choose

h =
√
δxn

Then
f(xn + xn

√
δ)− f(xn) ∼ f ′(xn)xn

√
δ +O(1)δ.

The function difference loses only one digit provided O(1) = 1.

Efficiency In Newton’s method, we need to evaluate both f(xn) and f ′(xn). In secant method,
we only evaluate f(xn). So, if it is time consuming to evaluate f ′(xn), the secant method is more
efficient.

6 CHAPTER 1. SOLVING EQUATIONS OF ONE VARIABLE

Error Analysis and Convergence Rate We use Newton’s divided difference to approximate a
function by polynomials. Define the Newton divided difference by

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
,

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
.

From this definition, we have the interpolation formulae

f(x) = f(x0) + f [x0, x](x− x0)

f [x0, x] = f [x0, x1] + f [x0, x1, x](x− x1)

The latter leads to

f(x)− f(x0) = f [x0, x1](x− x0) + f [x0, x1, x](x− x0)(x− x1).

In general,

f(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) + · · ·
+ f [x0, x1, ..., xn, x](x− x0) · · · (x− xn).

Now, consider secant method. At xn, it approximates f(x) by the linear function

`(x) = f(xn) + f [xn, xn−1](x− xn)

Therefore,
0 = `(xn+1) = f(xn) + f [xn, xn−1](xn+1 − xn) = 0. (1.1)

By definition,

f(x) = f(xn) + f [xn, xn−1](x− xn) + f [xn, xn−1, x](x− xn)(x− xn−1).

At x = x∗,

0 = f(x∗) = f(xn) + f [xn, xn−1](x∗ − xn) + f [xn, xn−1, x
∗](x∗ − xn)(x∗ − xn−1). (1.2)

Use en = xn − x∗, subtract the above two equations (1.1) (1.2), we get

f [xn, xn−1]en+1 − f [xn, xn−1, x
∗]enen−1

Hence

en+1 =
f [xn, xn−1, x

∗]

f [xn, xn−1]
enen−1

By mean value theorem, we have

f [xn, xn−1] = f ′(ξ), for some ξ ∈ (xn, xn−1),

1.4. A DYNAMICAL SYSTEM POINT OF VIEW OF ITERATIVE MAP 7

f [xn, xn−1, x
∗] =

1

2
f ′′(ζ) for some ζ in the interval containing xn, xn−1, x

∗.

Let

M =
1

2

maxI f
′′(x)

minI f ′(x)

Then
|en+1| ≤M |enen−1|.

Now, define ρn = M |en|, then we have

ρn+1 ≤ ρnρn−1.

We choose x0 and x1 so that |ρ0| < 1 and |ρ1| < 1. Now, we choose

ρ = min{ρ0, ρ1} < 1.

It is easy to see by induction that ρn < 1 for all n. Furthermore

ρ2 ≤ ρ1ρ0 ≤ ρ2,

ρ3 ≤ ρ2ρ1 ≤ ρ2ρ = ρ3

ρ4 ≤ ρ3ρ2 ≤ ρ3ρ2 = ρ5

...

ρn+1 ≤ ρqn+1 = ρqn+qn−1

where qn+1 = qn + qn−1, q0 = q1 = 1. The solution

qn =
1√
5

(
λn+1

1 − λn+1
2

)
,

λ1 =
1 +
√

5

2
, λ2 =

1−
√

5

2

are the two roots of λ2 − λ− 1 = 0. The solution qn ∼ 1√
5
λn+1

1 . Thus,

ρn ≤
(
ρ1/
√

5
)λn+1

1
,

or

|en| ≤M−1
(
ρ1/
√

5
)λn+1

1
.

1.4 A dynamical system point of view of iterative map

The iterative xn+1 = g(xn) can be viewed as a discrete dynamical system, which serves as an
important model for a class of physical world. For instance, the discrete logistic map

xn+1 = axn(1− xn).

models some population dynamics of animals.

8 CHAPTER 1. SOLVING EQUATIONS OF ONE VARIABLE

Discrete logistic map For iterative map g(x) starting from x0, those x0 which leads xn to con-
verge to a fixed point x∗ is called the basin of convergence of x∗. So, each fixed point has its own
basin of attraction. They are disjoint. However, not all points belong to the basins of the fixed points.
For instance, for certain range of a, the intersection of the discrete logic map g(x) = ax(1− x) has
period 2 stable solution. Then period 4 stable solutions, etc. More precisely, when 0 < a < 1, then
0 is the only fixed point, and it is stable. For 1 < a < 3, the fixed points are 0 and (a − 1)/a. The
latter is a stable one and the whole region (0, 1) is its basin of attraction. When 3 < a < 1 +

√
6,

there are fixed points of g ◦ g. These two solutions are period 2 solutions. They are stable. This
means that all points in (0, 1) are the basin of these period 2 solution. The bifurcation phenomenon
from fixed point to a period 2 solution as a across 3 is called period doubling. As a keeps increasing,
it exhibits period doubling from period 2 to period 4, to period 8 and so forth. As a ∼ 3.56995, It
exhibits so called chaos, where solutions of all periods appear. (see logistic map, wiki)

Newton’s method on complex plane Given a polynomial p(z) on the complex plane, the Newton
method gives the iteration

zn+1 = zn −
p(zn)

p′(zn)
= g(zn).

For every root ξ of p(z), those z0 which generates a convergent sequence to ξ by Newton’s method
is called the basin of convergence of ξ. The basins of attraction of roots of p(z) = 0 are disjoint.
However, not all points on C belongs to one of the basin of the roots. There are some points which
do not belong to any of these basin sets. The set of these exceptional points are called Julia set of
p. For example, you can study the Julia set of the polynomial p(z) = z3 − 1. You can partition
the domain [−2, 2] × [−2, 2] into 1000 × 1000 small cells uniformly. For each cell, run Newton’s
iteration for 20 step starting from the cell center to classify the class of the cell center. Do the
experiment and analyze what you obtain.

1.5 Fixed Point Method

Goal: Solve f(x) = 0.

Strategy : We change this to a fixed point problem:

x = x− λf(x) := g(x)

λ 6= 0. λ is chosen so that
|λf ′(x)| < 1.

Algorithm
xn+1 = xn − λf(xn).

1.5. FIXED POINT METHOD 9

Remarks

1. λ can vary in each step, i.e.
xn+1 = xn − λnf(xn)

In numerical ODE, this λn can be viewed as ∆t. In this sense, such fixed point method can
be thought as a forward Euler method for the ODE: ẋ = −f(x). Practically, λn is chosen so
that |λnf ′(xn)| < 1.

2. We can also choose λ to be a function of x. That is,

xn+1 = xn − λ(xn)f(xn).

In particular, λ(x) = 1/f ′(x) gives the Newton method.

Error Analysis

Definition 1.1. A function g is called a contraction map if there exists a constant 0 ≤ ρ < 1 such
that

|g(x)− g(y)| ≤ ρ|x− y|

for any x, y under consideration.

A contraction map is certainly Lipschitz continuous.

Theorem 1.2. If g is a contraction map, then g has a unique fixed point x∗. Moreover, the iterative
map

xn+1 = g(xn)

converges to x∗ linearly in the sense

|xn − x∗| ≤ ρn|x0 − x∗|

Proof. 1. {xn} is Cauchy. We can write

xn = x0 + (x1 − x0) + (x2 − x1) + · · ·+ (xn − xn−1) = x0 +

n∑
i=1

(xi − xi−1)

The series
∑n

i=1(xi − xi−1) converges absolutely:

n∑
i=1

|xi − xi−1| ≤
n∑
i=1

ρi−1|x1 − x0| =
ρn − 1

ρ− 1
|x1 − x0| <∞.

Hence xn is Cauchy and thus converges.

2. Subtracting xn+1 = g(xn) and x∗ = g(x∗). This leads to

|xn+1 − x∗| = |g(xn)− g(x∗)| ≤ ρ|xn − x∗| ≤ ρ2|xn−1 − x∗|
≤ · · · ≤ ρn+1|x0 − x∗|

10 CHAPTER 1. SOLVING EQUATIONS OF ONE VARIABLE

3. If both x∗ and y∗ are fixed points, then

|x∗ − y∗| = |g(x∗)− g(y∗)| ≤ ρ|x∗ − y∗|,

we get (1− ρ)|x∗ − y∗| ≤ 0. Since ρ < 1, we obtain x∗ = y∗.

Example We consider linear equation ax− b = 0. The corresponding fixed point method is

xn+1 = xn − λ(axn − b) = (1− λa)xn + λb

We see that
xn+1 − xn = (1− λa)(xn − xn−1).

Thus, the map xn → xn+1 is a contraction if and only if

|1− λa| < 1.

Applications

Theorem 1.3 (Implicit Function Theorem). If F : Rm × Rn → Rn. F (x0, y0) = 0 and F is
continuously differentiable in a neighborhood of (x0, y0). Further, suppose the Jacobian Fy(x0, y0)
is invertible. Then there exist neighborhoods of x0 and y0, called U and V respectively, and a
continuously differentiable function f : U → V such that

F (x, f(x)) = 0 for all x ∈ U.

We demonstrate the proof for n = m = 1. It is easy extended to general case. To solve an
equation

F (x, y) = 0

for y with given x, we linearize it about (x0, y0):

F (x, y) = F (x0, y0) + aξ + bη + h(ξ, η).

Here, ξ := x− x0, η := y − y0, a = Fx(x0, y0), b = Fy(x0, y0),

h(ξ, η) := F (x0 + ξ, y0 + η)− F (x0, y0)− aξ − bη = o(ξ, η).

Since F (x0, y0) = 0, we solve the perturbation equation:

aξ + bη + h(ξ, η) = 0.

for η with small ξ. This can be rewritten as

η = −a
b
ξ − 1

b
h(ξ, ηn).

We use fixed point method to solve this equation:

ηn+1 = −a
b
ξ − 1

b
h(ξ, ηn) := g(ξ, ηn).

We find that as long as ξ is small, then this iterative map g(ξ, ·) is a contraction map. Thus, it has a
fixed point η. I shall not go into detail of the proof.

1.5. FIXED POINT METHOD 11

Acceleration technique In the fixed point method, near the fixed point, we want to find find a
better approximation x̂n to the limit x∗. Since the sequence converges linearly, we expect the three
points (xn−2, xn−1), (xn−1, xn) and (x̂n, x̂n) are co-linear. This leads to

xn−1 − x̂n
xn−2 − x̂n

=
xn − x̂n
xn−1 − x̂n

We then get a good candidate

x̂n = xn−2 −
(xn−1 − xn−2)2

xn − 2xn−1 + xn−2

This is called Aitken’s extrapolation formula, or the Steffensen algorithm.

xn+1 = G(xn)

where

G(x) = x− (g(x)− x)2

g(g(x))− 2g(x) + x
.

Theorem 1.4. The Steffensen algorithm {xk} converges quadratically.

Proof. Without loss of generality, we may assume x∗ = 0. WE can write g(x) = `x+ O(x2). We
claim G(x) = O(x2). By direct computation, we have

G(x) = x− (g(x)− x)2

g(g(x))− 2g(x) + x

= x− ((`− 1)x+O(x2))2

`(`x+O(x2)) +O((`x+O(x2))2 − 2(`x+O(x2)) + x

= x− (`− 1)2x2 +O(x3)

(`− 1)2x+O(x2)

=
O(x3)

(`− 1)2x+O(x2)
= O(x2).

This shows G(x) = O(x2) provided g′(x∗) 6= 1/2.

For program in matlab, see QSG, pp. 65, program 2.4.

Homeworks 1.1. 1. QSG: pp. 74, Ex 2.9

2. Write a program to solve the Wilkinson problem:

f(x) :=
20∏
i=1

(x− i) + εx20

Input: ε, output, the largest 6 roots in magnitude.

12 CHAPTER 1. SOLVING EQUATIONS OF ONE VARIABLE

Chapter 2

Basic Numerical Linear Algebra

2.1 Motivations

Hydraulic Network The hydraulic network can be modeled as a graph (V,E), where V =
{1, 2, ..., n} is the nodes, E = {(i, j)} ⊂ V × V are the edges. Each edge e = (i, j) is a pipe
connecting nodes i and j, on which, we associate a flow velocity ue, area of cross section Ae and
length Le. We assume they are uniform along pipe e. The flow direction gives a natural direction
(orientation) of the pipe. So, the graph is a directed graph: each e = (i, j) ∈ E has a direction from
i to j. For (i, j) ∈ E, we define sign(i, j) = 1 and sign(j, i) = −1. On each edge e, we compute
the flow rate

Qe := ρueAe,

which is the amount of water passing through the pipe per unit time. At each node i, we associate
with a pressure pi. On each pipe (edge), there is a momentum equation which balances the flux in
the pipe and the pressure difference at the two ends of the pipe. Physically, this is Darcy’s law. It
can be expressed as

px = −αeρue

where αe is the friction coefficient, and positive x is the same direction of e. We integrate the Darcy
law over the pipe e and get

pj − pi =
αeLe
Ae

Qesign(j, i).

Here, we have assume ρ ≡ 1. This is the momentum balance equation on each pipe e. At each
node i, we conservation of water. To describe this equation, let Ei = {e ∈ E, i is one end of e},
Ni = {j|(i, j) ∈ E} be the neighboring nodes of i. At each interior node i,

∑
e∈Ei

sign(j, i)Qe =
∑
j∈Ni

(
Ae
αeLe

)
(pj − pi) = 0.

At each boundary node i, a pressure pbi is prescribed. There are two kinds of boundary nodes,
one is node of the end user. The pressure pbi = 0 there. The other is the water pump node, where

13

14 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

pbi > 0 is also prescribed. This equation is a discrete Laplacian for (pi)i∈N with Dirichlet boundary
condition.

A mass-spring system Consider a spring-mass system which consists of n masses placed verti-
cally between two walls. The n masses and the two end walls are connected by n + 1 springs. If
all masses are zeros, the springs are “at rest” states. When the masses are greater than zeros, the
springs are elongated due to the gravitation force. The mass mi moves down ui distance, called the
displacement. The goal is to find the displacements ui of the masses mi, i = 1, ..., n.

In this model, the nodes are the masses mi. We may treat the end walls are the fixed masses,
and call them m0 and mn+1, respectively. The edges (or the bonds) are the springs. Let us call the
spring connecting mi and mi+1 by edge (or spring) i, i = 1, ..., n + 1. Suppose the spring i has
spring constant ci. Let us call the downward direction the positive direction.

Let me start from the simplest case: n = 1 and no bottom wall. The mass m1 elongates the
spring 1 by a displacement u1. The elongated spring has a restoration force −c1u1 acting on m1.1

This force must be balanced with the gravitational force on m1.2 Thus, we have

−c1u1 + f1 = 0,

where f1 = m1g, the gravitation force on m1, and g is the gravitation constant. From this, we get

u1 =
f1

c1
.

Next, let us consider the case where there is a bottom wall. In this case, both springs 1 and 2 exert
forces upward to m1. The balance law becomes

−c1u1 − c2u1 + f1 = 0.

This results u1 = f1/(c1 + c2).
Let us jump to a slightly more complicated case, say n = 3. The displacements

u0 = 0, u4 = 0,

due to the walls are fixed. The displacements u1, u2, u3 cause elongations of the springs:

ei = ui − ui−1, i = 1, 2, 3, 4.

The restoration force of spring i is
wi = ciei.

The force exerted to mi by spring i is −wi = −ciei. In fact, when ei < 0, the spring is shortened
and it pushes downward to mass mi (the sign is positive), hence the force is −ciei > 0. On the
other hand, when ei > 0, the spring is elongated and it pull mi upward. We still get the force

1The minus sign is due to the direction of force is upward.
2The mass m1 is in equilibrium.

2.1. MOTIVATIONS 15

u1

m1
m1

-c1u1

m1g

-c1u1

m1g

-c2u1

Figure 2.1: The left one is a spring without any mass. The middle one is a spring hanging a mass
m1 freely. The right one is a mass m1 with two springs fixed on the ceiling and floor.

−wi = −ciei < 0. Similarly, the force exerted to mi by spring i + 1 is wi+1 = ci+1ei+1. When
ei+1 > 0, the spring i+1 is elongated and it pullsmi downward, the force is wi+1 = ci+1ei+1 > 0.
When ei+1 < 0, it pushes mi upward, and the force wi+1 = ci+1ei+1 < 0. In both cases, the force
exterted to mi by spring i+ 1 is wi+1.

Thus, the force balance law on mi is

wi+1 − wi + fi = 0, i = 1, 2, 3.

There are three algebraic equations for three unknowns u1, u2, u3. In principle, we can solve it.

16 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

Let us express the above equations in matrix form. First, the elongation:

e = Au, or


e1

e2

e3

e4

 =


1
−1 1

−1 1
−1


 u1

u2

u3


the restoration force:

w = Ce, or


w1

w2

w3

w4

 =


c1

c2

c3

c4




e1

e2

e3

e4


the force balance laws:

Atw = f, or

 1 −1
1 −1

1 −1




w1

w2

w3

w4

 =

 f1

f2

f3


where At is the transpose of A.

We can write the above equations in block matrix form as(
C−1 A
At 0

)(
−w
u

)
=

(
0
−f

)
.

This kind of block matrix appears commonly in many other physical systems, for instance, network
flows, fluid flows. In fact, any optimization system with constraint can be written in this form. Here,
the constraint part is the second equation. We shall come back to this point in the next section.

One way to solve the above block matrix system is to eliminate the variable w and get

Ku := AtCAu = f.

The matrix K := AtCA is a symmetric positive definite matrix. It is called the stiffness matrix. For
n = 4, we get

K := AtCA =

 c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3 + c4


Mimimum principle Consider the functional

P (u) :=
1

2
(Ku, u)− (f, u),

where K is a symmetric positive definite matrix in Rn. The directional derivative of P at u in the
direction v is defined as

P ′(u)v =
d

dt

∣∣∣∣
t=0

P (u+ tv)

2.1. MOTIVATIONS 17

P ′(u) is called the gradient (or the first variation) of P at u. We can compute this gradient: 3

P ′(u)v =
d

dt

∣∣∣∣
t=0

1

2
(K(u+ tv), u+ tv)− (f, u+ tv)

=
1

2

(
(Kv, u) + (Ku, v)

)
− (f, v)

= (Ku− f, v).

Here, we have used K being symmetric. Thus,

P ′(u) = Ku− f.

The second derivative is the Hessian. It is

P ′′(u) = K.

If u∗ is a minimum of P (v), then P ′(u∗) = 0. This is called the Euler-Lagrange equation of P .
Conversely, If u∗ satisfies the Euler-Lagrange equation Ku∗ = f , then u∗ is the minimum of

P (v). In fact, for any v, we compute P (v)− P (u∗). We claim

P (v)− P (u∗) =
1

2
(K(v − u∗), v − u∗).

To see this, since P (v) is a quadratic function of v, we can complete the squares:

P (v)− P (u∗) =
1

2
(Kv, v)− (f, v)− 1

2
(Ku∗, u∗) + (f, u∗)

=
1

2
(Kv, v)− 1

2
(Ku∗, u∗)− (f, v − u∗)

=
1

2
(Kv, v)− 1

2
(Ku∗, u∗)− (Ku∗, v − u∗)

=
1

2
(Kv, v) +

1

2
(Ku∗, u∗)− (Ku∗, v)

=
1

2
(K(v − u∗), v − u∗) ≥ 0.

Hence we get that u∗ is a minimum. In fact, u∗ is the only minimum because P (v) = P (u∗) if and
only if (K(v − u∗), v − u∗) = 0. Since K is positive definite, we get v − u∗ = 0.

We conclude the above discussion as the follows.

Theorem 2.1. Let P (u) := 1
2(Ku, u) − (f, u) and K is symmetric positive definite. The vector

u∗ which minimizes P (v) must satisfy the Euler-Lagrange equation P ′(u∗) = Ku∗ − f = 0. The
converse is also true.

3 Here, I use the following properties: (f, g)′ = (f ′, g) + (f, g′). This is because (f, g) =
∑
i figi and (f, g)′ =∑

i

(
f ′igi + fi, g

′
i

)
= (f ′, g) + (f, g′).

18 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

The physical meaning of P is the total potential energy of the spring-mass system. Indeed,

1

2
(CAu,Au) =

n∑
i=1

1

2
ci(ui − ui−1)2

is the sum of the potential energy stored in the spring, whereas the term

(f, u) =
n∑
i=1

fiui

is the sum of the works done by the massmi with displacement ui for i = 1, ..., n. The term−(f, u)
is the gravitational potential due to the masses mi with displacements ui.

Principal Component Analysis In statistics, the data set is usually represented as a matrixA. The
data are collected by n experiments. Each experiment has p items, represented by a p row vector.
For instance, a row vector is a biological records of a person, containing blood pressure, glucose,
etc. Suppose there are p items. The data set has n peoples’ data. Another example is the pattern
recognition of a word. The image of a word is represented by a 20 pixel image. We transform it
into a row vector. Suppose there are n experiments (say 100 images with the same words written
repeatedly.)

To analysis the data set, we first normalize it:

āj := (
n∑
i=1

aij , A0 := ā1T .

A1 := (aij − āj)n×p
The matrix A1 has zero mean in each column (item). The matrix

C := A∗1A1 = (〈aki − āi, akj − āj〉)p×p.

is called the covariance matrix. It measures the covariance between item i and item j. The principal
component analysis is to decompose A1 into

A1 =

p∑
i=1

σiuiv
T
i .

Here ui is an n × 1 vector, vi a p × 1 vector. The vectors vi are indeed the eigenvectors of A∗1A1.
They are orthogonal. This means that vi and vj are uncorrelated. Thus, we can decompose the data
set A1 in terms of p uncorrelated items (vi)

p
i=1. These vi are recombination of the items. We may

call them the features. In principal analysis, we want to approximate the data set A1 by only few
such features.

In matrix completion problem, a typical application is to complete an incomplete table of data
set. The video company Netflix proposed her incomplete table: each row is the rating record of a

2.2. INTRODUCTION AND OVERVIEW 19

person on a list of videos. This is an incomplete matrix A. The row m are member list, which is
about 500,000. The column n is the video list, which is about 20, 000. The rating is from 1 star to
5 stars. The matrix is certainly incomplete. We want to fill in the vacancy based on an assumption
that the completed matrix is low rank. The singular value decomposition of A is

A =

p∑
i=1

σiuiv
T
i .

Each class uiv
T
i represents certain types of videos. For instance, the drama, the action, etc. In a

class uivTi , the row vTi lists those videos with this type (say drama), and ui lists those members who
rate these videos higher. The completed matrix can be used for recommendation to the members.

2.2 Introduction and overview

There are three kinds of linear problems we encounter in applications:

• solving large linear system: Ax = b

• solving least squares problem: minx ‖Ax− b‖2.

• solving eigenvalue problems: Ax = λx

• solving singular value decomposition problem.

In solving linear systems, there are two classes of methods:

• Direct methods: which solves the equation directly. This is usually for small system. Basi-
cally, the solving process is a factorization of the matrix A such as LU-factorization.

• Iterative methods: the basic idea is to decompose A = M −N , where M is a major part and
easy to invert, while N is a minor part. Then perform an iteration Mxn+1 −Nxn = b to get
an approximate solution. Usually, a preconditioning is needed, which means that we replace
Ax = b by PAx = Pb so that it is easy to have above major-minor decomposition.

In solving eigenvalue problems, I shall discuss the power method and QR algorithm. For least
square problem, I shall discussed weighted iterative method.

2.3 *Matrix Algebra

Spectral Decomposition We assume A is an n× n matrix in Cn.

Theorem 2.2 (Caley-Hamilton). Let pA(λ) := det(λI−A) be the characteristic polynomial of A.
Then pA(A) = 0.

Theorem 2.3. There exists a minimal polynomial pm which is a factor of pA and pm(A) = 0.

20 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

Theorem 2.4 (Fundamental Theorem of Algebra). Any polynomial p(λ) over C of degree m can
be factorized as

p(λ) = a
m∏
i=1

(λ− λi)

for some constant a 6= 0 and λ1, ..., λm ∈ C. This factorization is unique.

Definition 2.2. Let A : Cn → Cn. A subspace V ⊂ Cn is called an invariant subspace of the
linear map A if AV ⊂ V .

Definition 2.3. Let A : Cn → Cn. A vector v is called an eigenvector of A if there exists a λ such
that

Av = λv.

Definition 2.4. For a matrix A, the set of all its eigenvalues σ(A) := {λ1, ..., λn} is called the
spectra of A.

Definition 2.5. A vector space V is said to be the direct sum of its two subspaces V1 and V2 if for
any v ∈ V there exist two unique vectors vi ∈ Vi, i = 1, 2 such that v = v1 + v2. We denote it by
V = V1 ⊕ V2.

Remark 2.1. We also use the notation V = V1 + V2 for the property: any v ∈ V can be written as
v = v1 + v2 for some vi ∈ Vi, i = 1, 2. Notice that V = V1 ⊕ V2 if and only if V = V1 + V2 and
V1 ∩ V2 = {0}.

Lemma 2.1. Suppose p and q are two polynomials over C and are relatively prime (i.e. no common
roots). Then there exist two other polynomials a and b such that

ap+ bq = 1.

Lemma 2.2. Suppose p and q are two polynomials over C and are relatively prime (i.e. no common
roots). Let Np := Ker(p(A)), Nq := Ker(q(A)) and Npq := Ker(p(A)q(A)). Then

Npq = Np ⊕Nq.

Proof. From ap+ bq = 1 we get

a(A)p(A) + b(A)q(A) = I.

For any v ∈ Npq, acting the above operator formula to v, we get

v = a(A)p(A)v + b(A)q(A)v := v2 + v1.

We claim that v1 ∈ Np, whereas v2 ∈ Nq. This is because

p(A)v1 = p(A)b(A)q(A)v = b(A)p(A)q(A)v = 0.

Similar argument for proving v2 ∈ Nq. To see this is a direct sum, suppose v ∈ Np ∩Nq. Then

v = a(A)p(A)v + b(A)q(A)v = 0.

Hence Np ∩Nq = {0}.

2.3. *MATRIX ALGEBRA 21

Corollary 2.1. Suppose a polynomial p is factorized as p = p1 · · · ps with p1, ..., ps are relatively
prime (no common roots). Let Npi := Kerpi(A). Then

Np = Np1 ⊕ · · · ⊕ Nps .

Theorem 2.5 (Spectral Decomposition). Let pm be the minimal polynomial of A. Suppose pm can
be factorized as

pm(λ) =
s∏
i=1

pi(λ) =
s∏
i=1

(λ− λki)
mi

with λki 6= λkj for i 6= j. Let Nki = Ker(A− λkiI)mi . Then

• Nki is invariant under A,

• Cn = Nk1 ⊕ · · · ⊕ Nks .

Jordan matrix A matrix J is called a Jordan normal form of a matrix A if we can find matrix V
such that

AV = VJ,

where

J = Jk1 ⊗ · · · ⊗ Jkp :=


Jk1

Jk2
. . .

Jkp

 , V = [Vk1 ,Vk2 , · · · ,Vkp].

Jk(λk) =


λk 1

λk 1
.

λk 1
λk


k×k

, Vk = [v1
k, · · · ,vkk], k = k1, ..., ks,

s∑
i=1

ki = n.

Here, λki are the eigenvalues of A, vjk ∈ Cn are called the generalized eigenvectors of A, the
matrices Jk are called Jordan blocks of size k of A. The matrix Vk = [v1

k, · · · ,vkk] is an n × k
matrix. We can restrict A to Vk, k = k1, ..., ks as

AVk = A[v1
k, · · · ,vkk] = [v1

k, · · · ,vkk]Jk, k = k1, ..., ks.

22 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

For each generalized vector,

(A− λkI)v1
k = 0

(A− λkI)v2
k = v1

k

...

(A− λkI)vkk = vk−1
k , k = k1, ..., ks.

This implies

(A− λkI) v1
k = 0

(A− λkI)2v2
k = 0

...

(A− λkI)kvkk = 0, k = k1, ..., ks.

The set {vjki} form a basis in Cn. Therefore, V is invertible, and

A = VJV−1.

We call A is similar to J, and is denoted by A ∼ J.
Notice that the matrix Nk := Jk − λkI is called a Nilpotent matrix, which has the form

Nk =


0 1

.
0 1

0


k×k

.

It is easy to check that

N2
k =


0 0 1

.
0 0 1

0 0
0


k×k

, · · · ,Nk
k = 0.

Theorem 2.6. Any matrix A over C is similar to a Jordan normal form. The structure of this Jordan
normal form is unique.

Example Suppose A is a 2 × 2 matrix with double eigenvalue λ. Let N1 = Ker(A − λI) and
N2 = Ker(A − λI)2. We assume dimN1 = 1. Then N1 ⊂ N2 = C2. Let us choose any
v2 ∈ N2 \ N1. We define v1 = (A− λI)v2. Then (A− λI)v1 = (A− λI)2v2 = 0. Thus, under
[v1,v2], the matrix A is transformed to J2(λ).

2.3. *MATRIX ALGEBRA 23

Orthogonality, Self-adjoint operators There are some other decomposition, mainly when the
under space Rn or Cn endowed with inner product structure.

Below V and W are vector spaces.

1. Orthogonal Projection: Given W ⊂ V , there is an orthogonal projection P : V → W such
that (i) Pw = w for all w ∈W , (ii) (I − P)v ⊥W for all v ∈ V .

2. For any W ⊂ V , there is a subspace W⊥ such that (i) V = W ⊕W⊥, (ii) W ∩W⊥ = {0},
(iii) W ⊥W⊥.

3. Self adjoint operator: we define A∗ = (āji). A matrix A is called self-adjoint if A∗ = A.

4. Alternatively, A∗ is defined by
〈v,A∗w〉 = 〈Av,w〉,

and A is self-adjoint if 〈Av,w〉 = 〈v,Aw〉.

5. A matrix U is unitary if U∗U = UU∗ = I . This is equivalent to that U = [u1, ..., un] and
{ui}ni=1 are orthonormal.

Theorem 2.7. IfA is self adjoint, thenA is diagonalizable by a unitary matrixU and all eigenvalues
are real.

Proof. 1. Suppose µ is an eigenvalue of A. By the spectral decomposition theorem, we can find
the maximal invariant subspace W corresponding to µI −A. Let J = µI −A. We claim that
J = 0 on W .

2. Since A is self-adjoint, so is J .

3. If the minimal polynomial of J in W is pm(λ) = λm. If m > 1, this means that there exists
v1 and v2 which are independent such that

Jv1 = 0, Jv2 = v1.

Then we have
〈v1, v1〉 = 〈Jv2, v1〉 = 〈v2, Jv1〉 = 0.

This is a contradiction. Hence, m = 1. This also means J = 0.

4. The eigenvalues are real. Suppose λ, v are a pair of eigenvalue/eigenvector.

λ〈v, v〉 = 〈λv, v〉 = 〈Av, v〉
= 〈λv,Av〉 = 〈λv, λv〉 = λ̄〈v, v〉

5. The eigenspace corresponding to two distinct eigenvalues λ 6= µ are orthogonal to each other.
Suppose

Av = λv, Aw = µw, λ 6= µ.

24 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

Then

λ〈v, w〉 = 〈Av,w〉 = 〈v,Aw〉 = µ〈v, w〉

Hence, we get 〈v, w〉 = 0.

The Rayleigh quotient method is a constructive method to find eigenvalues of self-adjoint operator.

λ1 = max
v

〈Av, v〉
〈v, v〉

.

Suppose V1 be the corresponding eigenspace.

λ2 = max
v⊥V1

〈Av, v〉
〈v, v〉

.

This process can be proceeded inductively and find all eigenvalues and eigenvectors.

Singular Value Decomposition

Theorem 2.8. Let A : Rn → Rm(or Cn → Cm). Then there exist orthonormal bases V =
[v1, ..., vn] in Rn and U = [u1, ..., um] and non-negative numbers

σ1 ≥ ... ≥ σp > 0, p ≥ min(m,n)

such that
Avi = σiui, i = 1, ..., p,

Avi = 0 for p < i ≤ n

Or in matrix form
AV = UΣ,

where V is n× n unitary matrix, U is m×m unitary matrix, Σ is m× n diagonal matrix:

Σ =

{
(diag(σ1, ..., σp),0) if m ≤ n
(diag(σ1, ..., σp),0)T if m > n.

Proof. 1. The matrix A∗A is self-adjoint. All its eigenvalues are real. They are also non-
negative because if λ and v is a pair of eigenvalue/eigenvector, then from Rayleigh quotient

λ〈v, v〉 = 〈A∗Av, v〉 = 〈Av,Av〉 ≥ 0.

2. From the spectral decomposition for the self-adjoint matrix A∗A, we can find unitary matrix
[v1, ..., vn] and Λ = diag(λ1, ..., λp, 0, ..., 0) such that AV = V Λ. Here, λ1 ≥ · · · ≥ λp > 0,
the rest eigenvalues are 0. The corresponding eigenspace spanned by < vp+1, ..., vn > is the
kernel N(A∗A).

2.3. *MATRIX ALGEBRA 25

3. We note that A∗Av = 0 if and only if Av = 0. Therefor, N(A) is also spanned by
[vp+1, ..., vn].

4. Let σi =
√
λi. For σi > 0, define ui by

Avi = σiui.

Then,

〈ui, uj〉 =
1

σiσj
〈Avi, Avj〉 =

1

σiσj
〈A∗Avi, vj〉 =

σi
σj
〈vi, vj〉 = 0.

〈ui, ui〉 =
1

σ2
i

〈Avi, Avi〉 =
1

σ2
i

〈A∗Avi, vi〉 = 〈vi, vj〉 = 1.

The space spanned by [u1, ..., up] is R(A). Let us choose [up+1, ..., um] to be an orthonormal
basis in R(A)⊥ ⊂ Rm. Then [u1, ..., um] is unitary matrix.

Remarks.

1. A∗ has the following representation:

A∗ui =
1

σi
A∗(Avi) = σivi.

2. The domain and range of A can be decomposed into

Rn = [v1, ..., vp]⊕ [vp+1, ..., vn] = [v1, ..., vp]⊕N(A),

Rm = [u1, ..., up]⊕ [up+1, ..., um] = R(A)⊕ [up+1, ..., um].

3. An m× n matrix is of rank 1 if and only if it has the form

u⊗ v, uvT

where u is m× 1 and vT is 1× n matrices. The SVD is to decompose A into a sum of rank
1 matrices

A = [u1, ..., um]



σ1

. . .
σp

0
. . .

0


 vT1

...
vTn

 =

p∑
i=1

σiuiv
T
i ,

with both U = [u1, ..., up] and V = [v1, ..., vp] are orthonormal.

26 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

4. The least-squares solution for Ax = b is the minimizer of

1

2
‖Ax− b‖22

With the singular value decomposition, we can represent

b =

p∑
i=1

〈b, ui〉ui +

m∑
i=p+1

〈b, ui〉ui =

p∑
i=1

〈b, ui〉ui + b⊥

The least squares solution is

x∗ =

p∑
i=1

1

σi
〈b, ui〉vi +N(A),

which minimize ‖Ax− b‖2 with minimal value

‖Ax∗ − b‖2 = ‖b⊥‖2.

The solution x† :=
∑p

i=1
1
σi
〈b, ui〉vi, denoted by A†b, is called the Moore-Penrose solution,

where
A† := V Σ†U∗

Σ† has the same structure as Σ and replacing σi by σ−1
i . The matrix A† is called the pseudo

inverse of A.

2.4 Matrix Analysis

2.4.1 Matrix Norm

Norm in vector space In analysis, we need to measure how close of two vectors, the concept of
convergence. A natural way is to define the concept of norm for vectors.

Definition 2.6. Let V be a vector space. A mapping ‖ · ‖ : V → R is called a norm if

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;

(ii) ‖λx‖ = |λ|‖x‖ for any λ ∈ R and any x ∈ Rn;

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A vector space endowed with a norm ‖ · ‖ is called a normed vector space.

In Rn, we define the norms

|x|p :=

 n∑
j=1

|xj |p
1/p

, 1 ≤ p <∞, |x|∞ = max
i
|xi|

One can see that |x|p → |x|∞ as p→∞.

2.4. MATRIX ANALYSIS 27

Matrix Norm A m× n matrix A is viewed as a linear map from Rn → Rm (or Cn → Cm). The
set of all m× n matrices is denoted byMm×n, which is a linear space.

The norms in domain and range may be different. Let us call the norm in the domain by ‖ · ‖a
and range by ‖ · ‖b. The linear map A : (Rn, ‖ · ‖a)→ (Rm, ‖ · ‖b) induces an operator norm on the
matrix A defined by

‖A‖a→b := max
x 6=0

‖Ax‖b
‖x‖a

≡ max
‖x‖a=1

‖Ax‖b.

Most of the time, we drop the subindex (a → b) when it is clear from the context. It is easy to see
that ‖ · ‖ is a norm in the vector spaceMm×n. Let us check the triangle inequality:

‖A+B‖ = max
‖x‖=1

‖(A+B)x‖

≤ max
‖x‖=1

‖Ax‖+ max
‖x‖=1

‖Bx‖

= ‖A‖+ ‖B‖.

The operator has the following two important properties

• ‖Ax‖ ≤ ‖A‖ ‖x‖

• ‖AB‖ ≤ ‖A‖ ‖B‖ when both A,B ∈Mn×n.

Examples

1. A : (Rn, | · |∞)→ (Rm, | · |∞) Then ‖A‖∞ = maxi
∑

j |aij |

‖A‖∞ = sup
|x|∞=1

max
i
|
∑
j

aijxj | = max
i

sup
|x|∞=1

|
∑
j

aijxj |

≤ max
i

sup
|x|∞=1

(
∑
j

|aij |)(max
j
|xj |) = max

i

∑
j

|aij |

Conversely, if maxi
∑

j |aij | =
∑

j |ai0j |, we choose

xj = sign ai0j = ±1.

Then |x|∞ = 1 and

‖A‖∞ ≥ |Ax|∞ = max
i
|
∑
j

aijxj | =
∑
j

|ai0j |.

28 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

2. A : (Rn, | · |1)→ (Rm, | · |1), then ‖A‖1 = maxj
∑

i |aij |.

|Ax|1 =
∑
i

|
∑
j

aijxj | ≤
∑
i

∑
j

|aij | |xj |

=
∑
j

(∑
i

|aij |

)
|xj | ≤

∑
j

(
max
k

∑
i

|aik|

)
|xj |

=

(
max
k

∑
i

|aik|

)
|x|1

Thus, we obtain ‖A‖1 ≤ maxj
∑

i |aij |. Conversely, if maxj
∑

i |aij | =
∑

i |aij0 |, then we
choose

x = (δjj0)nj=1 = (0, · · · , 1, · · · , 0)T .

We have |x|1 = 1 and
Ax = (a1j0 , a2j0 , · · · , anj0)T .

Thus,

‖A‖1 ≥ |Ax|1 =

n∑
i=1

|aij0 | = max
j

∑
i

|aij |.

3. ‖A‖2 =
√
ρ(A∗A), where ρ(B) is the spectral radius of a matrix B, which is defined for a

general square matrix B, by

ρ(B) = max
i
{|λ1(B)|, ..., |λn(B)|},

the largest eigenvalues of B in magnitude.

Proof. Since A∗A is hermitian, its eigenvalues are real. Let us order them by

λ1 ≥ λ2 ≥ · · · ≥ λn.

Then the spectral radius ρ(A∗A) = λ1. Suppose x is the unit eigenvector corresponding to
λ1, then

‖A‖22 ≥ |Ax|22 = 〈Ax,Ax〉 = 〈A∗Ax, x〉 = λ1〈x, x〉 = λ1

We get ‖A‖2 ≥
√
λ1. On the other hand, for any |x|2 = 1, we have

|Ax|2 = 〈Ax,Ax〉 = 〈A∗Ax, x〉 ≤ λ1〈x, x〉 = λ1.

We get ‖A‖22 ≤ λ1.

4. Frobenius norm: it is define to be

‖A‖2F :=
∑
i,j

|aij |2 = tr(A∗A).

This norm is easy to compute. It has the following properties

2.4. MATRIX ANALYSIS 29

• |Ax|2 ≤ ‖A‖F |x|2, ‖A‖2 ≤ ‖A‖F ;
• ‖AB‖F ≤ ‖A‖F ‖B‖F ;
• ‖AR‖F = ‖RA‖F = ‖A‖F for any rotation matrix R.

The proofs of the first and second follow from Cauchy-Schwarz inequality. For the proof of
the third statement,

‖AR‖2F = tr(RTATAR) = tr(RRTATA) = tr(ATA) = ‖A‖2F .

Here, we have used the cyclic formula for trace:

tr(ABC) = tr(BCA) = tr(CAB).

5. Nuclear norm:

‖A‖∗ =

min(m,n)∑
i=1

|σi(A)|,

where σ1 ≥ σ2 ≥ · · · are the singular values of A, equivalently, σ(A) =
√
λ(A∗A). The

nuclear norm is also called Ky Fan ’n’-norm. It is used, for instance, in compressive sensing,
in principal component analysis in statistics, to find a low rank matrix approximation to a
given matrix.

6. *Schatten norm: the above nuclear norm, Frobenius norm, L2 operator norm can all be unified
as special cases of Schatten norm, which is defined as

‖A‖p :=

min(m,n)∑
i=1

σi(A)p

1/p

.

From the functional calculus theory,

‖A‖pp = tr(|A|p), |A| :=
√
A∗A.

Thus, the L2 operator norm is the Schatten maximum norm. The nuclear norm is the Schatten
1-norm. The Frobenius norm is the Schatten 2-norm.

Remarks.

• The Nilponent matrix is defined to be

N =

(
0 1
0 0

)
has ρ(N) = 0, but ‖N‖1 = ‖N‖2 = ‖N‖∞ = 1. The matrix

N∗N =

(
0 0
0 1

)
.

Thus, the singular values are 1 and 0. Their Schatten norms ‖N‖p = 1.

30 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

2.4.2 Condition number

Consider
Ax = b,

whereA is an n×nmatrix and assume it is invertible. We want to measure the sensitivity of solving
x from b. Suppose b̃ is a perturbation of b and x̃ the corresponding solution of Ax̃ = b̃. Then

‖x− x̃‖ = ‖A−1(b− b̃)‖ ≤ ‖A−1‖‖b− b̃‖

‖x− x̃‖
‖x‖

≤ ‖A−1‖‖b− b̃‖ 1

‖x‖
‖Ax‖
‖b‖

≤ ‖A−1‖‖A‖‖b− b̃‖
‖b‖

Condition number κ(A) := ‖A‖‖A−1‖ measures the sensitivity of x w.r.t. b.

1. Find the condition number of

A =

(
1 1 + ε

1− ε 1

)
Ans: κ(A) ≥ 4/ε2.

2. The Hilbert matrix is given by

H =

(
1

i+ j + 1

)
0≤i,j≤n

Its condition number has estimate: κ(H) ≈ O((1 +
√

2)4n/
√
n).

3. The discrete Laplacian in one dimension with Dirichlet boundary condition is

A = diag(−1, 2,−1).

Since A is symmetric positive definite, we have

‖A‖ = max
i
λi(A) = λ1(A),

‖A−1‖ = max
i
|λi(A−1)| = max

i
|λi(A)−1| = λn(A)−1.

Thus,

κ(A) =
λ1(A)

λn(A)
.

Homework

1. What is the explicit expression of the operator norm of A : (Rn, | · |1)→ (Rm, | · |∞)?

2. Show that κ(A) = sup‖x‖=‖y‖
‖Ax‖
‖Ay‖ .

2.4. MATRIX ANALYSIS 31

2.4.3 *Functional Calculus

Given an n × n matrix A, we can define p(A) for any polynomial p. Let σ(A) denote the spectra
of A, we have the following spectral mapping theorem.

Theorem 2.9 (Spectral Mapping Theorem for polynomial functions). Let A be an n × n matrix
over C and σ(A) be its spectra. Then for any polynomial p, we have

σ(p(A)) = p(σ(A)).

Proof. 1. By spectral decomposition theorem, there exists V and J such that

A = V JV −1.

From this expression, we get that

Ak = (V JV −1) · (V JV −1) · · · (V JV −1) = V JkV −1.

The Jordan matrix has the form

J = J1 ⊗ · · · ⊗ Jm.

This implies

Jk = Jk1 ⊗ · · · ⊗ Jkm.

2. For each Jordan block above, say Jp = µpI + N , N is Nilpotent, we can get that Jkp is always
upper triangular with diagonal µkpI . Thus, the eigenvalue of Jkp is µkp . This shows

σ(Jkp) = (σ(Jp))
k.

3. Since

σ(J) = σ(Jk1 ⊗ · · · ⊗ Jkm) =
m⋃
p=1

σ(Jkp)

we then get

σ(Ak) = σ(Jk) =
m⋃
p=1

σ(Jkp) = σ(A)k,

and thus

σ(p(A)) = p(σ(A))

for any polynomial function p(·).

32 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

Remark. In applications, we will need f(A) for more general functions. For example, A−1,
exp(A), sin(A), etc. These operator-valued functions can be defined through the helps of resolvent
(λI −A)−1 and the Cauchy integral formula.

The resolvent (λI−A)−1 can be defined in |λ| > ρ(A), where ρ(A) is called the spectral radius
of A. The spectral radius ρ(A) is useful in the power series expansion of a matrix. We have the
following theorem.

Theorem 2.10. Ak → 0 if and only if ρ(A) < 1. ‖Ak‖ is unbounded as k → ∞ if and only if
ρ(A) > 1.

Proof. If Ak → 0, and suppose λ/x be a pair of eigenvalue/eigenvector of A, then

Akx = λkx→ 0.

This implies λk →. Hence |λ| < 1. This implies ρ(A) < 1.
Conversely, let us suppose ρ(A) < 1, which means that all eigenvalues |λ(A)| < 1. Let

us decompose A into direct product of Jordan blocks: AV = V J with V invertible and J =
J1 ⊗ · · · ⊗ J`. The power

Ak = V JkV −1, Jk = Jk1 ⊗ · · · ⊗ Jk` .

We can see that λ(A) < 1⇔ J(λ(A))k → 0, which is equivalent to |λ(A)| < 1.
Suppose |λ(A)| > 1 for some eigenvalue λ(A), then the corresponding Jordan block

Jk = (λI +N)k =
k∑

m=0

(
k
m

)
λk−mINm →∞

if and only if |λ| > 1.

Theorem 2.11 (Gelfand formula). For any matrix norm ‖ · ‖, we have

ρ(A) = lim
k→∞

‖Ak‖1/k.

Proof. For any ε > 0, we have ρ(A/(ρ(A) + ε)) < 1. Hence(
A

ρ(A) + ε

)k
→ 0 as k →∞.

Thus, there exists N1 such that for all k > N1, we have∥∥∥∥∥
(

A

ρ(A) + ε

)k∥∥∥∥∥ < 1

This means
‖Ak‖ ≤ (ρ(A) + ε)k

2.4. MATRIX ANALYSIS 33

or
‖Ak‖1/k ≤ ρ(A) + ε.

Similarly, ρ(A/(ρ(A)− ε)) > 1. From∥∥∥∥∥
(

A

ρ(A)− ε

)k∥∥∥∥∥→∞ as k →∞,

there exists N2 such that for all k > N2,

‖Ak‖1/k ≥ ρ(A)− ε.

This completes the proof.

Theorem 2.12. The series
∑∞

n=0A
n converges if and only if ρ(A) < 1. In the convergence case,

the series equals (I −A)−1.

Proof. Suppose ρ(A) < 1, we want to show (I −A) is invertible. The key is to expand

(I −A)−1 =
∞∑
n=0

An.

This is called Neumann series. From ρ(A) < 1, we chooser ε > 0 such that ρ(A) + ε = η < 1.
From ‖An‖1/n → ρ(A), there exists N such that for all n > N , we have

‖An‖1/n ≤ ρ(A) + ε = η,

or ‖An‖ ≤ ηn. Thus,
∑∞

n=0A
n converges absolutely and uniformly in any operator norm.

It is also easy to see that this series commutes with A because the finite part of the Neumann
series commutes with A. Thus, we get

(I −A) (
∞∑
n=0

An) = (
∞∑
n=0

An) (I −A) = I.

Corollary 2.2. The operator Rλ(A) := (λI −A)−1 is well-defined and analytic in |λ| > ρ(A).

Proof. This is because the series
∞∑
n=0

(
A

λ

)n
converges absolutely and uniformly in any operator norm ‖ · ‖ and uniformly in λ for λ in the
compact region in |λ| > ρ(A). Since the finite sum is analytic in λ, so is their uniform limit.

The operator Rλ(A) is called the resolvent of A.

34 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

Example Suppose J = µIn +Nn be a Jordan matrix, find the exact formula of (λIn − J)−1.

Definition 2.7. Let f be a holomorphic function on C and A be an n× n matrix over C. We define

f(A) :=

∫
C
f(λ)(λI−A)−1 dλ

where C is any closed contour that winds once around σ(A).

Theorem 2.13 (Spectral Mapping Theorem). Let f be a holomorphic function on C and A be an
n× n matrix over C. We have

σ(f(A)) = f(σ(A)).

2.5 Direct Methods for Solving Linear Equations

2.5.1 LU Decomposition

Goal : Solv small size linear system
Ax = b.

Small size means that n is at most few hundreds.

Strategy

• Decompose A = LU by Gaussian elimination method, where L is lower triangular matrix
and U is a upper triangular matrix.

• Solve LUx = b by solving
Ly = b Ux = y.

These two equations can be solved by forward and backward substitution, respectively.

Procedure If the matrix is upper triangular, i.e. aij = 0 if j < i, then we can solve this equation
by backward substitution:

Algorithm 1 Backward substitution
1: procedure BKSBSTITUT(n,A = (aij), b)
2: for i = n : 1 do
3: xi ←

(
bi −

∑n
j=i+1

)
/aii

4: end for
5: end procedure

If the matrix is lower triangular, i.e. aij = 0 if j > i, then we can solve this equation by forward
substitution:

2.5. DIRECT METHODS FOR SOLVING LINEAR EQUATIONS 35

Algorithm 2 Forward substitution
1: procedure FWDSBSTITUT(n,A = (aij), b)
2: for i = 1 : n do
3: xi ←

(
bi −

∑i−1
j=1

)
/aii

4: end for
5: end procedure

For general matrix A, we factorize it into the product of a lower triangular matrix L and an
upper triangular matrix U :

A = LU,

called LU factorization. By direct calculation, we get

aij =

min(i,j)∑
s=1

`isusj .

The procedure to obtainL andU is by the Gaussian elimination method. It is an inductive procedure.
At step k,

• we assume that we have computed rows 1, ..., k − 1 of U and columns 1, ..., k − 1 of L

• we want to update ukj , j ≥ k and `ik, i ≥ k.

• From

akk =

k−1∑
s=1

`ksusk + `kkukk,

we can determine `kk or ukk if one of them is chosen. So there are three approaches:

– choose `kk = 1 for all k. Such L is a unit lower triangular matrix, the factorization is
called Doolittle’s factorization;

– choose ukk = 1 for all k. Such U is a unit upper triangular matrix, the factorization is
called Crout’s factorization;

– For symmetric matrix, we can choose `kk = ukk for all k. Such factorization for sym-
metric matrices is called the Cholesky factorization.

Let us choose `k = 1 here. With this, we determine ukk.

• We proceed to compute ukj for j > k and `ik for i > k as the follows.

akj =

k−1∑
s=1

`ksusj + `kkukj (k + 1 ≤ j ≤ n)

aik =
k−1∑
s=1

`isusk + `ikukk (k + 1 ≤ i ≤ n)

36 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

The corresponding pseudocode is

Algorithm 3 LU Decomposition
1: procedure GAUSSIANELIMINATION(n,A = (aij), b)
2: for k = 1 : n do
3: `kk = 1
4: ukk = akk −

∑k−1
s=1 `ksusk

5: for j = k + 1 : n do
6: ukj ←

(
akj −

∑k−1
s=1 usj

)
/`kk

7: end for
8: for i = k + 1 : n do
9: `ik ←

(
aik −

∑k−1
s=1 `isusk

)
/ukk

10: end for
11: end for
12: end procedure

With a LU factorization, the system Ax = b can be solved by

Ly = b

Ux = y.

In practice, we can store L and U in matrix A. At step k, the matrix A(k) has the form

A(k) =



a
(1)
11 a

(1)
12 · · · · · · · · · a

(1)
1n

`21 a
(2)
22 a

(2)
2n

...
.

...
`k1 · · · `k,k−1 a

(k)
kk · · · a

(k)
kn

...
...

...
...

`n1 · · · `n,k−1 a
(k)
nk · · · a

(k)
nn



2.5. DIRECT METHODS FOR SOLVING LINEAR EQUATIONS 37

Algorithm 4 Gaussian Elimination
1: procedure GAUSSIANELIMINATION(n,A = (aij), b)
2: for k = 1 : n− 1 do
3: for i = k + 1 : n do
4: `ik = a

(k)
ik /a

(k)
kk

5: for j = k + 1 : n do
6: a

(k+1)
ij = a

(k)
ij − `ika

(k)
kj

7: end for
8: b

(k+1)
i = b

(k)
i − `ikb

(k)
k

9: end for
10: end for
11: end procedure

Variants of LU Decomposition

• A = LDU , where L and D are unit lower/upper triangular matrices, D is a diagonal matrix.

• IfA is symmetric, then we can factorA intoA = LLT . This is called Cholesky factorization.

Stability and Pivoting LU Decomposition It is possible that the LU factorization fails at some
iteration k. In performing Gaussian elimination for the matrix A(k):

A(k) =

 a
(k)
kk · · · a

(k)
km

...
...

a
(k)
nk · · · a

(k)
nn

 .

it is possible that a(k)
kk is zero, or very small. In this case, the Gaussian elimination is either fails or

unstable. To avoid this, we can perform row permutation to move the largest |a(k)
ik |, i = k, ..., n to

the kth row of the matrix A(k). Let us denote such row permutation by Pk. The factorization now
becomes

PA = LU,

where P = Pn−1 · · ·P1 is the product of these row permutations. Such process involving only row
permutation is called partial pivoting.

In the above pivoting process, it is also possible to find the largest |a(k)
ij | for k ≤ i, j ≤ n then

perform a row permutation Pk and a column permutation Qk. Then the factorization becomes

PAQ = LU,

where P = Pn−1 · · ·P1 and Q = Q1 · · ·Qn−1. This is called total pivoting.

38 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

Matlab Commands

• [LU] = lu(A) gives the LU decomposition with partial pivoting;

• [L,U, P] = lu(A) gives the LU decomposition with partial pivoting;

• [L,U, P,Q] = lu(A) gives the LU decomposition with total pivoting.

If A is symmetric, then Cholesky method is adopted:

• R = chol(A) gives A = R′R;

• L = chol(A,′ lower′) gives A = LL′.

Computational Complexity :

• It is in general O(n3) for full matrices.

• For banded matrices with band size b, the computational complexity is O(b2n), provided
there is no pivoting.

• Theoretically, if the matrix-matrix multiplication is M(n), then the LU factorization is also
M(n). There are some fast algorithms for matrix-matrix multiplication:

– Strassen algorithm: O(n2.807355),

– Coppersmith?Winograd algorithm: O(n2.375477).

The latter may be impractical because large constant.

2.5.2 *Other direct methods

• Cyclic Reduction Method: This is for tridiagonal matrix

A = diag(aj , 1, cj)

The jth equation is
ajxj−1 + xj + cjxj+1 = bj .

We will reduce to half size by eliminating the odd index terms. Let us write three consecutive
equations

a2j−1x2j−2 +x2j−1 +c2j−1x2j = b2j−1

a2jx2j−1 +x2j +c2jx2j+1 = b2j
a2j+1x2j +x2j+1 +c2j+1x2j+2 = b2j+1

We can eliminate x2j−1 and x2j+1 and then obtain an equation only involves x2j−2, x2j and
x2j+2:

−a2j−1a2jx2j−2+(1−a2jc2j−1−a2j+1c2j)x2j−c2jc2j+1x2j+2 = b2j−a2jb2j−1−c2jb2j+1.

2.6. CLASSICAL ITERATIVE METHODS 39

The problem now can be reduced to half size:

a
(1)
j x

(1)
j−1 + x

(1)
j + c

(1)
j = b

(1)
j .

Here, all original xj , bj , aj , cj will be denoted by x(0)
j ,etc. as an initialization. The new

variables and coefficients are

a
(1)
j =

−a(0)
2j−1a

(0)
2j

1− a(0)
2j c

(0)
2j−1 − a

(0)
2j+1c

(0)
2j

, c
(1)
j =

−c(0)
2j c

(0)
2j+1

1− a(0)
2j c

(0)
2j−1 − a

(0)
2j+1c

(0)
2j

x
(1)
j = x

(0)
2j , b

(1)
j =

b
(0)
2j − a

(0)
2j b

(0)
2j−1 − c

(0)
2j b

(0)
2j+1

1− a(0)
2j c

(0)
2j−1 − a

(0)
2j+1c

(0)
2j

.

We perform this process recursively. Suppose the number of unknowns is 2LM at level 0.
The solution (x

(k)
j) is called at level k. We perform the above reduction procedure for k = 0

to L. This is a M ×M system, a small system, which can the solve it exactly. Once we
have the solution at the coarsest level L, we can go backward to obtain solutions at finer grid.
Indeed, suppose we have solutions at level k + 1, that is x(k+1)

j . These are also the solutions

x
(k)
2j . Then the solution at odd grids at level k can be obtained from the odd equation:

a
(k)
2j+1x

(k)
2j + x

(k)
2j+1 + c

(k)
2j+1x

(k)
2j+2 = b

(k)
2j+1

which can be solved for x(k)
2j+1 once x(k)

2j and x(k)
2j+2 are obtained. But these two are obtained

from the previous iteration steps.

The cyclic reduction method is very similar to multi grid method. If the matrix is diagonally
dominant, then off-diagonal coefficients a(k)

j , c(k)
j , which changes during the level reduction,

converges to zeros quadratically.

• Block Cyclic Reduction Method: this is particular useful for two dimension problems.

2.6 Classical Iterative Methods

The target problem we can have in mind is the discrete Poisson equation

−uj−1 + 2uj − uj+1 = fj , j = 1, ..., N − 1.

The boundary conditions are
u0 = uN = 0.

This can be written in matrix form
Ax = b,

where A = diag(−1, 2,−1).

40 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

2.6.1 Splitting iterative methods

Problem Solve Ax = b. A is large size and usually sparse.

Ideas This class of iterative methods split A into

A = M −N,

where M and N satisfy

• M is the major part, M is easy to invert

• N is the minor part.

Then perform iteration:
Mxn+1 −Nxn = b.

This is supposed to be solved easily because we assume M is easy to invert.

Splitting examples For instance, we can express A = D+L+U , where D is diagonal, L lower
triangular, and U upper triangular. Then we perform the following splitting

• Jacobi method: choose M = D, N = −L− U ;

• Gauss-Seidel: choose M = D + L, N = −U .

Theory The iteration can be rewritten as

xn+1 = M−1Nxn +M−1b := Gxn +M−1b.

The matrix G is called amplification matrix.

Theorem 2.14. The sequence xn+1 = Gxn + c converges if and only if ρ(G) < 1.

Proof. 1. Subtracting xn+1 = Gxn + c and xn = Gxn−1 + c, we get

xn+1 − xn = G(xn − xn−1) = Gn(x1 − x0).

The convergence of the sequence {xn} is equivalent to the convergence of the series
∑

n(xn+1−
xn), which is also equivalent to that of

∑
nG

n(x1 − x0).

2. If ρ(G) < 1, then, from Gelfand formula, we can choose an ρ(G) < η < 1 and there exists
an N , such that for all n ≥ N , we have

‖Gn‖ ≤ ηn

Thus, the series ∑
n

(xn+1 − xn) =
∑
n

Gn(x1 − x0)

converges absolutely.

2.6. CLASSICAL ITERATIVE METHODS 41

3. Conversely, suppose ρ(G) > 1. Let λ1 be the largest eigenvalue in magnitude and v1 be
the corresponding eigenvector. From ρ(G) > 1, we have |λ1| > 1.We choose x0 such that
x1 − x0 = v1. This means that (I −G)x0 + c = v1. As long as 1 is not an eigenvalue of G,
this is possible. With this x0, we see that∑

n

(xn+1 − xn) =
∑
n

Gn(x1 − x0) =
∑
n

Gnv1 =
∑
n

λn1

is unbounded.

4. If 1 happens to be an eigenvalue with v being the corresponding eigenvector. We choose
x0 = v, we see that xn = v + nc is still unbounded.

Remark A sufficient condition for
∑

nG
n(x1 − x0) converges is ‖G‖ < 1 for some norm. But

this is not a necessary condition.

Definition 2.8. A matrix A is called

• strictly diagonally dominant if

|aii| >
∑
j 6=i
|aij | for all i = 1, ..., n.

• irreducible diagonally dominant if A is diagonally dominant:

|aii| ≥
∑
j 6=i
|aij | for all i = 1, ..., n,

and A is irreducible, i.e. A cannot be similar via permutation to a block upper triangular
matrix.

Theorem 2.15. The Jacobi method or the Gauss-Seidel method converge if one of the following
cases holds

• A is symmetric positive definite;

• A is strictly diagonally dominant;

• A is irreducible and diagonally dominant.

The convergence rate is linear.

Proof. I shall only give the convergence proof for Jacobi method for strictly diagonally dominant
matrices. For Jacobi method, A = D + (L+ U) = M −N . The iteration algorithm is Mxn+1 =

42 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

Nxn + b. We get xn+1 = Gxn + M−1b with G = M−1N . When A is strictly row diagonally
dominant, we use operator sup norm ‖G‖∞ =, which is

‖G‖∞ = max
i

∑
j

|gij | = max
i

∑
j 6=i

∣∣∣∣aijaii
∣∣∣∣ = η < 1

Thus, the series ∑
n

(xn+1 − xn)

converges absolutely in | · |∞. This leads to xn converges. Suppose x∗ is its limit. Then x∗ =
Gx∗ +M−1b. Subtracting this from xn+1 = Gxn +M−1b, we obtain

en+1 = Gen,

where en := xn − x∗. Since ‖G‖∞ = η < 1, we get

|en|∞ ≤ ‖Gn‖∞|e0| ≤ ηn|e0|∞ → 0.

This shows that the convergence is linear.

Acceleration techniques: Richardson Extrapolation In the late 50’s, people think that one can
accelerate the convergent rate by performing Richardson extrapolation techniques. Let us take Ja-
cobi method as an example.

1. Damped Jacobi method. Suppose we use Jacobi method to produce xn+1 from xn. We can
extrapolate it to x̂n+1 by

x̂n+1 = (1− ω)xn + ωxn+1,

where ω will be properly chosen. Usually it will be larger than 1 for extrapolation. Now,
suppose xn+1 is produced by Jacobi method. Then

x̂n+1 = (1− ω)xn + ωD−1(−(L+ U)xn + b).

We drop hat in x̂n+1. The resulting scheme is:

xn+1 = (1− ω)xn + ωD−1(−(L+ U)xn + b) = xn + ωD−1(b−Axn).

This is called damped Jacobi method.

2. Successive over relaxation method (SOR). Suppose xn+1 is produced by Gauss-Seidel method.
We extrapolate it from xn, xn+1 to a new x̂n+1 by

x̂n+1 = (1− ω)xn + ωxn+1.

In this case,

x̂n+1 = (1− ω)xn + ω(D + L)−1(−Uxn + b) = xn + ω(D + L)−1(b−Axn).

2.6. CLASSICAL ITERATIVE METHODS 43

3. Symmetric Successive Over Relaxation (SSOR). For symmetric matrix, the above amplifi-
cation matrix G is not symmetric. But, we can perform Gauss-Seidel method twice in one
iteration, one use lower triangular matrix L, the other uses the upper triangular matrix. In this
procedure, we can maintain symmetric of the amplification matrix. So, the scheme reads

xn+1/2 = xn + ω(D + L)−1(b−Axn)

xn+1 = xn+1/2 + ω(D + U)−1(b−Axn+1/2).

xn+1 = xn + ω
[
(D + L)−1 + (D + U)−1 − ω(D + U)−1A(D + L)−1

]
(b−Axn).

Note that U = LT and the amplification matrix

G = ω
[
(D + L)−1 + (D + U)−1 − ω(D + U)−1A(D + L)−1

]
A

is symmetric.

The goal is to find proper ω which minimize ρ(G(ω)). It depends on specific A. For discrete
Laplacian on box, one can compute the spectrum explicitly, then obtain an optimal ω. For symmetric
positive definite matrix, we can also do similar things.

Remarks.

1. SOR in the standard textbook is not expressed in the form above. It is derived and expressed
as below. Originally, the Gauss-Seidel can be written as

xn+1 = D−1(b− Lxn+1 − Uxn).

Hence, one can design SOR as

xn+1 = (1− ω)xn + ωD−1(b− Lxn+1 − Uxn).

From this, we obtain

Dxn+1 = (1− ω)Dxn + ω(b− Lxn+1 − Uxn)

(D + ωL)xn+1 = ((1− ω)D − ωU)xn + ωb.

Thus, we split A = M −N ,

M = D + ωL, N = (1− ω)D − ωU.

Or we can express it as

xn+1 = xn + ω(D + ωL)−1(b−Axn).

44 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

2. SSOR: We perform two SORs:

xn+1/2 = xn + ω(D + ωL)−1(b−Axn)

xn+1 = xn+1/2 + ω(D + ωU)−1(b−Axn+1/2).

This gives

xn+1 = xn + ω
[
(D + ωL)−1 + (D + ωU)−1 − ω(D + ωU)−1A(D + ωL)−1

]
(b−Axn)

= xn + ωP−1(b−Axn)

where

P−1 = (D + ωL)−1 + (D + ωU)−1 − ω(D + ωU)−1A(D + ωL)−1

= (D + ωU)−1 [D + ωL− ωA+D + ωU] (D + ωL)−1

= (2− ω)(D + ωU)−1D(D + ωL)−1.

2.6.2 Preconditioned iterative methods

To solve
Ax− b = 0,

we shall solve the equation
P−1(Ax− b) = 0

instead, where P is called a preconditioner, which is designed to satisfy

• P−1 is easy to compute,

• P−1 is an approximation ofA−1 in the sense that P−1A has smaller condition number of that
A has.

With a preconditioner P , we can design a fixed point method as

xn+1 = xn + ωnP
−1(b−Axn).

One can see all classical iterative methods can be expressed as this preconditioned iterative method.

• Jacobi method: P = D, ω = 1

• Damped Jacobi method: P = D, ω ∈ (0, 2),

• Gauss-Seidel: P = D + L, ω = 1,

• SOR: P = D + ωL

• SSOR: P = 1
2−ω (D + ωU)D−1(D + ωL).

2.6. CLASSICAL ITERATIVE METHODS 45

Homework

1. Discretize the one-dimension Poisson equation −u′′ = f by central finite difference method.
Solve the resulting linear system

diag(−1, 2,−1)u = f

by above classical iterative methods. Choose proper ω, Compare them.

2.6.3 Conjugate Gradient Method

Goal: Solve Ax = b, A is symmetric positive definite and b 6= 0.

Ideas and derivation: Solve the problem successively in the space spanned by {b, Ab, ..., Ak−b}.
The reason is the follows. Suppose p is the minimal polynomial of A, that is p(A) = 0 and
deg(A) ≤ n. If A is invertible, then p(0) 6= 0. Otherwise 0 would be an eigenvalue. We may
normalize p such that p(0) = −1. Thus

0 = p(A) = −I +Aq(A).

This shows that A−1 = q(A) with deg(q) ≤ n− 1. Thus,

x = A−1b = q(A)b.

To derive an iterative method, the above observation suggests us to solve this equation iteratively in
the spaces

V0 ⊂ V1 ⊂ · · · ⊂ Vn = Rn.

where
Vk =< b,Ab, ..., Ak−1b >,

the space spanned by {b, Ab, ..., Ak−1b}, called the Krylov spaces. The details of the derivation are
the follows.

1. The problem can be written in variation form:

minφ(x) :=
1

2
〈Ax, x〉 − 〈b, x〉.

The minimum occurs at
∇φ(x) = Ax− b = 0.

2. Let us look for optimal solution in Vk. Let us call it

xk = arg min {φ(x)|x ∈ Vk}.

46 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

3. We start from x0 = 0. Let us define the residual

r0 := b−Ax0,

which is not zero. We define V1 =< r0 >=< b >. We look for optimal solution in V1.
The search direction is called p1, which is p1 = b. An element in V1 can be expressed as
x = α1p1. Plug it into φ(x), we get

φ(x) =
α2

2
〈Ap1, p1〉 − 〈b, αp1〉.

The optimal solution is

x1 = α1p1, α1 =
〈b, p1〉
〈Ap1, p1〉

.

4. The residual r1 := b−Ax1. Suppose r1 6= 0. We find

r1 ∈ V2 :=< b,Ab > .

Hence,
V2 =< r0, r1 > .

Furthermore, the residual r1 = −∇φ(x1), it is orthogonal to V1 because x1 is the optimal
solution of φ in V1. Thus,

r1 ⊥ r0.

5. Now, suppose we have found an optimal solution xk ∈ Vk and suppose the residual

rk := b−Axk 6= 0.

We extend Vk by adding rk. Then

Vk+1 = Vk+ < rk >=< b,Ab, ..., Akb > .

For any x ∈ Vk+1, we express it as

x = y + αk+1pk+1

where y ∈ Vk, pk+1 ∈ Vk+1 \ Vk is the search direction to be determined later. We plug it
into φ

φ(x) = φ(y) + 〈y,Apk+1〉+
α2

2
〈pk+1, Apk+1〉 − α〈pk+1, b〉.

If 〈y,Apk+1〉 = 0, then the above minimization in Vk+1 is separable:

min
x∈Vk+1

φ(x) = min
y∈Vk

φ(y) + min
α∈R

α2

2
〈pk+1, Apk+1〉 − α〈pk+1, b〉.

This gives
xk+1 = xk + αk+1pk+1

with

pk+1 ⊥A Vk, αk+1 =
〈b, pk+1〉

〈Apk+1, pk+1〉
.

2.6. CLASSICAL ITERATIVE METHODS 47

6. The search direction pk is chosen to be

pk+1 = rk + βk+1pk.

Since it is required
〈Apk+1, pk〉 = 0.

This gives

βk+1 = −〈Apk, rk〉
〈Apk, pk〉

.

7. Residual: The residual of xk is defined as

rk+1 = b−Axk+1.

8. If rk+1 = 0, then we are done. If not, we repeat the above procedure. This will continue at
most to k = n, where the search space Vn is the whole space Rn.

Theory Below, we assume A is symmetric positive definite n × n matrix. The matrix A defines
an inner product

〈x, y〉A := 〈Ax, y〉.

Theorem 2.16. Given r0 6= 0. Let Vk = [r0, Ar0, ..., A
k−1r0] be the Krylov spaces. Set p0 = 0.

For k = 0, ..., n− 1, define

pk+1 = rk + βk+1pk, βk+1 = −〈Apk, rk〉
〈Apk, pk〉

rk+1 = rk − αk+1Apk+1, αk+1 =
〈rk, pk+1〉
〈Apk+1, pk+1〉

,

then,

1. either rk+1 = 0, or

2. (i) Vk+1 = [r0, r1, ..., rk] = [p1, p2, ..., pk+1], dimVk+1 = k + 1.

(ii) {p1, ..., pk+1} are A-orthogonal,

(iii) rk+1 ⊥ Vk+1.

Proof. 1. We prove (i), (ii), (iii) by induction.
For k = 1, since p1 = r0, it is clear that V1 = [r0] = [p1] and dimV1 = 1. Moreover,

〈r1, p1〉 = 〈r0 − α1Ap1〉 = 0 because α1 =
〈r0, p1〉
〈Ap1, p1〉

.

2. Suppose (i) (ii) (iii) are true for k, that is,

48 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

(i) Vk = [r0, r1, ..., rk−1] = [p1, p2, ..., pk], dimVk = k.

(ii) {p1, ..., pk} are A-orthogonal,

(iii) rk ⊥ Vk,

we want to show they are also true for k + 1.

3. To show (i), we show that rk ∈ Vk+1 and rk 6∈ Vk. These two together give Vk+1 = Vk+ <
rk > and dimVk+1 = k + 1. The reason for rk ∈ Vk+1 is due to

rk = rk−1 − αkApk ∈ Vk +AVk = Vk+1.

The reason why rk 6∈ Vk is due to the induction hypothesis rk ⊥ Vk, unless rk = 0, which is
also contradicts our assumption.

4. We show that Vk+1 = Vk+ < pk+1 >. We have pk+1 = rk + βk+1pk ∈ Vk+1. Since
rk ∈ Vk+1 \ Vk and pk ∈ Vk, we get that pk+1 ∈ Vk+1 \ Vk. These two show Vk+1 = Vk+ <
pk+1 >.

5. We show 〈Apk+1, pk〉 = 0. From pk+1 = rk + βk+1pk, we see that βk+1 is chosen so that
〈Apk+1, pk〉 = 0.

6. We show that 〈Apk+1, p`〉 = 0 for ` = 1, ..., k − 1. We have

〈Apk+1, p`〉 = 〈rk + βk+1pk, Ap`〉
= 〈rk, Ap`〉+ βk+1〈pk, Ap`〉 = 0.

For 〈rk, Ap`〉, we have used (a) Ap` ∈ Vk if ` < k, (b) the induction hypothesis rk ⊥ Vk. For
〈pk, Ap`〉 = 0 for ` = 1, ..., k − 1, this is the induction hypothesis.

7. We show 〈rk+1, pk+1〉 = 0. We have

rk+1 = rk − αk+1Apk+1.

The coefficient αk+1 is chosen so that

〈rk+1, pk+1〉 = 〈rk − αk+1Apk+1, pk+1〉 = 0.

That is, rk+1 is obtained by removing the errors of rk in the direction of pk+1.

8. We show 〈rk+1, p`〉 = 0 for ` ≤ k. We have

〈rk+1, p`〉 = 〈rk − αk+1Apk+1, p`〉 = 0.

Here, we have used the induction hypothesis rk ⊥ Vk and {p1, ..., pk} are A-orthogonal.

2.6. CLASSICAL ITERATIVE METHODS 49

Remarks

1. In conjugate gradient method, if we start from any x0 and define

xk = xk−1 + αkpk, rk = b−Axk.

then rn = 0. This means that the exact solution can always achieved in n step iterations.

2. We can avoid some matrix-vector multiplication in CG method as shown below. We claim
that

αk :=
〈rk−1, pk〉
〈Apk, pk〉

=
〈rk−1, rk−1〉
〈Apk, pk〉

, (2.1)

βk+1 := −〈Apk, rk〉
〈Apk, pk〉

=
〈rk, rk〉
〈rk−1, rk−1〉

. (2.2)

This means that we only need to evaluate matrix-vector multiplication Apk once in each
iteration. To show (2.1), we use pk = rk−1 + βkpk−1,

〈rk−1, pk〉 = 〈rk−1, rk−1 + βkpk−1〉 = 〈rk−1, rk−1〉.

To show (2.2), from rk = rk−1 − αkApk, we have

〈rk, rk〉 = 〈rk−1 − αkApk, rk〉 = −αk〈Apk, rk〉.

Hence,

〈Apk, rk〉 = − 1

αk〈rk, rk〉
= − 〈Apk, pk〉
〈rk−1, pk〉

〈rk, rk〉.

Thus,

βk+1 = −〈Apk, rk〉
〈Apk, pk〉

=
〈rk, rk〉
〈rk−1, pk〉

=
〈rk, rk〉
〈rk−1, rk−1〉

.

50 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

Algorithm 5 Conjugate Gradient Algorithm
1: procedure CG(n,A = (aij), b)
2: r0 = b, p = b
3: α = 〈b,p〉

〈Ap,p〉
4: x = αp
5: r1 = b−Ax
6: C0 = 〈r0, r0〉
7: C1 = 〈r1, r1〉
8: while |r1| ≥ Tol do
9: β = −C1

C0
10: p = r1 + βp
11: α = C1

〈Ap,p〉
12: x = x+ αp
13: r0 = r1

14: r1 = b−Ax
15: C0 = C1
16: C1 = 〈r1, r1〉
17: end while
18: end procedure

Algorithm

Theorem 2.17. Suppose A is symmetric positive definite. Then the conjugate gradient method
converges and has the following estimate

‖x∗ − xk‖A ≤ 2

[√
κ(A)− 1√
κ(A) + 1

]k
‖x∗ − x0‖A.

Proof. 1. xk is the best solution of Ax− b = 0 in the space Vk. This means that

0 = 〈rk, v〉 = 〈b−Axk, v〉 = 〈Ax∗ −Axk, v〉 for all v ∈ Vk.

That is,

(x∗ − xk) ⊥A Vk.

This implies

〈A(x∗ − xk), x∗ − xk〉 ≤ 〈A(x∗ − v), (x∗ − v)〉 for all v ∈ Vk.

2.6. CLASSICAL ITERATIVE METHODS 51

2. Now, we choose v = pk−1(A)b = pk−1(A)Ax∗.

〈A(x∗ − xk), x∗ − xk〉 ≤ min
pk−1

〈A(I − pk−1(A)A)x∗, (I − pk−1(A)A)x∗〉

= min
qk(0)=1

〈Aqk(A)x∗, qk(A)x∗〉

= min
qk(0)=1

max
λ∈σ(A)

|qk(λ)|2〈Ax∗, x∗〉

≤ min
qk(0)=1

max
λ∈[a,b]

|qk(λ)|2〈Ax∗, x∗〉

where
a = λmin(A), b = λmax(A).

3. We choose

qk(λ) =
Tk

(
b+a−2λ
b−a

)
Tk

(
b+a
b−a

) ,

where

Tk(t) =

{
cos
(
k cos−1 t

)
if |t| < 1

cosh
(
k cosh−1 t

)
if |t| ≥ 1.

Then
q(0) = 1

and ∣∣∣∣Tk (b+ a− 2λ

b− a

)∣∣∣∣ ≤ 1 for all λ ∈ [a, b].

Thus,

max
λ∈[a,b]

|qk(λ)| ≤
[
Tk

(
b+ a

b− a

)]−1

.

4. We set
b+ a

b− a
= coshσ =

eσ + e−σ

2
.

This implies

eσ =

√
κ(A) + 1√
κ(A)− 1

, κ(A) =
b

a
.

We get

cosh(kσ) =
ekσ + e−kσ

2
≥ 1

2
ekσ

=
1

2

[√
κ(A) + 1√
κ(A)− 1

]k

52 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

Hence, we get

min
qk(0)=1

max
λ∈[a,b]

|qk(λ)| ≤ 2

[√
κ(A)− 1√
κ(A) + 1

]k
.

Preconditioned Conjugate Gradient Method In the CG method, the convergent rate depends on
the condition number. The convergence performs faster if we have a smaller condition. This is why
the preconditioned CG method (PCG) is favored.

Proposition 1. SupposeA is symmetric positive definite. Suppose P is a symmetric pre-conditioner
of A. Then PA is symmetric positive definite with respective to the norm

[x, y] := 〈P−1x, y〉.

That is,
[PAx, y] = [x, PAy] ≥ 0.

Proof.

[PAx, y] = 〈P−1PAx, y〉 = 〈Ax, y〉 = 〈x,Ay〉
= 〈PP−1x,Ay〉 = 〈P−1x, PAy〉 = [x, PAy].

Now, we solve
PAx = Pb.

The PCG is as the follows:

1. x0 = 0, r0 = b, p1 = Pr0.

2. α1 = 〈Pr0, r0〉/〈Ap+1, p1〉, x1 = α1p1, r1 = b−Ax1.

3. For k = 1, ..., the residue is Prk := Pb− PAxk,

βk+1 =
[Prk, P rk]

[Prk−1, P rk−1]
=

〈Prk, rk〉
〈Prk−1, rk−1〉

pk+1 = Brk + βk+1pk.

αk+1 =
[Prk, P rk]

[PApk+1, pk+1]
=

〈P−1Prk, P rk〉
〈P−1PApk+1, pk+1〉

=
〈Prk, rk〉

〈Apk+1, pk+1〉
xk+1 = xk + αk+1pk+1

rk+1 = b−Axk+1

2.7. POWER METHOD FOR FINDING EIGENVALUES 53

2.7 Power Method for Finding Eigenvalues

Goal Find the largest eigenvalue in magnitude of A.

Algorithm Let λi(A) and vi be its eigenvalues / eigenvectors. Suppose

|λ1(A)| > |λ2(A)| ≥ |λ3(A)| ≥ · · ·

and suppose x0 has nonzero component in the direction v1. Then

xk+1 =
Axk
‖Axk‖

has a subsequence converges to v1, and

µk =
〈xk, Axk〉
〈xk, xk〉

converges to λ1(A) with geometric rate |λ2/λ1|.

Proof. 1. A can be expressed in Jordan form:

A = V JV−1

where V = [v1, ..., vn] are the generalized eigenvectors. We can express

x0 =
∑
j

cjvj = V c, c = [c1, ..., cn]T .

By our assumption, c1 6= 0.

2. One can prove by induction that

xk =
Akx0

‖Akx0‖
.

From this, and Ak = V JkV−1, we obtain

xk =
V JkV −1x0

‖V JkV −1x0‖
=

V JkV −1V c

‖V JkV −1V c‖
=

V Jkc

‖V Jkc‖

=

(
λ1

|λ1|

)k c1v1 + V (J/λ1)k(
∑

j>1 cjej)

‖c1v1 + V (J/λ1)k(
∑

j>1 cjej)‖

= eikφ
c1

|c1|
v1 + rk

where

eiφ =
λ1

|λ1|
, rk = O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)
.

54 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

3. We see that the sequence is bounded and thus has a convergent subsequence. Indeed, as k
large enough, xk is closed to v1 up to a scalar.

4. The Rayleigh quotient is

〈Axk, xk〉
〈xk, xk〉

=
〈λ1e

ikφ c1
|c1|v1 +Ark, e

ikφ c1
|c1|v1 + rk〉

〈eikφ c1
|c1|v1 + rk, eikφ

c1
|c1|v1 + rk〉

= λ1 +O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)
.

Algorithm 6 Power Method
1: procedure POWERMTHD(n,A = (aij), µ, x, Iter)
2: x = rand(n)
3: x← x/‖x‖
4: for i=1:Iter do
5: y = Ax
6: µ = 〈y, x〉
7: x← y/‖y‖
8: end for
9: end procedure

Algorithm

Remark

1. One can also use ‖x‖∞ for normalization.

2. The convergence of µk is linear. One can use Aitken’s acceleration technique to speed up
convergence of µk. But we cannot speed up xk. We have

µk =
〈xk, Axk〉
〈xk, xk〉

≈ λ1 +O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)

We use µk, µk−1, µk−2 to find a better approximation of µk:

µk−1 − µ̂
µk−2 − µ̂

≈ µk − µ̂
µk−1 − µ̂

This leads to

µ̂ ≈ µk−2 −
(µk−1 − µk−2)2

µk − 2µk−1 + µk−2

2.7. POWER METHOD FOR FINDING EIGENVALUES 55

2.7.1 Inverse Power Method

Goal Find the eigenvalue λk of A which is close to a prescribed number q.

Idea The eigenvalues of
(A− qI)−1

are
1

λ1 − q
, · · · , 1

λn − q
.

We can apply power method to (A− qI)−1 to find λk.

How to locate eigenvalues

Theorem 2.18 (Gershgorin’s Theorem). Let A = (aij)n×n. Then

σ(A) ⊂
n⋃
i=1

z ∈ C : |z − aii| ≤
n∑

j = 1
j 6= i

|aij |


Proof. Suppose λ and x be an eigen pair. We can normalize x such that ‖x‖∞ = 1. Suppose the
maximum component is |xi| = 1. We have

n∑
j=1

aijxj = λxi.

(λ− aii)xi =

n∑
j = 1
j 6= i

aijxj .

Thus,

|λ− aii| ≤
n∑

j = 1
j 6= i

|aij |

Remark. We can also apply this proof to the left eigenvector and obtain

σ(A) ⊂
n⋃
i=1

z ∈ C : |z − aii| ≤
n∑

j = 1
j 6= i

|aji|


Thus, σ(A) is contained in the intersection of the row Gershgorin disks and column Gershgorin
disks.

56 CHAPTER 2. BASIC NUMERICAL LINEAR ALGEBRA

Chapter 3

Approximation Theory

3.1 Motivations

Data and signal representation In experiments, we collect data, which are usually discrete. We
want to use a function to connect them. This can be in one dimension such as planetary orbits,
asset values in market, in two dimensions, such as images, or in three dimensions, such as video, or
molecular energy plots in chemistry, or in general, just a data cloud in some high dimensions.

Numerical approximation to functions, partial differential equations In numerical partial dif-
ferential equations (PDEs), we approximate our solutions by splines, nodal functions, Fourier modes,
etc. in order to project the equations to finite dimensions to solve. All of these are to represent our
objects in terms of some known atoms.

• The objects can be signals, images, solutions of PDEs, or in general, a functions, or a un-
ordered data.

• The atoms can be polynomials, splines, Fourier modes, wavelets, some special functions, or
even object-dependent atoms.

The classical approximation deals with approximation of smooth functions by polynomials, splines,
Fourier functions, wavelets. It can be used for numerical differentiation, integration, solving PDE
problems, etc.

3.1.1 Basic Notion of function spaces

Normed linear spaces Let X be a vector space over R (or C). A norm ‖ · ‖ is a function maps X
to R which satisfies

1. ‖x‖ ≥ 0 for all x ∈ X , and ‖x‖ = 0 if and only if x = 0;

2. ‖αx‖ = |α|‖x‖;

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

57

58 CHAPTER 3. APPROXIMATION THEORY

A vector space X endowed with a norm ‖ · ‖ is called a normed linear space. We are interested in
those function spaces.

Examples of function spaces

• Space of continuous functions:

C[a, b] = {u : [a, b]→ R is continuous.}, ‖u‖∞ := sup
x
|u(x)|.

• Space of continuous differentiable functions

Cm[a, b] = {u : [a, b]→ R|u, u′, ..., u(m) are continuous on [a, b]}.

The norm is

‖u‖m,∞ =

m∑
i=0

‖u(i)‖∞.

• It is also common to use Lp norm in these spaces. The Lp norm is defined as

‖u‖p =

(∫ b

a
|u(x)|p dx

)1/p

, 1 ≤ p <∞.

Similarly, in Cm[a, b], we can define

‖u‖m,p =
m∑
i=0

‖u(i)‖p

Limiting processing in normed linear spaces

• A sequence {xn} in X is called a Cauchy sequence if for any ε > 0 there exists an N such
that for any n,m > N , ‖xn − xm‖ < ε.

• A sequence {xn} is called convergence if there exists an x ∈ X such that for any ε > 0 there
exists an N such that for any n ≥ N , |xn − x‖ < ε.

• A normed linear space is called complete if all its Cauchy sequence {xn} has a limit x in X .

• A complete normed linear space is called a Banach space.

• Theorem: Given a normed linear space X , there exists an extension space X such that

(i) X ⊂ X ,
(ii) ‖ · ‖ can also be extended to X ,

(iii) X is complete,
(iv) X is the smallest such kind space.

• The space (C[a, b], ‖ · ‖p) is not complete. Its completion is called Lp space, denoted by
Lp(a, b).

• The completion of (Cm(a, b), ‖ · ‖m,p) is called Sobolev spaces, denoted by Wm,p(a, b).

3.2. APPROXIMATION BY POLYNOMIALS: INTERPOLATION THEORY 59

Lp functions Below, we want to give examples and characterization of Lp functions without hav-
ing background on measure theory. However, we do need the concept of measure 0 set.

• The function 1/|x|α ∈ Lp(−1, 1) if and only if −αp + 1 > 0. This is because the improper
integral ∫ 1

−1

(
1

|x|α

)p
dx = |x|−αp+1

∣∣1
−1

<∞ ⇔ −αp+ 1 > 0.

• The function 1/|x|α ∈ Lp(1,∞) if and only if −αp+ 1 < 0. The improper integral now is∫ ∞
1

(
1

|x|α

)p
dx = |x|−αp+1

∣∣∞
1
<∞ ⇔ −αp+ 1 < 0.

Two Lp functions f and g are identical in Lp sense if they differ only on a measure zero set.

Measure 0 sets A set S ⊂ R is measure 0 if for any ε > 0, there exists a sequence of intervals In
such that S ⊂

⋃
n In and

∑
n |In| < ε.

• Countable union of measure zero sets is measure 0.

• Q is a measure zero set.

• The Cantor set is a measure zero set.

3.2 Approximation by polynomials: Interpolation Theory

In this section, we approximate a function by polynomial through interpolation at some prescribed
nodes. We are concerned with the approximation in C[a, b]. An important example is the Runge
phenomenon, which shows that Chebeshev nodes are better over the uniformly distributed nodes on
an interval.

Goal Given x0, x1, ..., xn distinct and f0, f1, ..., fn, find polynomial Pn(x) such that Pn(xi) = fi
for i = 0, ..., n.

Uniqueness If we express Pn(x) =
∑n

j=0 ajxj , then Pn(xi) = fi gives the linear equation
1 · · · 1
x0 · · · xn
...

. . .
...

xn0 · · · xnn




a0

a1
...
an

 =


f0

f1
...
fn


The matrix is called a Vandermonde matrix. Its determinant is

∏
0≤i<j≤n(xi − xj), which is

nonzero, provided xi 6= xj for 0 ≤ i < j ≤ n. Thus, we get uniqueness of Pn.
The Vandermonde matrix has very poor condition number. Below, the Newton’s approach is

more stable.

60 CHAPTER 3. APPROXIMATION THEORY

3.2.1 Newton’s interpolation

Newton’s Interpolation Formula We express

Pn(x) =
n∑
j=0

cjqj(x), qj(x) =

j−1∏
`=0

(x− x`).

Then the condition Pn(xi) = fi gives the linear equation with lower triangular matrix:
1 0 · · ·
1 x1 − x0 0 · · ·
1 x2 − x0 (x2 − x0)(x2 − x1) 0 · · ·
...

...
...

1 xn − x0 (xn − x0)(xn − x1) · · ·




c0

c1
...
cn

 =


f0

f1
...
fn


This gives

c0 = f0, P0(x) = c0

c1 =
f1 − c0

x1 − x0
:= f [x0, x1], P1(x) = P0(x) + f [x0, x1](x− x0)

c2 =
f2 − P1(x2)

(x2 − x0)(x2 − x1)
:= f [x0, x1, x2], P2(x) = P1(x) + f [x0, x1, x2](x− x0)(x− x1).

In general,

cm =
fm − Pm−1(xm)

qm(xm)
:= f [x0, · · · , xm]

Pm(x) := Pm−1(x) + f [x0, · · · , xm]qm(x).

Thus, the polynomial Pn which interpolates f at x0, ..., xn can be expressed as

Pn(x) = f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, ..., xn](x− x0) · · · (x− xn−1).

Lemma 3.1.
f [x0, · · · , xm] =

f [x1, · · · , xm]− f [x0, · · · , xm−1]

xm − x0
.

Proof. We prove this lemma by induction. Suppose q interpolates f at x1, ..., xn. Then,

Pn(x) = q(x) +
(x− xn)

xn − x0)
(q(x)− Pn−1(x)) .

By comparing the coefficient of xn, we get

f [x0, ..., xn] =
f [x1, ..., xn]− f [x0, ..., xn−1]

xn − x0
.

3.2. APPROXIMATION BY POLYNOMIALS: INTERPOLATION THEORY 61

Lemma 3.2. Let σ be any permutation on {0, 1, ..., n}. Then

f [xσ(0), ..., xσ(n)] = f [x0, ..., xn].

Proof. The interpolating polynomial is unique, independent of the order of the interpolateing points.

Theorem 3.1. We have the expression of the interpolation error:

f(x)− Pn(x) = f [x0, ..., xn, x]
n∏
j=0

(x− xj). (3.1)

Furthermore, there exists an ξ ∈ [min0≤i≤n{xi, x},max0≤i≤n{xi, x}] such that

f [x0, ..., xn, x] =
fn+1(ξ)

(n+ 1)!
. (3.2)

Proof. 1. Consider P̃ which interpolate f at x0, ..., xn and x. Then

P̃ (y) = Pn(y) + f [x0, ..., xn, x]
n∏
j=0

(y − xj).

Evaluate y at x, we get (3.2).

2. Consider

φ(y) := f(y)− Pn(y)− f [x0, ..., xn, x]
n∏
j=0

(y − xj).

We have
φ(x0) = · · ·φ(xn) = φ(x) = 0.

By Rolle’s theorem, there exists ξ ∈ [min0≤i≤n{xi, x},max0≤i≤n{xi, x}] such that

φ(n+1)(ξ) = 0.

By direct calculation,

φ(n+1)(ξ) = f (n+1)(ξ)− (n+ 1)!f [x0, ..., xn, x].

Thus, we obtain (3.2).

Hermite Interpolation Suppose xi is no longer distinct. This is so-called Hermite interpolation.

62 CHAPTER 3. APPROXIMATION THEORY

Goal : Given f (j)(xi), j = 0, ..., ki, i = 0, ..., n, find a polynomial Pm such that

P (j)
m (xi) = f (j)(xi), j = 0, ..., ki, i = 0, ..., n.

Uniqueness The polynomial Pm hasm+1 coefficients which are determined by the interpolation
conditions. There are

∑n
i=0 ki. Thus,

n∑
i=0

ki = m+ 1.

The polynomial Pm is unique based on the non-zero determinant of the corresponding system for
finding the coefficients.

Divided Difference with Repetitions When the interpolation points x0, ..., xn cluster to a point,
the divided differences are reduced to ordinary differentiation, and the New expansion formula is
reduced to ordinary Taylor expansion formula. You can check:

• f [x0, x0] = limx1→x0 f [x0, x1] = f ′(x0).

• f [x0, ..., x0] = 1
k!f

(k)(x0)

• f [x0, ..., xn] = 1
n!f

(n)(ξ), even with repetition.

Thus, Newton’s interpolation formula holds with repetition.

Lagrange Interpolation Formula Lagrange takes the following expression

Pn(x) =
n∑
i=0

fi`i(x), `i(x) =
n∏

j = 0
j 6= i

x− xj
xi − xj

.

The polynomial `i is called the Lagrange characteristic polynomial. It satisfies

`i(xk) = δik, 0 ≤ i, k ≤ n.

Barycentric interpolation formula The interpolation polynomial Pn can be computed by the
following barycentric formula, which can lead to smaller interpolation errors as n increases.

Pn(x) =

∑n
i=0

wi
x−xi fi∑n

i=0
wi
x−xi

, wi =

 n∏
j = 0
j 6= i

(xi − xj)


−1

.

3.2. APPROXIMATION BY POLYNOMIALS: INTERPOLATION THEORY 63

To derive this formula, we rewrite `i(x) as

`i(x) =
n∏

j = 0
j 6= i

x− xj
xi − xj

=

 n∏
j=0

(x− xj)

 wi
x− xi

.

Noting
∑n

i=0 `i(x) = 1, we can get the barycentric interpolation formula.
Usually, for n < 50, there is no difference between Newton interpolation formula, Lagrange

interpolation formula and barycentric interpolation formula. But for n > 50, there is a significant
difference.

3.2.2 Runge Phenomenon

If we perform polynomial interpolation with uniformly distributed nodes x0, ..., xn on some interval,
it is found that the error increase after n increases. The Runge example is

f(x) =
1

1 + x2
on I = [−5, 5], with x0, ..., xn evenly distributed.

We have seen that the error is

Enf(x) := f(x)− Pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi).

For uniformly distributed nodes, the behavior of the function

qn+1(x) =

n∏
i=0

(x− xi)

oscillates near boundary. In fact,

|qn+1(x)| ≤ n!
hn+1

4
≈
√

2π

4
nn+1/2e−n10nn−n−1 →∞, h =

10

n
.

The maximal value can be achieved near the boundary. The error

max
x∈I
|Enf(x)| ≤ maxx∈I |f (n+1)(x)|

4(n+ 1)
hn+1.

Unfortunately, the quantity
max
x∈I
|f (n+1)(x)|

grows very fast as n increases, while qn+1(x)/(n+ 1)! decays to 0 slower. We observe

lim
n→∞

max
x∈I
|Enf(x)| =∞.

The lack of convergence is indicated by the severe oscillation of the interpolating polynomial versus
to the original function near the boundary. Such phenomenon is called the Runge phenomenon.

64 CHAPTER 3. APPROXIMATION THEORY

Homework

1. Reproduce this result, plot the functions f (n+1)(x) and qn+1(x) on interval [−5, 5] to observe
their behaviors.

Chebyshev-Gauss-Lobatto nodes As we have seen that the interpolating polynomial on a uni-
form nodes on an interval I oscillating severely on the boundary. The error containing the term

qn+1(x) =

n∏
j=0

(x− xj)

oscillates on the boundary. However, the Chebeshev function

Tn(x) := cos(n cos−1 x)

is a polynomial of degree n. We have |Tn(x)| ≤ 1 for all x ∈ [−1, 1]. Its roots are

xj = − cos

(
2j + 1

n+ 1

π

2

)
, j = 0, ..., n.

They are called the Chebyshev-Gauss-Lobatto nodes. With these nodes, omen can show that the
leading coefficient of Tn+1(x) is 2n. Thus, both 2−nTn+1 and qn+1(x) have leading coefficient 1
and they have same roots and same degree. We have

qn+1(x) =
n∏
j=0

(x− xj) = 2−nTn+1(x).

The interpolation error Enf for Chebyshev-Gauss-Lobatto nodes on [−1, 1] is

Enf(x) := f(x)− Pn(x) =
f (n+1)(ξ)

(n+ 1)!
2−nTn+1(x).

Homework

1. Plot the functions f (n+1)(x) and qn+1(x) on interval [−5, 5] over Chebyshev-Gauss-Lobatto
nodes. Find the error Enf(x). Observe their behaviors.

2. Prove that Tn is a polynomial of degree n. Prove that its leading coefficient is 2−n+1.

Stability of Polynomial Interpolation The issue is: if fi is perturbed to f̂i for i = 0, ..., n, what
is the error between the interpolating polynomials Pn and P̂n on the interval I . The answer is the
error depends on where you interpolate. Let xi ∈ I , i = 0, ..., n be the interpolation nodes. Pn and
P̂n be the polynomials which interpolate f and f̂ at these nodes. The error is

max
x∈I
|Pn(x)− P̂n(x)| ≤ max

x∈I

∣∣∣∣∣
n∑
i=0

(
f(xi)− f̂i(xi)

)
`i(x)

∣∣∣∣∣
≤ Λn(x) max

0≤i≤n

∣∣∣f(xi)− f̂(xi)
∣∣∣ ,

3.2. APPROXIMATION BY POLYNOMIALS: INTERPOLATION THEORY 65

where

Λn(x) = max
x∈I

n∑
i=0

|`i(x)|

is called Lebesgue’s constant. It serves as a condition number which measures the stability of the
interpolation. It depends on the nodal points x0, ..., xn. The Lebesgue constant has the following
estimates 1:

• For equispaced node,

Λn(x) ≈ 2n+1

en(log n+ γ)
,

where e ≈ 2.718, γ ≈ 0.548;

• For Chebyshev-Gauss- Lobatto nodes,

Λn(x) <
2

π

(
log n+ γ + log

8

π

)
+

π

72n2
.

Homework

1. Plot Λn(x) for equi-spaced nodes and for Chebyshev-Gauss- Lobatto nodes.

Best approximation

Definition 3.1. A modulus of continuity is a function ω : [0,∞)→ [0,∞) with limt→0 ω(t) = 0. A
function admits ω as a modulus of continuity if

|f(x)− f(y)| ≤ ω(|x− y|)

for all x, y.

• If ω(t) = O(|t|), then this is Lipschitz continuity.

• If ω(t) = C|t|α, 0 < α < 1, then this is Hölder continuity.

A function is uniformly continuous on [0, 1] if and only if it admits a modulus of continuity ω.

Theorem 3.2 (Jackson). Let Pn be the set of polynomials of degree less or equal to n. For any
f ∈ Cr[0, 1], for any n > 0 integer,

dist∞(f,Pn) ≤ Crhrω(f (r), h).

where h = 1/n and ω is the modulus of continuity.

Applications
1For reference, see Quarteroni’s book.

66 CHAPTER 3. APPROXIMATION THEORY

3.3 Approximation by Trigonometric polynomials

Motivations

• Trigonometric polynomials can approximate smooth periodic functions very efficiently.

• Fourier transform can diagonalize differential operators, convolution integral operators.

• Fourier expansion can be used to analyze data and signals. For instance, image debarring,
image denoising.

• Fourier transform is a fundamental tool in magnetic resonance imaging (MRI).

3.3.1 Definition and examples

Definition We study Fourier expansion for 2π-periodic functions. Suppose f is a 2π-periodic
function. Let us expand f as

f(x) ∼
∞∑

k=−∞
ake

ikx.

To find the coefficients ak, we take the following inner product, defined by

(f, g) :=
1

2π

∫ π

−π
f(x)g(x) dx,

with eimx. Using
(eimx, einx) = δmn,

we can get

am =
1

2π

∫ π

−π
f(x)e−imx dx.

The coefficient am is called the Fourier coefficient, or Fourier multiple, of f at wave numberm. We
usually denote it by f̂m.

Examples

1.

f(x) =

{
1 for 0 < x < π
−1 for − π < x < 0

2. f(x) = 1
π |x|

3.3. APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS 67

3.3.2 Basic properties

A 2π-periodic function can be identified as a function on circle, that is T = R/(2πZ). An important
properties of Fourier transform are

• The differentiation becomes a multiplication under Fourier transform. It is also equivalent to
say that the differential operator is diagonalized in Fourier basis.

• The convolution becomes a multiplication under Fourier transform.

Differentiation

Lemma 3.3. If f ∈ C1[T], then

f̂ ′k = ikf̂k.

Proof.

f̂ ′k =
1

2π

∫ 2π

0
f ′(x)e−ikx dx

=
1

2π
e−ikxf(x)

∣∣∣x=2π

x=0
− 1

2π

∫ 2π

0
(−ik)e−ikxf(x) dx

= ikf̂k.

Here, we have used the periodicity of f in the last step.

Convolution If f and g are in L2(T), we define the convolution of f and g by

(f ∗ g)(x) =

∫
T
f(x− y)g(y) dy.

Many solutions of differential equations are expressed in convolution forms. For instance −u′′ = f
in T, its solution can be expressed as u = g ∗ f , where g is the Green’s function of −d2/dx2 in
T. Another example is that we can smooth a function through convolution. Namely, consider a
C∞-function ρ(x) > 0 in (−1/2, 1/2) and ρ(x) = 0 elsewhere, and

∫
ρ(x) dx = 1. We consider

ρε(x) :=
1

ε
ρ
(x
ε

)
,

and
fε = ρε ∗ f.

The functions fε ∈ C∞ and if f ∈ L1(T) and fε → f in L1(T).

Lemma 3.4. If f, g ∈ C(T), then (
f̂ ∗ g

)
k

= 2πf̂kĝk.

68 CHAPTER 3. APPROXIMATION THEORY

Proof. (
f̂ ∗ g

)
k

=
1

2π

∫
T
(f ∗ g)(x)e−ikx dx

=
1

2π

∫
T

∫
T
f(x− y)g(y) dye−ikx dx

=
1

2π

∫
T

∫
T
f(x− y)e−ik(x−y)g(y) dye−iky dx

=
1

2π

∫
T

(∫
T
f(x− y)e−ik(x−y) dx

)
g(y)e−iky dy

=
1

2π

∫
T

(∫
T
f(x)e−ikx dx

)
g(y)e−iky dy

= 2πf̂kĝk.

Here, we have used Fubini theorem.

Remarks The above two lemmae are valid for f, g are in L2. The proof is based on the L2

convergence for nice functions and the density theorem in the next section.

Regularity and decay: Riemann-Lebesgue lemma If f is smooth, then its Fourier coefficients
decays very fast. Indeed, by taking integration by part n times, we have

f̂k =
1

2π

∫ π

−π
f(x)e−ikx dx

=
1

(−ik)n
1

2π

∫ π

−π
f (n)(x)e−ikx dx

Thus, if f ∈ Cn, we see f̂k = O(|k|−n).2 This can also be observed by the following arguments.
We notice that

f̂k = − 1

2π

∫ π

−π
f(x)e−ik(x+π/k) dx

Hence,

f̂k =
1

2π

∫ π

−π
f(x)e−ikx dx

=
1

2π

∫ π

−π

f(x)− f(x− π/k)

2
e−ikx dx

:=
1

2π

∫ π

−π
Dπ/kf(x)e−ikx dx

=
1

2π

∫ π

−π
Dn
π/kf(x)e−ikx dx

2If fact, we shall see later from the Riemann-Lebesgue lemma that f̂k = o(|k|−n).

3.3. APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS 69

Here, Dπ/k is a backward finite difference operator. We see that if f is smooth, then Dn
π/kf =

O(|k|−n). Thus, f̂k measures the oscallation property of f at scale π/k. We conclude with the
following lemma.

Lemma 3.5. If f ∈ Cn(T), then f̂k = o(|k|−n).

When f is not so smooth, say in L1, we still have f̂k → 0 as |k| → ∞. This is the following
Riemann-Lebesgue lemma.

Lemma 3.6 (Riemann-Lebesgue). If f is in L1(a, b), then

f̂A :=

∫ b

a
f(x) sin(Ax) dx→ 0, as A→∞.

Proof. (i) First, we show that the lemma holds for uniformly continuous functions. We have

2f̂A =

∫ b

a
f(x) sin(Ax) dx−

∫ b

a
f(x) sin(A(x− π/A)) dx

= −
∫ a

a−A/π
f(x+ π/A) sin(Ax) dx+

∫ b

b−π/A
f(x) sin(Ax) dx

+

∫ b−π/A

a
(f(x)− f(x+A/π)) sin(Ax) dx

From the uniform continuity and integrability of f , we have |f̂A| → 0 as A→∞.
(ii) When f ∈ L1(a, b), we use density theorem, which states that every L1 function can be

approximated by smooth functions in L1-norm, that is, for any ε, there exists a smooth function g
such that ‖f − g‖L1 < ε.

(iii) It holds for any A

| ̂(f − g)A| ≤
∫ b

a
|f(x)− g(x)| dx := ‖f − g‖L1 < ε.

From (i), there exists M such that for A > M , |ĝA| < ε. (iv) Given f ∈ L1(a, b), and given any
ε > 0, from (ii), we can find a smooth function g such that ‖f − g‖L1 < ε. From (i), there exists an
M > 0 such that for anyA > M we have |ĝA| < ε. From (iii), we have ̂(f − g)A| ≤ ‖f−g‖L1 < ε.
Combining all these together, we get

|f̂A| ≤ |ĝA|+ | ̂(f − g)A| ≤ 2ε.

70 CHAPTER 3. APPROXIMATION THEORY

Remarks.

1. If f is a Dirac delta function, we can also define its Fourier transform

f̂k =
1

2π

∫ π

−π
δ(x)e−ikx dx =

1

2π
.

In this case, δ 6∈ L1 and δ̂k = 1/2π does not converge to 0 as |k| → ∞.

2. If f is a piecewise smooth function with finite many jumps, then it holds that f̂k = O(1/k).
One may consider f has only one jump first. Then f is a superposition of a step function g
and a smooth function h. We have seen that ĥk decays fast. For the step function g, we have
ĝk = O(1/k).

3.4 Convergence Theory

Let denote the partial sum of the Fourier expansion by fN :

fN (x) :=
N∑

k=−N
f̂ke

ikx.

We shall show that under proper condition, fN will converge to f . The convergence is in the sense
of uniform convergence for smooth functions, in L2 sense for L2 functions, and in pointwise sense
for BV functions.

3.4.1 Convergence theory for Smooth function

Theorem 3.3. If f is a 2π-periodic, C∞-function, then for any n > 0, there exists a constant Cn
such that

|fN (x)− f(x)| ≤ CnN−n. (3.3)

Proof.

fN (x) :=
∑
|k|≤N

f̂ke
ikx

=
∑
|k|≤N

1

2π

∫ π

−π
f(y)eik(x−y) dy

=
1

2π

∫ π

−π

sin(N + 1
2)(x− y)

sin(1
2(x− y))

f(y) dy

=
1

2π

∫ π

−π

sin(N + 1
2)t

sin t
2

f(x+ t) dt

=
1

2π

∫ π

−π
DN (t)f(x+ t) dt

3.4. CONVERGENCE THEORY 71

Here, we have used DN (x) :=
∑
|k|≤N e

ikx = sin(N+1/2)x
sin(x/2) . Using

∫ π
0 DN (x)dx = π, we have

fN (x)− f(x) =
1

2π

∫ π

−π

sin(N + 1
2)t

sin t
2

(f(x+ t)− f(x)) dt

:=
1

2π

∫ π

−π
sin((N +

1

2
)t)g(t) dt

The function g(t) := (f(x + t) − f(x))/ sin(t/2) =
∫ 1

0 f
′(x + st) ds · t/ sin(t/2) is 2π periodic

and in C∞. We can apply integration-by-part n times to arrive

fN (x)− f(x) = (N +
1

2
)−n

(−1)n/2

2π

∫ π

−π
g(n)(t) sin((N +

1

2
)t) dt

for even n. Similar formula for odd n. This completes the proof.

Remark. The constant Cn, which depends on
∫
|g(n)| dt, is in general not big, as compared with

the termN−n. Hence, the approximation (3.3) is highly efficient for smooth functions. For example,
N = 20 is sufficient in many applications. The accuracy property (3.3) is called spectral accuracy.

3.4.2 L2 Convergence Theory

The Fourier transform maps a 2π-periodic function f into its Fourier coefficients (f̂k)
∞
k=−∞. We

may view the Fourier transform maps L2(T) space into `2 space. The function spaces L2 and `2 are
defined below.

L2(T) := {f | f is 2π periodic and
∫ π

−π
|f(x)|2 dx <∞}

with the inner product

(f, g) :=
1

2π

∫ π

−π
f(x)g(x) dx

and L2-norm: ‖f‖ =
√

(f, f).
An important fact is that all L2-function can be approximated by smooth functions. Such a

smooth function can be obtained by convoling f with a smooth function, called mollifier. Let
ρ ∈ C∞(T), which is positive in a neighborhood of 0 and is zero elsewhere, and

∫
T ρ(x) dx = 1.

Given a function f ∈ Lp(T), define

fε(x) :=
1

ε

∫
ρ

(
x− y
ε

)
f(y) dy

Then fε is a C∞ function and fε → f in Lp. This is called the density theorem. We shall not prove
here.

72 CHAPTER 3. APPROXIMATION THEORY

The space `2(Z) is defined as

`2(Z) := {(ak)∞k=−∞ |
∞∑

k=−∞
|ak|2 <∞}.

with inner product (a, b) :=
∑

k akbk.
It is easy to check that eikx are orthogonal in L2. From this, we have for any N ,

0 ≤ (f − fN , f − fN) = ‖f‖2 −
∑
|k|≤N

|f̂k|2.

Or equivalently, ∑
|k|≤N

|f̂k|2 ≤ ‖f‖2. (3.4)

This is called the Bessel inequality. It says that the Fourier transform maps continuously fromL2(T)
to `2(Z).

Theorem 3.4 (Isometry property). The Fourier transform is an isometry from L2(T) to `2(Z):

(f, g) =
∑
k

f̂kĝk.

Proof. To show this, we first assume that f is a smooth function. We can apply the convergence
theorem for f . This yields

(f, g) =
1

2π

∫ π

−π
f(x)g(x) dx

=
1

2π

∫ π

−π

∑
k

f̂ke
ikxg(x) dx

=
∑
k

f̂kĝk.

To show this formula is valid for all f, g ∈ L2, we notice that any function in L2 can be approxi-
mated by smooth functions.

The isometry property is valid for fε and g: (fε, g) = (f̂ε, ĝ). As ε→ 0,

|(fε − f, g)| ≤ ‖fε − f‖‖g‖ → 0,

and
|(f̂ε − f̂ , ĝ)| ≤ ‖f̂ε − f̂‖‖ĝ‖ ≤ ‖fε − f‖‖g‖ → 0.

The last inequality is from the Bessel inequality.

The isometry property says that the Fourier transformation preserves the inner product. When
g = f in the above isometry property, we obtain the following Parseval identity.

3.4. CONVERGENCE THEORY 73

Corollary 3.3 (Parseval identity). For f ∈ L2, we have

‖f‖2 =
∑
k

|f̂k|2.

Theorem 3.5 (L2-convergence theorem). If f ∈ L2, then

fN =

N∑
k=−N

f̂ke
ikx → f in L2.

Proof. First, the sequence {fN} is a Cauchy sequence in L2. This follows from ‖fN − fM‖2 =∑
N≤|k|<M |f̂k|2 and the Bessel inequality. Suppose fN converges to g. We see that

̂(f − fN)k =
1

2π

∫
T
(f − fN)(x)e−ikx dx = 0 if |k| < N.

Thus, for each fixed k, taking N →∞, we get

̂(f − g)k = 0.

This holds for any k ∈ Z. Thus, the Fourier coefficients of f − g are all zeros. From the Parvesal
identity, we have f = g.

3.4.3 BV Convergence Theory

A function is called a BV function on an interval (a, b), that is, function of finite total variation, if
for any partition π = {a = x0 < x1 < · · · < xn = b},

‖f‖BV := sup
π

∑
i

|f(xi)− f(xi−1)| <∞.

An important property of BV function is that its singularity can only be jump discontinuities, i.e., at
a discontinuity, say, x0, f has both left limit f(x0−) and right limit f(x0+).

Further, any BV function f can be decomposed into f = f0 + f1, where f0 is a piecewise
constant function andf1 is absolutely continuous (i.e. f1 is differentiable and f ′1 is integrable). The
jump points of f0 are countable. The BV-norm of f is exactly equal to

‖f‖BV =
∑
i

|[f(xi)]|+
∫
|f ′1(x)| dx.

where xi are the jump points of f (also f0) and [f(xi)] := f(xi+)− f(xi−) is the jump of f at xi.

Theorem 3.6 (Fourier inversion theorem for BV functions). If f is in BV (function of bounded
variation), then

fN (x) :=

N∑
k=−N

f̂ke
ikx → 1

2
(f(x+) + f(x−)).

74 CHAPTER 3. APPROXIMATION THEORY

Proof. Recall that

fN (x) =
1

2π

∫ π

−π
DN (x− y)f(y) dy

=
1

2π

(∫ 0

−π
+

∫ π

0

)
DN (t)f(x+ t) dt

= f−N (x) + f+
N (x).

Here, DN (x) =
∑
|k|≤N e

ikx = sin(N+1/2)x
sin(x/2) . Using

∫ π
0

sin(N+1/2)x
sin(x/2) dx = π, we have

f+
N (x)− 1

2
f(x+) =

1

2π

∫ π

0

sin(N + 1
2)t

sin t
2

(f(x+ t)− f(x)) dt

:=
1

2π

∫ π

0
sin((N +

1

2
)t)g(t) dt

From f being in BV, the function g(t) is in L1(0, π). By the Riemann-Lebesgue lemma, f+
N (x) −

1
2f(x+)→ 0 as N →∞. Similarly, we have f−N (x)− 1

2f(x−)→ 0 as N →∞.

3.4.4 Pointwise estimate of rate of convergence

In applications, we encounter piecewise smooth functions frequently. In this case, the approxima-
tion is not uniform. An overshoot and undershoot always appear across discontinuities. Such a
phenomenon is called Gibbs phenomenon. Since a BV function can be decomposed into a piece-
wise constant function and a smooth function, we concentrate to the case when there is only one
discontinuity. The typical example is the function

f(x) =

{
1 for 0 < x < π
−1 for − π < x < 0

The corresponding fN is

fN (x) =
1

2π

∫ x

x−π

sin((N + 1
2)t)

sin(t/2)
dt− 1

2π

∫ x+π

x

sin((N + 1
2)t)

sin(t/2)
dt

First, we show that we may replace 1
2 sin(t/2) by 1

t with possible error o(1/N). This is because the
function 1

t −
1

2 sin(t/2) is in C1 on [−π, π] and the Riemann-Lebesgue lemma. Thus, we have

fN (x) =
1

π

∫ x

x−π

sin((N + 1
2)t)

t
dt− 1

π

∫ x+π

x

sin((N + 1
2)t)

t
dt+ o(1/N)

=
1

π

∫ x(N+1/2)

(x−π)(N+1/2)
sinc(t) dt− 1

π

∫ (x+π)(N+1/2)

x(N+1/2)
sinc(t) dt+ o(1/N).

Here, the function sinc(t) := sin(t)/t. It has the following properties:∫ ∞
0

sinc(t) dt = π/2.

3.4. CONVERGENCE THEORY 75

For any z > 0, ∫ ∞
z

sinc(t) dt = O

(
1

z

)
.

To see the latter inequality, we rewrite∫ ∞
z

sinc(t) dt =

∫ nπ

z
+
∑
k≥n

∫ (n+1)π

nπ

 sinc(t) dt,

where n = [z/π] + 1. Notice that the series is an alternating series. Thus, the series is bounded by
its leading term, which is of O(1/z). Let us denote the integral

∫ z
0 sinc(t) dt by Si(z).

To show that the sequence fN does not converge uniformly, we pick up x = z/(N + 1/2) with
z > 0. After changing variable, we arrive

fN (
z

(N + 1/2)
) =

1

π

∫ z

z−(N+1/2)π
sinc(t) dt− 1

π

∫ z+(N+1/2)π

z
sinc(t) dt+ o(1/N)

=
1

π

∫ z

−∞
sinc(t) dt− 1

π

∫ ∞
z

sinc(t) dt+O(1/(z +N)) +O(1/(z −N))

=
1

π

∫ z

−∞
sinc(t) dt+

1

π

∫ −∞
−z

sinc(t) dt+O(1/(z +N)) +O(1/(z −N))

=
1

π

∫ z

−z
sinc(t) dt+ (1/(z +N)) +O(1/(z −N))

=
2

π

∫ z

0
sinc(t) dt+ (1/(z +N)) +O(1/(z −N))

= 1− 2

π

∫ ∞
z

sinc(t) dt+ (1/(z +N)) +O(1/(z −N))

In general, for function f with arbitrary jump at 0, we have

fN (
z

(N + 1/2)
) = f(0+)− [f]

π

∫ ∞
z

sinc(t) dt+ (1/(z +N)) +O(1/(z −N))

= f(0+) + [f]O(1/z) +O(1/(z −N)).

where, the jump [f] := f(0+)− f(0−).
We see that the rate of convergence is slow if z = Nα with 0 < α < 1. This means that if the

distance of x and the nearest discontinuity isN−1+α, then the convergent rate at x is onlyO(N−α).
If the distance is O(1), then the convergent rate is O(N−1). This shows that the convergence is not
uniform.

The maximum of Si(z) indeed occurs at z = π where

1

π
Si(π) ≈ 0.58949

This yields
fN (

π

N + 1/2
) = f(0+) + 0.08949 (f(0+)− f(0−)).

76 CHAPTER 3. APPROXIMATION THEORY

Hence, there is about 9% overshoot. This is called Gibbs phenomenon.
Homeworks

1. Derive the Fourier expansion formula for periodic functions with period L.

2. What is the limit of the above Fourier expansion formula as L→∞.

3. Derive the Fourier expansion for the following functions: f(x) = |x| − 1/2 for |x| ≤ 1 and
f is a periodic function with period 2.

4. What is the convergence rate of the above function in L2 and pointwise convergence rate at
x = 0?

3.4.5 Fourier Expansion of Real Valued Functions

We have
f̂n =

1

2π

∫
T
f(x)e−inx dx, f̂−n =

1

2π

∫
f(x)einx dx.

Thus, when f is real-valued,
f̂n = f̂−n.

If we express f̂n = 1
2(an − ibn), where an, bn ∈ R, then f̂−n = 1

2(an + ibn) and

f(x) =
∑
n∈Z

f̂ne
inx

=
1

2
a0 +

1

2

∞∑
n=1

(an − ibn)einx +
1

2

∞∑
n=1

(an + ibn)e−inx

=
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

Here,
1

2
(an − ibn) =

1

2π

∫
T
f(x)e−inx dx

=
1

2π

∫
T
f(x) (cosnx− i sinnx) dx.

Thus,

an =
1

π

∫ 2π

0
f(x) cosnx dx, bn =

1

π

∫ 2π

0
f(x) sinnx dx.

The functions {cosnx, sinmx} are orthogonal to each other. Further,

1

π

∫ 2π

0
cos2 nx dx =

1

π

∫ 2π

0
sin2 nx dx = 1 for all n.

The Parseval equality reads
1

2π

∫
T
f(x)2 dx = 2

∑
n

(
a2
n + b2n

)
.

3.5. DISCRETE FOURIER TRANSFORM 77

3.5 Discrete Fourier Transform

3.5.1 Definition and inversion formula

Given a 2π-periodic function f . Let us sample f by fj := f(xj), where xj := 2πj/N . Define the
discrete Fourier transform for the sampled data by

f̃k :=
1

N

N−1∑
j=0

fje
−ikxj .

This is exactly the trapezoidal approximation for numerical integration of the Fourier multiples:

1

2π

∫ 2π

0
f(x)e−ikx dx.

When f ∈ C∞, according to the Euler-MacLaurin summation formula for periodic functions,∣∣∣∣∣∣ 1

2π

∫ 2π

0
f(x)e−ikx dx− 1

N

N−1∑
j=0

fje
−ikxj

∣∣∣∣∣∣ = O(N−n)

for any n. Thus, the discrete Fourier multiples can approximate Fourier multiples with spectral
accuracy, provided the underlying function is C∞.

From f̃k, we define

INf(x) :=

N/2−1∑
k=−N/2

f̃ke
ikx.

We claim that
INf(xj) = f(xj).

In other words, INf is a trigonometric interpolant of f at {xj}N−1
j=0 . To see this, we plug the formula

for f̃k into the formula for fN :

INf(x) =

N/2−1∑
k=−N/2

1

N

N−1∑
k=0

fje
ik(x−xj)

=
1

N

N−1∑
j=0

DN (x− xj)fj

where

DN (x) =

N/2−1∑
k=−N/2

eikx = e−ix/2
sin(Nx/2)

sin(x/2)

78 CHAPTER 3. APPROXIMATION THEORY

We find that

DN (xj) =

{
1 for j ≡ 0(mod N)
0 for j 6≡ 0(mod N).

Hence, INf(xj) = fj .
Let SN be the space of the trigonometric polynomial of degree N/2:

SN := span{Ek(x) = eikx | −N/2 ≤ k < N/2}.

In this space, the inner product defined by

(f, g) :=
1

2π

∫ π

−π
f(x)g(x) dx,

is equivalent to the discrete inner product

(f, g)N :=
1

N

N−1∑
j=0

fj ḡj .

It is easy to check that {Ek(x)}N/2≤k<N/2 are orthonomal in both inner products. Hence, these two
inner products are identical any f, g ∈ SN .

Again, from orthonomality of {Ek(x)}, we have the isometry property:

(f, g)N =
∑

−N/2≤k<N/2

f̃kg̃k,

and the Parseval identity:

1

N

N∑
j=0

|fj |2 =
∑

−N/2≤k<N/2

|f̃k|2.

3.5.2 Approximation issues

Given a 2π-periodic function f , the mapping

PNf(x) :=
∑

−N/2≤k<N/2

f̂ke
ikx

is an orthogonal projection from L2(−π, π) to SN . Similarly, the interpolation operator INf :

INf(x) :=
∑

−N/2≤k<N/2

f̃ke
ikx

is a projection from C(−π, π) onto SN , and is characterized by INf(xj) = f(xj), j = 0, · · · , N −
1. The difference between PN and IN is called “aliasing error.” It can be characteristized as the

3.5. DISCRETE FOURIER TRANSFORM 79

follows. First,

f̃k =
1

N

N−1∑
j=1

f(xj)e
−ikxj

=
1

N

N−1∑
j=1

∑
−∞<`<∞

f̂`e
i(`−k)xj

=
∑

−∞<`<∞
f̂`

1

N

N−1∑
j=0

ei(`−k)xj

=
∑

−∞<`<∞
f̂`DN (x` − xk)

=
∑

−∞<m<∞
f̂k+mN

= f̂k +
∑

−∞ < m <∞
m 6= 0

f̂k+mN

From the orthogonality of Ek in L2, we see that

RNf := INf − PNf =
∑

−N/2≤k<N/2

 ∑
−∞ < m <∞

m 6= 0

f̂k+mN

Ek

and

‖RNf‖2 =
∑

−N/2≤k<N/2

|f̃k − f̂k|2

≤
∑

−N/2≤k<N/2

∑
−∞ < m <∞

m 6= 0

|f̂k+mN |2

=
∑

k≥N/2,k<−N/2

|f̂k|2.

Since PN is an orthogonal projection, we have

‖f − INf‖2 = ‖f − PNf‖2 + ‖RNf‖2.

It is not difficult to find the approximation error for PN . Indeed, let Hs denote the Sobolev space of
order s:

Hs := {f is 2π-periodic, f, · · · , f (s) ∈ L2}

with the norm ‖f‖2Hs :=
∑s

m=0 ‖f (m)‖2. From the Parseval identity, this norm is equivalent to∑
k(1 + |k|2)s|f̂k|2. We have the following approximation theorem.

80 CHAPTER 3. APPROXIMATION THEORY

Theorem 3.7. If f ∈ Hs, then

‖f − PNf‖ ≤ CN−s‖f (s)‖

Proof. We use the facts that {Ek}k∈Z is a basis in L2 and the Parseval identity:

‖f − PNf‖2 =
∑
|k|≥N/2

|f̂k|2

=
∑
|k|≥N/2

|k|−2s|k|2s|f̂k|2

≤ O(N−2s)‖f (s)‖2.

For the interpolation operator, we have similar result. In other words, the aliasing error has the
same spectral error as that of the truncated Fourier polynomial for smooth functions. This follows
from

‖RNf‖2 ≤
∑

k≥N/2,k≤−N/2

|f̂k|2.

THus, we have proved the following theorem (Kreiss and Oliger). We refer its detail proof to
(p.280??).

Theorem 3.8. If f ∈ Hs, s ≥ 1, then

‖f − INf‖ ≤ CN−s‖f (s)‖.

3.6 Fast Fourier Transform

Spectral methods become practical due to the birth of fast Furier transform which reduces the oper-
ation counts from O(N2) to N lnN . We explain Cooley-Tukey’s fast algorithm below.

3.6.1 The FFT algorithm

Recall that both f and f̃ are periodic, and the transform can be rewritten as

f̃k =
1

N

N−1∑
j=0

fje
−ikxj , k = 0, · · · , N − 1

fj =
N−1∑
k=0

f̃ke
ikxj , j = 0, · · · , N − 1.

The transformation matrix FN of the discrete Fourier transformation is

FN =
(
ωijN

)
0 ≤ i < N
0 ≤ j < N

, ωN = e−2π
√
−1/N .

3.6. FAST FOURIER TRANSFORM 81

Note that
F̄NFN = NIN×N .

For simplicity, below let us call f̃ = FNf instead of f̃ = 1
NFNf . Let us suppose N is even, say

2M . Then we have

f̃k =

N−1∑
j=0

ωkjN fj

=
M−1∑
j=0

ωk2j
N f2j +

M−1∑
j=0

ω
k(2j+1)
N f2j+1

We define f ′ = (f0, f2, · · · , f2N−2), f ′′ = (f1, f3, · · · , f2N−1). For 0 ≤ k < M , we have

f̃k =
M−1∑
j=0

ωkjMf2j + ωkN

M−1∑
j=0

ωkjMf2j+1

= (FMf ′)k + ωkN (FMf ′′)k

Here, we have used
ω2
N = ωM .

For f̃M+k, k = 0, ...,M − 1, we have

f̃k+M =
M−1∑
j=0

ω
(M+k)2j
N f2j +

M−1∑
j=0

ω
(M+k)(2j+1)
N f2j+1

=

M−1∑
j=0

ωkjMf2j + ωM+k
N

M−1∑
j=0

ω
(M+k)j
M f2j+1

=
M−1∑
j=0

ωkjMf2j − ωkN
M−1∑
j=0

ωkjMf2j+1

= (FMf ′)k − ωkN (FMf ′′)k

Here, we have used
ω2M
N = 1, ωMN = −1.

Thus, the discrete Fourier transform can be calculated as the follows.

1. Split f = (f0, · · · , fN−1) into

f ′ = (f0, f2, ·, fN−2), f ′′ = (f1, f3, · · · , fN−1)

2. Perform
f̃ ′ = FMf ′, f̃ ′′ = FMf ′′

82 CHAPTER 3. APPROXIMATION THEORY

3. For 0 ≤ k < M , compute

f̃k = f̃ ′k + ωkN f̃
′′
k

f̃k+M = f̃ ′k − ωkN f̃ ′′k

In matrix form, FN can be splitted into

FN = QN

[
FN/2 0

0 FN/2

]
PN . (3.5)

Here, PN is a permutation matrix which maps

PN : (f0, f1, · · · , fN−1)t 7→ (f0, f2, · · · , fN−2, f1, f3, · · · , fN−1)t;

the matrix QN is defined as

QN =

[
IN/2 DN/2

IN/2 −DN/2

]
, I : identity matrix, DN/2 = diag(1, ω, · · · , ωN/2−1)

Notice that both PN and QN are sparse matrices. The amount of work to perform PN and QN
is O(N). Let the operation count to perform PN and QN be CN . Suppose N = 2L. Let C2L be
the operation count to perform F2L . Then we have

C2L = C2L + 2C2L−1 = 2C2L + 22C2L−2 = · · · = LC2L + 2LC20 .

Thus,
CN = CL2L = CN log2N.

3.6.2 Variants of FFT

Trigonometric representation

When all fj ∈ R, then, similar to the continuous case where ¯̂
fk = f̂−k, we also have

¯̃
fk = f̃−k = f̃N−k, for k = 0, ..., N − 1.

Let

M =

{
N/2 for even N
(N + 1)/2 for odd N

and let
f̃k = c2k−1 − ic2k, k = 1, · · · ,M − 1,

c0 = f̃0, cN−1 = fN/2.

3.6. FAST FOURIER TRANSFORM 83

Then

fj = f̃0 + (−1)jfN/2 +

N/2−1∑
k=1

(f̃ke
ikxj + f̃ke

−ikxj)

= c0 + (−1)jcN−1 + 2
M∑
k=1

c2k−1 cos(kxj) + c2k sin(kxj)

and

c0 =
1

N

N−1∑
j=0

fj

c2k−1 =
1

N

N−1∑
j=0

fj cos(kxj), k = 1, · · · , N/2− 1

c2k =
1

N

N−1∑
j=0

fj sin(kxj), k = 1, · · · , N/2

cN−1 =
1

N

N−1∑
j=0

(−1)jfj

Fourier Cosine Transform

When fj is an even sequence, i.e. fN−j = fj , j = 1, · · · , N/2, then for k = 0, · · ·N/2− 1,

f̃k =
1

N

N/2−1∑
j=−N/2

fje
−ikxj

=
1

N

f0 + (−1)kfN/2 +

N/2−1∑
j=1

2fj cos(kxj)


Its inverse transform is

fj =

N/2−1∑
k=−N/2

f̃ke
ikxj

= f0 + (−1)j f̃N/2 +

N/2−1∑
k=1

2f̃k cos(kxj)

84 CHAPTER 3. APPROXIMATION THEORY

Fourier Sine Transform

When fj is an odd sequence, i.e. fN−j = −fj , j = 0, · · · , N/2, then for k = 1, · · ·N/2− 1,

f̃k =
1

N

N/2−1∑
j=−N/2

fje
−ikxj

=
1

N

N/2−1∑
j=1

2fj sin(kxj)

Its inverse transform is, for j = 1, · · · , N/2− 1,

fj =

N/2−1∑
k=−N/2

f̃ke
ikxj

=

N/2−1∑
k=1

2f̃k sin(kxj).

3.7 Fast Chebyshev Transformation

For boundary value problems, it is more favorable to use another representation for functions on
bounded intervals, the Chebyshev representation. Without loss of generality, we consider the do-
main [−1, 1]. The Chebyshev polynomials are defined as

Tn(x) = cos(n cos−1 x).

The Chebyshev expansion for functions f defined on [−1, 1] is

f ∼
∞∑
n=0

anTn(x).

The Chebyshev expansion can be view as the Fourier expansion through a composition of the trans-
formation:

θ := cos−1 x.

For f define on [−1, 1], we can define a function F on the unit circle by

F (θ) = f(cos θ).

Then F is 2π-periodic and even. The Fourier expansion of F is

F (θ) =
a0

2
+
∞∑
n=1

an cos(nθ),

3.8. APPROXIMATION BY SPLINES 85

where
an =

1

π

∫ π

0
F (θ) cosnθ dθ.

The corresponding Chebyshev expansion of f is

f(x) =
a0

2
+

∞∑
n=1

an cos(n cos−1 x)

=
a0

2
+
∞∑
n=1

anTn(x).

The coefficient

an =
1

π

∫ π

0
F (θ) cos(nθ) dθ

=
1

π

∫ 1

−1
f(x)Tn(x)

dx√
1− x2

We may perform discrete Chebyshev transformation through the help of discrete Fourier trans-
formation. Let

θj = jπ/N, xj = cos(θj), 0 ≤ j < N.

3.8 Approximation by Splines

A general function on an interval can be approximated by piecewise polynomials.pii These piece-
wise polynomials are called splines. To be precise, let us consider an interval [a, b]. It is partitioned
into Π = {x0 = a < x1 < · · · < xn = b}. Let

h = max
i

(xi − xi−1),

which measures the maximal size of the partition. A spline function S of degree k is a function on
[a, b] which satisfies

• S(·) is a polynomial of degree ≤ k on each (xi−1, xi) for i = 1, ...n;

• S ∈ Ck−1[a, b].

The hat function at node xi is a piecewise linear continuous function which satisfies

φi(xj) = δij , i = 0, ...n.

Piecewise linear functions Let

S1 := { piecewise linear continuous functions on the partition Π}

The space S1 has a basis {φ0, ..., φn}. Indeed, any function s ∈ S1 can be represented as

s(x) =

n∑
i=0

s(xi)φi(x).

86 CHAPTER 3. APPROXIMATION THEORY

Question: Given f ∈ C2[a, b], we want to find a function s ∈ S1 which is closed to f . There are
many choices of such s. Let us introduce two:

• I1(f) :=
∑n

i=0 f(xi)φi;

• π1(f) := arg min g∈S1‖f − g‖2.

It is clear that both mappings are projections. The first one is an interpolation projection, while
the second one is an L2 projection, or the best least squares approximation. We shall discuss their
approximation errors.

Approximation Error for I1(f)

Theorem 3.9.
‖f − I1f‖∞ ≤

1

8
h2‖f ′′‖∞.

‖f − I1f‖2 ≤
1√
90
h2‖f ′′‖2.

Proof. 1. On (xi−1, xi), there exists an ξi such that

f(x)− I1f(x) =
f ′′(ξ)

2
(x− xi−1)(x− xi).

Thus, for x ∈ (xi−1, xi), we have

|f(x)− I1f(x)| ≤
(
xi − xi−1

2

)2 |f ′′(xi)|
2

.

This shows

‖f − I1f‖∞ ≤
h2

8
‖f ′′‖∞.

2. Let w = f − I1f . Then (i) w(xi) = 0 for i = 0, ..., n, (ii) w′′ = f ′′. Our goal is to estimate
‖w‖2 in terms of ‖w′′‖2 We can express the interpolation error w on (xi−1, xi) in integral
form. We recall that for w(xi) = w(xi+1) = 0, w has the representation:

w(x) = −h2

∫ xi+1

xi

g

(
x− xi
h

,
y − xi
h

)
w′′(y) dy

where g is the Green’s function of −d2/dx2 on (xi, xi+1). Thus, we can estimate ‖w‖2 in
terms of ‖w′′‖2 on (xi, xi+1). Namely,

|w(x)|2 ≤ h4

(∫ xi+1

xi

∣∣∣∣g(x− xih
,
y − xi
h

)∣∣∣∣2 dy
) (∫ xi+1

xi

|w′′(y)|2 dy
)
.

3.8. APPROXIMATION BY SPLINES 87

∫ xi+1

xi

|w(x)|2 dx ≤
∫ xi+1

xi

∫ xi+1

xi

∣∣∣∣g(x− xih
,
y − xi
h

)∣∣∣∣2 dy dx ∫ xi+1

xi

|w′′(y)|2 dy

≤ 1

90
h4

∫ xi+1

xi

|w′′(y)|2 dy.

As we sum over i = 1, · · · , n− 1, we get

‖w‖2 ≤
1√
90
h2‖w′′‖2.

Remark The expression for w(x) in terms of w′′ on an interval (xi, xi+1) with w(xi) =
w(xi+1) = 0 is equivalent to solve

−w′′(x) = f(x), x ∈ (0, 1)

w(0) = w(1) = 0.

We integrate it once to get

w′(y) = −
∫ y

1
f(s) ds+ C1.

Next, we integrate it from 0 to x and use w(0) = 0 to get

w(x) = −
∫ x

0

∫ y

1
f(s) ds dy + C1x.

By integration-by-part,

−
∫ x

0

∫ y

1
f(s) ds dy = −

∫ x

0
F (y) dy = − [yF (y)]x0 +

∫ x

0
yF ′(y) dy

= x

∫ 1

x
f(y) dy +

∫ x

0
yf(y) dy

From w(1) = 0, we obtain C1 = −
∫ 1

0 yf(y) dy. Hence

w(x) =

∫ x

0
y(1− x)f(y) dy +

∫ 1

x
x(1− y)f(y) dy

Let us define

g(x, y) :=

{
x(1− y) if 0 ≤ x ≤ y ≤ 1
y(1− x) if 0 ≤ y ≤ x ≤ 1.

Then the solution above can be represented as

w(x) =

∫ 1

0
g(x, y)f(y) dy = −

∫ 1

0
g(x, y)w′′(y) dy.

88 CHAPTER 3. APPROXIMATION THEORY

Cubic Spline The cubic spline g approximate a function f on [a, b] by piecewise cubic polyno-
mial. Suppose [a, b] is partitioned into

x0 = a < x1 < · · · < xn = b.

On [xi, xi+1], g(x) = pi(x), a cubic polynomial, which has 4 parameters. Natural conditions for
them are

pi(xi) = fi, pi(xi+1) = f(xi+1).

We need another two conditions. Let us choose them to be

p′i(xi) = si, p′i(xi+1) = si+1.

With these 4 parameters, pi can be expressed as

pi(x) = fi+pi[xi, xi](x−xi)+pi[xi, xi, xi+1](x−xi)2 +pi[xi, xi, xi+1, xi+1](x−xi)2(x−xi+1)

where
pi[xi, xi] = si, pi[xi+1, xi+1] = si+1

pi[xi, xi, xi+1] =
pi[xi, xi+1]− pi[xi, xi]

∆xi

pi[xi, xi, xi+1, xi+1] =
pi[xi, xi+1, xi+1]− pi[xi, xi, xi+1]

∆xi
.

Or
pi(x) = c0 + c1(x− xi) + c2(x− xi)2 + c3(x− xi)3,

where

c0 = fi

c1 = si

c2 =
f [xi, xi+1]− si

∆xi
− c3∆xi

c3 =
si + si+1 − 2f [xi, xi+1]

(∆xi)2
.

Choices of si We introduce two choices to determine si:

• Hermite: si = f ′i : with this, IH3 f(x) := g(x) has the following estimate

‖f − IH3 f‖∞ ≤ max
i
‖(x− xi)2(x− xi+1)2 f

(4)(ξi)

4!
‖∞

=

(
h

2

)4 ‖f (4)‖∞
4!

.

3.8. APPROXIMATION BY SPLINES 89

• Cubic Bessel interpolation: we choose

si = p̃′i(xi),

where p̃i interpolates f at xi−1, xi, xi+1. Hence

si =
∆xif [xi−1, xi] + ∆xi−1f [xi, xi+1]

∆xi + ∆xi−1

With this interpolation, call such g by IB3 f , we have

‖f − IB3 f‖∞ ≤ Ch3(1 + h‖f (4)‖∞).

• Cubic spline: s0, s1, ..., sn are determined so that g ∈ C2. This requires

p′′i−1(xi) = p′′i (xi).

Or
hi−1si−1 + 2(hi + hi−1)si + hisi+1 = bi, i = 1, ..., n− 1,

bi = 3 (f [xi−1, xi]hi + f [xi, xi+1]hi) .

This is a second order finite difference equation. There are n + 1 unknowns s0, ..., sn, n −
1 equations. We need two boundary conditions. There are different choices of boundary
conditions:

– Complete cubic spline:
s0 = f ′(x0), sn = f ′(xn).

– Natural spline:
s′′(x0) = s′′(xn) = 0.

Not-a-knot condition
p0 = p1, pn−2 = pn−1,

or g′′′ is continuous across x1 and xn−1.

Let us denote this cubic spline approximation of f by I3f . We have the following approxi-
mation estimates: suppose f ∈ C4[a, b], then

‖f − I3f‖∞ = O(h4)‖f (4)‖∞.

‖f ′′ − (I3f)′′‖∞ = O(h2)‖f (4)‖∞.

3.8.1 Splines on uniform grid systems

In this approach, we first set up a grid system

xjk = 2−jk

on R. The index j represents the scale, whereas k is the location index. In the spline approach, we
fix the scale index j, say j = J . We choose a spline function φ. For instance, the box function
1[0,1).

90 CHAPTER 3. APPROXIMATION THEORY

Box spline We define
φjk = 2j/2φ(2jx− k).

It is clear that

• ‖φjk‖2 = 1

• 〈φjk, φjl〉 = δkl

If we define
Sj0 = {f : R→ R|f is constant on each (xj,k, xj,k+1)}

Then a general function can be approximated by

f(x) ≈ fj(x) :=
∑
k∈Z
〈f, φj,k〉φj,k(x).

If f ∈ H1(R), then we have
‖f − fj‖2 = O(2−j).

Hat splines We define
φ2(x+ 1) := 1[0,1) ∗ 1[0,1)(x).

This function is the hat spline

φ2(x) =


x if − 1 < x < 0
2− x if 0 ≤ x < 1
0 otherwise.

We define φjk = φ(2jx− k). We also define

Sj1 := {f : R→ R continuous|f is linear on each (xj,k, xj,k+1)}

As we have seen before that any C1 ∩H2 function can be approximated by

f(x) ≈ fj :=
∑
i∈Z

f(xji)φji(x)

with approximation error
‖f − fj‖2 ≤ O(2−2j).

General B-splines In general, we consider splines φr = 1[0,1) ∗ ... ∗ 1[0,1). Support of φr is [0, r].
φr has the following properties

• φr is a polynomial of degree r − 1 on each interval (i, i+ 1) for all i ∈ Z;

• φr ∈ Cr−2;

3.8. APPROXIMATION BY SPLINES 91

• φr satisfies the following scaling relation:

φr(x) = 2
r∑

k=0

hkφr(2x− k)

where

h(z) =
r∑

k=0

hkz
k =

(
1 + z

2

)r
.

In particular, for the box function, h(z) = 1+z
2 , h0 = 1/2 and h1 = 1/2. The box function satisfies

φ(x) = 2

(
1

2
φ(2x) +

1

2
φ(2x− 1)

)
.

For the hat function,

h(z) =

(
1 + z

2

)2

=
1

4
+

1

2
z +

1

4
z2.

The hat function satisfies

φ(x) = 2

(
1

4
φ(2x) +

1

2
φ(2x− 1) +

1

4
φ(2x− 2)

)
.

When r = 0, h(z) = 1. We find that the function that satisfies the scaling relation

φ(x) = 2φ(2x)

is the Dirac delta function δ(x).

Scaling function and mask The above box spline functions are called scaling functions. A gen-
eral scaling function on R is defined as the follows.

Definition 3.2. Given a series h(z) =
∑∞

k=−∞ hkz
k with h(1) = 1, the function φ satisfying

φ(x) = 2
∞∑

k=−∞
hkφ(2x− k) (3.6)

is called a scaling function with mask h(z).

Remark. The factor 2 here is for the consistence condition h(1) = 1. Indeed, we have∫
φ(x) dx = 2

∞∑
k=−∞

hk

∫
φ(2x− k) dx = (

∑
k

hk)

∫
φ(x) dx.

Thus, the consistence requires h(1) =
∑

k hk = 1.

92 CHAPTER 3. APPROXIMATION THEORY

Construction of scaling function There are two standard ways to construct scaling functions.

• Cascade algorithm:

φn+1(x) = 2
∞∑

k=−∞
hkφn(2x− k)

with φ0 = 1[0,1).

• Fourier method:
φ̂(ξ) = h(eıξ/2)φ̂(ξ/2).

We can find

φ̂(ξ) =
∞∏
j=1

h
(
e
ξ

2j

)
.

• Subdivision scheme. This is a simple to construct a general function. We notice that if φ(x)
is known at all integer points, then the scaling relation immediate gives us its values at half
integer points. We can proceed this inductively and get the values of φ at 2−ji points for all
i and j. Eventually, the points xji := 2−ji is dense in R, we obtain φ by a limiting process.
This algorithm is called the subdivision algorithm: if we have computed φ(2−j+1i) for all i,
then we compute

φ(2−ji) = 2
∑
k

hkφ(2−j+1i− k) for all i.

But how do we obtain φ(k) for k ∈ Z? From the scaling relation

φ(i) = 2
∞∑

k=−∞
hkφ(2i− k) = 2

∑
j

h2i−jφ(j)

This is an eigenvalue problem. We can write it in matrix form:
φ0

φ1

φ2
...

 = 2


h0

h2 h1 h0

h4 h3 h2 h1 h0




φ0

φ1

φ2
...


Lemma 3.7. Suppose hk = 0 for k < 0 and k > r, then the corresponding scaling function φ has
support on [0, r].

Regularity We call a scaling function φ with mask h(z) is of order r if −1 is a multiple root of
h(z) = 0 with multiplicity r. In other words,

h(z) =

(
1 + z

2

)r
Q(z).

for some Q with Q(−1) 6= 0. We shall study the regularity of scaling functions later.

3.8. APPROXIMATION BY SPLINES 93

Example B-splines. The figures are B-spines, Br−1 = 1[0,1) ∗ · · · ∗ 1[0,1), r times convolution.
The mask of Br−1 is

h(z) =

(
1 + z

2

)r
.

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

x

B
0

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

x

B
1

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

x

B
2

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

B
3

94 CHAPTER 3. APPROXIMATION THEORY

0 1 2 3 4 5 6 7 8 9
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

B
8

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

B
9

We shall come back to the construction of scaling function later.

Dual scaling functions φ (with mask h(z)) and φ̃ (with mask h̃(z)).

Definition 3.3. Two scaling functions φ and φ̃ are dual to each other if∫
φ(x)φ̃(x− i) dx = δ0,i

Proposition 2. Two scaling functions φ and φ̃ with masks h(z) and h̃(z) are dual to each other if
and only if

h(z)h̃(z−1) + h(−z)h̃(−z−1) = 1.

Let us postpone the construction of h̃ and φ̃ later. Suppose we have such dual scaling function.
We can define

• translation: φ(x− i)

• dilation: φ(2jx)

• dilation and translation: φj,i := φ(2jx− i). It is a local function at 2ji at scale 2−j .

We can represent a function f successively by

f(x) ∼ fj(x) :=
∑
i∈Z

(f, φ̃j,i)φj,i(x)

The meaning of (f, φj,i): local average of f at scale 2−j at xj,i := 2−ji.

Theorem 3.10. Strang-Fix theorem:

‖f − fj‖L2 = O(2−jr).

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 95

3.9 Approximation by Wavelets and Framelets

3.9.1 Motivations

Wavelets are a local oscillators. They are designed to provide multi-resolution analysis for func-
tions, signals, images and data. The flamelets are similar stuffs except they form redundant basis
instead of basis in function space.

Images are multiscale Images can be composed of

• macroscopic parts

• microscopic parts (texture, fractal,...)

• noises

Image can be presented more effectively by multi-resolution representation. For example, the image
of Tiffany (Figure 3.9.1) has 256×256 pixels. The wavelet representation Figure 3.9.1 of this image
has the same number of coefficients, but most of them are closed to zeros. Therefore, this image
can be compressed by setting those small coefficients to zeros. The compressed image here uses
only 1/7.4873 of the original wavelet coefficients and the corresponding recovered image shown in
Figure 3.9.1, which has almost no difference from the original one from the view of human eyes.

Origin Graph

50 100 150 200 250

50

100

150

200

250

Figure 3.1: Original image

96 CHAPTER 3. APPROXIMATION THEORY

(9,7)−filter, NPT=256*256, NZ= 8753, CR=7.4873

50 100 150 200 250

50

100

150

200

250

Figure 3.2: Wavelet transform of the image.

Tools for multiscale representation of functions Signals can be viewed as one-dimensional
functions, whereas Images and video can be thought as two-dimensional and three-dimensional
functions. A function in time can be represented by atoms in time-domain, or in frequency domain,
or in both time-frequency domain. Examples of these atoms are

• Time (space) domain representation: by local functions such as splines, scaling functions

• Frequency (scale) domain representation:

– Fourier analysis

– Spectral representation (by eigen-modes of special systems such as Chebyshev, Legen-
dre, etc)

• Time-frequency (Spatial-Scale) representation:

– Variants of Fourier methods:

∗ windowed Fourier (Garbor transform)
∗ Wigner distribution (Wigner transform)
∗ Empirical modes decomposition (Hilbert-Huang transform)

– Wavelets

∗ continuous wavelet
∗ discrete wavelets
∗ curvelets, shearlets,

– Framelets, redundent bases

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 97

Reconstruction Graphe

50 100 150 200 250

50

100

150

200

250

Figure 3.3: Image reconstructed from a truncated wavelet coefficients with compression ratio
7.4873.

Below, we give a simple example of single-resolution and multi-resolution representations of an
one-dimensional function (or one-dimensional data). Imagine we have a function c(x) defined on
R. Let us define the grid points

xj,k := 2−jk.

• Single resolution representation: The data cJ,k := c(xJ,k), k = 0, ..., 2J − 1 can be thought
as sampling the continuous signal c(x) on [0, 1] at rate 2−J . This is a single-resolution repre-
sentation:

cJ = (cJ,k), k = 0, ..., 2J − 1.

We may also choose

cJ,k := 2−J
∫ xj,k+1

xj,k

c(x) dx

which is the average of c in a 2−J neighborhood of xj,k.

• Multi-resolution representation: We perform the following transformation recursively for j =
J to j = 1. At scale j, we assume that we are given cj,k. We define

cj−1,k = (cj,2k + cj,2k+1)

dj−1,k = (cj,2k − cj,2k+1)

k = 0, ..., 2j−1 − 1.

The meaning of these quantities is

cj,k := averages of data at resolution level j

dj,k := fluctuations of data at resolution level j

98 CHAPTER 3. APPROXIMATION THEORY

Here, j is the scale index and k is the location index. The representation

(c0, d0, d1, · · · , dJ−1), cj = (cj,k)k, dj = (dj,k)k.

is called an multi-resolution of c. It means that cJ is represented as

local averages at coarsest level + fluctuations at various levels.

The transformation
TJ : (cJ) 7→ (c0, d0, d1, · · · , dJ−1).

is called the discrete Haar wavelet transform. It is a simple example of discrete wavelet
transform. Its inverse transform T−1

j can be obtained recursively by performing

cj,2k =
1

2
(cj−1,k + dj−1,k)

cj,2k+1 =
1

2
(cj−1,k − dj−1,k) .

An advantages of multi-resolution representation is that the representation is more efficient (or
sparse) if the underlying data are piecewise smooth. Therefore, it is useful for image compression.
We can also have other kinds of multi-resolution representations.

Example 1 Let cj,k be the value of c(x) at xj,k := 2−jk. We define

cj−1,k = cj,2k

dj−1,k = cj,2k+1 −
1

2
(cj,2k + cj,2k+2) , k = 0, ..., 2j − 1, j = L, ..., J.

Thus,

• cj,k: data of c at resolution level j

• dj,k: interpolation error (use piecewise linear interpolant) at resolution level j

Example 2

cj−1,k = cj,2k

dj−1,k = cj,2k+1 − L(xj,2k+1;xj,2k−2, xj,2k, xj,2k+2, xj,2k+4)

where L(x;xj,2k−2, xj,2k, xj,2k+2, xj,2k+4) is the Lagrange interpolant of degree 3 which interpo-
lates c(·) at xj,2k−2, xj,2k, xj,2k+2, xj,2k+4.

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 99

3.9.2 General Discrete Wavelet Transform

Discrete Wavelet transform In wavelet representation of an one-dimensional data, the data are
represented multiscale form (cj,k, dj,k), where j is a scale index and k is a location index. The
data cj = (cj,k)k∈Z are the “averages” of c(·) at scale j. The data dj = (dj,k)k∈Z are the “fluctua-
tions” of c(·) at scale j. A wavelet transform decomposes averages at finest scale into averages and
fluctuations at various scales. Such transformation depends on two sets of coefficients {hk}, {gk}.
Usually, only finite of them are non-zero. The data at finest scale, say cJ can be decomposed into
averages and fluctuations at coarser scales by the following recursive process:{

the low-pass data: cj−1,i =
√

2
∑

k hkcj,2i−k,

the high-pass data: dj−1,i =
√

2
∑

k gkcj,2i−k.
(3.7)

We perform this recursively for j = J, ..., 1 and obtain the transformation

TJ : cJ 7→ (c0, d0, d1, · · · , dJ−1).

Thus, cJ is decomposed into

local averages at coarsest scale + local fluctuations at various scales.

We call the transformation TJ the discrete wavelet transform.
The inverse transformation T−1

J , which depends on two sets of coefficients {h̃k} and {g̃k}, can
be performed recursively by the following reconstruction process. For j = 1, ..., J ,

cj,i =
√

2
∑
k

[
h̃2k−icj−1,k + g̃2k−idj−1,k

]
. (3.8)

We can obtain cJ from (c0, d0, d1, ..., dJ−1).

Condition for perfect reconstruction The discussion below is to find conditions on h, g, h̃ and g̃
such that we can have perfect reconstruction. This means that we can transform cj into (cj−1, dj−1)
by h and g, and transform them back perfectly by h̃ and g̃. In order to find perfect reconstruction
condition, we introduce the notion of generating functions.

Definition 3.4. Given a sequence of coefficients {hk}k∈Z, we define the generating function:

h(z) =
∑
k∈Z

hkz
k.

The generating function h(z) is sometimes called mask or filter bank.

100 CHAPTER 3. APPROXIMATION THEORY

Lemma 3.8. It holds ∑
i

(
∑
j

ai−jbj)z
i = a(z)b(z)

∑
i

(
∑
j

ai+jbj)z
i = a(z)b(z−1)

∑
i

(
∑
j

a2i−jbj)z
2i =

1

2
(a(z)b(z) + a(−z)b(−z))

∑
i

(
∑
j

ai−2jb2j)z
i = a(z)

1

2
(b(z) + b(−z))

Proposition 3. The perfect reconstruction condition for (3.7) and (3.8) is

g(z) = zh̃(−z−1) (3.9)

g̃(z) = zh(−z−1), (3.10)

and
h(z)h̃(z−1) + h(−z)h̃(−z−1) = 1. (3.11)

Proof. 1. The decomposition (3.7) can be expressed in terms of generating functions by

cj−1(z2) =

√
2

2
(h(z)cj(z) + h(−z)cj(−z))

dj−1(z2) =

√
2

2
(g(z)cj(z) + g(−z)cj(−z))

The reconstruction (3.8) can be expressed as

cj(z) =
√

2
(
h̃(z−1)cj−1(z2) + g̃(z)dj−1(z2)

)
= h̃(z−1) (h(z)cj(z) + h(−z)cj(−z))
+ g̃(z−1) (g(z)cj(z) + g(−z)cj(−z))

This gives

h(z)h̃(z−1) + g(z)g̃(z−1) = 1

h(−z)h̃(z−1) + g(−z)g̃(z−1) = 0.

2. If we choose

g(z) = zh̃(−z−1)

g̃(z) = zh(−z−1),

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 101

then the second equation is satisfied automatically

h(z)h̃(−z−1) + zh̃(−z−1)(−z)−1h(z) = 0.

The first equation becomes

h(z)h̃(z−1) + h(−z)h̃(−z−1) = 1.

Design filter banks To design a wavelet transform, we need to design the four sets of filter banks
h(z), g(z), h̃(z) and g̃(z) such that they satisfy the perfect reconstruction condition. The filter banks
h(z) and g(z) are called analysis filter banks, while h̃(z) and g̃(z) are called synthesis filter banks.
The mask h(z) plays the role of averaging. A simple average filter is h(z) = (1+z)/2. This means
that −1 is a root of h(z). The mask g(z) plays a role of differencing. A simple differencing filter is
g(z) = (1− z)/2. In general, we look for h(z) and g(z) having the following properties

h(z) contains a factor
(

1 + z

2

)r
g(z) contains a factor

(
1− z

2

)r̃
for some positive integers r and r̃. Example of these analytic masks are

• h(z) = 1+z
2 : averaging

• h(z) = z−1
(

1+z
2

)2: 2nd order averaging

• g(z) = 1−z
2 : differencing

• g(z) = z−1
(

1−z
2

)2: 2nd order differencing

• The filter bank g(z) =
(

1−z
2

)p annihinate monomials x0, x1, ..., xp−1.

We can obtain g(z) and g̃(z) from h(z) and h̃(z) via the equations (3.9) and (3.10). Equation
(3.11) gives condition on h(z) and h̃(z). In this equation, only the product h(z)h̃(z−1) is involved.
Thus, we call

h(z)h̃(z−1) = H0(z)

and (3.11) reads
H0(z) +H0(−z) = 1.

Notice that from (3.9) that g(z) containing a factor (1−z)/2 is equivalent to h̃(z) containing a factor
(1 + z)/2. Thus, the desired property that h(z) and g(z) contain factors (1 + z)/2 and (1 − z)/2
respectively is equivalent to that H0 contains a factor (1 + z)/2.

Let us summarize the procedure of designing filter banks as the follows.

102 CHAPTER 3. APPROXIMATION THEORY

• Find a mask H0(z) which satisfies

H0(z) +H0(−z) = 1.

and also containing a factor ((1 + z)/2)r+r̃.

• Split H0(z):
H0(z) = h(z)h̃(z−1)

such that h(z) containing ((1 + z)/2)r and h̃(z) containing ((1 + z)/2))r̃.

• Define
g(z) = zh̃(−z−1) g̃(z) = zh(−z−1).

Design of H0(z) We have seen that H0(z) should satisfies H0(z) +H0(−z) = 1. This is equiva-
lent to

• H0(z) has no even order terms except k = 0

• The constant coefficient is 1/2.

In addition, H0(z) should contains factor (1 + z)/2. Here are two tricks to design H0(z).

Method I Let H(z) = z−1
(

1+z
2

)2, K(z) = H(−z), we have

H(z) +K(z) = 1

We raise it to nth power
(H +K)n = 1n.

From the binomial expansion, we can easily find H0. Let us see the following examples.

1. n = 2:

(H +K)2 = H2 +HK +KH +K2

= H(H +K) +K(K +H)

We choose H0(z) = H(H +K)

2. n = 3:

(H +K)3 = H3 + 3H2K + 3K2H +K3

= H2(H + 3K) +K2(K + 3H)

We choose H0(z) = H2(H + 3K)

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 103

3. n = 5:

(H +K)5 = H3(H2 + 5HK + 10K2) +K3(K2 + 5HK + 10H2)

We choose H0(z) = H3(H2 + 5HK + 10K2).

4. (Homework) Derive general formulae for general n.

Example:

• r = 1: H0 = 2−2(1, 2, 1)

• r = 2: H0 = 2−4(−1, 0, 9, 16, 9, 0,−1)

Method II We shall construct H0(z) having the following form

H0(z) = H(z)rQr(z),

where

H(z) = z−1

(
1 + z

2

)2

=
z + 2 + z−1

4

is the symmetric average polynomial, Qr(z) is the polynomial of lowest degree such that H0(z) +
H0(−z) = 1.

Proposition 4. The polynomial Qr(z) has the form:

Qr(z) =
r−1∑
n=0

(
r + n− 1

n

)(
2− z − z−1

4

)n
Lemma 3.9 (Bazout). Two polynomial p1 and p2 with degree n1 and n2 are relativily prime, then
there exist unique q1 and q2 of degree n2 − 1 and n1 − 1, respectively, such that p1(x)q1(x) +
p2(x) + q2(x) = 1.

Proof. of the Proposition.

1. Proof I: Denote H(−z) by K(z) From

(H(z) +K(z))2r−1 = 1

We get (
r−1∑
n=0

+
2r−1∑
n=r

)(
2r − 1
n

)
H2r−1−nKn = H0(z) +H0(−z)

where

H0(z) = H(z)r
r−1∑
n=0

(
2r − 1
n

)
Hr−1−nKn = H(z)rQ(z)

We notice that Q(z) has no factor H(z). Since the degree ofQr is from (−r+1) to r−1, we
obtain thisQ(z) must be the uniqueQr(z) of the lowest degree which satisfiesHr(z)Qr(z)+
Hr(−z)Qr(−z) = 1.

104 CHAPTER 3. APPROXIMATION THEORY

2. Proof II. Notice that

H(z) = 1−H(−z)

The polynomial H(z) and H(−z) are relatively prime. By Bezout’s theorem and the sym-
metric property of H(z), we see that there exists a unique Qr(z) of degree from −r + 1 to
r − 1 such that

Hr(z)Qr(z) +Hr(−z)Qr(−z) = 1

we get

Qr(z) =
1

Hr(z)
(1−Hr(−z)Qr(−z))

=
1

(1−H(−z))r
(1−Hr(−z)Qr(−z))

=
∞∑
n=0

(
−r
n

)
(−H(−z))n (1−Hr(−z)Qr(−z))

=
r−1∑
n=0

(
r + n− 1

n

)
Hn(−z) +O(Hr(−z))

Since degree ofQr(z) is from−r+1 to r−1, we obtain that theO(Hr(−z)) term is identical
to zero.

3.9.3 Examples of filter banks

In this subsection, we introduction concrete examples that are popular in use. These include

• Lagrange interpolation filter banks,

• Daubechies orthogonal filter banks

• Cohen-Daubechies-Feauveau filter banks.

Their designs are all based on the basic filter bank that we construct in the last section, namely
H0(z) = Hr(z)Qr(z).

Lagrange interpolation filter banks In the Lagrange interpolation filter bank, we split

H0(z) = 1 ·H0(z) = h(z) · h̃(z).

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 105

That is,

h(z) = 1, g̃(z) = z

h̃(z) =
1

2

1 +

r∑
m=−r+1

∏
−r < n ≤ r
n 6= m

1− 2n

2m− 2n
z2n−1



g(z) =
1

2

z − r∑
m=−r+1

∏
−r < n ≤ r
n 6= m

1− 2n

2m− 2n
z2n

 = zh̃(−z−1)

Proposition 5. The Lagrange filter bank has the properties

cj−1,k = cj,2k

dj−1,k = cj,2k+1 − L(cj,2(k−r+1), · · · , cj,2(k+r)) (3.12)

the Lagrange interpolation error.

Proof. 1. Let us compare the two filter bank: g(z) above and the interpolation error filter bank
(3.12).

2. Since g(z) contains a factor z−r
(

1−z
2

)2r, it annihilates polynomials of degree less than 2r−1.
This means that ∑

k

gkx
m
k = 0, for all m = 0, 1, ..., 2r − 1,

where xk := k.

3. We notice that degree of g(z) is from −2r+ 1 to 2r− 1. Thus, g(z) is the shortest filter bank
that can annihilate xm for m = 0, ..., 2r − 1.

4. The Lagrange interpolation error (3.12) has the same property. Because this interpolation is
unique. Thus, g(z) must be the Lagrange interpolation filter bank (3.12).

Daubechies orthogonal filter banks

• Since Qr(z) = Qr(z
−1), we can split

Qr(z) = Q(z)Q(z−1)

where Q(z) = a0 + a1z + · · ·+ ar−1z
r−1.

• We can split H(z)r into

z−r
(

1 + z

2

)2r

=

(
1 + z

2

)r(1 + z

2

)r
z−r =

(
1 + z

2

)r (1 + z−1

2

)r

106 CHAPTER 3. APPROXIMATION THEORY

• Then we can split H0(z) into h(z)h(z−1):

H0(z) = Q(z−1)

(
1 + z−1

2

)r
︸ ︷︷ ︸

h(z−1)

Q(z)

(
1 + z

2

)r
︸ ︷︷ ︸

h(z)

We shall see in the next section that the scaling function φ(x) and φ̃(x) associated with the masks
h(z) and h̃(z) are identical, and φ(· − k) and φ(· − `) are orthogonal for k 6= `.

Cohen-Daubechies-Feauveau biorthogonal filter banks

• Split HrQr into

Qr(z)

(
1 + z−1

2

)d̃
︸ ︷︷ ︸

h̃(z−1)

(
1 + z

2

)d
︸ ︷︷ ︸

h(z)

where d+ d̃ = 2r.

• cj,k local averages of order d at level j

• dj,k local fluctuations of order d̃ at level j

3.9.4 Multi-resolution Analysis framework

In this section, we shall construct scaling functions and wavelets corresponding to the masks h(z)
and g(z). They are basis (or atoms) of the L2(R) space. These bases give a multi-resolution
structure of the L2(R) space.

Scaling functions and Wavelets Given four set of masks h(z), g(z), h̃(z) and g̃(z) satisfying the
perfect reconstruction condition. Associate with them, we define

φ(x) = 2
∑
k

hkφ(2x− k),

ψ(x) = 2
∑
k

gkφ(2x− k).

φ̃(x) = 2
∑
k

h̃kφ̃(2x− k),

ψ̃(x) = 2
∑
k

g̃kφ̃(2x− k),

The functions φ and φ̃ are called scaling and dual scaling functions, respectively, whereas ψ(x) and
ψ̃(x) are called wavelet and dual wavelet, respectively. Through dilation and translation, we define

ψj,i(·) = 2
j
2ψ(2j · −i).

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 107

We define φj,i, φ̃j,i and g̃j,i similarly. They are called atoms in a vague terminology.
The regularity of φ depends on the factor (1 + z)/2.

Definition 3.5. A scaling function with mask h(z) is called of order r if −1 is a multiple root of
h(z) with multiplicity r.

Our goal is to represent a function u ∈ L2(R) in terms of φj,i or ψj,i, etc. Below, we outline the
main results. Their proofs will be given later.

Dual properties

Proposition 6. For each fixed j, it holds

(φj,i, φ̃j,k) = δi,k. (3.13)

For any j, ` and i, k, it holds
(ψj,i, ψ̃`,k) = δi,kδj,`. (3.14)

Proof. 1. We only need to prove ∫
φ(x− i)φ̃(x− l) dx = δil

We assume that φ can be obtain by the cascade algorithm (see next subsection)

φn = 2
∑
k

hkφ
n−1(2x− k), φ0 = χ[0,1)

and φn → φ.

2. We prove for all n ≥ 0, it holds∫
φn(x− i)φ̃n(x− l) dx = δil. (3.15)

This can be proved by induction. For n = 0,∫
φ0(x− i)φ̃0(x− l) dx =

∫
χ[0,1)(x− i)χ[0,1)(x− l) dx = δil.

Suppose (??) holds up to n,

(φn+1(x− i), φ̃n+1(x− j)) =

∫
4
∑
k

hkφ
n(2(x− i)− k)

∑
`

h̃`φ̃
n(2x− j)− `) dx

= 2
∑
k

∑
`

hkh̃`δ2i+k,2j+`

= 2
∑
k

hkh̃2(i−j)+k

The generating function of 2
∑

k hkh̃2i+k is∑
i

∑
k

2h̃2i+khkz
−2i = h(z)h̃(z−1) + h(−z)h̃(−z−1) = 1.

108 CHAPTER 3. APPROXIMATION THEORY

Multi-resolution structure We define

Vj = span {φj,k}k∈Z , Wj = span {ψj,k}k∈Z
Ṽj = span {φ̃j,k}k∈Z , W̃j = span {ψ̃j,k}k∈Z

Then we have

Proposition 7.

Vj+1 = Vj +Wj , Ṽj+1 = Ṽj + W̃j

Wj ⊥ Ṽj , W̃j ⊥ Vj
L2(R) = ∪Vj , L2(R) = ∪Ṽj
L2(R) = ⊕Wj , L2(R) = ⊕W̃j

In other words, we can expand u ∈ L2(R) as

u =
∑
j

∑
k

(u, ψj,k)ψ̃j,k =
∑
j

∑
k

(u, ψ̃j,k)ψj,k

In connection with the wavelet coefficients in the previous section, we have

cj.k := (u, φj,k) (local averaging)

dj.k := (u, ψj,k) (local differencing)

Riesz basis property

Theorem 3.11. If φ is a scaling function of order r with r ≥ 1, then φ0,k constitute a Riesz basis in
V0 := span {φ0,k}k∈Z , i.e. there exists two constants A > 0 and B <∞ such that

A
∑
k

|ck|2 ≤ ‖
∑
k

ckφ
[r]
0,k‖

2 ≤ B
∑
k

|ck|2

Theorem 3.12. There exist positive constant γ, γ̃, Γ and Γ̃ such that for any u ∈ L2(R), it holds

γ
∑
i,j∈Z

|dj,i|2 ≤ ‖
∑
i,j∈Z

dj,iψj,i‖2 ≤ Γ
∑
i,j∈Z

|dj,i|2

γ̃
∑
i,j∈Z

|d̃j,i|2 ≤ ‖
∑
i,j∈Z

d̃j,iψ̃j,i‖2 ≤ Γ̃
∑
i,j∈Z

|d̃j,i|2

Approximation power

Theorem 3.13 (Strang-Fix, Unser). Suppose φ is of pth order and Vj is the span of {φj,k}k∈Z . Let
Qj be any projection from L2 onto Vj . Then

‖Qju− u‖L2 = CQ2−jp +O(2−j(p+1))

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 109

3.9.5 Construction of scaling functions and wavelets

Goal: To construct a function φ such that Vj := span {φj,k}k∈Z constitutes a multi-resolution
analysis. It is also served as a basic element to build wavelet functions.

Definition 3.6. A function φ is called refinable (or a scaling function) if there exist coefficients
{hk}k∈Z such that

φ(x) = 2
∑
k

hkφ(2x− k)

Let h(z) =
∑

k∈Z hkz
k, called the generating function of {hk}. It is necessarily that h(1) = 1.

h(z) is called the mask of φ.
We outline the theory:

• Existence and construction of the scaling functions

• Three examples of scaling functions

– B-splines

– Lagrange interpolation functions

– Daubechies orthogonal scaling functions.

• Properties of scaling functions:

– Support

– Regularity

• Riesz basis property

• Approximation power

Construction and Existence of scaling function We introduce three methods to construct scaling
functions.

• Cascade algorithm

φn(x) = 2
∑
k

hkφ
n−1(2x− k)

φ0 = 1[0,1)

The function φn will converge to φ.

• Fourier method: Taking Fourier transform on the refinable equation, we obtain

φ̂(ξ) = m(
ξ

2
)φ̂(

ξ

2
)

110 CHAPTER 3. APPROXIMATION THEORY

where m(ξ) = h(eiξ). Performing this successively and taking the normalization φ̂(0) = 1
(i.e.

∫
φ(x) dx = 1), we obtain

φ̂(ξ) =
∞∏
j=1

m

(
ξ

2j

)
• Subdivision scheme

1. Step 1: Find {φ(k)}k∈Z by solving the eigen system:

φ(i) = 2
∑
k

h2i−kφ(k)

2. Step 2: Find the value of φ at xj+1,k points recursively by the subdivision scheme

φ(2−(j+1)i) = 2
∑
k

hkφ(2−ji− k)

Or equivalently,
φ(xj+1,i) = Sh(φ(xj,·))i

where Sh : `2(Z)→ `2(Z) defined by

(Shb)i =
∑
k

2hi−2kbk.

Remarks on subdivision scheme

1. The subdivision scheme can be understood through the superposition of Sh. First, a general
b : Z→ R can be written as b = biδi, where δi ∈ `2(Z) is defined by

δi(j) = δ(i− j) =

{
1 mboxifi = j
0 otherwise.

Thus, Shb =
∑

i biShδi.

2. Shδ0 = h.

Lemma 3.10. If h(1) = 1 and m(ξ) = h(eiξ) is Lipschitz continuous at 1, then the corresponding
scaling function φ exists as a distribution.

Proof. The assumption for m(ξ) is

|m(ξ)| = |m(0) + (m(ξ)−m(0))| ≤ 1 + C|ξ| ≤ eC|ξ|.

Hence
∞∏
j=1

∣∣∣∣m(ξ

2j

)∣∣∣∣ ≤ exp

 ∞∑
j=1

C|2−jξ|

 ≤ eC|ξ|.
The convergence is absolute and uniformly for ξ in any compact set in C. Thus, the Fourier inversion
of this infinite product function exists as a distribution.

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 111

Proposition 8. Cascade algorithm is equivalent to subdivision: algorithm

φn(x) =
∑
i

(Snhδ0)iφ
0(2nx− i)

Proof. 1. The subdivision scheme Sh is defined by

(Shb)i =
∑
k

2hi−2kbk

In particular, 2h = Shδ0.

2. A cascade algorithm is

φn(x) = 2
∑
i

hiφ
n−1(2x− i)

=
∑
i

(Shδ0)iφ
n−1(2x− i)

= 22
∑
i

hi
∑
k

hkφ
n−2(22x− 2i− k)

=
∑
`

(
∑
i

2h`−2i2hi)φ
n−2(22x− `)

=
∑
`

(Sh(2h))elφ
n−2(22x− `)

=
∑
`

S2
hδ0φ

n−2(22x− `)

3. In general, we have
φn(x) =

∑
i

(Snhδ0)iφ
0(2nx− i)

Three examples:

• h(z) =
(

1+z
2

)r, the corresponding φ is the B-spline of order r.

• h(z) = z−r
(

1+z
2

)2r
Qr(z) the corresponding refinable function is the Lagrange interpolating

function. Here,

Qr(z) =

r−1∑
n=0

(
r + n− 1

n

)(
2− z − z−1

4

)n
• h(z) =

(
1+z

2

)r
Q(z), where Qr(z) = Q(z)Q(z−1). This corresponds to Daubechies orthog-

onal scaling function.

112 CHAPTER 3. APPROXIMATION THEORY

B-spline

Proposition 9. The scaling function corresponding to h(z) =
(

1+z
2

)r is 1[0,1) ∗ · · · ∗ 1[0,1) (r times)

Proof. 1. Using Fourier method,

φ̂(ξ) =
∞∏
j=1

m

(
ξ

2j

)

where m(ξ) = h(eiξ). One can show that when h(z) = 1+z
2 , then m(ξ) = eiξ/2 cos

(
ξ
2

)
.

2. Using sin(2ξ) = 2 sin ξ cos ξ, we obtain

φ̂(ξ) :=
∞∏
j=1

m

(
ξ

2j

)

= exp

i
 ∞∑
j=2

ξ

2j

 ∞∏
j=2

cos

(
ξ

2j

)

= eiξ/2
∞∏
j=2

sin
(

ξ
2j−1

)
2 sin

(
ξ
2j

)
= eiξ/2

sin
(
ξ
2

)
ξ
2

.

B-spline is refinable:

• The rth order B-spline φ[r] is refinable and the corresponding mask is
(

1+z
2

)r.
1. Suppose the mask of φ[r] is h[r] with coefficients h[r]

k .

2. From definition, φ[r] = φ[1] ∗ · · · ∗ φ[1], we have

φ[r](x) = φ[r−1] ∗ φ[1](x)

=

∫
φ[r−1](y)φ[1](x− y)dy

= 2

∫ ∑
k

h
[r−1]
k φ[r−1](2y − k)

(
φ[1](2x− 2y) + φ[1](2x− 2y − 1)

)
dy

= 2
∑

h
[r−1]
k

∫
φ[r−1](2y − k)φ[1](2x− 2y)dy

+2
∑

h
[r−1]
k

∫
φ[r−1](2y − k)φ[1](2x− 2y − 1)dy

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 113

=
∑

h
[r−1]
k

∫
φ[r−1](y)φ[1](2x− k − y)dy

+
∑

h
[r−1]
k

∫
φ[r−1](y)φ[1](2x− k − 1− y)dy

=
∑

h
[r−1]
k φ[r](2x− k) +

∑
h

[r−1]
k φ[r](2x− k − 1)

=
∑

(h
[r−1]
k + h

[r−1]
k−1)φ[r](2x− k).

3. This implies h[r]
k = (h

[r−1]
k + h

[r−1]
k−1)/2.

4. It is easy to see that h[1](z) =
(

1+z
2

)
.

• Support φ[r] = [0, r]

• φ[r] ∈ Cr−1−ε for any ε > 0.

• We may define φ[0] = δ which satisfies

δ(x) = 2δ(2x)

i.e. h[0] = 1.

• Riesz basis property: for r ≥ 1, φ0,k constitute a Riesz basis in V0 := span {φ0,k}k∈Z , i.e.
there exists two constants A > 0 and B <∞ such that

A
∑
k

|ck|2 ≤ ‖
∑
k

ckφ
[r]
0,k‖

2 ≤ B
∑
k

|ck|2

Example 2. The Lagrange interpolation function

• Definition.

1. Initially, define φ̃(k) = δ0,k

2. Using subdivision scheme, define φ̃ at xj+1,2k+1 by Lagrange interpolation using data
at xj,k−r+1, · · · , xj,k+r, i.e.

φ̃(xj+1,2k+1) =
∑
u

∏
−r < v ≤ r
v 6= u

xj+1,2k+1 − xj,k+v

xj,k+u − xj,k+v
φ̃(xj,k+u)

• The mask

1. h(z) = z−r
(

1+z
2

)2r
Qr(z), where

Qr(z) =
r−1∑
n=0

(
r + n− 1

n

)(
2− z − z−1

4

)n

114 CHAPTER 3. APPROXIMATION THEORY

2. Example:

– r = 1: 2h = 2−2(1, 2, 1)

– r = 2: 2h = 2−4(−1, 0, 9, 16, 9, 0,−1)

• Property:

1. Lagrange interpolation mask of order 2r can annihinate polynomials of degree less than
2r.

2. The Lagrange interpolation mask has the smallest length among all interpolatory mask
of order 2r.

3. Support of φ̃ of order 2r is [−2r + 1, 2r − 1].

4. Regularity: the order of differentiability is linearly propotional to r

• Riesz basis property

• Approximation power: If Qj is any projection onto Vj which is spanned by the Lagrange
interpolant φ̃ of order 2r, then

‖u−Qju‖ = Cφ̃2−2rj +O(2−(2r+1)j)

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−6 −4 −2 0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 115

−6 −4 −2 0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−6 −4 −2 0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−6 −4 −2 0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Example 3. Daubechies orthogonal wavelets

• Since Qr(z) = Qr(z
−1), we can split

Qr(z) = Q(z)Q(z−1)

where Q(z) = a0 + a1z + · · ·+ ar−1z
r−1.

• We can split H(z)r into

z−r
(

1 + z

2

)2r

=

(
1 + z

2

)r(1 + z

2

)r
z−r =

(
1 + z

2

)r (1 + z−1

2

)r

116 CHAPTER 3. APPROXIMATION THEORY

• Then we can split H0(z) into h(z)h(z−1):

H0(z) = Q(z−1)

(
1 + z−1

2

)r
︸ ︷︷ ︸

h(z−1)

Q(z)

(
1 + z

2

)r
︸ ︷︷ ︸

h(z)

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

x

φ
2

0 1 2 3 4 5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

φ
3

0 1 2 3 4 5 6 7

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

φ
4

0 1 2 3 4 5 6 7 8 9

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

φ
5

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 117

0 0.5 1 1.5 2 2.5 3

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

ψ
2

0 1 2 3 4 5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

ψ
3

0 1 2 3 4 5 6 7

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

ψ
4

0 1 2 3 4 5 6 7 8 9

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

ψ
5

Example 4. Cohen-Daubechies-Feauveau biorthogonal wavelets

• Split HrQr into

Qr(z)

(
1 + z−1

2

)d̃
︸ ︷︷ ︸

h̃(z−1)

(
1 + z

2

)d
︸ ︷︷ ︸

h(z)

where d+ d̃ = 2r.

118 CHAPTER 3. APPROXIMATION THEORY

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

x

φ
(1,3)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

x

\tilde\phi_{(1,3)}

0.5 1 1.5 2 2.5 3
0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

x

φ
(1,3)

0.5 1 1.5 2 2.5 3

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

\tilde\phi_{(1,3)}

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 119

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

φ
(2,4)

1 2 3 4 5 6 7 8

−0.5

0

0.5

1

1.5

2

x

\tilde\phi_{(2,4)}

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

φ
(2,4)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

\tilde\phi_{(2,4)}

Properties

• Convergence and regularity

– If h(1) = 1, then φ exists as a distribution

– Convergence in L2 is related to the regularity of φ.

– Regularity is related to the the “approximation order” of φ

– If h(z) =
(

1+z
2

)p
H(z) with H(1) 6= 0, then we say that φ(z) has approximation order

p.

120 CHAPTER 3. APPROXIMATION THEORY

– If φ has approximation order p, then πp ⊂ V0, where πp be the set of all polynomials of
order less than p.

– The higher the p is, the more regular the φ is

• Support and Decay

– A mask is called of finite length if there exists an integer M such that h(k) = 0 for
|k| > M

– φ is of finite support if and only if its mask is of finite length

– φ decay expontially at x = ±∞ iff hk decays exponetially at k = ±∞.

• Riesz basis property:
Under certain assumption on h, the corresponding refinable function φ satisfies the Riesz
basis property:

A
∑
k

|ck|2 ≤ ‖
∑
k

ckφj,k‖2 ≤ B
∑
k

|ck|2

• Approximation power:
Theorem. (Strang-Fix, Unser) Suppose φ is of pth order and Vj is the span of {φj,k}k∈Z . Let
Qj be any projection from L2 onto Vj . Then

‖Qju− u‖L2 = CQ2−jp +O(2−j(p+1))

• The main technique is by Fourier method.

Duality

• h(z) and h̃(z) correspond to scaling functions φ and φ̃

• Perfect reconstruction of h(z) and h̃(z):

h(z)h̃(z−1) + h(−z)h̃(−z−1) = 1

is equivalent to duality of φ and φ̃:∫
φ(x)φ̃(x− k)dx = δ0,k

• Proof by induction: Use

1. φn+1(x) =
∑

k hkφ
n(2x− k), φ0 = 1[0,1),

2. φ̃n+1(x) =
∑

k h̃kφ̃
n(2x− k), φ̃0 = 1[0,1),

3.
∫

1[0,1)(x)1[0,1)(x− k) dx = δ0,k

Biorthogonality

3.9. APPROXIMATION BY WAVELETS AND FRAMELETS 121

• Biorthogonality: ∫
ψ(x)φ̃(x− k) dx = 0.

• Proof by induction

1. ψn+1(x) =
∑

k gkφ
n(2x− k), φ0 = 1[0,1),

2. φ̃n+1(x) =
∑

k h̃kφ̃
n(2x− k), φ̃0 = 1[0,1),

3.
∫

1[0,1)(x)1[0,1)(x− k) dx = δ0,k

4. g(z−1)h̃(z) + g(−z−1)h̃(−z) = 0.

Biorthogonality

•

(φj,i, φ̃j,k) = δi,k

(ψj,i, φ̃j,k) = 0

(ψj,i, ψ̃j′,k) = δj,j′δi,k

References:

• I. Daubechies, Ten Lectures on Wavelets, SIAM Lecture Notes

• S. Mallat, A Wavelet Tool for Signal Processing, the Sparse Way, Academic Press, 2009.

122 CHAPTER 3. APPROXIMATION THEORY

Chapter 4

Numerical Integration

4.1 Motivations

Solving integral equations In applications, we encounter integral equations such as∫ b

a
K(x, y)u(y) dx = f(x)

or

u(x) +

∫ b

a
K(x, y)u(y) dx = f(x).

In solving Laplace equation, Helmholtz equation, we sometimes change it into integral equations,
which is of the previous form. This is called boundary integral method.

Performing integral transform We need to perform the following transformations in applica-
tions

• Fourier transform ∫ ∞
−∞

f(x)e−ixξ dx

• Legendre transform ∫ 1

−1
f(x)Pnm(x) dx

• Wavelet transform ∫ ∞
−∞

f(x)ψjk(x) dx.

In general, numerical integrations on intervals, curves, surfaces, and, in general, manifolds are
needed in many places.

There are three classes of methods for numerical integration:

123

124 CHAPTER 4. NUMERICAL INTEGRATION

• Newton-Cotes method (which is based on uniformly spaced grid points)

• Gaussian-Quadrature methods

• Monte-Carlo methods

4.2 Newton-Cotes Method for numerical integration

Goal Numerical integration of I(f) :=
∫ b
a f(x) dx. Suppose the grid points are evenly spaced:

xi = a+ ih, h =
b− a
n

.

and fi = f(xi) are given.

Method
1. Approximate f by fk, the Lagrange interpolation of f at xi, i = 0, ..., k:

fk(x) =

k∑
i=0

fi`i(x), `i(x) =

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

.

2. Approximate I(f) by Ik(f) :=
∫ xk
x0
fk(x) dx.

Ik(f) =

∫ xk

x0

k∑
i=0

fi`i(x) dx =
k∑
i=0

fiwi,

where
wi =

∫ xk

x0

`i(x) dx

We will not compute the weights wi directly. Instead, we will use Romberg rule to compute these
weights successively in k.

Examples
1. k = 1, Trapezoidal rule:

I1
n(f) =

n∑
i=1

1

2
(fi−1 + fi)

b− a
n

2. k = 2, Simpson rule:

I2
2n(f) =

n−1∑
i=0

1

6
(f2i + 4f2i+1 + f2i+2)

(b− a)

2n
.

3. k = 3, Boole’s rule:

I3
22n(f) =

n−1∑
i=0

1

90
(7f4i + 32f4i+1 + 12f4i+2 + 32f4i+3 + 7f4i+4)

(b− a)

22n

4.2. NEWTON-COTES METHOD FOR NUMERICAL INTEGRATION 125

Error analysis Let us denote
E1
n(f) = I(f)− I1

n(f).

• Trapezoidal rule. By the interpolation analysis,

f(x)− f1(x) = f [xj , xj+1, x](x− xj)(x− xj+1)

Thus,

E1
n(f) =

n−1∑
j=0

∫ xj+1

xj

(f − f1) dx

=
n−1∑
j=0

1

2
f ′′(ηj)

∫ xj+1

xj

(x− xj)(x− xj+1) dx

=
n−1∑
j=0

1

2
f ′′(ηj)

(
−1

6
(xj+1 − xj)3

)

= h3n

 1

n

n−1∑
j=0

− 1

12
f ′′(ηj)


= −(b− a)

12
h2f ′′(η) for some η ∈ (a, b).

• For Simpson rule, we partition the interval [a, b] into 2n subintervals evenly. On the interval
(xi−1, xi+1),

f − f2 = f [xi−1, xi, xi+1, x](x− xi−1)(x− xi)(x− xi+1).

Let
w(x) =

∫ x

xi−1

(t− xi−1)(t− xi)(t− xi+1) dt.

Because the grids xi are evenly spaced and (t− xi−1)(t− xi)(t− xi+1) is an odd function,
we obtain 1

w(xi−1) = w(xi+1) = 0.

Thus, ∫ xi+1

xi−1

(f − f2) dx =

∫ xi+1

xi−1

w′(x)f [xi−1, xi, xi+1, x] dx

= −
∫ xi+1

xi−1

w(x)f [xi−1, xi, xi+1, x, x]

= − 4

15
h5

(
−f

(4)(ηi)

24

)

=
h5

90
f (4)(ηi).

1Indeed, if we choose xi−1 = −h, xi = 0, xi+1 = h, then w(x) = 1
4
(x− h)2(x+ h)2.

126 CHAPTER 4. NUMERICAL INTEGRATION

We obtain

I(f)− I2
n(f) =

h4

180
(b− a)f (4)(η) for some η ∈ (a, b).

Romberg Method One can derive the coefficients (weights) of the Newton-Cotes method suc-
cessively starting from the trapezoidal rule by the Romberg method. We begin with the trapezoidal
rule.

For the trapezoidal rule, the Euler-MacLaurin formula gives

I(f)− I1
n(f) =

d1

n2
+
d1

2

n4
+ · · ·

We shall use Richardson extrapolation formula to remove the error term: d1
n2 then get a high order

method. We have

I(f)− I1
n/2(f) = 4

d1

n2
+ 24 d

1
2

n4
+ · · ·

From 4(I − I1
n)− (I − I1

n/2), we obtain

4(I − I1
n)− (I − I1

n/2) =
−12d1

2

n4
+ · · · .

Thus, let us define

I2
n =

4I1
n − I1

n/2

3
,

then we have
I(f)− I2

n(f) =
d2

n4
+ · · · .

This numerical integration rule is exactly the Simpson rule. We can check the simplest case: n = 2.
Suppose b− a = 1

I1
2 (f) =

1

2
(f0 + f1 + f1 + f2)

1

2

I1
1 (f) =

1

2
(f0 + f2)

I2
2 (f) =

4I1
2 (f)− I1

1 (f)

3
=

1

6
(f0 + 4f1 + f2)

We can continue this extrapolation:

I3
n =

24I2
n − I2

n/2

24 − 1

I − I3
n =

d3

n6
+ · · · .

I4
n =

26I3
n − I3

n/2

26 − 1

4.2. NEWTON-COTES METHOD FOR NUMERICAL INTEGRATION 127

I − I4
n =

d4

n8
+ · · · .

In general,

I − Ikn =
dk
n2k

+ · · ·

Ik+1
n =

22kIkn − Ikn/2
22k − 1

and

I − Ik+1
n =

dk+1

n2(k+1)
+ · · · .

Error analysis One can show that

I − Ik+1
n =

dk+1

n2(k+1)
+ · · ·

with

dk+1 = Ak+1(b− a)h2k+2f (2k+2), h =
b− a
2kn

,

where Ak+1 is independent of f and n. In particular,

|I − I`2` | = O

(
1

2`

)2(`+1)

,

which gives the spectral accuracy, or the Newton-Cotes method. However, high order method is not
so stable, as we have seen in Runge’s example that high order interpolation polynomial on evenly
spaced grid points produces large error on the boundary in general.

Euler-MacLausin expansion

Theorem 4.1. Suppose f ∈ C2n[0, 1]. Then

∫ b

a
f(x) dx =

1

2
(f(0) + f(1))−

n−1∑
k=0

b2k
(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
+R

where

R = − b2n
(2n)!

f (2n)(ξ) for some ξ ∈ (0, 1),

b2k are Bernoulli constants.

128 CHAPTER 4. NUMERICAL INTEGRATION

4.3 Gaussian Quadrature Methods

Goal: Letw(x) > 0 be a positive weighted function on (a, b). The goal is to numerically compute

I(f) =

∫ b

a
w(x)f(x) dx

by

In(f) =
n∑
i=1

wi,nf(xi,n),

where the 2n parameters {wi,n, xi,n} are chosen so that

En(p) := I(p)− In(p) = 0

for all polynomials p ∈ Π2n−1, the space of all polynomials with degree ≤ 2n − 1. Unlike the
Newton-Cotes method, where the nodal points {x1, ..., xn} are evenly spaced, we give freedom to
choose these nodal points in order to increase the accuracy of numerical integration.

Difficulty Let us take [−1, 1] with weight w = 1 as an example to illustrate difficulty. We choose
p(x) = xi, then En(xi) = 0 for i = 0, ..., 2n− 1 gives

n∑
j=1

wj,nx
i
j,n =

∫ 1

−1
xi dx =

{
0 i = 1, 3, ..., 2n− 1

2
i+1 i = 0, 2, ..., 2n− 2.

There are 2n equations for the 2n unknowns {wj,n, xj,n|i = 1, ..., n}. However, this nonlinear
equation is difficult to solve.

Orthogonal polynomials The main idea is to use an important property of orthogonal polynomial.
Let us brief describe the theory of orthogonal polynomial, then explain how it is used to design these
Gaussian-Quadrature points.

Let us recall w(x) > 0 on (a, b) be a positive weighted function. We introduce the space
L2
w(a, b) with the inner product

〈f, g〉 :=

∫ b

a
f(x)g(x)w(x) dx.

Proposition 10. There exist sequence of orthogonal polynomials φn such that (i) deg φn = n, (ii)
〈φn, φm〉 = δnm.

Proof. These φn can be obtained from Gram-Schmidt process on {1, x, x2, · · · , xn, · · · } induc-
tively in n with φ0 ≡ 1.

Examples:

4.3. GAUSSIAN QUADRATURE METHODS 129

• (−1, 1) with w(x) ≡ 1: Legendre polynomial

Pn(x) =
(−1)n

2nn!

dn

dxn
[
(1− x2)n

]
, n ≥ 1.

P0 ≡ 1, φn =

√
2n+ 1

2
Pn.

• (−1, 1) with w(x) = 1/
√

1− x2: Chebeshev polynomials

Tn(x) = cos(n cos−1 x).

• (0,∞) with w(x) = e−x: Laguerre polynomials

Ln(x) =
1

n!
ex

dn

dxn
[
xne−x

]
.

• (−∞,∞) with w(x) = e−x
2/2: Hermite polynomials

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2.

Theorem 4.2. In L2
w(a, b), the orthogonal polynomial φn has exactly n distinct real roots on (a, b).

Proof. 1. Suppose x1, ..., xm ∈ (a, b) are distinct roots such that φn changes sign at xi. That is,

φn(x) =
m∏
j=1

(x− xj)rjh(x),

where rj ≥ 1 are odd and h(x) does not change sign in (a, b).

2. Let B(x) =
∏m
j=1(x − xj). If m < n, then deg B < n. Thus, by the orthogonal property:

φn ⊥ Πn−1, we get ∫ b

a
φn(x)B(x)w(x) dx = 0.

3. On the other hand,

φnB =

m∏
j=1

(x− xj)rj+1h(x)

does not change sign on (a, b) and w(x) > 0 on (a, b). Hence∫ b

a
w(x)φn(x)B(x) dx 6= 0.

This is a contradiction. Thus, we must have m = n.

4. Because deg φn = n, we obtain that all rj = 1, j = 1, ..., n. This means that φn has n
distinct simple roots.

130 CHAPTER 4. NUMERICAL INTEGRATION

Gaussian quadrature method

• Choose x1, ..., xn to be the roots of φn, where φn is the orthogonal polynomial in L2
w(a, b)

with degree n;

• The Gaussian-quadrature formula is

In(f) =

n∑
j=1

wjf(xj),

where

wj =

∫ b

a
w(x)`j(x) dx, `j(x) =

∏
i 6=j(x− xi)∏
i 6=j(xj − xi)

.

The explicit formulae of xj , wj can be found in Wiki (see Gaussian quadrature, Wiki).
We will introduce two derivations of the Gaussian quadrature method.

Derivation I Let us write

ψn(x) =

n∏
j=1

(x− xj) = cnφn.

Theorem 4.3. Letw(x) > 0 be a weight in (a, b) and let φn be the orthogonal polynomial of degree
n. Then En(f) := I(p)− In(p) = 0 for all p ∈ Π2n−1.

Proof. 1. For any p ∈ Π2n−1, we can divide it by ψn and get

p(x) = ψn(x)q(x) + r(x),

where deg q ≤ n−1, deg r < n. From ψn(xi) = 0, we obtain p(xi) = r(xi) for i = 1, ..., n.

2. Since ψn ⊥ Πn−1 and deg q < n, we get

I(p) =

∫ b

a
p(x)w(x) dx =

∫ b

a
(ψn(x)q(x) + r(x))w(x) dx =

∫ b

a
r(x)w(x) dx

=

∫ b

a

n∑
i=1

r(xi)`i(x)w(x) dx =
n∑
i=1

r(xi)wi =
n∑
i=1

p(xi)wi = In(p).

Lemma 4.1. The weights wi > 0 for all i = 1, ..., n. Moreover,
∑

iwi =
∫ b
a w(x) dx.

Proof. 1. Since `2i ∈ Π2n−1, we get En(`2i) = 0. That is

0 <

∫ b

a
`2i (x)w(x) dx =

n∑
j=1

wj`
2
i (xj) = wi.

4.3. GAUSSIAN QUADRATURE METHODS 131

2. Since En(1) = 0, we get ∫ b

a
1 · w(x) dx =

n∑
j=1

wj · 1.

Theorem 4.4. Let w(x) > 0 in (a, b). Suppose {x1, ..., xn} and {w1, ..., wn} are chosen such that
En(p) = 0 for all p ∈ Π2n−1. Then for any f ∈ Ck+α(a, b),

|En(f)| ≤ 2

(∫ b

a
w(x) dx

)
ρ2n−1(f)

where
ρ2n−1(f) := d∞(f,Π2n−1) ≤ Ck+α

(2n− 1)k+α
‖f‖Ck+α .

Proof. 1. By Jackson’s theorem, there exists a q∗ ∈ Π2n−1 such that

d∞(f, q∗) = d∞(f,Π2n−1) = ρ2n−1(f).

2. Since q∗ ∈ Π2n−1, we have En(q∗) = 0. Using this,

En(f) = En(f)− En(q∗) =

∫ b

a
(f − q∗)w(x) dx−

n∑
I=1

wi(f(xi)− q∗(xi))

≤ ‖w‖1‖f − q∗‖∞ +
∑
i

|wi|‖f − q∗‖∞ = 2‖w‖1ρ2n−1(f).

3. From Jackson’s theorem
ρn(f) ≤ Ck+α

nk+α
‖f‖Ck+α ,

where C is independent of f and n.

Derivation II The idea behind is to use Hermite interpolation polynomials. Given f(xj), f ′(xj),
j = 1, ..., n, the Hermite interpolation polynomial Hn(x) is of degree 2n− 1 with

Hn(xj) = f(xj), H ′n(xj) = f ′(xj), j = 1, ..., n.

Indeed,

Hn(x) =

n∑
j=1

(
fjhj(x) + f ′j h̃j(x)

)
,

where

hj(xi) = δij , h′j(xi) = 0 (4.1)

h̃′j(xi) = δij , h̃j(xi) = 0. (4.2)

132 CHAPTER 4. NUMERICAL INTEGRATION

with
deg hj = deg h̃j = 2n− 1.

Such functions hj and h̃j can be constructed easily.

Lemma 4.2. Given x1, ..., xn. The polynomials hj and h̃j , j = 1, ..., n of degree 2n− 1 satisfying
(4.1), (4.2) are given by

hj(x) =
[
1− 2`′j(xj)(x− xj)

]
`2j (x),

h̃j(x) = (x− xj)`2j (x).

Proof. 1. The polynomial hj should contain a factor `2j because xi, i 6= j are its double roots.
The only condition it does not satisfy is (`2j)

′(xj) = 2`′j(xj) 6= 0. We consider

hj(x) =
(
1− 2`′j(xj)(x− xj)

)
`2j (x).

Then deg h = 2n− 1, h′j(xi) = 0 for i = 1, ..., n and hj(xi) = δij .

2. Similarly, xi, with i 6= j are double roots of h̃j . Thus, h̃j contains a factor `2j (x). Since xj is
also a root of h̃j , the term (x − xj) is also a factor of h̃j(x). The polynomial (x − xj)`2j (x)

has the same roots and same degree of those of h̃j . Thus h̃j(x) = c(x− xj)`2j (x). Since the
derivative of (x− xj)`2j (x) at xj is 1, we get that c = 1.

Now, let us go back to derive Gaussian quadrature formula via the Hermite interpolation func-
tion. With the Hermite inyterpolation at {x1, ..., xn}, we define

In(f) :=

∫ b

a
Hn(x) dx =

∫ b

a

n∑
j=1

(
fjhj(x) + f ′j h̃j(x)

)
w(x) dx

=

∫ b

a

n∑
j=1

fjwj , wj =

∫ b

a
hj(x)w(x) dx.

The last line follows from the following lemma.

Lemma 4.3. If x1, ..., xn are the roots of the orthogonal polynomial φn in Πn, then

wj =

∫ b

a
hj(x)w(x) dx =

∫ b

a
`j(x)w(x) dx =

∫ b

a
`2j (x)w(x) dx, j = 1, ..., n, (4.3)

∫ b

a
h̃j(x)w(x) dx = 0, j = 1, ..., n. (4.4)

4.3. GAUSSIAN QUADRATURE METHODS 133

Proof. 1. From ψn ⊥ Πn−1, we have∫ b

a
hj(x)w(x) dx =

∫ b

a

(
1− 2`′j(xj)(x− xj)

)
`2j (x)w(x) dx

=

∫ b

a

(
`2j (x)− cψn(x)`j(x)

)
w(x) dx

=

∫ b

a
`2j (x)w(x) dx.

2. Since `2i ∈ Π2n−1, we get En(`2i) = 0. That is∫ b

a
`2i (x)w(x) dx =

n∑
j=1

wj`
2
i (xj) = wi =

∫ b

a
`i(x) dx.

3. We rewrite the second integral as

∫ b

a
w(x)h̃j(x) dx =

∫ b

a
w(x)(x− xj)

(∏
i 6=j(x− xi)∏
i 6=j(xj − xi)

)2

= cj

∫ b

a
w(x)φn(x)`j(x) dx = 0, for j = 1, ..., n,

because φn ⊥ Πn−1.

Theorem 4.5. For f ∈ C2n+1[a, b], we have

En(f) := I(f)− In(f) =
f (2n+1)(η)

(2n+ 1)!

∫ b

a
[ψn(x)]2w(x) dx,

for some η ∈ [a, b].

Proof. This follows directly from

f −Hn = [ψn(x)]2 f [x1, x1, ..., xn, xn, x]

and

I(f)− In(f) =

∫ b

a
[ψn(x)]2 f [x1, x1, ..., xn, xn, x]w(x) dx

=
f (2n+1)(η)

(2n+ 1)!

∫ b

a
[ψn(x)]2w(x) dx.

134 CHAPTER 4. NUMERICAL INTEGRATION

As comparing with Newton-Cotes:

f − pn = ψn(x)f [x1, ..., xn, x],

I(f)−
∫ b

a
pn(x) dx =

∫ b

a
[ψn(x)] f [x1, x2, ..., xn, x] dx

≤ ‖f
(n+1)‖∞

(n+ 1)!

∫ b

a
|ψn(x)| dx.

the error of Gaussian quadrature method is much smaller than the error of Newton-Cotes method.

Chapter 5

Numerical Ordinary Differential
Equations

5.1 Motivations

Example 1. Van der Pol oscillator In electric circuit theory, van der Pol proposed a model for
electric circuit with vacuum tube, where I = φ(V) is a cubic function. Consider a circuit system
with the resistor replaced by a device which obeys a nonlinear Ohm’s law: the potential drop across
this device is

∆V = α

(
I3

3
− I
)
, α > 0.

Such a device does appear in vacuum tubes or semiconductors. The corresponding L-C-R circuit
equation becomes

L
dI

dt
+
Q

C
+ α

(
I3

3
− I
)

= V (t). (5.1)

Differentiate in t, we obtain the Van der Pole equation:

L
d2I

dt2
+ α(I2 − 1)

dI

dt
+
I

C
= f(t). (5.2)

where f(t) = V̇ (t) is the applied electric field. The system is dissipative (damping) when I2 > 1
and self current increasing when I2 < 1.

Let x be the current and let us consider a normalized system:

ẍ+ ε(x2 − 1)ẋ+ x = 0.

Through a Liénard transform:

y = x− x3

3
− ẋ

ε

135

136 CHAPTER 5. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

the van der Pol equation can be expressed as

ẋ = ε(x− x3

3
− y)

ẏ =
x

ε

We can draw the nullclines: f = 0 and g = 0. From the direction field of (f, g), we see that the
field points inwards for large (x, y) and outward for (x, y) near (0, 0). This means that there will be
a limiting circle in between.

As ε >> 1, we can observe that the time scale on x variable is fast whereas it is slow on the
y-variable. That is,

ẋ(t) = O(ε), ẏ(t) = O(1/ε).

On the x-y plane, consider the curve

y = x− x3

3
.

The solution moves fast to the curve y = x − x3

3 . Once it is closed to this curve, it move slowly
along it until it moves to the critical points (±1,±2

3). At which it moves away from the curve fast
and move to the other side of the curve. The solution then periodically moves in this way.

Example 2. The orbit of a star in a galaxy. 1 Galaxy is a rotating object consisting of gases and
stars. The potential induced by stars and gases of a galaxy drives the motion of a galaxy, but is an
unknown function. What we can observe is the motion of stars. In galaxy, the rotation curve of stars
(i.e. the speed of star at radius r) is the observable object. We want to model the potential such that
the Newton’s law of motion under this potential gives us the observed motion. Based of Gauss law,
the potential Φ and the density distribution of stars ρ are related by

4Φ = ρ.

Therefore, we model either the potential, or the mass distribution. Then we study the motion of a star
in this potential and compare it with our observation. It is natural to consider a disk in cylindrical
coordinate system r = (R,φ, z). Suppose the potential is axisymmetric, that is, the potential is
Φ(R, z), independent of φ. There are many models. For examples,

• Plummer model

ΦP (r) = − GM√
r2 + b2

.

• Kuzmin model:

ΦK(R, z) = − GM√
R2 + (a+ |z|)2

1Ref. James Binney and Scott Tremaine, Galactic Dynamics, Princeton University Press

5.1. MOTIVATIONS 137

• Toomre model:

ΦM (R, z) = − GM√
R2 + (a+

√
z2 + b2)2

.

• Logarithmic potential:

ΦL(R, z) =
1

2
v2

0 ln

(
R2 +

z2

q2

)
.

The governing equation of motion is

d2r

dt2
= −∇Φ(R, z).

We may express r = RêR + φφ̂+ zêz and ∇Φ = ΦRêR + Φz êz . Using r = (R cosφ,R sinφ, z),
we obtain

r̈ = (R̈−Rφ̇2)êR +
1

R

d

dt
(R2φ̇)êφ + z̈êz.

Then the equation in each component is

R̈−Rφ̇2 = −ΦR,

d

dt

(
R2φ̇

)
= 0,

z̈ = −Φz.

The force Rφ̇2 is the centrifugal force. The second equation is the conservation of angular momen-
tum. Let Lz = R2φ̇. The centrifugal force is L2

z/R
3. Thus, we may write the equation as{

R̈ = −
∂Φeff
∂R

z̈ = −
∂Φeff
∂z ,

where

Φeff = Φ(R, z) +
L2
z

2R2

The equilibrium occurs at (Rg, 0) where ∇Φeff(Rg, 0) = 0. This equilibrium is a circular motion
with angular speed

Ω =
Lz
R2
g

=

√
1

Rg

∂V

∂R
|Rg .

The goal is to solve this equation of motion under various potentials.

138 CHAPTER 5. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Example 3. Michaelis-Menten Enzyme Kinetics. A chemical substrate S is converted to a product
P through an enzyme catalysis E: The reaction equation are

d

dt
[E] = −k1[E][S] + k−1[ES] + k2[ES]

d

dt
[S] = −k1[E][S] + k−1[ES]

d

dt
[ES] = k1[E][S]− k−1[ES]− k2[ES]

d

dt
[P] = k2[ES]

5.2 Basic Numerical Methods for Ordinary Differential Equations

The basic assumption to design numerical algorithm for ordinary differential equations is the smooth-
ness of the solutions, which is in general valid provided the coefficients are also smooth. Basic
designning techniques include numerical interpolation, numerical integration, and finite difference
approximation.

Euler method

Euler method is the simplest numerical integrator for ODEs. The ODE

y′ = f(t, y) (5.3)

is discretized by

yn+1 − yn

k
= f(tn, yn). (5.4)

Here, k is time step size of the discretization. This method is called the forward Euler method. It
simply replace dy/dt(tn) by the forward finite difference (yn+1 − yn)/k. We would like to know
the growth of the true error en, defined by en := yn−y(tn). To estimate this error, we need to derive
an equation for en. To do so, suppose y(·) is a true solution. We plug it into the finite difference
equation. It will not satisfy the difference equation. The remainder term is called the truncation
error. More precisely,

y(tn+1)− y(tn)

k
− f(tn, y(tn)) = τn (5.5)

where

τn :=
y(tn+1)− y(tn)

k
− y′(tn) = O(k).

Subtracting (5.4) from (5.5), we get

en+1 = en + k(f(tn, y(tn))− f(tn, yn)) + kτn

5.2. BASIC NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS 139

Taking the absolute values, we get

|en+1| ≤ |en|+ kλ|en|+ k|τn|

where

|f(t, x)− f(t, y)| ≤ λ|x− y|.

This is the inequality for error en.

Theorem 5.1. Assume f ∈ C1 and suppose the solution y′ = f(t, y) with y(0) = y0 exists on
[0, T]. Then the Euler method converges at any t ∈ [0, T]. In fact, the true error en has the
following estimate:

|en| ≤ eλt

λ
O(k)→ 0, as n→∞. (5.6)

Here, λ = max |∂f/∂y| and nk = t.

Proof. The finite difference inequality has a fundamental solution Gn = (1 + λk)n, which is posi-
tive. Multiplying above equation by (1 + λk)−n−1, we obtain

|em+1|G−m−1 ≤ |em|G−m + kG−m−1|τm|.

Summing in m from m = 0 to n− 1, we get

|en| ≤
n−1∑
m=0

Gn−m−1k|τm| ≤
n−1∑
m=0

GmO(k2)

=
Gn − 1

G− 1
O(k2) ≤ Gn

λ
O(k) ≤ eλt

λ
O(k),

where t = nk and we have used (1 + λk)n ≤ eλt.

Remarks.

1. The theorem states that the numerical method converges in [0, T] as long as the solutions of
the ODE exists.

2. The error is O(k) if the solution is in C2[0, T].

3. The proof above relies on the existence and smoothness of the solution. However, one can
also use this approach to prove the local existence theorem by showning the approximate
solutions generated by the Euler method form a Cauchy sequence.

140 CHAPTER 5. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Backward Euler method

In many applications, the system is relaxed to a stable solution in a very short period of time. For
instance, consider

y′ =
ȳ − y
τ

.

The corresponding solution y(t) → ȳ as t ∼ O(τ). The Lipschitz constant is λ = 1/τ . If
we use forward Euler method, then we should require a very small k = t/n in order to have
Gn = (1 + t/(nτ))n remains bounded for any n. This leads to an inefficient computation. In
general, forward Euler method becomes inefficient (require small k) when

max

∣∣∣∣∂f(t, y)

∂y

∣∣∣∣ >> 1.

However, in the case of relaxation system where the Jacobian ∂f/∂y is negative definite and large
in magnitude, the backward Euler method is recommended:

yn+1 = yn + kf(tn+1, yn+1). (5.7)

The true solution y(·) satisfies

y(tn+1)− y(tn)

k
= f(tn+1, y(tn+1)) + τn

where

τn =
y(tn+1)− y(tn)

k
− y′(tn+1) = O(k).

The true error en := y(tn)− yn satisfies

en+1 = en + k
(
f(tn+1, y(tn+1))− f(tn+1, yn+1)

)
+ τn

Thus,
|en+1| ≤ |en|+ λk|en+1|+O(k2).

The corresponding fundamental solution is Gn := (1−λk)−n. Using the fundamental solution, we
multiply both sides (with index m) by G−m and get

G−m−1|em+1| ≤ kG−m|em|+ kG−mτm.

Summing m from 0 to n− 1, we obtain

|en| ≤
n−1∑
m=0

Gn−m−1k|τm| ≤
n−1∑
m=0

GmO(k2)

=
1−Gn − 1

1−G
O(k2) ≤ 1

1−G
O(k2) ≤ 1

λ
O(k)

where t = nk. Here, we have assumed λk < 1.

5.3. RUNGE-KUTTA METHODS 141

Leap frog method

We integrate y′ = f(t, y) from tn−1 to tn+1:

y(tn+1)− y(tn−1) =

∫ tn+1

tn−1

f(τ, y(τ)) dτ.

We apply the midpoint rule for numerical integration, we then get

y(tn+1)− y(tn−1) = 2kf(tn, y(tn)) +O(k3).

The midpoint method (or called leapfrog method) is

yn+1 − yn−1 = 2kf(tn, yn). (5.8)

This is a two-step explicit method.

Homeworks.

1. Prove the convergence theorem for the backward Euler method.
Hint: show that en+1 ≤ en + (1 + kλ)en+1 + kτn, where λ is the Lipschitz constant of f .

2. Prove the convergence theorem for the leap-frog method.
Hint: consider the system yn1 = yn−1 and yn2 = yn.

5.3 Runge-Kutta methods

The Runge-Kutta method (RK) is a strategy to integrate
∫ tn+1

tn f dτ by some quadrature method.

RK2 For instance, a second order RK, denoted by RK2, is based on the trapezoidal rule of nu-
merical integration. First, we integrate the ODE y′ = f(t, y) to get

y(tn+1)− yn =

∫ tn+1

tn
f(τ, y(τ)) dτ.

Next, this integration is approximated by

1/2(f(tn, yn) + f(tn, yn+1))k.

The latter term involves yn+1. An explicit Runge-Kutta method approximate yn+1 by yn+kf(tn, yn).
Thus, RK2 reads

ξ1 = f(tn, yn)

yn+1 = yn +
k

2
(f(tn, yn) + f(tn+1, yn + kξ1)).

142 CHAPTER 5. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Another kind of RK2 is based on the midpoint rule of integration. It reads

ξ1 = f(tn, yn)

yn+1 = yn + kf(tn+1/2, yn +
k

2
ξ1)

The truncation error of RK2 is

y(tn+1)− y(tn) = yn+1 − y(tn) +O(k3).

RK4 The 4th order Runge-Kutta method has the form

yn+1 = yn +
k

6
(ξ1 + 2ξ2 + 2ξ3 + ξ4)

ξ1 = f(tn, yn)

ξ2 = f(tn +
1

2
k, yn +

k

2
ξ1)

ξ3 = f(tn +
1

2
k, yn +

k

2
ξ2)

ξ4 = f(tn + k, yn + kξ3)

The truncation error of RK4 is

y(tn+1)− y(tn) = yn+1 − y(tn) +O(k5).

General explicit Runge-Kutta methods The method takes the following general form

yn+1 = yn + k

s∑
i=1

biξi,

where

ξ1 = f(tn, yn),

ξ2 = f(tn + c2k, y
n + ka21ξ1),

ξ3 = f(tn + c3k, y
n + ka31ξ1 + ka32ξ2),

...

ξs = f(tn + csk, y
n + k(as1ξ1 + · · ·+ as,s−1ξs−1)).

We need to specify s (the number of stages), the coefficients aij(1 ≤ j < i ≤ s), bi(i = 1, ..., s)
and ci(i = 2, ..., s). We list them in the following Butcher table.
There are s(s−1)/2+s+(s−1) unknowns to be determined for a specific scheme. We require the

truncation error to be O(kp+1). To find these coefficients, we need to expand the truncation error
formula

y(tn+1)− yn = yn+1 − yn +O(kp+1)

about (tn, yn) in terms of derivatives of y(·) at tn. Then we can get linear equations for the coeffi-
cients.

5.3. RUNGE-KUTTA METHODS 143

0
c2 a21

c3 a31 a32
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

Convergence proof, an example Let us see the proof of the convergence of the two stage Runge-
Kutta method. The scheme can be expressed as

yn+1 = yn + kΨ(yn, tn, k) (5.9)

where
Ψ(yn, tn, k) := f(y +

1

2
kf(y)). (5.10)

Suppose y(·) is a true solution, the corresponding truncation error

τn :=
y(tn+1)− y(tn)

k
−Ψ(y(tn), tn, k) = O(k2)

Thus, the true solution satisfies

y(tn+1)− y(tn) = kΨ(y(tn), tn, k) + kτn

The true error en := yn − y(tn) satisfies

en+1 = en + k(Ψ(yn, tn, k)−Ψ(y(tn), tn, k))− kτn.

This implies
|en+1| ≤ |en|+ kλ′|en|+ k|τn|,

where λ′ is the Lipschitz constant of Ψ(y, t, k) with respect to y. Hence, we get

|en| ≤ (1 + kλ′)n|e0|+ k

n−1∑
m=0

(1 + kλ′)n−1−m|τm|

≤ eλ
′t|e0|+ eλ

′t

λ′
max
m
|τm|

Reference:

• Lloyd N. Trefethen, Finite Difference and Sprectral Methods for Ordinary and Partial Differ-
ential Equations,

• Randy LeVeque,

• You may also google Runge-Kutta method to get more references.

144 CHAPTER 5. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

5.4 Multistep methods

The idea of multi-step method is to derive a relation between, for instance, yn+1, yn, yn−1 and
y′n and y′n−1 so that the corresponding truncation is small. The simplest multistep method is the
midpoint method. Suppose yn and yn−1 is given. The new state yn+1 is defined by

yn+1 − yn−1 = 2ky′
n

= 2kf(tn, yn)

The truncation error is

τn :=
1

k

(
y(tn+1)− y(tn−1)− 2ky′(tn)

)
= O(k2).

Thus, the method is second order.
We can also design a method which involves yn+1, yn, yn−1 and y′n, y′n−1. For instance,

yn+1 = yn +
k

2
(3f(yn)− f(yn−1))

The truncation error

τn :=
1

k

(
yn+1 − yn +

k

2
(3f(yn)− f(yn−1))

)
= O(k2).

A general r-step multistep method can be written in the form

r∑
m=0

amy
n+1−r+m = k

r∑
m=0

bmy
′n+1−r+m

= k

r∑
m=0

bmf
n+1−r+m. (5.11)

We will always assume ar 6= 0. When br = 0 the method is explicit; otherwise it is implicit. For a
smooth solution of (5.3), we define the truncation error τn to be

τn :=
1

k

(
r∑

m=0

amy(tn+1−r+m)− k
r∑

m=0

bmy
′(tn+1−r+m)

)

Definition 5.1. A multispep method is called of order p if τn = O(kp) uniformly in n. It is called
consistent if τn(k)→ 0 uniformly in n as k → 0.

Remark. When f is smooth, the solution of ODE y′ = f(y) is also smooth. Then the truncation is
a smooth function of k. In this case, τ(k) → 0 is equivalent to τ(k) = O(k) as k → 0. Let us set
am = 0, bm = 0 for m > r for notational convinience. Taking Taylor expansion about tn+1−r, we

5.4. MULTISTEP METHODS 145

get

kτn =

r∑
m=0

am

∞∑
j=0

1

j!
y(j)(mk)j − k

r∑
m=0

bm

∞∑
j=1

1

(j − 1)!
y(j)(mk)j−1

=

(
r∑

m=0

am

)
y(0) +

∞∑
j=1

1

j!

r∑
m=0

(
mjam − jmj−1bm

)
kjy(j)

=

(
r∑

m=0

am

)
y(0) +

∞∑
j=1

1

j!

r∑
m=0

mj−1 (mam − jbm) kjy(j)

=
∞∑
j=0

1

j!

∑
m=0

mj−1 (mam − jbm) kjy(j)

=
∞∑
j=0

Cjy
(j).

Here, the derivatives of y(·) are evaluated at tn+1−r. We list few equations for the coefficients a and
b:

C0 = a0 + · · ·+ ar

C1 = (a1 + 2a2 + · · · rar)− (b0 + · · ·+ br)

C2 =
1

2

(
(a1 + 22a2 + · · · r2ar)− 2(b1 + · · ·+ rbr)

)
...

Cp =

r∑
m=0

mp

p!
am −

r∑
m=1

mp−1

(p− 1)!
bm

To obtain order p scheme, we need to require

Cj = 0, for j = 0, ..., p.

There are 2(r+ 1) unknowns for the coefficients {am}rm=0, {bm}rm=0. In principle, we can choose
p = 2r + 1 to have the same number of equations. Unfortunately, there is some limitation from
stability requirement. The order of accuracy p is required to satisfy

p ≤


r + 2 if r is even,
r + 1 if r is odd,
r if it is an explicit scheme.

This is called the first Dahlquist stability barrier. We shall not discuss here. See Trefethen. Let us
see some concrete examples below.

146 CHAPTER 5. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Explicit Adams-Bashforth schemes When br = 0, the method is explicit. Here are some exam-
ples of the explicit schemes called Adams-Bashforth schemes, where ar = 1:

• 1-step: yn+1 = yn + kf(yn)

• 2-step: yn+1 = yn + k
2 (3f(yn)− f(yn−1))

• 3 step: yn+1 = yn + k
12(23f(yn)− 16f(yn−1) + 5f(yn−2))

The step size is r and the order is p = r.

Implicit Adams-Moulton schemes Another examples are the Adams-Moulton schemes, where
br 6= 0 and and the step size r = p

• 1-step: yn+1 = yn + k
2 (f(yn+1) + f(yn))

• 2-step: yn+1 = yn + k
12(5f(yn+1) + 8f(yn)− f(yn−1))

• 3 step: yn+1 = yn + k
24(9f(yn+1) + 19f(yn)− 5f(yn−1) + f(yn−2))

Sometimes, we can use an explicit scheme to guess yn+1 as a predictor in an implicit scheme.
Such a method is called a predictor-corrector method. A standard one is the following Adams-
Bashforth-Moulton scheme: Its predictor part is the Adams-Bashforth scheme:

ŷn+1 = yn +
k

12
(23f(yn)− 16f(yn−1) + 5f(yn−2))

The corrector is the Adams-Moulton scheme:

yn+1 = yn +
k

24
(9f(ŷn+1) + 19f(yn)− 5f(yn−1) + f(yn−2))

The predictor-corrector is still an explicit scheme. However, for stiff problem, we should use im-
plicit scheme instead.

Formal algebra Let us introduce the shift operator Zyn = yn+1, or in continuous sense, Zy(t) =
y(t+ k). Let D be the differential operator. The Taylor expansion

y(t+ k) = y(t) + ky′(t) +
1

2!
k2D2y(t) + · · ·

can be expressed formally as

Zy =

(
1 + (kD) +

1

2!
(kD)2 + · · ·

)
y = ekDy.

The multistep method can be expressed as

Ly := (a(Z)− kb(Z)D) y =
(
a(ekD)− kDb(ekD)

)
y = (C0 + C1(kD) + · · ·) y.

5.4. MULTISTEP METHODS 147

Here,

a(Z) =
r∑

m=0

amZ
m, b(Z) =

r∑
m=0

bmZ
m

are the generating functions of {am} and {bm}. A multistep method is of order p means that(
a(ekD)− kDb(kD)

)
y = O((kD)p+1)y.

We may abbreviate kD by a symbol κ. The above formula is equivalent to

a(eκ)

b(eκ)
= κ+O(κp+1) as κ→ 0. (5.12)

We have the following theorem

Theorem 5.2. A multistep method with b(1) 6= 0 is of order p if and only if

a(z)

b(z)
= log z +O((z − 1)p+1) as z → 1.

It is consistent if and only if

a(1) = 0 and a′(1) = b(1).

Proof. The first formula can be obtained from (5.12) by writing eκ = z. For the second formula,
we expand log z about 1. We can get

a(z) = b(z)

(
(z − 1)− (z − 1)2

2
+

(z − 1)3

3
+ · · ·

)
+O((z − 1)p+1).

We also expand a(z) and b(z) about z = 1, we can get

a(1) + (z − 1)a′(1) = b(1)(z − 1) +O((z − 1)2).

Thus, the scheme is consistent if and only if a(1) = 0 and a′(1) = b(1).

Homeworks.

1. Consider the linear ODE y′ = λy, derive the finite difference equation using multistep method
involving yn+1, yn, yn−1 and y′n and y′n−1 for this linear ODE.

2. Solve the linear finite difference equations derived from previous exercise.

148 CHAPTER 5. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

5.5 Linear difference equation

Second-order linear difference equation. In the linear case y′ = λy, the above difference
scheme results in a linear difference equation. Let us consider general second order linear difference
equation with constant coefficients:

ayn+1 + byn + cyn−1 = 0, (5.13)

where a 6= 0. To find its general solutions, we try the ansatz yn = ρn for some number ρ. Here, the
n in yn is an index, whereas the n in ρn is a power. Plug this ansatz into the equation, we get

aρn+1 + bρn + cρn−1 = 0.

This leads to
aρ2 + bρ+ c = 0.

There are two solutions ρ1 and ρ2. In case ρ1 6= ρ2, these two solutions are independent. Since the
equation is linear, any linear combination of these two solutions is again a solution. Moreover, the
general solution can only depend on two free parameters, namely, once y0 and y−1 are known, then
{yn}n∈Z is uniquely determined. Thus, the general solution is

yn = C1ρ
n
1 + C2ρ

n
2 ,

where C1, C2 are constants. In case of ρ1 = ρ2, then we can use the two solutions ρn2 and ρn1 with
ρ2 6= ρ1, but very closed, to produce another nontrivial solution:

lim
ρ2→ρ1

ρn2 − ρn1
ρ2 − ρ1

This yields the second solution is nρn−1
1 . Thus, the general solution is

C1ρ
n
1 + C2nρ

n−1
1 .

Linear finite difference equation of order r . We consider general linear finite difference equa-
tion of order r:

ary
n+r + · · ·+ a0y

n = 0, (5.14)

where ar 6= 0. Since yn+r can be solved in terms of yn+r−1, ..., yn for all n, this equation together
with initial data y0, ..., y−r+1 has a unique solution. The solution space is r dimensions.
To find fundamental solutions, we try the ansatz

yn = ρn

for some number ρ. Plug this ansatz into equation, we get

arρ
n+r + · · ·+ a0ρ

n = 0,

for all n. This implies
a(ρ) := arρ

r + · · ·+ a0 = 0. (5.15)

The polynomial a(ρ) is called the characteristic polynomial of (5.14) and its roots ρ1, ..., ρr are
called the characteristic roots.

5.5. LINEAR DIFFERENCE EQUATION 149

• Simple roots (i.e. ρi 6= ρj , for all i 6= j): The fundamental solutions are ρni , i = 1, ..., r.

• Multiple roots: if ρi is a multiple root with multiplicity mi, then the corresponding indepen-
dent solutions

ρni , nρ
n−1
i , Cn2 ρ

n−2
i ..., Cnmi−1ρ

n−mi+1
i

Here, Cnk := n!/(k!(n− k)!). The solution Cn2 ρ
n−2
i can be derived from differentiation d

dρC
n
1 ρ

n−1

at ρi.
In the case of simple roots, we can express general solution as

yn = C1ρ
n
1 + · · ·+ Crρ

n
r ,

where the constants C1, ..., Cr are determined by

yi = C1ρ
i
1 + · · ·+ Crρ

i
r, i = 0, ...,−r + 1.

System of linear difference equation. The above rth order linear difference equation is equiva-
lent to a first order linear difference system:

A0y
n+1 = Ayn (5.16)

where

yn =

 yn1
...
ynr

 =

 yn−r+1

...
yn



A0 =

(
I(r−1)×(r−1) 0

0 ar

)
, A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −ar−1

 .

We may divide (5.16) by A0 and get
yn+1 = Gyn.

We call G the fundamental matrix of (5.16). For this homogeneous equation, the solution is

yn = Gny0

Next, we compute Gn in terms of eigenvalues of G.
In the case that all eigenvalues ρi, i = 1, ..., r of G are distinct, then G can be expressed as

G = TDT−1, D = diag (ρ1, · · · , ρr),

and the column vectors of T are the corresponding eigenvectors.

150 CHAPTER 5. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

When the eigenvalues of G have multiple roots, we can normalize it into Jordan blocks:

G = TJT−1, J = diag (J1, · · · ,Js),

where the Jordan block Ji corresponds to eigenvalue ρi with multiplicity mi:

Ji =


ρi 1 0 · · · 0
0 ρi 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · ρi


mi×mi

.

and
∑s

i=1mi = r. Indeed, this form also covers the case of distinct eigenvalues.
In the stability analysis below, we are concerned with whether Gn is bounnded. It is easy to see

that

Gn = TJnT−1,Jn = diag (Jn1 , · · · ,Jns)

Jni =


ρni nρn−1

i Cn2 ρ
n−2 · · · Cnmi−1ρ

n−mi+1
i

0 ρni nρn−1
i · · · Cnmi−2ρ

n−mi+2
i

...
...

...
. . .

...
0 0 0 · · · nρn−1

i

0 0 0 · · · ρni


mi×mi

.

where Cnk := n!
k!(n−k)! .

Definition 5.2. The fundamental matrix G is called stable if Gn remains bounded under certain
norm ‖ · ‖ for all n.

Theorem 5.3. The fundamental matrix G is stable if and only if its eigenvalues satisfy the following
condition:

either |ρ| = 1 and ρ is a simple root,
or |ρ| < 1

(5.17)

Proof. It is easy to see that the nth power of a Jordan form Jni is bounded if its eigenvalue |ρi| < 1
or if ρi| = 1 but simple. On the other hand, if |ρi| > 1 then Jni is unbounded; or if ρi| = 1 but not
simple, then the term nρn−1

i in Jni will be unbounded.

Nonhomogeneous linear finite difference system In general, we consider the nonhomogeneous
linear difference system:

yn+1 = Gyn + fn (5.18)

5.6. STABILITY ANALYSIS 151

with initial data y0. Its solution can be expressed as

yn = Gyn−1 + fn−1

= G(Gyn−2 + fn−2) + fn−1

...

= Gny0 +
n−1∑
m=0

Gn−1−mfm

Homeworks.

1. Consider the linear ODE
y′ = λy

where λ considered here can be complex. Study the linear difference equation derived for this
ODE by forward Euler method, backward Euler, midpoint. Find its general solutions.

2. Consider linear finite difference equation with source term

ayn+1 + byn + cyn−1 = fn

Given initial data ȳ0 and ȳ1, find its solution.

3. Find the characteristic roots for the Adams-Bashforth and Adams-Moulton schemes with
steps 1-3 for the linear equation y′ = λy.

5.6 Stability analysis

There are two kinds of stability concepts.

• Fix t = nk, the computed solution yn remains bounded as n→∞ (or equivalently, k → 0).

• Fix k > 0, the computed solution yn remains bounded as n→∞.

The first one is refered to zero stability. The second is called absolute stability.

5.6.1 Zero Stability

Our goal is to develop general convergence theory for multistep finite difference method for ODE:
y′ = f(t, y) with initial condition y(0) = y0. An r-step multistep finite difference scheme can be
expressed as

Lyn =

r∑
m=0

amy
n+1−r+m − k

r∑
m=0

bmf(tn+1−r+m, yn+1−r+m) = 0. (5.19)

152 CHAPTER 5. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Definition 5.3. The truncation error τn(k) for the above finite difference scheme is defined by

τn(k) :=
1

k

(
r∑

m=0

amy(tn+1−r+m)− k
r∑

m=0

bmf(tn+1−r+m, y(tn+1−r+m))

)
,

where y(·) is a true solution of the ODE.

Definition 5.4. A difference scheme is called consistent if the corresponding truncation error τn(k)→
0 uniformly in n as the mesh size k → 0. The scheme is of order p if τn(k) = O(kp) uniform in n.

In the multistep method, the consistency is equivalent to τ(k) = O(k) because we assume y(·)
is smooth and the truncation error is a smooth function in k. The consistency is τ(k)→ 0 as k → 0.
Thus the smoothness of τ implies τ(k) = O(k).

Definition 5.5. A difference scheme is called zero stable if its solutions at time step n remain
bounded as the mesh size k → 0 (nk = T is fixed, according n→∞).

The main theorem is the follows. We will postpone its proof at the end of this section.

Theorem 5.4 (Dahlquist). For finite difference schemes for ODE y′ = f(t, y),

consistency + zero-stability ⇔ convergence

Stability criterion Let us investigate the condition on the coefficients a and b of an explicit mul-
tistep method for the stability

Lyn = 0

to be bounded. We assume ar = 1 and br = 0. Let us write it in matrix form:

yn+1 = Ayn + kBfn

where

A =


0 1

0 1
.

0 1
−a0 · · · −ar−2 −ar−1

 , yn =

 yn−r

· · ·
yn

 ,

B =


0 0

0 0
.

0 0
b0 · · · br−2 br−1

 , fn =

 fn−r

· · ·
fn

 ,

In order to have solution to be bounded for a multistep scheme Ly = 0 for arbitrary f , it has at least
to be valid when f ≡ 0. In this case, we need to invetigate the boundedness for the homogeneous
equation:

yn+1 = Ayn

5.6. STABILITY ANALYSIS 153

We have seen in the last section that

Theorem 5.5. The necessary and sufficient condition for ‖An‖ to be bounded is that the charac-
teristic roots ρi of the characteristic equation a(z) = 0 satisfies:

either |ρi| < 1

or |ρi| = 1 but simple.

Convergence⇒ Stability

Proof. We only need to find an f such that the corresponding multistep is not stable implies that it
does not converge. We choose f ≡ 0. Since An is unbounded, which means there is an eigenvalue
ρi with eigenvector yi such that |ρi| > 1 or |ρi| = 1 but not simple. We discuss the formal case.
The latter case can also be prove easily. In the former case, we choose y0 such that y0 · yi 6= 0.
Then the corresponding bfyn := Any0 will be unbounded. Hence it cannot converge to a constant,
as k → 0. Here, we use that fact that y0 · yi 6= 0. We generate bfy0 = (yr−1

0 , · · · , y0)T by
some explicit scheme starting from y0. The point is that bfy0 depends on the mesh size k and
y0(k) → (y0, · · · , y0)T as k → 0. With this, given any yi, we can always construct y0(k) such
that y0(k) · yi 6= 0 when k 6= 0.

Convergence⇒ Consistency

Proof. We need to show that a(1) = 0 and a′(1) = b(1). To show the first, we consider y′ = 0 with
y(0) = 1. For the second, we consider y′ = 1 and y(0) = 0.

• Show a(1) = 0: We choose y0 = (1, · · · , 1)T . From y1 = Ay0, we get

yr = −a0y
0 − · · · − ar−1y

r−1 = −a0 − · · · − ar−1.

Since yr is independent of k, and we should have yr → 1 as k → 0 (by convergence), we
conclude that yr = 1. Thus, we get a(1) = a0 + · · ·+ ar−1 + 1 = 0.

• Show a′(1) = b(1). We choose f ≡ 1, y(0) = 0. The corresponding ODE solution is
y(t) = t. The multistep method gives

a(Z)yn − kb(Z)1 = 0. (5.20)

We write
a(Z) = a′(1)(Z − 1) +O((Z − 1)2), b(Z)1 = b(1).

Then the principal part of the above finite difference is

(Z − 1)y − k b(1)

a′(1)
= 0.

This is an arithmetic series. Its solution is yn = nk b(1)
a′(1) . Indeed, this sequence also satisfies

(5.20) provided its initial data yn has the same form for 0 ≤ n < r. Since nk = t, the
convergence yn → t as n→∞ forces b(1)

a′(1) = 1.

154 CHAPTER 5. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Stability + Consistency⇒ Convergence

Proof. We recall that we can express the scheme as

yn+1 = Ayn + kBfn.

Let Y be an exact solution, then plug it into the above =scheme, we get

Yn+1 = AYn + kBFn + kτn.

We substract these two and call en := Yn − yn. We get

en+1 = Aen + kB (Fn − fn) + kτn.

The term Fn − fn can be repressed as

Fn − fn = (f(Y n−r)− f(yn−r), · · · , f(Y n)− f(yn))T

= (L−re
n−r, · · · , L0e

n)T

:= Lne
n

where

L−m :=

∫ 1

0
f ′(yn−m + ten−m) dt.

Thus, we get

en+1 = (A + kBLn) en + kτn

= Gn(k)en + kτn

with C independent of n and k. The reason is the follows. First, we assume that f is Lipschitz.
Thus, the functions L−m above are uniformly bounded (independent of n). Hence the term ‖BL‖
is uniformly bounded. Second we have a lemma

Lemma 5.1. If ‖An‖ is bounded and ‖Bn‖ are uniformly bounded, then the product

‖(A +
1

n
B1) · · · (A +

1

n
Bn)‖

is also uniformly bounded.

We have

en ≤ Gn−1e
n−1 + kτn−1

≤ Gn−1Gn−2e
n−2 + k

(
Gn−2τ

n−2 + τn−1
)

≤ Gn−1Gn−2 · · ·G0e
0

+k
(
Gn−2 · · ·G0τ

0 + · · ·+ Gn−2τ
n−2 + τn−1

)

5.6. STABILITY ANALYSIS 155

From the lemma, we get

‖en‖ ≤ C‖e0‖+ nkC max
n
‖τn‖ ≤ C‖e0‖+O(kp).

	Solving Equations of One Variable
	Motivation
	Newton's method
	Secant method
	A dynamical system point of view of iterative map
	Fixed Point Method

	Basic Numerical Linear Algebra
	Motivations
	Introduction and overview
	*Matrix Algebra
	Matrix Analysis
	Matrix Norm
	Condition number
	*Functional Calculus

	Direct Methods for Solving Linear Equations
	LU Decomposition
	*Other direct methods

	Classical Iterative Methods
	Splitting iterative methods
	Preconditioned iterative methods
	Conjugate Gradient Method

	Power Method for Finding Eigenvalues
	Inverse Power Method

	Approximation Theory
	Motivations
	Basic Notion of function spaces

	Approximation by polynomials: Interpolation Theory
	Newton's interpolation
	Runge Phenomenon

	Approximation by Trigonometric polynomials
	Definition and examples
	Basic properties

	Convergence Theory
	Convergence theory for Smooth function
	L2 Convergence Theory
	BV Convergence Theory
	Pointwise estimate of rate of convergence
	Fourier Expansion of Real Valued Functions

	Discrete Fourier Transform
	Definition and inversion formula
	Approximation issues

	Fast Fourier Transform
	The FFT algorithm
	Variants of FFT

	Fast Chebyshev Transformation
	Approximation by Splines
	Splines on uniform grid systems

	Approximation by Wavelets and Framelets
	Motivations
	 General Discrete Wavelet Transform
	Examples of filter banks
	Multi-resolution Analysis framework
	Construction of scaling functions and wavelets

	Numerical Integration
	Motivations
	Newton-Cotes Method for numerical integration
	Gaussian Quadrature Methods

	Numerical Ordinary Differential Equations
	Motivations
	Basic Numerical Methods for Ordinary Differential Equations
	Runge-Kutta methods
	Multistep methods
	Linear difference equation
	Stability analysis
	Zero Stability

